1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2021 Intel Corporation 3 */ 4 5 #include "pmd_zuc_priv.h" 6 7 /** Parse crypto xform chain and set private session parameters. */ 8 static int 9 zuc_session_configure(__rte_unused IMB_MGR * mgr, void *zuc_sess, 10 const struct rte_crypto_sym_xform *xform) 11 { 12 struct zuc_session *sess = (struct zuc_session *) zuc_sess; 13 const struct rte_crypto_sym_xform *auth_xform = NULL; 14 const struct rte_crypto_sym_xform *cipher_xform = NULL; 15 enum ipsec_mb_operation mode; 16 /* Select Crypto operation - hash then cipher / cipher then hash */ 17 int ret = ipsec_mb_parse_xform(xform, &mode, &auth_xform, 18 &cipher_xform, NULL); 19 20 if (ret) 21 return ret; 22 23 if (cipher_xform) { 24 /* Only ZUC EEA3 supported */ 25 if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_ZUC_EEA3) 26 return -ENOTSUP; 27 28 if (cipher_xform->cipher.iv.length != ZUC_IV_KEY_LENGTH) { 29 IPSEC_MB_LOG(ERR, "Wrong IV length"); 30 return -EINVAL; 31 } 32 sess->cipher_iv_offset = cipher_xform->cipher.iv.offset; 33 34 /* Copy the key */ 35 memcpy(sess->pKey_cipher, cipher_xform->cipher.key.data, 36 ZUC_IV_KEY_LENGTH); 37 } 38 39 if (auth_xform) { 40 /* Only ZUC EIA3 supported */ 41 if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_ZUC_EIA3) 42 return -ENOTSUP; 43 44 if (auth_xform->auth.digest_length != ZUC_DIGEST_LENGTH) { 45 IPSEC_MB_LOG(ERR, "Wrong digest length"); 46 return -EINVAL; 47 } 48 49 sess->auth_op = auth_xform->auth.op; 50 51 if (auth_xform->auth.iv.length != ZUC_IV_KEY_LENGTH) { 52 IPSEC_MB_LOG(ERR, "Wrong IV length"); 53 return -EINVAL; 54 } 55 sess->auth_iv_offset = auth_xform->auth.iv.offset; 56 57 /* Copy the key */ 58 memcpy(sess->pKey_hash, auth_xform->auth.key.data, 59 ZUC_IV_KEY_LENGTH); 60 } 61 62 sess->op = mode; 63 return 0; 64 } 65 66 /** Encrypt/decrypt mbufs. */ 67 static uint8_t 68 process_zuc_cipher_op(struct ipsec_mb_qp *qp, struct rte_crypto_op **ops, 69 struct zuc_session **sessions, 70 uint8_t num_ops) 71 { 72 unsigned int i; 73 uint8_t processed_ops = 0; 74 const void *src[ZUC_MAX_BURST]; 75 void *dst[ZUC_MAX_BURST]; 76 const void *iv[ZUC_MAX_BURST]; 77 uint32_t num_bytes[ZUC_MAX_BURST]; 78 const void *cipher_keys[ZUC_MAX_BURST]; 79 struct zuc_session *sess; 80 81 for (i = 0; i < num_ops; i++) { 82 if (((ops[i]->sym->cipher.data.length % BYTE_LEN) != 0) 83 || ((ops[i]->sym->cipher.data.offset 84 % BYTE_LEN) != 0)) { 85 ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 86 IPSEC_MB_LOG(ERR, "Data Length or offset"); 87 break; 88 } 89 90 sess = sessions[i]; 91 92 #ifdef RTE_LIBRTE_PMD_ZUC_DEBUG 93 if (!rte_pktmbuf_is_contiguous(ops[i]->sym->m_src) || 94 (ops[i]->sym->m_dst != NULL && 95 !rte_pktmbuf_is_contiguous( 96 ops[i]->sym->m_dst))) { 97 IPSEC_MB_LOG(ERR, "PMD supports only " 98 " contiguous mbufs, op (%p) " 99 "provides noncontiguous mbuf " 100 "as source/destination buffer.\n", 101 "PMD supports only contiguous mbufs, " 102 "op (%p) provides noncontiguous mbuf " 103 "as source/destination buffer.\n", 104 ops[i]); 105 ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 106 break; 107 } 108 #endif 109 110 src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + 111 (ops[i]->sym->cipher.data.offset >> 3); 112 dst[i] = ops[i]->sym->m_dst ? 