xref: /dpdk/drivers/crypto/mlx5/mlx5_crypto.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2021 NVIDIA Corporation & Affiliates
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_mempool.h>
7 #include <rte_errno.h>
8 #include <rte_log.h>
9 #include <rte_bus_pci.h>
10 #include <rte_memory.h>
11 
12 #include <mlx5_glue.h>
13 #include <mlx5_common.h>
14 #include <mlx5_devx_cmds.h>
15 #include <mlx5_common_os.h>
16 
17 #include "mlx5_crypto_utils.h"
18 #include "mlx5_crypto.h"
19 
20 #define MLX5_CRYPTO_DRIVER_NAME crypto_mlx5
21 #define MLX5_CRYPTO_LOG_NAME pmd.crypto.mlx5
22 #define MLX5_CRYPTO_MAX_QPS 1024
23 #define MLX5_CRYPTO_MAX_SEGS 56
24 
25 #define MLX5_CRYPTO_FEATURE_FLAGS \
26 	(RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_HW_ACCELERATED | \
27 	 RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | \
28 	 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | \
29 	 RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT | \
30 	 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | \
31 	 RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY | \
32 	 RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS)
33 
34 TAILQ_HEAD(mlx5_crypto_privs, mlx5_crypto_priv) mlx5_crypto_priv_list =
35 				TAILQ_HEAD_INITIALIZER(mlx5_crypto_priv_list);
36 static pthread_mutex_t priv_list_lock = PTHREAD_MUTEX_INITIALIZER;
37 
38 int mlx5_crypto_logtype;
39 
40 uint8_t mlx5_crypto_driver_id;
41 
42 const struct rte_cryptodev_capabilities mlx5_crypto_caps[] = {
43 	{		/* AES XTS */
44 		.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
45 		{.sym = {
46 			.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
47 			{.cipher = {
48 				.algo = RTE_CRYPTO_CIPHER_AES_XTS,
49 				.block_size = 16,
50 				.key_size = {
51 					.min = 32,
52 					.max = 64,
53 					.increment = 32
54 				},
55 				.iv_size = {
56 					.min = 16,
57 					.max = 16,
58 					.increment = 0
59 				},
60 				.dataunit_set =
61 				RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES |
62 				RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES,
63 			}, }
64 		}, }
65 	},
66 };
67 
68 static const char mlx5_crypto_drv_name[] = RTE_STR(MLX5_CRYPTO_DRIVER_NAME);
69 
70 static const struct rte_driver mlx5_drv = {
71 	.name = mlx5_crypto_drv_name,
72 	.alias = mlx5_crypto_drv_name
73 };
74 
75 static struct cryptodev_driver mlx5_cryptodev_driver;
76 
77 struct mlx5_crypto_session {
78 	uint32_t bs_bpt_eo_es;
79 	/**< bsf_size, bsf_p_type, encryption_order and encryption standard,
80 	 * saved in big endian format.
81 	 */
82 	uint32_t bsp_res;
83 	/**< crypto_block_size_pointer and reserved 24 bits saved in big
84 	 * endian format.
85 	 */
86 	uint32_t iv_offset:16;
87 	/**< Starting point for Initialisation Vector. */
88 	struct mlx5_crypto_dek *dek; /**< Pointer to dek struct. */
89 	uint32_t dek_id; /**< DEK ID */
90 } __rte_packed;
91 
92 static void
93 mlx5_crypto_dev_infos_get(struct rte_cryptodev *dev,
94 			  struct rte_cryptodev_info *dev_info)
95 {
96 	RTE_SET_USED(dev);
97 	if (dev_info != NULL) {
98 		dev_info->driver_id = mlx5_crypto_driver_id;
99 		dev_info->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
100 		dev_info->capabilities = mlx5_crypto_caps;
101 		dev_info->max_nb_queue_pairs = MLX5_CRYPTO_MAX_QPS;
102 		dev_info->min_mbuf_headroom_req = 0;
103 		dev_info->min_mbuf_tailroom_req = 0;
104 		dev_info->sym.max_nb_sessions = 0;
105 		/*
106 		 * If 0, the device does not have any limitation in number of
107 		 * sessions that can be used.
108 		 */
109 	}
110 }
111 
112 static int
113 mlx5_crypto_dev_configure(struct rte_cryptodev *dev,
114 			  struct rte_cryptodev_config *config)
115 {
116 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
117 
118 	if (config == NULL) {
119 		DRV_LOG(ERR, "Invalid crypto dev configure parameters.");
120 		return -EINVAL;
121 	}
122 	if ((config->ff_disable & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) != 0) {
123 		DRV_LOG(ERR,
124 			"Disabled symmetric crypto feature is not supported.");
125 		return -ENOTSUP;
126 	}
127 	if (mlx5_crypto_dek_setup(priv) != 0) {
128 		DRV_LOG(ERR, "Dek hash list creation has failed.");
129 		return -ENOMEM;
130 	}
131 	priv->dev_config = *config;
132 	DRV_LOG(DEBUG, "Device %u was configured.", dev->driver_id);
133 	return 0;
134 }
135 
136 static void
137 mlx5_crypto_dev_stop(struct rte_cryptodev *dev)
138 {
139 	RTE_SET_USED(dev);
140 }
141 
142 static int
143 mlx5_crypto_dev_start(struct rte_cryptodev *dev)
144 {
145 	RTE_SET_USED(dev);
146 	return 0;
147 }
148 
149 static int
150 mlx5_crypto_dev_close(struct rte_cryptodev *dev)
151 {
152 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
153 
154 	mlx5_crypto_dek_unset(priv);
155 	DRV_LOG(DEBUG, "Device %u was closed.", dev->driver_id);
156 	return 0;
157 }
158 
159 static unsigned int
160 mlx5_crypto_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
161 {
162 	return sizeof(struct mlx5_crypto_session);
163 }
164 
165 static int
166 mlx5_crypto_sym_session_configure(struct rte_cryptodev *dev,
167 				  struct rte_crypto_sym_xform *xform,
168 				  struct rte_cryptodev_sym_session *session,
169 				  struct rte_mempool *mp)
170 {
171 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
