xref: /dpdk/drivers/crypto/mlx5/mlx5_crypto.c (revision cf8a8a8f4896c0885d3996716f73513c4317e545)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2021 NVIDIA Corporation & Affiliates
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_mempool.h>
7 #include <rte_errno.h>
8 #include <rte_log.h>
9 #include <rte_pci.h>
10 #include <rte_memory.h>
11 
12 #include <mlx5_glue.h>
13 #include <mlx5_common.h>
14 #include <mlx5_common_pci.h>
15 #include <mlx5_devx_cmds.h>
16 #include <mlx5_common_os.h>
17 
18 #include "mlx5_crypto_utils.h"
19 #include "mlx5_crypto.h"
20 
21 #define MLX5_CRYPTO_DRIVER_NAME crypto_mlx5
22 #define MLX5_CRYPTO_LOG_NAME pmd.crypto.mlx5
23 #define MLX5_CRYPTO_MAX_QPS 1024
24 #define MLX5_CRYPTO_MAX_SEGS 56
25 
26 #define MLX5_CRYPTO_FEATURE_FLAGS \
27 	(RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_HW_ACCELERATED | \
28 	 RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | \
29 	 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | \
30 	 RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT | \
31 	 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | \
32 	 RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY | \
33 	 RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS)
34 
35 TAILQ_HEAD(mlx5_crypto_privs, mlx5_crypto_priv) mlx5_crypto_priv_list =
36 				TAILQ_HEAD_INITIALIZER(mlx5_crypto_priv_list);
37 static pthread_mutex_t priv_list_lock = PTHREAD_MUTEX_INITIALIZER;
38 
39 int mlx5_crypto_logtype;
40 
41 uint8_t mlx5_crypto_driver_id;
42 
43 const struct rte_cryptodev_capabilities mlx5_crypto_caps[] = {
44 	{		/* AES XTS */
45 		.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
46 		{.sym = {
47 			.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
48 			{.cipher = {
49 				.algo = RTE_CRYPTO_CIPHER_AES_XTS,
50 				.block_size = 16,
51 				.key_size = {
52 					.min = 32,
53 					.max = 64,
54 					.increment = 32
55 				},
56 				.iv_size = {
57 					.min = 16,
58 					.max = 16,
59 					.increment = 0
60 				},
61 				.dataunit_set =
62 				RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES |
63 				RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES,
64 			}, }
65 		}, }
66 	},
67 };
68 
69 static const char mlx5_crypto_drv_name[] = RTE_STR(MLX5_CRYPTO_DRIVER_NAME);
70 
71 static const struct rte_driver mlx5_drv = {
72 	.name = mlx5_crypto_drv_name,
73 	.alias = mlx5_crypto_drv_name
74 };
75 
76 static struct cryptodev_driver mlx5_cryptodev_driver;
77 
78 struct mlx5_crypto_session {
79 	uint32_t bs_bpt_eo_es;
80 	/**< bsf_size, bsf_p_type, encryption_order and encryption standard,
81 	 * saved in big endian format.
82 	 */
83 	uint32_t bsp_res;
84 	/**< crypto_block_size_pointer and reserved 24 bits saved in big
85 	 * endian format.
86 	 */
87 	uint32_t iv_offset:16;
88 	/**< Starting point for Initialisation Vector. */
89 	struct mlx5_crypto_dek *dek; /**< Pointer to dek struct. */
90 	uint32_t dek_id; /**< DEK ID */
91 } __rte_packed;
92 
93 static void
94 mlx5_crypto_dev_infos_get(struct rte_cryptodev *dev,
95 			  struct rte_cryptodev_info *dev_info)
96 {
97 	RTE_SET_USED(dev);
98 	if (dev_info != NULL) {
99 		dev_info->driver_id = mlx5_crypto_driver_id;
100 		dev_info->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
101 		dev_info->capabilities = mlx5_crypto_caps;
102 		dev_info->max_nb_queue_pairs = MLX5_CRYPTO_MAX_QPS;
103 		dev_info->min_mbuf_headroom_req = 0;
104 		dev_info->min_mbuf_tailroom_req = 0;
105 		dev_info->sym.max_nb_sessions = 0;
106 		/*
107 		 * If 0, the device does not have any limitation in number of
108 		 * sessions that can be used.
109 		 */
110 	}
111 }
112 
113 static int
114 mlx5_crypto_dev_configure(struct rte_cryptodev *dev,
115 			  struct rte_cryptodev_config *config)
116 {
117 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
118 
119 	if (config == NULL) {
120 		DRV_LOG(ERR, "Invalid crypto dev configure parameters.");
121 		return -EINVAL;
122 	}
123 	if ((config->ff_disable & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) != 0) {
124 		DRV_LOG(ERR,
125 			"Disabled symmetric crypto feature is not supported.");
126 		return -ENOTSUP;
127 	}
128 	if (mlx5_crypto_dek_setup(priv) != 0) {
129 		DRV_LOG(ERR, "Dek hash list creation has failed.");
130 		return -ENOMEM;
131 	}
132 	priv->dev_config = *config;
133 	DRV_LOG(DEBUG, "Device %u was configured.", dev->driver_id);
134 	return 0;
135 }
136 
137 static void
138 mlx5_crypto_dev_stop(struct rte_cryptodev *dev)
139 {
140 	RTE_SET_USED(dev);
141 }
142 
143 static int
144 mlx5_crypto_dev_start(struct rte_cryptodev *dev)
145 {
146 	RTE_SET_USED(dev);
147 	return 0;
148 }
149 
150 static int
151 mlx5_crypto_dev_close(struct rte_cryptodev *dev)
152 {
153 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
154 
155 	mlx5_crypto_dek_unset(priv);
156 	DRV_LOG(DEBUG, "Device %u was closed.", dev->driver_id);
157 	return 0;
158 }
159 
160 static unsigned int
161 mlx5_crypto_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
162 {
163 	return sizeof(struct mlx5_crypto_session);
164 }
165 
166 static int
167 mlx5_crypto_sym_session_configure(struct rte_cryptodev *dev,
168 				  struct rte_crypto_sym_xform *xform,
169 				  struct rte_cryptodev_sym_session *session,
170 				  struct rte_mempool *mp)
171 {
172 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
173 	struct mlx5_crypto_session *sess_private_data;
