xref: /dpdk/drivers/crypto/octeontx/otx_cryptodev_hw_access.h (revision c9902a15bd005b6d4fe072cf7b60fe4ee679155f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 #ifndef _OTX_CRYPTODEV_HW_ACCESS_H_
5 #define _OTX_CRYPTODEV_HW_ACCESS_H_
6 
7 #include <stdbool.h>
8 
9 #include <rte_branch_prediction.h>
10 #include <rte_cryptodev.h>
11 #include <rte_cycles.h>
12 #include <rte_io.h>
13 #include <rte_memory.h>
14 #include <rte_prefetch.h>
15 
16 #include "otx_cryptodev.h"
17 
18 #include "cpt_common.h"
19 #include "cpt_hw_types.h"
20 #include "cpt_mcode_defines.h"
21 #include "cpt_pmd_logs.h"
22 
23 #define CPT_INTR_POLL_INTERVAL_MS	(50)
24 
25 /* Default command queue length */
26 #define DEFAULT_CMD_QLEN	2048
27 #define DEFAULT_CMD_QCHUNKS	2
28 
29 /* Instruction memory benefits from being 1023, so introduce
30  * reserved entries so we can't overrun the instruction queue
31  */
32 #define DEFAULT_CMD_QRSVD_SLOTS DEFAULT_CMD_QCHUNKS
33 #define DEFAULT_CMD_QCHUNK_SIZE \
34 		((DEFAULT_CMD_QLEN - DEFAULT_CMD_QRSVD_SLOTS) / \
35 		DEFAULT_CMD_QCHUNKS)
36 
37 #define CPT_CSR_REG_BASE(cpt)		((cpt)->reg_base)
38 
39 /* Read hw register */
40 #define CPT_READ_CSR(__hw_addr, __offset) \
41 	rte_read64_relaxed((uint8_t *)__hw_addr + __offset)
42 
43 /* Write hw register */
44 #define CPT_WRITE_CSR(__hw_addr, __offset, __val) \
45 	rte_write64_relaxed((__val), ((uint8_t *)__hw_addr + __offset))
46 
47 /* cpt instance */
48 struct cpt_instance {
49 	uint32_t queue_id;
50 	uintptr_t rsvd;
51 	struct rte_mempool *sess_mp;
52 	struct rte_mempool *sess_mp_priv;
53 	struct cpt_qp_meta_info meta_info;
54 	uint8_t ca_enabled;
55 };
56 
57 struct command_chunk {
58 	/** 128-byte aligned real_vaddr */
59 	uint8_t *head;
60 	/** 128-byte aligned real_dma_addr */
61 	phys_addr_t dma_addr;
62 };
63 
64 /**
65  * Command queue structure
66  */
67 struct command_queue {
68 	/** Command queue host write idx */
69 	uint32_t idx;
70 	/** Command queue chunk */
71 	uint32_t cchunk;
72 	/** Command queue head; instructions are inserted here */
73 	uint8_t *qhead;
74 	/** Command chunk list head */
75 	struct command_chunk chead[DEFAULT_CMD_QCHUNKS];
76 };
77 
78 /**
79  * CPT VF device structure
80  */
81 struct cpt_vf {
82 	/** CPT instance */
83 	struct cpt_instance instance;
84 	/** Register start address */
85 	uint8_t *reg_base;
86 	/** Command queue information */
87 	struct command_queue cqueue;
88 	/** Pending queue information */
89 	struct pending_queue pqueue;
90 
91 	/** Below fields are accessed only in control path */
92 
93 	/** Env specific pdev representing the pci dev */
94 	void *pdev;
95 	/** Calculated queue size */
96 	uint32_t qsize;
97 	/** Device index (0...CPT_MAX_VQ_NUM)*/
98 	uint8_t  vfid;
99 	/** VF type of cpt_vf_type_t (SE_TYPE(2) or AE_TYPE(1) */
100 	uint8_t  vftype;
101 	/** VF group (0 - 8) */
102 	uint8_t  vfgrp;
103 	/** Operating node: Bits (46:44) in BAR0 address */
104 	uint8_t  node;
105 
106 	/** VF-PF mailbox communication */
107 
108 	/** Flag if acked */
109 	bool pf_acked;
110 	/** Flag if not acked */
111 	bool pf_nacked;
112 
113 	/** Device name */
114 	char dev_name[32];
115 } __rte_cache_aligned;
116 
117 /*
118  * CPT Registers map for 81xx
119  */
120 
121 /* VF registers */
122 #define CPTX_VQX_CTL(a, b)		(0x0000100ll + 0x1000000000ll * \
123 					 ((a) & 0x0) + 0x100000ll * (b))
124 #define CPTX_VQX_SADDR(a, b)		(0x0000200ll + 0x1000000000ll * \
125 					 ((a) & 0x0) + 0x100000ll * (b))
126 #define CPTX_VQX_DONE_WAIT(a, b)	(0x0000400ll + 0x1000000000ll * \