172 	struct mlx5_crypto_session *sess_private_data;
173 	struct rte_crypto_cipher_xform *cipher;
174 	uint8_t encryption_order;
175 	int ret;
176 
177 	if (unlikely(xform->next != NULL)) {
178 		DRV_LOG(ERR, "Xform next is not supported.");
179 		return -ENOTSUP;
180 	}
181 	if (unlikely((xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) ||
182 		     (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_XTS))) {
183 		DRV_LOG(ERR, "Only AES-XTS algorithm is supported.");
184 		return -ENOTSUP;
185 	}
186 	ret = rte_mempool_get(mp, (void *)&sess_private_data);
187 	if (ret != 0) {
188 		DRV_LOG(ERR,
189 			"Failed to get session %p private data from mempool.",
190 			sess_private_data);
191 		return -ENOMEM;
192 	}
193 	cipher = &xform->cipher;
194 	sess_private_data->dek = mlx5_crypto_dek_prepare(priv, cipher);
195 	if (sess_private_data->dek == NULL) {
196 		rte_mempool_put(mp, sess_private_data);
197 		DRV_LOG(ERR, "Failed to prepare dek.");
198 		return -ENOMEM;
199 	}
200 	if (cipher->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
201 		encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_MEMORY;
202 	else
203 		encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_WIRE;
204 	sess_private_data->bs_bpt_eo_es = rte_cpu_to_be_32
205 			(MLX5_BSF_SIZE_64B << MLX5_BSF_SIZE_OFFSET |
206 			 MLX5_BSF_P_TYPE_CRYPTO << MLX5_BSF_P_TYPE_OFFSET |
207 			 encryption_order << MLX5_ENCRYPTION_ORDER_OFFSET |
208 			 MLX5_ENCRYPTION_STANDARD_AES_XTS);
209 	switch (xform->cipher.dataunit_len) {
210 	case 0:
211 		sess_private_data->bsp_res = 0;
212 		break;
213 	case 512:
214 		sess_private_data->bsp_res = rte_cpu_to_be_32
215 					     ((uint32_t)MLX5_BLOCK_SIZE_512B <<
216 					     MLX5_BLOCK_SIZE_OFFSET);
217 		break;
218 	case 4096:
219 		sess_private_data->bsp_res = rte_cpu_to_be_32
220 					     ((uint32_t)MLX5_BLOCK_SIZE_4096B <<
221 					     MLX5_BLOCK_SIZE_OFFSET);
222 		break;
223 	default:
224 		DRV_LOG(ERR, "Cipher data unit length is not supported.");
225 		return -ENOTSUP;
226 	}
227 	sess_private_data->iv_offset = cipher->iv.offset;
228 	sess_private_data->dek_id =
229 			rte_cpu_to_be_32(sess_private_data->dek->obj->id &
230 					 0xffffff);
231 	set_sym_session_private_data(session, dev->driver_id,
232 				     sess_private_data);
233 	DRV_LOG(DEBUG, "Session %p was configured.", sess_private_data);
234 	return 0;
235 }
236 
237 static void
238 mlx5_crypto_sym_session_clear(struct rte_cryptodev *dev,
239 			      struct rte_cryptodev_sym_session *sess)
240 {
241 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
242 	struct mlx5_crypto_session *spriv = get_sym_session_private_data(sess,
243 								dev->driver_id);
244 
245 	if (unlikely(spriv == NULL)) {
246 		DRV_LOG(ERR, "Failed to get session %p private data.", spriv);
247 		return;
248 	}
249 	mlx5_crypto_dek_destroy(priv, spriv->dek);
250 	set_sym_session_private_data(sess, dev->driver_id, NULL);
251 	rte_mempool_put(rte_mempool_from_obj(spriv), spriv);
252 	DRV_LOG(DEBUG, "Session %p was cleared.", spriv);
253 }
254 
255 static int
256 mlx5_crypto_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id)
257 {
258 	struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
259 
260 	if (qp->qp_obj != NULL)
261 		claim_zero(mlx5_devx_cmd_destroy(qp->qp_obj));
262 	if (qp->umem_obj != NULL)
263 		claim_zero(mlx5_glue->devx_umem_dereg(qp->umem_obj));
264 	if (qp->umem_buf != NULL)
265 		rte_free(qp->umem_buf);
266 	mlx5_mr_btree_free(&qp->mr_ctrl.cache_bh);
267 	mlx5_devx_cq_destroy(&qp->cq_obj);
268 	rte_free(qp);
269 	dev->data->queue_pairs[qp_id] = NULL;
270 	return 0;
271 }
272 
273 static int
274 mlx5_crypto_qp2rts(struct mlx5_crypto_qp *qp)
275 {
276 	/*
277 	 * In Order to configure self loopback, when calling these functions the
278 	 * remote QP id that is used is the id of the same QP.
279 	 */
280 	if (mlx5_devx_cmd_modify_qp_state(qp->qp_obj, MLX5_CMD_OP_RST2INIT_QP,
281 					  qp->qp_obj->id)) {
282 		DRV_LOG(ERR, "Failed to modify QP to INIT state(%u).",
283 			rte_errno);
284 		return -1;
285 	}
286 	if (mlx5_devx_cmd_modify_qp_state(qp->qp_obj, MLX5_CMD_OP_INIT2RTR_QP,
287 					  qp->qp_obj->id)) {
288 		DRV_LOG(ERR, "Failed to modify QP to RTR state(%u).",
289 			rte_errno);
290 		return -1;
291 	}
292 	if (mlx5_devx_cmd_modify_qp_state(qp->qp_obj, MLX5_CMD_OP_RTR2RTS_QP,
293 					  qp->qp_obj->id)) {
294 		DRV_LOG(ERR, "Failed to modify QP to RTS state(%u).",
295 			rte_errno);
296 		return -1;
297 	}
298 	return 0;
299 }
300 
301 static __rte_noinline uint32_t
302 mlx5_crypto_get_block_size(struct rte_crypto_op *op)
303 {
304 	uint32_t bl = op->sym->cipher.data.length;
305 
306 	switch (bl) {
307 	case (1 << 20):
308 		return RTE_BE32(MLX5_BLOCK_SIZE_1MB << MLX5_BLOCK_SIZE_OFFSET);
309 	case (1 << 12):
310 		return RTE_BE32(MLX5_BLOCK_SIZE_4096B <<
311 				MLX5_BLOCK_SIZE_OFFSET);
312 	case (1 << 9):
313 		return RTE_BE32(MLX5_BLOCK_SIZE_512B << MLX5_BLOCK_SIZE_OFFSET);
314 	default:
315 		DRV_LOG(ERR, "Unknown block size: %u.", bl);
316 		return UINT32_MAX;
317 	}
318 }
319 
320 /**
321  * Query LKey from a packet buffer for QP. If not found, add the mempool.
322  *
323  * @param priv
324  *   Pointer to the priv object.