174 	struct rte_crypto_cipher_xform *cipher;
175 	uint8_t encryption_order;
176 	int ret;
177 
178 	if (unlikely(xform->next != NULL)) {
179 		DRV_LOG(ERR, "Xform next is not supported.");
180 		return -ENOTSUP;
181 	}
182 	if (unlikely((xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) ||
183 		     (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_XTS))) {
184 		DRV_LOG(ERR, "Only AES-XTS algorithm is supported.");
185 		return -ENOTSUP;
186 	}
187 	ret = rte_mempool_get(mp, (void *)&sess_private_data);
188 	if (ret != 0) {
189 		DRV_LOG(ERR,
190 			"Failed to get session %p private data from mempool.",
191 			sess_private_data);
192 		return -ENOMEM;
193 	}
194 	cipher = &xform->cipher;
195 	sess_private_data->dek = mlx5_crypto_dek_prepare(priv, cipher);
196 	if (sess_private_data->dek == NULL) {
197 		rte_mempool_put(mp, sess_private_data);
198 		DRV_LOG(ERR, "Failed to prepare dek.");
199 		return -ENOMEM;
200 	}
201 	if (cipher->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
202 		encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_MEMORY;
203 	else
204 		encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_WIRE;
205 	sess_private_data->bs_bpt_eo_es = rte_cpu_to_be_32
206 			(MLX5_BSF_SIZE_64B << MLX5_BSF_SIZE_OFFSET |
207 			 MLX5_BSF_P_TYPE_CRYPTO << MLX5_BSF_P_TYPE_OFFSET |
208 			 encryption_order << MLX5_ENCRYPTION_ORDER_OFFSET |
209 			 MLX5_ENCRYPTION_STANDARD_AES_XTS);
210 	switch (xform->cipher.dataunit_len) {
211 	case 0:
212 		sess_private_data->bsp_res = 0;
213 		break;
214 	case 512:
215 		sess_private_data->bsp_res = rte_cpu_to_be_32
216 					     ((uint32_t)MLX5_BLOCK_SIZE_512B <<
217 					     MLX5_BLOCK_SIZE_OFFSET);
218 		break;
219 	case 4096:
220 		sess_private_data->bsp_res = rte_cpu_to_be_32
221 					     ((uint32_t)MLX5_BLOCK_SIZE_4096B <<
222 					     MLX5_BLOCK_SIZE_OFFSET);
223 		break;
224 	default:
225 		DRV_LOG(ERR, "Cipher data unit length is not supported.");
226 		return -ENOTSUP;
227 	}
228 	sess_private_data->iv_offset = cipher->iv.offset;
229 	sess_private_data->dek_id =
230 			rte_cpu_to_be_32(sess_private_data->dek->obj->id &
231 					 0xffffff);
232 	set_sym_session_private_data(session, dev->driver_id,
233 				     sess_private_data);
234 	DRV_LOG(DEBUG, "Session %p was configured.", sess_private_data);
235 	return 0;
236 }
237 
238 static void
239 mlx5_crypto_sym_session_clear(struct rte_cryptodev *dev,
240 			      struct rte_cryptodev_sym_session *sess)
241 {
242 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
243 	struct mlx5_crypto_session *spriv = get_sym_session_private_data(sess,
244 								dev->driver_id);
245 
246 	if (unlikely(spriv == NULL)) {
247 		DRV_LOG(ERR, "Failed to get session %p private data.", spriv);
248 		return;
249 	}
250 	mlx5_crypto_dek_destroy(priv, spriv->dek);
251 	set_sym_session_private_data(sess, dev->driver_id, NULL);
252 	rte_mempool_put(rte_mempool_from_obj(spriv), spriv);
253 	DRV_LOG(DEBUG, "Session %p was cleared.", spriv);
254 }
255 
256 static int
257 mlx5_crypto_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id)
258 {
259 	struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
260 
261 	if (qp->qp_obj != NULL)
262 		claim_zero(mlx5_devx_cmd_destroy(qp->qp_obj));
263 	if (qp->umem_obj != NULL)
264 		claim_zero(mlx5_glue->devx_umem_dereg(qp->umem_obj));
265 	if (qp->umem_buf != NULL)
266 		rte_free(qp->umem_buf);
267 	mlx5_mr_btree_free(&qp->mr_ctrl.cache_bh);
268 	mlx5_devx_cq_destroy(&qp->cq_obj);
269 	rte_free(qp);
270 	dev->data->queue_pairs[qp_id] = NULL;
271 	return 0;
272 }
273 
274 static int
275 mlx5_crypto_qp2rts(struct mlx5_crypto_qp *qp)
276 {
277 	/*
278 	 * In Order to configure self loopback, when calling these functions the
279 	 * remote QP id that is used is the id of the same QP.
280 	 */
281 	if (mlx5_devx_cmd_modify_qp_state(qp->qp_obj, MLX5_CMD_OP_RST2INIT_QP,
282 					  qp->qp_obj->id)) {
283 		DRV_LOG(ERR, "Failed to modify QP to INIT state(%u).",
284 			rte_errno);
285 		return -1;
286 	}
287 	if (mlx5_devx_cmd_modify_qp_state(qp->qp_obj, MLX5_CMD_OP_INIT2RTR_QP,
288 					  qp->qp_obj->id)) {
289 		DRV_LOG(ERR, "Failed to modify QP to RTR state(%u).",
290 			rte_errno);
291 		return -1;
292 	}
293 	if (mlx5_devx_cmd_modify_qp_state(qp->qp_obj, MLX5_CMD_OP_RTR2RTS_QP,
294 					  qp->qp_obj->id)) {
295 		DRV_LOG(ERR, "Failed to modify QP to RTS state(%u).",
296 			rte_errno);
297 		return -1;
298 	}
299 	return 0;
300 }
301 
302 static __rte_noinline uint32_t
303 mlx5_crypto_get_block_size(struct rte_crypto_op *op)
304 {
305 	uint32_t bl = op->sym->cipher.data.length;
306 
307 	switch (bl) {
308 	case (1 << 20):
309 		return RTE_BE32(MLX5_BLOCK_SIZE_1MB << MLX5_BLOCK_SIZE_OFFSET);
310 	case (1 << 12):
311 		return RTE_BE32(MLX5_BLOCK_SIZE_4096B <<
312 				MLX5_BLOCK_SIZE_OFFSET);
313 	case (1 << 9):
314 		return RTE_BE32(MLX5_BLOCK_SIZE_512B << MLX5_BLOCK_SIZE_OFFSET);
315 	default:
316 		DRV_LOG(ERR, "Unknown block size: %u.", bl);
317 		return UINT32_MAX;
318 	}
319 }
320 
321 /**
322  * Query LKey from a packet buffer for QP. If not found, add the mempool.
323  *
324  * @param priv
325  *   Pointer to the priv object.
326  * @param addr
327  *   Search key.
328  * @param mr_ctrl
329  *   Pointer to per-queue MR control structure.
330  * @param ol_flags
331  *   Mbuf offload features.