127 					 ((a) & 0x0) + 0x100000ll * (b))
128 #define CPTX_VQX_INPROG(a, b)		(0x0000410ll + 0x1000000000ll * \
129 					 ((a) & 0x0) + 0x100000ll * (b))
130 #define CPTX_VQX_DONE(a, b)		(0x0000420ll + 0x1000000000ll * \
131 					 ((a) & 0x1) + 0x100000ll * (b))
132 #define CPTX_VQX_DONE_ACK(a, b)		(0x0000440ll + 0x1000000000ll * \
133 					 ((a) & 0x1) + 0x100000ll * (b))
134 #define CPTX_VQX_DONE_INT_W1S(a, b)	(0x0000460ll + 0x1000000000ll * \
135 					 ((a) & 0x1) + 0x100000ll * (b))
136 #define CPTX_VQX_DONE_INT_W1C(a, b)	(0x0000468ll + 0x1000000000ll * \
137 					 ((a) & 0x1) + 0x100000ll * (b))
138 #define CPTX_VQX_DONE_ENA_W1S(a, b)	(0x0000470ll + 0x1000000000ll * \
139 					 ((a) & 0x1) + 0x100000ll * (b))
140 #define CPTX_VQX_DONE_ENA_W1C(a, b)	(0x0000478ll + 0x1000000000ll * \
141 					 ((a) & 0x1) + 0x100000ll * (b))
142 #define CPTX_VQX_MISC_INT(a, b)		(0x0000500ll + 0x1000000000ll * \
143 					 ((a) & 0x1) + 0x100000ll * (b))
144 #define CPTX_VQX_MISC_INT_W1S(a, b)	(0x0000508ll + 0x1000000000ll * \
145 					 ((a) & 0x1) + 0x100000ll * (b))
146 #define CPTX_VQX_MISC_ENA_W1S(a, b)	(0x0000510ll + 0x1000000000ll * \
147 					 ((a) & 0x1) + 0x100000ll * (b))
148 #define CPTX_VQX_MISC_ENA_W1C(a, b)	(0x0000518ll + 0x1000000000ll * \
149 					 ((a) & 0x1) + 0x100000ll * (b))
150 #define CPTX_VQX_DOORBELL(a, b)		(0x0000600ll + 0x1000000000ll * \
151 					 ((a) & 0x1) + 0x100000ll * (b))
152 #define CPTX_VFX_PF_MBOXX(a, b, c)	(0x0001000ll + 0x1000000000ll * \
153 					 ((a) & 0x1) + 0x100000ll * (b) + \
154 					 8ll * ((c) & 0x1))
155 
156 /* VF HAL functions */
157 
158 void
159 otx_cpt_poll_misc(struct cpt_vf *cptvf);
160 
161 int
162 otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name);
163 
164 int
165 otx_cpt_deinit_device(void *dev);
166 
167 int
168 otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
169 		     struct cpt_instance **instance, uint16_t qp_id);
170 
171 int
172 otx_cpt_put_resource(struct cpt_instance *instance);
173 
174 int
175 otx_cpt_start_device(void *cptvf);
176 
177 void
178 otx_cpt_stop_device(void *cptvf);
179 
180 /* Write to VQX_DOORBELL register
181  */
182 static __rte_always_inline void
183 otx_cpt_write_vq_doorbell(struct cpt_vf *cptvf, uint32_t val)
184 {
185 	cptx_vqx_doorbell_t vqx_dbell;
186 
187 	vqx_dbell.u = 0;
188 	vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
189 	CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
190 		      CPTX_VQX_DOORBELL(0, 0), vqx_dbell.u);
191 }
192 
193 static __rte_always_inline uint32_t
194 otx_cpt_read_vq_doorbell(struct cpt_vf *cptvf)
195 {
196 	cptx_vqx_doorbell_t vqx_dbell;
197 
198 	vqx_dbell.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
199 				   CPTX_VQX_DOORBELL(0, 0));
200 	return vqx_dbell.s.dbell_cnt;
201 }
202 
203 static __rte_always_inline void
204 otx_cpt_ring_dbell(struct cpt_instance *instance, uint16_t count)
205 {
206 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
207 	/* Memory barrier to flush pending writes */
208 	rte_smp_wmb();
209 	otx_cpt_write_vq_doorbell(cptvf, count);
210 }
211 
212 static __rte_always_inline void *
213 get_cpt_inst(struct command_queue *cqueue)
214 {
215 	CPT_LOG_DP_DEBUG("CPT queue idx %u\n", cqueue->idx);
216 	return &cqueue->qhead[cqueue->idx * CPT_INST_SIZE];
217 }
218 
219 static __rte_always_inline void
220 fill_cpt_inst(struct cpt_instance *instance, void *req, uint64_t ucmd_w3)
221 {
222 	struct command_queue *cqueue;
223 	cpt_inst_s_t *cpt_ist_p;
224 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