325  * @param addr
326  *   Search key.
327  * @param mr_ctrl
328  *   Pointer to per-queue MR control structure.
329  * @param ol_flags
330  *   Mbuf offload features.
331  *
332  * @return
333  *   Searched LKey on success, UINT32_MAX on no match.
334  */
335 static __rte_always_inline uint32_t
336 mlx5_crypto_addr2mr(struct mlx5_crypto_priv *priv, uintptr_t addr,
337 		    struct mlx5_mr_ctrl *mr_ctrl, uint64_t ol_flags)
338 {
339 	uint32_t lkey;
340 
341 	/* Check generation bit to see if there's any change on existing MRs. */
342 	if (unlikely(*mr_ctrl->dev_gen_ptr != mr_ctrl->cur_gen))
343 		mlx5_mr_flush_local_cache(mr_ctrl);
344 	/* Linear search on MR cache array. */
345 	lkey = mlx5_mr_lookup_lkey(mr_ctrl->cache, &mr_ctrl->mru,
346 				   MLX5_MR_CACHE_N, addr);
347 	if (likely(lkey != UINT32_MAX))
348 		return lkey;
349 	/* Take slower bottom-half on miss. */
350 	return mlx5_mr_addr2mr_bh(priv->pd, 0, &priv->mr_scache, mr_ctrl, addr,
351 				  !!(ol_flags & EXT_ATTACHED_MBUF));
352 }
353 
354 static __rte_always_inline uint32_t
355 mlx5_crypto_klm_set(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp,
356 		      struct rte_mbuf *mbuf, struct mlx5_wqe_dseg *klm,
357 		      uint32_t offset, uint32_t *remain)
358 {
359 	uint32_t data_len = (rte_pktmbuf_data_len(mbuf) - offset);
360 	uintptr_t addr = rte_pktmbuf_mtod_offset(mbuf, uintptr_t, offset);
361 
362 	if (data_len > *remain)
363 		data_len = *remain;
364 	*remain -= data_len;
365 	klm->bcount = rte_cpu_to_be_32(data_len);
366 	klm->pbuf = rte_cpu_to_be_64(addr);
367 	klm->lkey = mlx5_crypto_addr2mr(priv, addr, &qp->mr_ctrl,
368 					mbuf->ol_flags);
369 	return klm->lkey;
370 
371 }
372 
373 static __rte_always_inline uint32_t
374 mlx5_crypto_klms_set(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp,
375 		     struct rte_crypto_op *op, struct rte_mbuf *mbuf,
376 		     struct mlx5_wqe_dseg *klm)
377 {
378 	uint32_t remain_len = op->sym->cipher.data.length;
379 	uint32_t nb_segs = mbuf->nb_segs;
380 	uint32_t klm_n = 1u;
381 
382 	/* First mbuf needs to take the cipher offset. */
383 	if (unlikely(mlx5_crypto_klm_set(priv, qp, mbuf, klm,
384 		     op->sym->cipher.data.offset, &remain_len) == UINT32_MAX)) {
385 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
386 		return 0;
387 	}
388 	while (remain_len) {
389 		nb_segs--;
390 		mbuf = mbuf->next;
391 		if (unlikely(mbuf == NULL || nb_segs == 0)) {
392 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
393 			return 0;
394 		}
395 		if (unlikely(mlx5_crypto_klm_set(priv, qp, mbuf, ++klm, 0,
396 						 &remain_len) == UINT32_MAX)) {
397 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
398 			return 0;
399 		}
400 		klm_n++;
401 	}
402 	return klm_n;
403 }
404 
405 static __rte_always_inline int
406 mlx5_crypto_wqe_set(struct mlx5_crypto_priv *priv,
407 			 struct mlx5_crypto_qp *qp,
408 			 struct rte_crypto_op *op,
409 			 struct mlx5_umr_wqe *umr)
410 {
411 	struct mlx5_crypto_session *sess = get_sym_session_private_data
412 				(op->sym->session, mlx5_crypto_driver_id);
413 	struct mlx5_wqe_cseg *cseg = &umr->ctr;
414 	struct mlx5_wqe_mkey_cseg *mkc = &umr->mkc;
415 	struct mlx5_wqe_dseg *klms = &umr->kseg[0];
416 	struct mlx5_wqe_umr_bsf_seg *bsf = ((struct mlx5_wqe_umr_bsf_seg *)
417 				      RTE_PTR_ADD(umr, priv->umr_wqe_size)) - 1;
418 	uint32_t ds;
419 	bool ipl = op->sym->m_dst == NULL || op->sym->m_dst == op->sym->m_src;
420 	/* Set UMR WQE. */
421 	uint32_t klm_n = mlx5_crypto_klms_set(priv, qp, op,
422 				   ipl ? op->sym->m_src : op->sym->m_dst, klms);
423 
424 	if (unlikely(klm_n == 0))
425 		return 0;
426 	bsf->bs_bpt_eo_es = sess->bs_bpt_eo_es;
427 	if (unlikely(!sess->bsp_res)) {
428 		bsf->bsp_res = mlx5_crypto_get_block_size(op);
429 		if (unlikely(bsf->bsp_res == UINT32_MAX)) {
430 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
431 			return 0;
432 		}
433 	} else {
434 		bsf->bsp_res = sess->bsp_res;
435 	}
436 	bsf->raw_data_size = rte_cpu_to_be_32(op->sym->cipher.data.length);
437 	memcpy(bsf->xts_initial_tweak,
438 	       rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv_offset), 16);
439 	bsf->res_dp = sess->dek_id;
440 	mkc->len = rte_cpu_to_be_64(op->sym->cipher.data.length);
441 	cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) | MLX5_OPCODE_UMR);
442 	qp->db_pi += priv->umr_wqe_stride;
443 	/* Set RDMA_WRITE WQE. */
444 	cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
445 	klms = RTE_PTR_ADD(cseg, sizeof(struct mlx5_rdma_write_wqe));
446 	if (!ipl) {
447 		klm_n = mlx5_crypto_klms_set(priv, qp, op, op->sym->m_src,
448 					     klms);
449 		if (unlikely(klm_n == 0))
450 			return 0;
451 	} else {
452 		memcpy(klms, &umr->kseg[0], sizeof(*klms) * klm_n);
453 	}