332  *
333  * @return
334  *   Searched LKey on success, UINT32_MAX on no match.
335  */
336 static __rte_always_inline uint32_t
337 mlx5_crypto_addr2mr(struct mlx5_crypto_priv *priv, uintptr_t addr,
338 		    struct mlx5_mr_ctrl *mr_ctrl, uint64_t ol_flags)
339 {
340 	uint32_t lkey;
341 
342 	/* Check generation bit to see if there's any change on existing MRs. */
343 	if (unlikely(*mr_ctrl->dev_gen_ptr != mr_ctrl->cur_gen))
344 		mlx5_mr_flush_local_cache(mr_ctrl);
345 	/* Linear search on MR cache array. */
346 	lkey = mlx5_mr_lookup_lkey(mr_ctrl->cache, &mr_ctrl->mru,
347 				   MLX5_MR_CACHE_N, addr);
348 	if (likely(lkey != UINT32_MAX))
349 		return lkey;
350 	/* Take slower bottom-half on miss. */
351 	return mlx5_mr_addr2mr_bh(priv->pd, 0, &priv->mr_scache, mr_ctrl, addr,
352 				  !!(ol_flags & EXT_ATTACHED_MBUF));
353 }
354 
355 static __rte_always_inline uint32_t
356 mlx5_crypto_klm_set(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp,
357 		      struct rte_mbuf *mbuf, struct mlx5_wqe_dseg *klm,
358 		      uint32_t offset, uint32_t *remain)
359 {
360 	uint32_t data_len = (rte_pktmbuf_data_len(mbuf) - offset);
361 	uintptr_t addr = rte_pktmbuf_mtod_offset(mbuf, uintptr_t, offset);
362 
363 	if (data_len > *remain)
364 		data_len = *remain;
365 	*remain -= data_len;
366 	klm->bcount = rte_cpu_to_be_32(data_len);
367 	klm->pbuf = rte_cpu_to_be_64(addr);
368 	klm->lkey = mlx5_crypto_addr2mr(priv, addr, &qp->mr_ctrl,
369 					mbuf->ol_flags);
370 	return klm->lkey;
371 
372 }
373 
374 static __rte_always_inline uint32_t
375 mlx5_crypto_klms_set(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp,
376 		     struct rte_crypto_op *op, struct rte_mbuf *mbuf,
377 		     struct mlx5_wqe_dseg *klm)
378 {
379 	uint32_t remain_len = op->sym->cipher.data.length;
380 	uint32_t nb_segs = mbuf->nb_segs;
381 	uint32_t klm_n = 1u;
382 
383 	/* First mbuf needs to take the cipher offset. */
384 	if (unlikely(mlx5_crypto_klm_set(priv, qp, mbuf, klm,
385 		     op->sym->cipher.data.offset, &remain_len) == UINT32_MAX)) {
386 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
387 		return 0;
388 	}
389 	while (remain_len) {
390 		nb_segs--;
391 		mbuf = mbuf->next;
392 		if (unlikely(mbuf == NULL || nb_segs == 0)) {
393 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
394 			return 0;
395 		}
396 		if (unlikely(mlx5_crypto_klm_set(priv, qp, mbuf, ++klm, 0,
397 						 &remain_len) == UINT32_MAX)) {
398 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
399 			return 0;
400 		}
401 		klm_n++;
402 	}
403 	return klm_n;
404 }
405 
406 static __rte_always_inline int
407 mlx5_crypto_wqe_set(struct mlx5_crypto_priv *priv,
408 			 struct mlx5_crypto_qp *qp,
409 			 struct rte_crypto_op *op,
410 			 struct mlx5_umr_wqe *umr)
411 {
412 	struct mlx5_crypto_session *sess = get_sym_session_private_data
413 				(op->sym->session, mlx5_crypto_driver_id);
414 	struct mlx5_wqe_cseg *cseg = &umr->ctr;
415 	struct mlx5_wqe_mkey_cseg *mkc = &umr->mkc;
416 	struct mlx5_wqe_dseg *klms = &umr->kseg[0];
417 	struct mlx5_wqe_umr_bsf_seg *bsf = ((struct mlx5_wqe_umr_bsf_seg *)
418 				      RTE_PTR_ADD(umr, priv->umr_wqe_size)) - 1;
419 	uint32_t ds;
420 	bool ipl = op->sym->m_dst == NULL || op->sym->m_dst == op->sym->m_src;
421 	/* Set UMR WQE. */
422 	uint32_t klm_n = mlx5_crypto_klms_set(priv, qp, op,
423 				   ipl ? op->sym->m_src : op->sym->m_dst, klms);
424 
425 	if (unlikely(klm_n == 0))
426 		return 0;
427 	bsf->bs_bpt_eo_es = sess->bs_bpt_eo_es;
428 	if (unlikely(!sess->bsp_res)) {
429 		bsf->bsp_res = mlx5_crypto_get_block_size(op);
430 		if (unlikely(bsf->bsp_res == UINT32_MAX)) {
431 			op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
432 			return 0;
433 		}
434 	} else {
435 		bsf->bsp_res = sess->bsp_res;
436 	}
437 	bsf->raw_data_size = rte_cpu_to_be_32(op->sym->cipher.data.length);
438 	memcpy(bsf->xts_initial_tweak,
439 	       rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv_offset), 16);
440 	bsf->res_dp = sess->dek_id;
441 	mkc->len = rte_cpu_to_be_64(op->sym->cipher.data.length);
442 	cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) | MLX5_OPCODE_UMR);
443 	qp->db_pi += priv->umr_wqe_stride;
444 	/* Set RDMA_WRITE WQE. */
445 	cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
446 	klms = RTE_PTR_ADD(cseg, sizeof(struct mlx5_rdma_write_wqe));
447 	if (!ipl) {
448 		klm_n = mlx5_crypto_klms_set(priv, qp, op, op->sym->m_src,
449 					     klms);
450 		if (unlikely(klm_n == 0))
451 			return 0;
452 	} else {
453 		memcpy(klms, &umr->kseg[0], sizeof(*klms) * klm_n);
454 	}
455 	ds = 2 + klm_n;
456 	cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj->id << 8) | ds);
457 	cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
458 							MLX5_OPCODE_RDMA_WRITE);
459 	ds = RTE_ALIGN(ds, 4);
460 	qp->db_pi += ds >> 2;
461 	/* Set NOP WQE if needed. */
462 	if (priv->max_rdmar_ds > ds) {
463 		cseg += ds;
464 		ds = priv->max_rdmar_ds - ds;
465 		cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj->id << 8) | ds);
466 		cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
467 							       MLX5_OPCODE_NOP);
468 		qp->db_pi += ds >> 2; /* Here, DS is 4 aligned for sure. */