113 rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) + 114 (ops[i]->sym->cipher.data.offset >> 3) : 115 rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + 116 (ops[i]->sym->cipher.data.offset >> 3); 117 iv[i] = rte_crypto_op_ctod_offset(ops[i], uint8_t *, 118 sess->cipher_iv_offset); 119 num_bytes[i] = ops[i]->sym->cipher.data.length >> 3; 120 121 cipher_keys[i] = sess->pKey_cipher; 122 123 processed_ops++; 124 } 125 126 IMB_ZUC_EEA3_N_BUFFER(qp->mb_mgr, (const void **)cipher_keys, 127 (const void **)iv, (const void **)src, (void **)dst, 128 num_bytes, processed_ops); 129 130 return processed_ops; 131 } 132 133 /** Generate/verify hash from mbufs. */ 134 static int 135 process_zuc_hash_op(struct ipsec_mb_qp *qp, struct rte_crypto_op **ops, 136 struct zuc_session **sessions, 137 uint8_t num_ops) 138 { 139 unsigned int i; 140 uint8_t processed_ops = 0; 141 uint8_t *src[ZUC_MAX_BURST] = { 0 }; 142 uint32_t *dst[ZUC_MAX_BURST]; 143 uint32_t length_in_bits[ZUC_MAX_BURST] = { 0 }; 144 uint8_t *iv[ZUC_MAX_BURST] = { 0 }; 145 const void *hash_keys[ZUC_MAX_BURST] = { 0 }; 146 struct zuc_session *sess; 147 struct zuc_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp); 148 149 150 for (i = 0; i < num_ops; i++) { 151 /* Data must be byte aligned */ 152 if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) { 153 ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS; 154 IPSEC_MB_LOG(ERR, "Offset"); 155 break; 156 } 157 158 sess = sessions[i]; 159 160 length_in_bits[i] = ops[i]->sym->auth.data.length; 161 162 src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) + 163 (ops[i]->sym->auth.data.offset >> 3); 164 iv[i] = rte_crypto_op_ctod_offset(ops[i], uint8_t *, 165 sess->auth_iv_offset); 166 167 hash_keys[i] = sess->pKey_hash; 168 if (sess->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) 169 dst[i] = (uint32_t *)qp_data->temp_digest[i]; 170 else 171 dst[i] = (uint32_t *)ops[i]->sym->auth.digest.data; 172 173 processed_ops++; 174 } 175 176 IMB_ZUC_EIA3_N_BUFFER(qp->mb_mgr, (const void **)hash_keys, 177 (const void * const *)iv, (const void * const *)src, 178 length_in_bits, dst, processed_ops); 179 180 /* 181 * If tag needs to be verified, compare generated tag 182 * with attached tag 183 */ 184 for (i = 0; i < processed_ops; i++) 185 if (sessions[i]->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) 186 if (memcmp(dst[i], ops[i]->sym->auth.digest.data, 187 ZUC_DIGEST_LENGTH) != 0) 188 ops[i]->status = 189 RTE_CRYPTO_OP_STATUS_AUTH_FAILED; 190 191 return processed_ops; 192 } 193 194 /** Process a batch of crypto ops which shares the same operation type. */ 195 static int 196 process_ops(struct rte_crypto_op **ops, enum ipsec_mb_operation op_type, 197 struct zuc_session **sessions, 198 struct ipsec_mb_qp *qp, uint8_t num_ops) 199 { 200 unsigned int i; 201 unsigned int processed_ops = 0; 202 203 switch (op_type) { 204 case IPSEC_MB_OP_ENCRYPT_ONLY: 205 case IPSEC_MB_OP_DECRYPT_ONLY: 206 processed_ops = process_zuc_cipher_op(qp, ops, 207 sessions, num_ops); 208 break; 209 case IPSEC_MB_OP_HASH_GEN_ONLY: 210 case IPSEC_MB_OP_HASH_VERIFY_ONLY: 211 processed_ops = process_zuc_hash_op(qp, ops, sessions, 212 num_ops); 213 break; 214 case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN: 215 case IPSEC_MB_OP_DECRYPT_THEN_HASH_VERIFY: 216 processed_ops = process_zuc_cipher_op(qp, ops, sessions, 217 num_ops); 218 process_zuc_hash_op(qp, ops, sessions, processed_ops); 219 break; 220 case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT: 221 case IPSEC_MB_OP_HASH_GEN_THEN_ENCRYPT: 222 processed_ops = process_zuc_hash_op(qp, ops, sessions, 223 num_ops); 224 process_zuc_cipher_op(qp, ops, sessions, processed_ops); 225 break; 226 default: 227 /* Operation not supported. */ 228 for (i = 0; i < num_ops; i++) 229 ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION; 230 } 231 232 for (i = 0; i < num_ops; i++) { 233 /* 234 * If there was no error/authentication failure, 235 * change status to successful. 