454 	ds = 2 + klm_n;
455 	cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj->id << 8) | ds);
456 	cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
457 							MLX5_OPCODE_RDMA_WRITE);
458 	ds = RTE_ALIGN(ds, 4);
459 	qp->db_pi += ds >> 2;
460 	/* Set NOP WQE if needed. */
461 	if (priv->max_rdmar_ds > ds) {
462 		cseg += ds;
463 		ds = priv->max_rdmar_ds - ds;
464 		cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj->id << 8) | ds);
465 		cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
466 							       MLX5_OPCODE_NOP);
467 		qp->db_pi += ds >> 2; /* Here, DS is 4 aligned for sure. */
468 	}
469 	qp->wqe = (uint8_t *)cseg;
470 	return 1;
471 }
472 
473 static __rte_always_inline void
474 mlx5_crypto_uar_write(uint64_t val, struct mlx5_crypto_priv *priv)
475 {
476 #ifdef RTE_ARCH_64
477 	*priv->uar_addr = val;
478 #else /* !RTE_ARCH_64 */
479 	rte_spinlock_lock(&priv->uar32_sl);
480 	*(volatile uint32_t *)priv->uar_addr = val;
481 	rte_io_wmb();
482 	*((volatile uint32_t *)priv->uar_addr + 1) = val >> 32;
483 	rte_spinlock_unlock(&priv->uar32_sl);
484 #endif
485 }
486 
487 static uint16_t
488 mlx5_crypto_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
489 			  uint16_t nb_ops)
490 {
491 	struct mlx5_crypto_qp *qp = queue_pair;
492 	struct mlx5_crypto_priv *priv = qp->priv;
493 	struct mlx5_umr_wqe *umr;
494 	struct rte_crypto_op *op;
495 	uint16_t mask = qp->entries_n - 1;
496 	uint16_t remain = qp->entries_n - (qp->pi - qp->ci);
497 
498 	if (remain < nb_ops)
499 		nb_ops = remain;
500 	else
501 		remain = nb_ops;
502 	if (unlikely(remain == 0))
503 		return 0;
504 	do {
505 		op = *ops++;
506 		umr = RTE_PTR_ADD(qp->umem_buf, priv->wqe_set_size * qp->pi);
507 		if (unlikely(mlx5_crypto_wqe_set(priv, qp, op, umr) == 0)) {
508 			qp->stats.enqueue_err_count++;
509 			if (remain != nb_ops) {
510 				qp->stats.enqueued_count -= remain;
511 				break;
512 			}
513 			return 0;
514 		}
515 		qp->ops[qp->pi] = op;
516 		qp->pi = (qp->pi + 1) & mask;
517 	} while (--remain);
518 	qp->stats.enqueued_count += nb_ops;
519 	rte_io_wmb();
520 	qp->db_rec[MLX5_SND_DBR] = rte_cpu_to_be_32(qp->db_pi);
521 	rte_wmb();
522 	mlx5_crypto_uar_write(*(volatile uint64_t *)qp->wqe, qp->priv);
523 	rte_wmb();
524 	return nb_ops;
525 }
526 
527 static __rte_noinline void
528 mlx5_crypto_cqe_err_handle(struct mlx5_crypto_qp *qp, struct rte_crypto_op *op)
529 {
530 	const uint32_t idx = qp->ci & (qp->entries_n - 1);
531 	volatile struct mlx5_err_cqe *cqe = (volatile struct mlx5_err_cqe *)
532 							&qp->cq_obj.cqes[idx];
533 
534 	op->status = RTE_CRYPTO_OP_STATUS_ERROR;
535 	qp->stats.dequeue_err_count++;
536 	DRV_LOG(ERR, "CQE ERR:%x.\n", rte_be_to_cpu_32(cqe->syndrome));
537 }
538 
539 static uint16_t
540 mlx5_crypto_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
541 			  uint16_t nb_ops)
542 {
543 	struct mlx5_crypto_qp *qp = queue_pair;
544 	volatile struct mlx5_cqe *restrict cqe;
545 	struct rte_crypto_op *restrict op;
546 	const unsigned int cq_size = qp->entries_n;
547 	const unsigned int mask = cq_size - 1;
548 	uint32_t idx;
549 	uint32_t next_idx = qp->ci & mask;
550 	const uint16_t max = RTE_MIN((uint16_t)(qp->pi - qp->ci), nb_ops);
551 	uint16_t i = 0;
552 	int ret;
553 
554 	if (unlikely(max == 0))
555 		return 0;
556 	do {
557 		idx = next_idx;
558 		next_idx = (qp->ci + 1) & mask;
559 		op = qp->ops[idx];
560 		cqe = &qp->cq_obj.cqes[idx];
561 		ret = check_cqe(cqe, cq_size, qp->ci);
562 		rte_io_rmb();
563 		if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
564 			if (unlikely(ret != MLX5_CQE_STATUS_HW_OWN))
565 				mlx5_crypto_cqe_err_handle(qp, op);
566 			break;
567 		}
568 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
569 		ops[i++] = op;
570 		qp->ci++;
571 	} while (i < max);
572 	if (likely(i != 0)) {
573 		rte_io_wmb();
574 		qp->cq_obj.db_rec[0] = rte_cpu_to_be_32(qp->ci);
575 		qp->stats.dequeued_count += i;
576 	}
577 	return i;
578 }
579 
580 static void
581 mlx5_crypto_qp_init(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp)
582 {
583 	uint32_t i;
584 
585 	for (i = 0 ; i < qp->entries_n; i++) {
586 		struct mlx5_wqe_cseg *cseg = RTE_PTR_ADD(qp->umem_buf, i *
587 							 priv->wqe_set_size);
588 		struct mlx5_wqe_umr_cseg *ucseg = (struct mlx5_wqe_umr_cseg *)
589 								     (cseg + 1);
590 		struct mlx5_wqe_umr_bsf_seg *bsf =
591 			(struct mlx5_wqe_umr_bsf_seg *)(RTE_PTR_ADD(cseg,
592 						       priv->umr_wqe_size)) - 1;
593 		struct mlx5_wqe_rseg *rseg;
594 
595 		/* Init UMR WQE. */
596 		cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj->id << 8) |
597 					 (priv->umr_wqe_size / MLX5_WSEG_SIZE));
598 		cseg->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