469 	}
470 	qp->wqe = (uint8_t *)cseg;
471 	return 1;
472 }
473 
474 static __rte_always_inline void
475 mlx5_crypto_uar_write(uint64_t val, struct mlx5_crypto_priv *priv)
476 {
477 #ifdef RTE_ARCH_64
478 	*priv->uar_addr = val;
479 #else /* !RTE_ARCH_64 */
480 	rte_spinlock_lock(&priv->uar32_sl);
481 	*(volatile uint32_t *)priv->uar_addr = val;
482 	rte_io_wmb();
483 	*((volatile uint32_t *)priv->uar_addr + 1) = val >> 32;
484 	rte_spinlock_unlock(&priv->uar32_sl);
485 #endif
486 }
487 
488 static uint16_t
489 mlx5_crypto_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
490 			  uint16_t nb_ops)
491 {
492 	struct mlx5_crypto_qp *qp = queue_pair;
493 	struct mlx5_crypto_priv *priv = qp->priv;
494 	struct mlx5_umr_wqe *umr;
495 	struct rte_crypto_op *op;
496 	uint16_t mask = qp->entries_n - 1;
497 	uint16_t remain = qp->entries_n - (qp->pi - qp->ci);
498 
499 	if (remain < nb_ops)
500 		nb_ops = remain;
501 	else
502 		remain = nb_ops;
503 	if (unlikely(remain == 0))
504 		return 0;
505 	do {
506 		op = *ops++;
507 		umr = RTE_PTR_ADD(qp->umem_buf, priv->wqe_set_size * qp->pi);
508 		if (unlikely(mlx5_crypto_wqe_set(priv, qp, op, umr) == 0)) {
509 			qp->stats.enqueue_err_count++;
510 			if (remain != nb_ops) {
511 				qp->stats.enqueued_count -= remain;
512 				break;
513 			}
514 			return 0;
515 		}
516 		qp->ops[qp->pi] = op;
517 		qp->pi = (qp->pi + 1) & mask;
518 	} while (--remain);
519 	qp->stats.enqueued_count += nb_ops;
520 	rte_io_wmb();
521 	qp->db_rec[MLX5_SND_DBR] = rte_cpu_to_be_32(qp->db_pi);
522 	rte_wmb();
523 	mlx5_crypto_uar_write(*(volatile uint64_t *)qp->wqe, qp->priv);
524 	rte_wmb();
525 	return nb_ops;
526 }
527 
528 static __rte_noinline void
529 mlx5_crypto_cqe_err_handle(struct mlx5_crypto_qp *qp, struct rte_crypto_op *op)
530 {
531 	const uint32_t idx = qp->ci & (qp->entries_n - 1);
532 	volatile struct mlx5_err_cqe *cqe = (volatile struct mlx5_err_cqe *)
533 							&qp->cq_obj.cqes[idx];
534 
535 	op->status = RTE_CRYPTO_OP_STATUS_ERROR;
536 	qp->stats.dequeue_err_count++;
537 	DRV_LOG(ERR, "CQE ERR:%x.\n", rte_be_to_cpu_32(cqe->syndrome));
538 }
539 
540 static uint16_t
541 mlx5_crypto_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
542 			  uint16_t nb_ops)
543 {
544 	struct mlx5_crypto_qp *qp = queue_pair;
545 	volatile struct mlx5_cqe *restrict cqe;
546 	struct rte_crypto_op *restrict op;
547 	const unsigned int cq_size = qp->entries_n;
548 	const unsigned int mask = cq_size - 1;
549 	uint32_t idx;
550 	uint32_t next_idx = qp->ci & mask;
551 	const uint16_t max = RTE_MIN((uint16_t)(qp->pi - qp->ci), nb_ops);
552 	uint16_t i = 0;
553 	int ret;
554 
555 	if (unlikely(max == 0))
556 		return 0;
557 	do {
558 		idx = next_idx;
559 		next_idx = (qp->ci + 1) & mask;
560 		op = qp->ops[idx];
561 		cqe = &qp->cq_obj.cqes[idx];
562 		ret = check_cqe(cqe, cq_size, qp->ci);
563 		rte_io_rmb();
564 		if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
565 			if (unlikely(ret != MLX5_CQE_STATUS_HW_OWN))
566 				mlx5_crypto_cqe_err_handle(qp, op);
567 			break;
568 		}
569 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
570 		ops[i++] = op;
571 		qp->ci++;
572 	} while (i < max);
573 	if (likely(i != 0)) {
574 		rte_io_wmb();
575 		qp->cq_obj.db_rec[0] = rte_cpu_to_be_32(qp->ci);
576 		qp->stats.dequeued_count += i;
577 	}
578 	return i;
579 }
580 
581 static void
582 mlx5_crypto_qp_init(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp)
583 {
584 	uint32_t i;
585 
586 	for (i = 0 ; i < qp->entries_n; i++) {
587 		struct mlx5_wqe_cseg *cseg = RTE_PTR_ADD(qp->umem_buf, i *
588 							 priv->wqe_set_size);
589 		struct mlx5_wqe_umr_cseg *ucseg = (struct mlx5_wqe_umr_cseg *)
590 								     (cseg + 1);
591 		struct mlx5_wqe_umr_bsf_seg *bsf =
592 			(struct mlx5_wqe_umr_bsf_seg *)(RTE_PTR_ADD(cseg,
593 						       priv->umr_wqe_size)) - 1;
594 		struct mlx5_wqe_rseg *rseg;
595 
596 		/* Init UMR WQE. */
597 		cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj->id << 8) |
598 					 (priv->umr_wqe_size / MLX5_WSEG_SIZE));
599 		cseg->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
600 				       MLX5_COMP_MODE_OFFSET);
601 		cseg->misc = rte_cpu_to_be_32(qp->mkey[i]->id);
602 		ucseg->if_cf_toe_cq_res = RTE_BE32(1u << MLX5_UMRC_IF_OFFSET);
603 		ucseg->mkey_mask = RTE_BE64(1u << 0); /* Mkey length bit. */
604 		ucseg->ko_to_bs = rte_cpu_to_be_32
605 			((RTE_ALIGN(priv->max_segs_num, 4u) <<
606 			 MLX5_UMRC_KO_OFFSET) | (4 << MLX5_UMRC_TO_BS_OFFSET));
607 		bsf->keytag = priv->keytag;
608 		/* Init RDMA WRITE WQE. */
609 		cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
610 		cseg->flags = RTE_BE32((MLX5_COMP_ALWAYS <<
611 				      MLX5_COMP_MODE_OFFSET) |
612 				      MLX5_WQE_CTRL_INITIATOR_SMALL_FENCE);
613 		rseg = (struct mlx5_wqe_rseg *)(cseg + 1);
614 		rseg->rkey = rte_cpu_to_be_32(qp->mkey[i]->id);
615 	}
616 }
617 
618 static int
619 mlx5_crypto_indirect_mkeys_prepare(struct mlx5_crypto_priv *priv,
620 				  struct mlx5_crypto_qp *qp)
621 {
622 	struct mlx5_umr_wqe *umr;
623 	uint32_t i;
624 	struct mlx5_devx_mkey_attr attr = {
625 		.pd = priv->pdn,
626 		.umr_en = 1,
627 		.crypto_en = 1,
628 		.set_remote_rw = 1,