225 	struct cpt_request_info *user_req = (struct cpt_request_info *)req;
226 	cqueue = &cptvf->cqueue;
227 	cpt_ist_p = get_cpt_inst(cqueue);
228 	rte_prefetch_non_temporal(cpt_ist_p);
229 
230 	/* EI0, EI1, EI2, EI3 are already prepared */
231 	/* HW W0 */
232 	cpt_ist_p->u[0] = 0;
233 	/* HW W1 */
234 	cpt_ist_p->s8x.res_addr = user_req->comp_baddr;
235 	/* HW W2 */
236 	cpt_ist_p->u[2] = 0;
237 	/* HW W3 */
238 	cpt_ist_p->s8x.wq_ptr = 0;
239 
240 	/* MC EI0 */
241 	cpt_ist_p->s8x.ei0 = user_req->ist.ei0;
242 	/* MC EI1 */
243 	cpt_ist_p->s8x.ei1 = user_req->ist.ei1;
244 	/* MC EI2 */
245 	cpt_ist_p->s8x.ei2 = user_req->ist.ei2;
246 	/* MC EI3 */
247 	cpt_ist_p->s8x.ei3 = ucmd_w3;
248 }
249 
250 static __rte_always_inline void
251 mark_cpt_inst(struct cpt_instance *instance)
252 {
253 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
254 	struct command_queue *queue = &cptvf->cqueue;
255 	if (unlikely(++queue->idx >= DEFAULT_CMD_QCHUNK_SIZE)) {
256 		uint32_t cchunk = queue->cchunk;
257 		MOD_INC(cchunk, DEFAULT_CMD_QCHUNKS);
258 		queue->qhead = queue->chead[cchunk].head;
259 		queue->idx = 0;
260 		queue->cchunk = cchunk;
261 	}
262 }
263 
264 static __rte_always_inline uint8_t
265 check_nb_command_id(struct cpt_request_info *user_req,
266 		struct cpt_instance *instance)
267 {
268 	uint8_t ret = ERR_REQ_PENDING;
269 	struct cpt_vf *cptvf = (struct cpt_vf *)instance;
270 	volatile cpt_res_s_t *cptres;
271 
272 	cptres = (volatile cpt_res_s_t *)user_req->completion_addr;
273 
274 	if (unlikely(cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE)) {
275 		/*
276 		 * Wait for some time for this command to get completed
277 		 * before timing out
278 		 */
279 		if (rte_get_timer_cycles() < user_req->time_out)
280 			return ret;
281 		/*
282 		 * TODO: See if alternate caddr can be used to not loop
283 		 * longer than needed.
284 		 */
285 		if ((cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE) &&
286 		    (user_req->extra_time < TIME_IN_RESET_COUNT)) {
287 			user_req->extra_time++;
288 			return ret;
289 		}
290 
291 		if (cptres->s8x.compcode != CPT_8X_COMP_E_NOTDONE)
292 			goto complete;
293 
294 		ret = ERR_REQ_TIMEOUT;
295 		CPT_LOG_DP_ERR("Request %p timedout", user_req);
296 		otx_cpt_poll_misc(cptvf);
297 		goto exit;
298 	}
299 
300 complete:
301 	if (likely(cptres->s8x.compcode == CPT_8X_COMP_E_GOOD)) {
302 		ret = 0; /* success */
303 		if (unlikely((uint8_t)*user_req->alternate_caddr)) {
304 			ret = (uint8_t)*user_req->alternate_caddr;
305 			CPT_LOG_DP_ERR("Request %p : failed with microcode"
306 				" error, MC completion code : 0x%x", user_req,
307 				ret);
308 		}
309 		CPT_LOG_DP_DEBUG("MC status %.8x\n",
310 			   *((volatile uint32_t *)user_req->alternate_caddr));
311 		CPT_LOG_DP_DEBUG("HW status %.8x\n",
312 			   *((volatile uint32_t *)user_req->completion_addr));
313 	} else if ((cptres->s8x.compcode == CPT_8X_COMP_E_SWERR) ||
314 		   (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT)) {
315 		ret = (uint8_t)*user_req->alternate_caddr;
316 		if (!ret)
317 			ret = ERR_BAD_ALT_CCODE;
318 		CPT_LOG_DP_DEBUG("Request %p : failed with %s : err code :%x",
319 			   user_req,
320 			   (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT) ?
321 			   "DMA Fault" : "Software error", ret);
322 	} else {
323 		CPT_LOG_DP_ERR("Request %p : unexpected completion code %d",
324 			   user_req, cptres->s8x.compcode);
325 		ret = (uint8_t)*user_req->alternate_caddr;
326 	}
327 
328 exit:
329 	return ret;
330 }
331 
332 #endif /* _OTX_CRYPTODEV_HW_ACCESS_H_ */
333