599 				       MLX5_COMP_MODE_OFFSET);
600 		cseg->misc = rte_cpu_to_be_32(qp->mkey[i]->id);
601 		ucseg->if_cf_toe_cq_res = RTE_BE32(1u << MLX5_UMRC_IF_OFFSET);
602 		ucseg->mkey_mask = RTE_BE64(1u << 0); /* Mkey length bit. */
603 		ucseg->ko_to_bs = rte_cpu_to_be_32
604 			((RTE_ALIGN(priv->max_segs_num, 4u) <<
605 			 MLX5_UMRC_KO_OFFSET) | (4 << MLX5_UMRC_TO_BS_OFFSET));
606 		bsf->keytag = priv->keytag;
607 		/* Init RDMA WRITE WQE. */
608 		cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
609 		cseg->flags = RTE_BE32((MLX5_COMP_ALWAYS <<
610 				      MLX5_COMP_MODE_OFFSET) |
611 				      MLX5_WQE_CTRL_INITIATOR_SMALL_FENCE);
612 		rseg = (struct mlx5_wqe_rseg *)(cseg + 1);
613 		rseg->rkey = rte_cpu_to_be_32(qp->mkey[i]->id);
614 	}
615 }
616 
617 static int
618 mlx5_crypto_indirect_mkeys_prepare(struct mlx5_crypto_priv *priv,
619 				  struct mlx5_crypto_qp *qp)
620 {
621 	struct mlx5_umr_wqe *umr;
622 	uint32_t i;
623 	struct mlx5_devx_mkey_attr attr = {
624 		.pd = priv->pdn,
625 		.umr_en = 1,
626 		.crypto_en = 1,
627 		.set_remote_rw = 1,
628 		.klm_num = RTE_ALIGN(priv->max_segs_num, 4),
629 	};
630 
631 	for (umr = (struct mlx5_umr_wqe *)qp->umem_buf, i = 0;
632 	   i < qp->entries_n; i++, umr = RTE_PTR_ADD(umr, priv->wqe_set_size)) {
633 		attr.klm_array = (struct mlx5_klm *)&umr->kseg[0];
634 		qp->mkey[i] = mlx5_devx_cmd_mkey_create(priv->ctx, &attr);
635 		if (!qp->mkey[i]) {
636 			DRV_LOG(ERR, "Failed to allocate indirect mkey.");
637 			return -1;
638 		}
639 	}
640 	return 0;
641 }
642 
643 static int
644 mlx5_crypto_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
645 			     const struct rte_cryptodev_qp_conf *qp_conf,
646 			     int socket_id)
647 {
648 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
649 	struct mlx5_devx_qp_attr attr = {0};
650 	struct mlx5_crypto_qp *qp;
651 	uint16_t log_nb_desc = rte_log2_u32(qp_conf->nb_descriptors);
652 	uint32_t umem_size = RTE_BIT32(log_nb_desc) *
653 			      priv->wqe_set_size +
654 			      sizeof(*qp->db_rec) * 2;
655 	uint32_t alloc_size = sizeof(*qp);
656 	struct mlx5_devx_cq_attr cq_attr = {
657 		.uar_page_id = mlx5_os_get_devx_uar_page_id(priv->uar),
658 	};
659 
660 	if (dev->data->queue_pairs[qp_id] != NULL)
661 		mlx5_crypto_queue_pair_release(dev, qp_id);
662 	alloc_size = RTE_ALIGN(alloc_size, RTE_CACHE_LINE_SIZE);
663 	alloc_size += (sizeof(struct rte_crypto_op *) +
664 		       sizeof(struct mlx5_devx_obj *)) *
665 		       RTE_BIT32(log_nb_desc);
666 	qp = rte_zmalloc_socket(__func__, alloc_size, RTE_CACHE_LINE_SIZE,
667 				socket_id);
668 	if (qp == NULL) {
669 		DRV_LOG(ERR, "Failed to allocate QP memory.");
670 		rte_errno = ENOMEM;
671 		return -rte_errno;
672 	}
673 	if (mlx5_devx_cq_create(priv->ctx, &qp->cq_obj, log_nb_desc,
674 				&cq_attr, socket_id) != 0) {
675 		DRV_LOG(ERR, "Failed to create CQ.");
676 		goto error;
677 	}
678 	qp->umem_buf = rte_zmalloc_socket(__func__, umem_size, 4096, socket_id);
679 	if (qp->umem_buf == NULL) {
680 		DRV_LOG(ERR, "Failed to allocate QP umem.");
681 		rte_errno = ENOMEM;
682 		goto error;
683 	}
684 	qp->umem_obj = mlx5_glue->devx_umem_reg(priv->ctx,
685 					       (void *)(uintptr_t)qp->umem_buf,
686 					       umem_size,
687 					       IBV_ACCESS_LOCAL_WRITE);
688 	if (qp->umem_obj == NULL) {
689 		DRV_LOG(ERR, "Failed to register QP umem.");
690 		goto error;
691 	}
692 	if (mlx5_mr_btree_init(&qp->mr_ctrl.cache_bh, MLX5_MR_BTREE_CACHE_N,
693 			       priv->dev_config.socket_id) != 0) {
694 		DRV_LOG(ERR, "Cannot allocate MR Btree for qp %u.",
695 			(uint32_t)qp_id);
696 		rte_errno = ENOMEM;
697 		goto error;
698 	}
699 	qp->mr_ctrl.dev_gen_ptr = &priv->mr_scache.dev_gen;
700 	attr.pd = priv->pdn;
701 	attr.uar_index = mlx5_os_get_devx_uar_page_id(priv->uar);
702 	attr.cqn = qp->cq_obj.cq->id;
703 	attr.log_page_size = rte_log2_u32(sysconf(_SC_PAGESIZE));
704 	attr.rq_size =  0;
705 	attr.sq_size = RTE_BIT32(log_nb_desc);
706 	attr.dbr_umem_valid = 1;
707 	attr.wq_umem_id = qp->umem_obj->umem_id;
708 	attr.wq_umem_offset = 0;
709 	attr.dbr_umem_id = qp->umem_obj->umem_id;
710 	attr.ts_format = mlx5_ts_format_conv(priv->qp_ts_format);
711 	attr.dbr_address = RTE_BIT64(log_nb_desc) * priv->wqe_set_size;
712 	qp->qp_obj = mlx5_devx_cmd_create_qp(priv->ctx, &attr);
713 	if (qp->qp_obj == NULL) {
714 		DRV_LOG(ERR, "Failed to create QP(%u).", rte_errno);
715 		goto error;
716 	}
717 	qp->db_rec = RTE_PTR_ADD(qp->umem_buf, (uintptr_t)attr.dbr_address);
718 	if (mlx5_crypto_qp2rts(qp))
719 		goto error;
720 	qp->mkey = (struct mlx5_devx_obj **)RTE_ALIGN((uintptr_t)(qp + 1),
721 							   RTE_CACHE_LINE_SIZE);
722 	qp->ops = (struct rte_crypto_op **)(qp->mkey + RTE_BIT32(log_nb_desc));
723 	qp->entries_n = 1 << log_nb_desc;