629 		.klm_num = RTE_ALIGN(priv->max_segs_num, 4),
630 	};
631 
632 	for (umr = (struct mlx5_umr_wqe *)qp->umem_buf, i = 0;
633 	   i < qp->entries_n; i++, umr = RTE_PTR_ADD(umr, priv->wqe_set_size)) {
634 		attr.klm_array = (struct mlx5_klm *)&umr->kseg[0];
635 		qp->mkey[i] = mlx5_devx_cmd_mkey_create(priv->ctx, &attr);
636 		if (!qp->mkey[i]) {
637 			DRV_LOG(ERR, "Failed to allocate indirect mkey.");
638 			return -1;
639 		}
640 	}
641 	return 0;
642 }
643 
644 static int
645 mlx5_crypto_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
646 			     const struct rte_cryptodev_qp_conf *qp_conf,
647 			     int socket_id)
648 {
649 	struct mlx5_crypto_priv *priv = dev->data->dev_private;
650 	struct mlx5_devx_qp_attr attr = {0};
651 	struct mlx5_crypto_qp *qp;
652 	uint16_t log_nb_desc = rte_log2_u32(qp_conf->nb_descriptors);
653 	uint32_t umem_size = RTE_BIT32(log_nb_desc) *
654 			      priv->wqe_set_size +
655 			      sizeof(*qp->db_rec) * 2;
656 	uint32_t alloc_size = sizeof(*qp);
657 	struct mlx5_devx_cq_attr cq_attr = {
658 		.uar_page_id = mlx5_os_get_devx_uar_page_id(priv->uar),
659 	};
660 
661 	if (dev->data->queue_pairs[qp_id] != NULL)
662 		mlx5_crypto_queue_pair_release(dev, qp_id);
663 	alloc_size = RTE_ALIGN(alloc_size, RTE_CACHE_LINE_SIZE);
664 	alloc_size += (sizeof(struct rte_crypto_op *) +
665 		       sizeof(struct mlx5_devx_obj *)) *
666 		       RTE_BIT32(log_nb_desc);
667 	qp = rte_zmalloc_socket(__func__, alloc_size, RTE_CACHE_LINE_SIZE,
668 				socket_id);
669 	if (qp == NULL) {
670 		DRV_LOG(ERR, "Failed to allocate QP memory.");
671 		rte_errno = ENOMEM;
672 		return -rte_errno;
673 	}
674 	if (mlx5_devx_cq_create(priv->ctx, &qp->cq_obj, log_nb_desc,
675 				&cq_attr, socket_id) != 0) {
676 		DRV_LOG(ERR, "Failed to create CQ.");
677 		goto error;
678 	}
679 	qp->umem_buf = rte_zmalloc_socket(__func__, umem_size, 4096, socket_id);
680 	if (qp->umem_buf == NULL) {
681 		DRV_LOG(ERR, "Failed to allocate QP umem.");
682 		rte_errno = ENOMEM;
683 		goto error;
684 	}
685 	qp->umem_obj = mlx5_glue->devx_umem_reg(priv->ctx,
686 					       (void *)(uintptr_t)qp->umem_buf,
687 					       umem_size,
688 					       IBV_ACCESS_LOCAL_WRITE);
689 	if (qp->umem_obj == NULL) {
690 		DRV_LOG(ERR, "Failed to register QP umem.");
691 		goto error;
692 	}
693 	if (mlx5_mr_btree_init(&qp->mr_ctrl.cache_bh, MLX5_MR_BTREE_CACHE_N,
694 			       priv->dev_config.socket_id) != 0) {
695 		DRV_LOG(ERR, "Cannot allocate MR Btree for qp %u.",
696 			(uint32_t)qp_id);
697 		rte_errno = ENOMEM;
698 		goto error;
699 	}
700 	qp->mr_ctrl.dev_gen_ptr = &priv->mr_scache.dev_gen;
701 	attr.pd = priv->pdn;
702 	attr.uar_index = mlx5_os_get_devx_uar_page_id(priv->uar);
703 	attr.cqn = qp->cq_obj.cq->id;
704 	attr.log_page_size = rte_log2_u32(sysconf(_SC_PAGESIZE));
705 	attr.rq_size =  0;
706 	attr.sq_size = RTE_BIT32(log_nb_desc);
707 	attr.dbr_umem_valid = 1;
708 	attr.wq_umem_id = qp->umem_obj->umem_id;
709 	attr.wq_umem_offset = 0;
710 	attr.dbr_umem_id = qp->umem_obj->umem_id;
711 	attr.dbr_address = RTE_BIT64(log_nb_desc) * priv->wqe_set_size;
712 	qp->qp_obj = mlx5_devx_cmd_create_qp(priv->ctx, &attr);
713 	if (qp->qp_obj == NULL) {
714 		DRV_LOG(ERR, "Failed to create QP(%u).", rte_errno);
715 		goto error;
716 	}
717 	qp->db_rec = RTE_PTR_ADD(qp->umem_buf, (uintptr_t)attr.dbr_address);
718 	if (mlx5_crypto_qp2rts(qp))
719 		goto error;
720 	qp->mkey = (struct mlx5_devx_obj **)RTE_ALIGN((uintptr_t)(qp + 1),
721 							   RTE_CACHE_LINE_SIZE);
722 	qp->ops = (struct rte_crypto_op **)(qp->mkey + RTE_BIT32(log_nb_desc));
723 	qp->entries_n = 1 << log_nb_desc;
724 	if (mlx5_crypto_indirect_mkeys_prepare(priv, qp)) {
725 		DRV_LOG(ERR, "Cannot allocate indirect memory regions.");
726 		rte_errno = ENOMEM;
727 		goto error;
728 	}
729 	mlx5_crypto_qp_init(priv, qp);
730 	qp->priv = priv;
731 	dev->data->queue_pairs[qp_id] = qp;
732 	return 0;
733 error:
734 	mlx5_crypto_queue_pair_release(dev, qp_id);
735 	return -1;
736 }
737 
738 static void
739 mlx5_crypto_stats_get(struct rte_cryptodev *dev,
740 		      struct rte_cryptodev_stats *stats)
741 {
742 	int qp_id;
743 
744 	for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
745 		struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
746 
747 		stats->enqueued_count += qp->stats.enqueued_count;
748 		stats->dequeued_count += qp->stats.dequeued_count;
749 		stats->enqueue_err_count += qp->stats.enqueue_err_count;
750 		stats->dequeue_err_count += qp->stats.dequeue_err_count;
751 	}
752 }
753 
754 static void
755 mlx5_crypto_stats_reset(struct rte_cryptodev *dev)
756 {
757 	int qp_id;
758 
759 	for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
760 		struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
761 
762 		memset(&qp->stats, 0, sizeof(qp->stats));
763 	}
764 }
765 
766 static struct rte_cryptodev_ops mlx5_crypto_ops = {
767 	.dev_configure			= mlx5_crypto_dev_configure,
768 	.dev_start			= mlx5_crypto_dev_start,
769 	.dev_stop			= mlx5_crypto_dev_stop,
770 	.dev_close			= mlx5_crypto_dev_close,
771 	.dev_infos_get			= mlx5_crypto_dev_infos_get,
772 	.stats_get			= mlx5_crypto_stats_get,
773 	.stats_reset			= mlx5_crypto_stats_reset,