724 	if (mlx5_crypto_indirect_mkeys_prepare(priv, qp)) {
725 		DRV_LOG(ERR, "Cannot allocate indirect memory regions.");
726 		rte_errno = ENOMEM;
727 		goto error;
728 	}
729 	mlx5_crypto_qp_init(priv, qp);
730 	qp->priv = priv;
731 	dev->data->queue_pairs[qp_id] = qp;
732 	return 0;
733 error:
734 	mlx5_crypto_queue_pair_release(dev, qp_id);
735 	return -1;
736 }
737 
738 static void
739 mlx5_crypto_stats_get(struct rte_cryptodev *dev,
740 		      struct rte_cryptodev_stats *stats)
741 {
742 	int qp_id;
743 
744 	for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
745 		struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
746 
747 		stats->enqueued_count += qp->stats.enqueued_count;
748 		stats->dequeued_count += qp->stats.dequeued_count;
749 		stats->enqueue_err_count += qp->stats.enqueue_err_count;
750 		stats->dequeue_err_count += qp->stats.dequeue_err_count;
751 	}
752 }
753 
754 static void
755 mlx5_crypto_stats_reset(struct rte_cryptodev *dev)
756 {
757 	int qp_id;
758 
759 	for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
760 		struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
761 
762 		memset(&qp->stats, 0, sizeof(qp->stats));
763 	}
764 }
765 
766 static struct rte_cryptodev_ops mlx5_crypto_ops = {
767 	.dev_configure			= mlx5_crypto_dev_configure,
768 	.dev_start			= mlx5_crypto_dev_start,
769 	.dev_stop			= mlx5_crypto_dev_stop,
770 	.dev_close			= mlx5_crypto_dev_close,
771 	.dev_infos_get			= mlx5_crypto_dev_infos_get,
772 	.stats_get			= mlx5_crypto_stats_get,
773 	.stats_reset			= mlx5_crypto_stats_reset,
774 	.queue_pair_setup		= mlx5_crypto_queue_pair_setup,
775 	.queue_pair_release		= mlx5_crypto_queue_pair_release,
776 	.sym_session_get_size		= mlx5_crypto_sym_session_get_size,
777 	.sym_session_configure		= mlx5_crypto_sym_session_configure,
778 	.sym_session_clear		= mlx5_crypto_sym_session_clear,
779 	.sym_get_raw_dp_ctx_size	= NULL,
780 	.sym_configure_raw_dp_ctx	= NULL,
781 };
782 
783 static void
784 mlx5_crypto_hw_global_release(struct mlx5_crypto_priv *priv)
785 {
786 	if (priv->pd != NULL) {
787 		claim_zero(mlx5_glue->dealloc_pd(priv->pd));
788 		priv->pd = NULL;
789 	}
790 	if (priv->uar != NULL) {
791 		mlx5_glue->devx_free_uar(priv->uar);
792 		priv->uar = NULL;
793 	}
794 }
795 
796 static int
797 mlx5_crypto_pd_create(struct mlx5_crypto_priv *priv)
798 {
799 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
800 	struct mlx5dv_obj obj;
801 	struct mlx5dv_pd pd_info;
802 	int ret;
803 
804 	priv->pd = mlx5_glue->alloc_pd(priv->ctx);
805 	if (priv->pd == NULL) {
806 		DRV_LOG(ERR, "Failed to allocate PD.");
807 		return errno ? -errno : -ENOMEM;
808 	}
809 	obj.pd.in = priv->pd;
810 	obj.pd.out = &pd_info;
811 	ret = mlx5_glue->dv_init_obj(&obj, MLX5DV_OBJ_PD);
812 	if (ret != 0) {
813 		DRV_LOG(ERR, "Fail to get PD object info.");
814 		mlx5_glue->dealloc_pd(priv->pd);
815 		priv->pd = NULL;
816 		return -errno;
817 	}
818 	priv->pdn = pd_info.pdn;
819 	return 0;
820 #else
821 	(void)priv;
822 	DRV_LOG(ERR, "Cannot get pdn - no DV support.");
823 	return -ENOTSUP;
824 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
825 }
826 
827 static int
828 mlx5_crypto_hw_global_prepare(struct mlx5_crypto_priv *priv)
829 {
830 	if (mlx5_crypto_pd_create(priv) != 0)
831 		return -1;
832 	priv->uar = mlx5_devx_alloc_uar(priv->ctx, -1);
833 	if (priv->uar)
834 		priv->uar_addr = mlx5_os_get_devx_uar_reg_addr(priv->uar);
835 	if (priv->uar == NULL || priv->uar_addr == NULL) {
836 		rte_errno = errno;
837 		claim_zero(mlx5_glue->dealloc_pd(priv->pd));
838 		DRV_LOG(ERR, "Failed to allocate UAR.");
839 		return -1;
840 	}
841 	return 0;
842 }
843 
844 
845 static int
846 mlx5_crypto_args_check_handler(const char *key, const char *val, void *opaque)
847 {
848 	struct mlx5_crypto_devarg_params *devarg_prms = opaque;
849 	struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
850 	unsigned long tmp;
851 	FILE *file;
852 	int ret;
853 	int i;
854 
855 	if (strcmp(key, "class") == 0)
856 		return 0;
857 	if (strcmp(key, "wcs_file") == 0) {
858 		file = fopen(val, "rb");
859 		if (file == NULL) {
860 			rte_errno = ENOTSUP;
861 			return -rte_errno;
862 		}
863 		for (i = 0 ; i < MLX5_CRYPTO_CREDENTIAL_SIZE ; i++) {
864 			ret = fscanf(file, "%02hhX", &attr->credential[i]);
865 			if (ret <= 0) {
866 				fclose(file);
867 				DRV_LOG(ERR,
868 					"Failed to read credential from file.");
869 				rte_errno = EINVAL;
870 				return -rte_errno;
871 			}
872 		}
873 		fclose(file);
874 		devarg_prms->login_devarg = true;
875 		return 0;
876 	}
877 	errno = 0;
878 	tmp = strtoul(val, NULL, 0);
879 	if (errno) {
880 		DRV_LOG(WARNING, "%s: \"%s\" is an invalid integer.", key, val);
881 		return -errno;
882 	}
883 	if (strcmp(key, "max_segs_num") == 0) {
884 		if (!tmp || tmp > MLX5_CRYPTO_MAX_SEGS) {
885 			DRV_LOG(WARNING, "Invalid max_segs_num: %d, should"
886 				" be less than %d.",
887 				(uint32_t)tmp, MLX5_CRYPTO_MAX_SEGS);
888 			rte_errno = EINVAL;
889 			return -rte_errno;
890 		}
891 		devarg_prms->max_segs_num = (uint32_t)tmp;
892 	} else if (strcmp(key, "import_kek_id") == 0) {
893 		attr->session_import_kek_ptr = (uint32_t)tmp;
894 	} else if (strcmp(key, "credential_id") == 0) {
895 		attr->credential_pointer = (uint32_t)tmp;
896 	} else if (strcmp(key, "keytag") == 0) {
897 		devarg_prms->keytag = tmp;
898 	} else {
899 		DRV_LOG(WARNING, "Invalid key %s.", key);
900 	}
901 	return 0;
902 }
903 
904 static int
905 mlx5_crypto_parse_devargs(struct rte_devargs *devargs,
906 			  struct mlx5_crypto_devarg_params *devarg_prms)
907 {
908 	struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
909 	struct rte_kvargs *kvlist;
910 
911 	/* Default values. */
912 	attr->credential_pointer = 0;
913 	attr->session_import_kek_ptr = 0;
914 	devarg_prms->keytag = 0;
915 	devarg_prms->max_segs_num = 8;
916 	if (devargs == NULL) {
917 		DRV_LOG(ERR,
918 	"No login devargs in order to enable crypto operations in the device.");
919 		rte_errno = EINVAL;
920 		return -1;
921 	}
922 	kvlist = rte_kvargs_parse(devargs->args, NULL);
923 	if (kvlist == NULL) {
924 		DRV_LOG(ERR, "Failed to parse devargs.");
925 		rte_errno = EINVAL;
926 		return -1;
927 	}
928 	if (rte_kvargs_process(kvlist, NULL, mlx5_crypto_args_check_handler,
929 			   devarg_prms) != 0) {
930 		DRV_LOG(ERR, "Devargs handler function Failed.");
931 		rte_kvargs_free(kvlist);
932 		rte_errno = EINVAL;
933 		return -1;
934 	}
935 	rte_kvargs_free(kvlist);
936 	if (devarg_prms->login_devarg == false) {
937 		DRV_LOG(ERR,
938 	"No login credential devarg in order to enable crypto operations "
939 	"in the device.");
940 		rte_errno = EINVAL;
941 		return -1;
942 	}
943 	return 0;
944 }
945 
946 /**
947  * Callback for memory event.
948  *
949  * @param event_type
950  *   Memory event type.
951  * @param addr
952  *   Address of memory.
953  * @param len
954  *   Size of memory.
955  */
956 static void
957 mlx5_crypto_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
958 			    size_t len, void *arg __rte_unused)
959 {
960 	struct mlx5_crypto_priv *priv;
961 
962 	/* Must be called from the primary process. */
963 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
964 	switch (event_type) {
965 	case RTE_MEM_EVENT_FREE:
966 		pthread_mutex_lock(&priv_list_lock);
967 		/* Iterate all the existing mlx5 devices. */
968 		TAILQ_FOREACH(priv, &mlx5_crypto_priv_list, next)
969 			mlx5_free_mr_by_addr(&priv->mr_scache,
970 					     priv->ctx->device->name,
971 					     addr, len);
972 		pthread_mutex_unlock(&priv_list_lock);
973 		break;
974 	case RTE_MEM_EVENT_ALLOC:
975 	default:
976 		break;
977 	}
978 }
979 
980 static int
981 mlx5_crypto_dev_probe(struct rte_device *dev)
982 {
983 	struct ibv_device *ibv;
984 	struct rte_cryptodev *crypto_dev;
985 	struct ibv_context *ctx;
986 	struct mlx5_devx_obj *login;
987 	struct mlx5_crypto_priv *priv;
988 	struct mlx5_crypto_devarg_params devarg_prms = { 0 };
989 	struct mlx5_hca_attr attr = { 0 };
990 	struct rte_cryptodev_pmd_init_params init_params = {
991 		.name = "",
992 		.private_data_size = sizeof(struct mlx5_crypto_priv),
993 		.socket_id = dev->numa_node,
994 		.max_nb_queue_pairs =
995 				RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS,
996 	};
997 	uint16_t rdmw_wqe_size;
998 	int ret;
999 
1000 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1001 		DRV_LOG(ERR, "Non-primary process type is not supported.");
1002 		rte_errno = ENOTSUP;
1003 		return -rte_errno;
1004 	}
1005 	ibv = mlx5_os_get_ibv_dev(dev);
1006 	if (ibv == NULL)
1007 		return -rte_errno;
1008 	ctx = mlx5_glue->dv_open_device(ibv);
1009 	if (ctx == NULL) {
1010 		DRV_LOG(ERR, "Failed to open IB device \"%s\".", ibv->name);
1011 		rte_errno = ENODEV;
1012 		return -rte_errno;
1013 	}
1014 	if (mlx5_devx_cmd_query_hca_attr(ctx, &attr) != 0 ||
1015 	    attr.crypto == 0 || attr.aes_xts == 0) {
1016 		DRV_LOG(ERR, "Not enough capabilities to support crypto "
1017 			"operations, maybe old FW/OFED version?");
1018 		claim_zero(mlx5_glue->close_device(ctx));
1019 		rte_errno = ENOTSUP;
1020 		return -ENOTSUP;
1021 	}
1022 	ret = mlx5_crypto_parse_devargs(dev->devargs, &devarg_prms);
1023 	if (ret) {
1024 		DRV_LOG(ERR, "Failed to parse devargs.");
1025 		claim_zero(mlx5_glue->close_device(ctx));
1026 		return -rte_errno;
1027 	}
1028 	login = mlx5_devx_cmd_create_crypto_login_obj(ctx,
1029 						      &devarg_prms.login_attr);
1030 	if (login == NULL) {