774 	.queue_pair_setup		= mlx5_crypto_queue_pair_setup,
775 	.queue_pair_release		= mlx5_crypto_queue_pair_release,
776 	.sym_session_get_size		= mlx5_crypto_sym_session_get_size,
777 	.sym_session_configure		= mlx5_crypto_sym_session_configure,
778 	.sym_session_clear		= mlx5_crypto_sym_session_clear,
779 	.sym_get_raw_dp_ctx_size	= NULL,
780 	.sym_configure_raw_dp_ctx	= NULL,
781 };
782 
783 static void
784 mlx5_crypto_hw_global_release(struct mlx5_crypto_priv *priv)
785 {
786 	if (priv->pd != NULL) {
787 		claim_zero(mlx5_glue->dealloc_pd(priv->pd));
788 		priv->pd = NULL;
789 	}
790 	if (priv->uar != NULL) {
791 		mlx5_glue->devx_free_uar(priv->uar);
792 		priv->uar = NULL;
793 	}
794 }
795 
796 static int
797 mlx5_crypto_pd_create(struct mlx5_crypto_priv *priv)
798 {
799 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
800 	struct mlx5dv_obj obj;
801 	struct mlx5dv_pd pd_info;
802 	int ret;
803 
804 	priv->pd = mlx5_glue->alloc_pd(priv->ctx);
805 	if (priv->pd == NULL) {
806 		DRV_LOG(ERR, "Failed to allocate PD.");
807 		return errno ? -errno : -ENOMEM;
808 	}
809 	obj.pd.in = priv->pd;
810 	obj.pd.out = &pd_info;
811 	ret = mlx5_glue->dv_init_obj(&obj, MLX5DV_OBJ_PD);
812 	if (ret != 0) {
813 		DRV_LOG(ERR, "Fail to get PD object info.");
814 		mlx5_glue->dealloc_pd(priv->pd);
815 		priv->pd = NULL;
816 		return -errno;
817 	}
818 	priv->pdn = pd_info.pdn;
819 	return 0;
820 #else
821 	(void)priv;
822 	DRV_LOG(ERR, "Cannot get pdn - no DV support.");
823 	return -ENOTSUP;
824 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
825 }
826 
827 static int
828 mlx5_crypto_hw_global_prepare(struct mlx5_crypto_priv *priv)
829 {
830 	if (mlx5_crypto_pd_create(priv) != 0)
831 		return -1;
832 	priv->uar = mlx5_devx_alloc_uar(priv->ctx, -1);
833 	if (priv->uar)
834 		priv->uar_addr = mlx5_os_get_devx_uar_reg_addr(priv->uar);
835 	if (priv->uar == NULL || priv->uar_addr == NULL) {
836 		rte_errno = errno;
837 		claim_zero(mlx5_glue->dealloc_pd(priv->pd));
838 		DRV_LOG(ERR, "Failed to allocate UAR.");
839 		return -1;
840 	}
841 	return 0;
842 }
843 
844 
845 static int
846 mlx5_crypto_args_check_handler(const char *key, const char *val, void *opaque)
847 {
848 	struct mlx5_crypto_devarg_params *devarg_prms = opaque;
849 	struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
850 	unsigned long tmp;
851 	FILE *file;
852 	int ret;
853 	int i;
854 
855 	if (strcmp(key, "class") == 0)
856 		return 0;
857 	if (strcmp(key, "wcs_file") == 0) {
858 		file = fopen(val, "rb");
859 		if (file == NULL) {
860 			rte_errno = ENOTSUP;
861 			return -rte_errno;
862 		}
863 		for (i = 0 ; i < MLX5_CRYPTO_CREDENTIAL_SIZE ; i++) {
864 			ret = fscanf(file, "%02hhX", &attr->credential[i]);
865 			if (ret <= 0) {
866 				fclose(file);
867 				DRV_LOG(ERR,
868 					"Failed to read credential from file.");
869 				rte_errno = EINVAL;
870 				return -rte_errno;
871 			}
872 		}
873 		fclose(file);
874 		devarg_prms->login_devarg = true;
875 		return 0;
876 	}
877 	errno = 0;
878 	tmp = strtoul(val, NULL, 0);
879 	if (errno) {
880 		DRV_LOG(WARNING, "%s: \"%s\" is an invalid integer.", key, val);
881 		return -errno;
882 	}
883 	if (strcmp(key, "max_segs_num") == 0) {
884 		if (!tmp || tmp > MLX5_CRYPTO_MAX_SEGS) {
885 			DRV_LOG(WARNING, "Invalid max_segs_num: %d, should"
886 				" be less than %d.",
887 				(uint32_t)tmp, MLX5_CRYPTO_MAX_SEGS);
888 			rte_errno = EINVAL;
889 			return -rte_errno;
890 		}
891 		devarg_prms->max_segs_num = (uint32_t)tmp;
892 	} else if (strcmp(key, "import_kek_id") == 0) {
893 		attr->session_import_kek_ptr = (uint32_t)tmp;
894 	} else if (strcmp(key, "credential_id") == 0) {
895 		attr->credential_pointer = (uint32_t)tmp;
896 	} else if (strcmp(key, "keytag") == 0) {
897 		devarg_prms->keytag = tmp;
898 	} else {
899 		DRV_LOG(WARNING, "Invalid key %s.", key);
900 	}
901 	return 0;
902 }
903 
904 static int
905 mlx5_crypto_parse_devargs(struct rte_devargs *devargs,
906 			  struct mlx5_crypto_devarg_params *devarg_prms)
907 {
908 	struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
909 	struct rte_kvargs *kvlist;
910 
911 	/* Default values. */
912 	attr->credential_pointer = 0;
913 	attr->session_import_kek_ptr = 0;
914 	devarg_prms->keytag = 0;
915 	devarg_prms->max_segs_num = 8;
916 	if (devargs == NULL) {
917 		DRV_LOG(ERR,
918 	"No login devargs in order to enable crypto operations in the device.");
919 		rte_errno = EINVAL;
920 		return -1;
921 	}
922 	kvlist = rte_kvargs_parse(devargs->args, NULL);
923 	if (kvlist == NULL) {
924 		DRV_LOG(ERR, "Failed to parse devargs.");
925 		rte_errno = EINVAL;
926 		return -1;
927 	}
928 	if (rte_kvargs_process(kvlist, NULL, mlx5_crypto_args_check_handler,
929 			   devarg_prms) != 0) {
930 		DRV_LOG(ERR, "Devargs handler function Failed.");
931 		rte_kvargs_free(kvlist);
932 		rte_errno = EINVAL;
933 		return -1;
934 	}
935 	rte_kvargs_free(kvlist);
936 	if (devarg_prms->login_devarg == false) {
937 		DRV_LOG(ERR,
938 	"No login credential devarg in order to enable crypto operations "
939 	"in the device.");
940 		rte_errno = EINVAL;
941 		return -1;
942 	}
943 	return 0;
944 }
945 
946 /**
947  * Callback for memory event.