1031 		DRV_LOG(ERR, "Failed to configure login.");
1032 		claim_zero(mlx5_glue->close_device(ctx));
1033 		return -rte_errno;
1034 	}
1035 	crypto_dev = rte_cryptodev_pmd_create(ibv->name, dev,
1036 					&init_params);
1037 	if (crypto_dev == NULL) {
1038 		DRV_LOG(ERR, "Failed to create device \"%s\".", ibv->name);
1039 		claim_zero(mlx5_glue->close_device(ctx));
1040 		return -ENODEV;
1041 	}
1042 	DRV_LOG(INFO,
1043 		"Crypto device %s was created successfully.", ibv->name);
1044 	crypto_dev->dev_ops = &mlx5_crypto_ops;
1045 	crypto_dev->dequeue_burst = mlx5_crypto_dequeue_burst;
1046 	crypto_dev->enqueue_burst = mlx5_crypto_enqueue_burst;
1047 	crypto_dev->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
1048 	crypto_dev->driver_id = mlx5_crypto_driver_id;
1049 	priv = crypto_dev->data->dev_private;
1050 	priv->ctx = ctx;
1051 	priv->login_obj = login;
1052 	priv->crypto_dev = crypto_dev;
1053 	priv->qp_ts_format = attr.qp_ts_format;
1054 	if (mlx5_crypto_hw_global_prepare(priv) != 0) {
1055 		rte_cryptodev_pmd_destroy(priv->crypto_dev);
1056 		claim_zero(mlx5_glue->close_device(priv->ctx));
1057 		return -1;
1058 	}
1059 	if (mlx5_mr_btree_init(&priv->mr_scache.cache,
1060 			     MLX5_MR_BTREE_CACHE_N * 2, rte_socket_id()) != 0) {
1061 		DRV_LOG(ERR, "Failed to allocate shared cache MR memory.");
1062 		mlx5_crypto_hw_global_release(priv);
1063 		rte_cryptodev_pmd_destroy(priv->crypto_dev);
1064 		claim_zero(mlx5_glue->close_device(priv->ctx));
1065 		rte_errno = ENOMEM;
1066 		return -rte_errno;
1067 	}
1068 	priv->mr_scache.reg_mr_cb = mlx5_common_verbs_reg_mr;
1069 	priv->mr_scache.dereg_mr_cb = mlx5_common_verbs_dereg_mr;
1070 	priv->keytag = rte_cpu_to_be_64(devarg_prms.keytag);
1071 	priv->max_segs_num = devarg_prms.max_segs_num;
1072 	priv->umr_wqe_size = sizeof(struct mlx5_wqe_umr_bsf_seg) +
1073 			     sizeof(struct mlx5_umr_wqe) +
1074 			     RTE_ALIGN(priv->max_segs_num, 4) *
1075 			     sizeof(struct mlx5_wqe_dseg);
1076 	rdmw_wqe_size = sizeof(struct mlx5_rdma_write_wqe) +
1077 			      sizeof(struct mlx5_wqe_dseg) *
1078 			      (priv->max_segs_num <= 2 ? 2 : 2 +
1079 			       RTE_ALIGN(priv->max_segs_num - 2, 4));
1080 	priv->wqe_set_size = priv->umr_wqe_size + rdmw_wqe_size;
1081 	priv->umr_wqe_stride = priv->umr_wqe_size / MLX5_SEND_WQE_BB;
1082 	priv->max_rdmar_ds = rdmw_wqe_size / sizeof(struct mlx5_wqe_dseg);
1083 	/* Register callback function for global shared MR cache management. */
1084 	if (TAILQ_EMPTY(&mlx5_crypto_priv_list))
1085 		rte_mem_event_callback_register("MLX5_MEM_EVENT_CB",
1086 						mlx5_crypto_mr_mem_event_cb,
1087 						NULL);
1088 	pthread_mutex_lock(&priv_list_lock);
1089 	TAILQ_INSERT_TAIL(&mlx5_crypto_priv_list, priv, next);
1090 	pthread_mutex_unlock(&priv_list_lock);
1091 	return 0;
1092 }
1093 
1094 static int
1095 mlx5_crypto_dev_remove(struct rte_device *dev)
1096 {
1097 	struct mlx5_crypto_priv *priv = NULL;
1098 
1099 	pthread_mutex_lock(&priv_list_lock);
1100 	TAILQ_FOREACH(priv, &mlx5_crypto_priv_list, next)
1101 		if (priv->crypto_dev->device == dev)
1102 			break;
1103 	if (priv)
1104 		TAILQ_REMOVE(&mlx5_crypto_priv_list, priv, next);
1105 	pthread_mutex_unlock(&priv_list_lock);
1106 	if (priv) {
1107 		if (TAILQ_EMPTY(&mlx5_crypto_priv_list))
1108 			rte_mem_event_callback_unregister("MLX5_MEM_EVENT_CB",
1109 							  NULL);
1110 		mlx5_mr_release_cache(&priv->mr_scache);
1111 		mlx5_crypto_hw_global_release(priv);
1112 		rte_cryptodev_pmd_destroy(priv->crypto_dev);
1113 		claim_zero(mlx5_devx_cmd_destroy(priv->login_obj));
1114 		claim_zero(mlx5_glue->close_device(priv->ctx));
1115 	}
1116 	return 0;
1117 }
1118 
1119 static const struct rte_pci_id mlx5_crypto_pci_id_map[] = {
1120 		{
1121 			RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
1122 					PCI_DEVICE_ID_MELLANOX_CONNECTX6)
1123 		},
1124 		{
1125 			.vendor_id = 0
1126 		}
1127 };
1128 
1129 static struct mlx5_class_driver mlx5_crypto_driver = {
1130 	.drv_class = MLX5_CLASS_CRYPTO,
1131 	.name = RTE_STR(MLX5_CRYPTO_DRIVER_NAME),
1132 	.id_table = mlx5_crypto_pci_id_map,
1133 	.probe = mlx5_crypto_dev_probe,
1134 	.remove = mlx5_crypto_dev_remove,
1135 };
1136 
1137 RTE_INIT(rte_mlx5_crypto_init)
1138 {
1139 	mlx5_common_init();
1140 	if (mlx5_glue != NULL)
1141 		mlx5_class_driver_register(&mlx5_crypto_driver);
1142 }
1143 
1144 RTE_PMD_REGISTER_CRYPTO_DRIVER(mlx5_cryptodev_driver, mlx5_drv,
1145 			       mlx5_crypto_driver_id);
1146 
1147 RTE_LOG_REGISTER_DEFAULT(mlx5_crypto_logtype, NOTICE)
1148 RTE_PMD_EXPORT_NAME(MLX5_CRYPTO_DRIVER_NAME, __COUNTER__);
1149 RTE_PMD_REGISTER_PCI_TABLE(MLX5_CRYPTO_DRIVER_NAME, mlx5_crypto_pci_id_map);
1150 RTE_PMD_REGISTER_KMOD_DEP(MLX5_CRYPTO_DRIVER_NAME, "* ib_uverbs & mlx5_core & mlx5_ib");
1151