948  *
949  * @param event_type
950  *   Memory event type.
951  * @param addr
952  *   Address of memory.
953  * @param len
954  *   Size of memory.
955  */
956 static void
957 mlx5_crypto_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
958 			    size_t len, void *arg __rte_unused)
959 {
960 	struct mlx5_crypto_priv *priv;
961 
962 	/* Must be called from the primary process. */
963 	MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
964 	switch (event_type) {
965 	case RTE_MEM_EVENT_FREE:
966 		pthread_mutex_lock(&priv_list_lock);
967 		/* Iterate all the existing mlx5 devices. */
968 		TAILQ_FOREACH(priv, &mlx5_crypto_priv_list, next)
969 			mlx5_free_mr_by_addr(&priv->mr_scache,
970 					     priv->ctx->device->name,
971 					     addr, len);
972 		pthread_mutex_unlock(&priv_list_lock);
973 		break;
974 	case RTE_MEM_EVENT_ALLOC:
975 	default:
976 		break;
977 	}
978 }
979 
980 /**
981  * DPDK callback to register a PCI device.
982  *
983  * This function spawns crypto device out of a given PCI device.
984  *
985  * @param[in] pci_drv
986  *   PCI driver structure (mlx5_crypto_driver).
987  * @param[in] pci_dev
988  *   PCI device information.
989  *
990  * @return
991  *   0 on success, 1 to skip this driver, a negative errno value otherwise
992  *   and rte_errno is set.
993  */
994 static int
995 mlx5_crypto_pci_probe(struct rte_pci_driver *pci_drv,
996 			struct rte_pci_device *pci_dev)
997 {
998 	struct ibv_device *ibv;
999 	struct rte_cryptodev *crypto_dev;
1000 	struct ibv_context *ctx;
1001 	struct mlx5_devx_obj *login;
1002 	struct mlx5_crypto_priv *priv;
1003 	struct mlx5_crypto_devarg_params devarg_prms = { 0 };
1004 	struct mlx5_hca_attr attr = { 0 };
1005 	struct rte_cryptodev_pmd_init_params init_params = {
1006 		.name = "",
1007 		.private_data_size = sizeof(struct mlx5_crypto_priv),
1008 		.socket_id = pci_dev->device.numa_node,
1009 		.max_nb_queue_pairs =
1010 				RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS,
1011 	};
1012 	uint16_t rdmw_wqe_size;
1013 	int ret;
1014 
1015 	RTE_SET_USED(pci_drv);
1016 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1017 		DRV_LOG(ERR, "Non-primary process type is not supported.");
1018 		rte_errno = ENOTSUP;
1019 		return -rte_errno;
1020 	}
1021 	ibv = mlx5_os_get_ibv_device(&pci_dev->addr);
1022 	if (ibv == NULL) {
1023 		DRV_LOG(ERR, "No matching IB device for PCI slot "
1024 			PCI_PRI_FMT ".", pci_dev->addr.domain,
1025 			pci_dev->addr.bus, pci_dev->addr.devid,
1026 			pci_dev->addr.function);
1027 		return -rte_errno;
1028 	}
1029 	DRV_LOG(INFO, "PCI information matches for device \"%s\".", ibv->name);
1030 	ctx = mlx5_glue->dv_open_device(ibv);
1031 	if (ctx == NULL) {
1032 		DRV_LOG(ERR, "Failed to open IB device \"%s\".", ibv->name);
1033 		rte_errno = ENODEV;
1034 		return -rte_errno;
1035 	}
1036 	if (mlx5_devx_cmd_query_hca_attr(ctx, &attr) != 0 ||
1037 	    attr.crypto == 0 || attr.aes_xts == 0) {
1038 		DRV_LOG(ERR, "Not enough capabilities to support crypto "
1039 			"operations, maybe old FW/OFED version?");
1040 		claim_zero(mlx5_glue->close_device(ctx));
1041 		rte_errno = ENOTSUP;
1042 		return -ENOTSUP;
1043 	}
1044 	ret = mlx5_crypto_parse_devargs(pci_dev->device.devargs, &devarg_prms);
1045 	if (ret) {
1046 		DRV_LOG(ERR, "Failed to parse devargs.");
1047 		return -rte_errno;
1048 	}
1049 	login = mlx5_devx_cmd_create_crypto_login_obj(ctx,
1050 						      &devarg_prms.login_attr);
1051 	if (login == NULL) {
1052 		DRV_LOG(ERR, "Failed to configure login.");
1053 		return -rte_errno;
1054 	}
1055 	crypto_dev = rte_cryptodev_pmd_create(ibv->name, &pci_dev->device,
1056 					&init_params);
1057 	if (crypto_dev == NULL) {
1058 		DRV_LOG(ERR, "Failed to create device \"%s\".", ibv->name);
1059 		claim_zero(mlx5_glue->close_device(ctx));
1060 		return -ENODEV;
1061 	}
1062 	DRV_LOG(INFO,
1063 		"Crypto device %s was created successfully.", ibv->name);
1064 	crypto_dev->dev_ops = &mlx5_crypto_ops;
1065 	crypto_dev->dequeue_burst = mlx5_crypto_dequeue_burst;
1066 	crypto_dev->enqueue_burst = mlx5_crypto_enqueue_burst;
1067 	crypto_dev->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
1068 	crypto_dev->driver_id = mlx5_crypto_driver_id;
1069 	priv = crypto_dev->data->dev_private;
1070 	priv->ctx = ctx;
1071 	priv->login_obj = login;
1072 	priv->pci_dev = pci_dev;
1073 	priv->crypto_dev = crypto_dev;
1074 	if (mlx5_crypto_hw_global_prepare(priv) != 0) {
1075 		rte_cryptodev_pmd_destroy(priv->crypto_dev);
1076 		claim_zero(mlx5_glue->close_device(priv->ctx));
1077 		return -1;
1078 	}
1079 	if (mlx5_mr_btree_init(&priv->mr_scache.cache,
1080 			     MLX5_MR_BTREE_CACHE_N * 2, rte_socket_id()) != 0) {
1081 		DRV_LOG(ERR, "Failed to allocate shared cache MR memory.");
1082 		mlx5_crypto_hw_global_release(priv);
1083 		rte_cryptodev_pmd_destroy(priv->crypto_dev);
1084 		claim_zero(mlx5_glue->close_device(priv->ctx));
1085 		rte_errno = ENOMEM;
1086 		return -rte_errno;
1087 	}
1088 	priv->mr_scache.reg_mr_cb = mlx5_common_verbs_reg_mr;
1089 	priv->mr_scache.dereg_mr_cb = mlx5_common_verbs_dereg_mr;
1090 	priv->keytag = rte_cpu_to_be_64(devarg_prms.keytag);
1091 	priv->max_segs_num = devarg_prms.max_segs_num;
1092 	priv->umr_wqe_size = sizeof(struct mlx5_wqe_umr_bsf_seg) +
1093 			     sizeof(struct mlx5_umr_wqe) +
1094 			     RTE_ALIGN(priv->max_segs_num, 4) *
1095 			     sizeof(struct mlx5_wqe_dseg);
1096 	rdmw_wqe_size = sizeof(struct mlx5_rdma_write_wqe) +
1097 			      sizeof(struct mlx5_wqe_dseg) *
1098 			      (priv->max_segs_num <= 2 ? 2 : 2 +
1099 			       RTE_ALIGN(priv->max_segs_num - 2, 4));
1100 	priv->wqe_set_size = priv->umr_wqe_size + rdmw_wqe_size;
1101 	priv->umr_wqe_stride = priv->umr_wqe_size / MLX5_SEND_WQE_BB;
1102 	priv->max_rdmar_ds = rdmw_wqe_size / sizeof(struct mlx5_wqe_dseg);
1103 	/* Register callback function for global shared MR cache management. */
1104 	if (TAILQ_EMPTY(&mlx5_crypto_priv_list))
1105 		rte_mem_event_callback_register("MLX5_MEM_EVENT_CB",
1106 						mlx5_crypto_mr_mem_event_cb,
1107 						NULL);
1108 	pthread_mutex_lock(&priv_list_lock);
1109 	TAILQ_INSERT_TAIL(&mlx5_crypto_priv_list, priv, next);
1110 	pthread_mutex_unlock(&priv_list_lock);
1111 	return 0;
1112 }
1113 
1114 static int
1115 mlx5_crypto_pci_remove(struct rte_pci_device *pdev)
1116 {
1117 	struct mlx5_crypto_priv *priv = NULL;
1118 
1119 	pthread_mutex_lock(&priv_list_lock);
1120 	TAILQ_FOREACH(priv, &mlx5_crypto_priv_list, next)
1121 		if (rte_pci_addr_cmp(&priv->pci_dev->addr, &pdev->addr) != 0)
1122 			break;
1123 	if (priv)
1124 		TAILQ_REMOVE(&mlx5_crypto_priv_list, priv, next);
1125 	pthread_mutex_unlock(&priv_list_lock);
1126 	if (priv) {
1127 		if (TAILQ_EMPTY(&mlx5_crypto_priv_list))
1128 			rte_mem_event_callback_unregister("MLX5_MEM_EVENT_CB",
1129 							  NULL);
1130 		mlx5_mr_release_cache(&priv->mr_scache);
1131 		mlx5_crypto_hw_global_release(priv);
1132 		rte_cryptodev_pmd_destroy(priv->crypto_dev);
1133 		claim_zero(mlx5_devx_cmd_destroy(priv->login_obj));
1134 		claim_zero(mlx5_glue->close_device(priv->ctx));
1135 	}
1136 	return 0;
1137 }
1138 
1139 static const struct rte_pci_id mlx5_crypto_pci_id_map[] = {
1140 		{
1141 			RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
1142 					PCI_DEVICE_ID_MELLANOX_CONNECTX6)
1143 		},
1144 		{
1145 			.vendor_id = 0
1146 		}
1147 };
1148 
1149 static struct mlx5_pci_driver mlx5_crypto_driver = {
1150 	.driver_class = MLX5_CLASS_CRYPTO,
1151 	.pci_driver = {
1152 		.driver = {
1153 			.name = RTE_STR(MLX5_CRYPTO_DRIVER_NAME),
1154 		},
1155 		.id_table = mlx5_crypto_pci_id_map,
1156 		.probe = mlx5_crypto_pci_probe,
1157 		.remove = mlx5_crypto_pci_remove,
1158 		.drv_flags = 0,
1159 	},
1160 };
1161 
1162 RTE_INIT(rte_mlx5_crypto_init)
1163 {
1164 	mlx5_common_init();
1165 	if (mlx5_glue != NULL)
1166 		mlx5_pci_driver_register(&mlx5_crypto_driver);
1167 }
1168 
1169 RTE_PMD_REGISTER_CRYPTO_DRIVER(mlx5_cryptodev_driver, mlx5_drv,
1170 			       mlx5_crypto_driver_id);
1171 
1172 RTE_LOG_REGISTER_DEFAULT(mlx5_crypto_logtype, NOTICE)
1173 RTE_PMD_EXPORT_NAME(MLX5_CRYPTO_DRIVER_NAME, __COUNTER__);
1174 RTE_PMD_REGISTER_PCI_TABLE(MLX5_CRYPTO_DRIVER_NAME, mlx5_crypto_pci_id_map);
1175 RTE_PMD_REGISTER_KMOD_DEP(MLX5_CRYPTO_DRIVER_NAME, "* ib_uverbs & mlx5_core & mlx5_ib");
1176