236 */ 237 if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) 238 ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS; 239 /* Free session if a session-less crypto op. */ 240 if (ops[i]->sess_type == RTE_CRYPTO_OP_SESSIONLESS) { 241 memset(sessions[i], 0, sizeof(struct zuc_session)); 242 memset(ops[i]->sym->session, 0, 243 rte_cryptodev_sym_get_existing_header_session_size( 244 ops[i]->sym->session)); 245 rte_mempool_put(qp->sess_mp_priv, sessions[i]); 246 rte_mempool_put(qp->sess_mp, ops[i]->sym->session); 247 ops[i]->sym->session = NULL; 248 } 249 } 250 return processed_ops; 251 } 252 253 static uint16_t 254 zuc_pmd_dequeue_burst(void *queue_pair, 255 struct rte_crypto_op **c_ops, uint16_t nb_ops) 256 { 257 258 struct rte_crypto_op *curr_c_op; 259 260 struct zuc_session *curr_sess; 261 struct zuc_session *sessions[ZUC_MAX_BURST]; 262 struct rte_crypto_op *int_c_ops[ZUC_MAX_BURST]; 263 enum ipsec_mb_operation prev_zuc_op = IPSEC_MB_OP_NOT_SUPPORTED; 264 enum ipsec_mb_operation curr_zuc_op; 265 struct ipsec_mb_qp *qp = queue_pair; 266 unsigned int nb_dequeued; 267 unsigned int i; 268 uint8_t burst_size = 0; 269 uint8_t processed_ops; 270 271 nb_dequeued = rte_ring_dequeue_burst(qp->ingress_queue, 272 (void **)c_ops, nb_ops, NULL); 273 274 275 for (i = 0; i < nb_dequeued; i++) { 276 curr_c_op = c_ops[i]; 277 278 curr_sess = (struct zuc_session *) 279 ipsec_mb_get_session_private(qp, curr_c_op); 280 if (unlikely(curr_sess == NULL)) { 281 curr_c_op->status = 282 RTE_CRYPTO_OP_STATUS_INVALID_SESSION; 283 break; 284 } 285 286 curr_zuc_op = curr_sess->op; 287 288 /* 289 * Batch ops that share the same operation type 290 * (cipher only, auth only...). 291 */ 292 if (burst_size == 0) { 293 prev_zuc_op = curr_zuc_op; 294 int_c_ops[0] = curr_c_op; 295 sessions[0] = curr_sess; 296 burst_size++; 297 } else if (curr_zuc_op == prev_zuc_op) { 298 int_c_ops[burst_size] = curr_c_op; 299 sessions[burst_size] = curr_sess; 300 burst_size++; 301 /* 302 * When there are enough ops to process in a batch, 303 * process them, and start a new batch. 304 */ 305 if (burst_size == ZUC_MAX_BURST) { 306 processed_ops = process_ops(int_c_ops, curr_zuc_op, 307 sessions, qp, burst_size); 308 if (processed_ops < burst_size) { 309 burst_size = 0; 310 break; 311 } 312 313 burst_size = 0; 314 } 315 } else { 316 /* 317 * Different operation type, process the ops 318 * of the previous type. 319 */ 320 processed_ops = process_ops(int_c_ops, prev_zuc_op, 321 sessions, qp, burst_size); 322 if (processed_ops < burst_size) { 323 burst_size = 0; 324 break; 325 } 326 327 burst_size = 0; 328 prev_zuc_op = curr_zuc_op; 329 330 int_c_ops[0] = curr_c_op; 331 sessions[0] = curr_sess; 332 burst_size++; 333 } 334 } 335 336 if (burst_size != 0) { 337 /* Process the crypto ops of the last operation type. */ 338 processed_ops = process_ops(int_c_ops, prev_zuc_op, 339 sessions, qp, burst_size); 340 } 341 342 qp->stats.dequeued_count += i; 343 return i; 344 } 345 346 struct rte_cryptodev_ops zuc_pmd_ops = { 347 .dev_configure = ipsec_mb_config, 348 .dev_start = ipsec_mb_start, 349 .dev_stop = ipsec_mb_stop, 350 .dev_close = ipsec_mb_close, 351 352 .stats_get = ipsec_mb_stats_get, 353 .stats_reset = ipsec_mb_stats_reset, 354 355 .dev_infos_get = ipsec_mb_info_get, 356 357 .queue_pair_setup = ipsec_mb_qp_setup, 358 .queue_pair_release = ipsec_mb_qp_release, 359 360 .sym_session_get_size = ipsec_mb_sym_session_get_size, 361 .sym_session_configure = ipsec_mb_sym_session_configure, 362 .sym_session_clear = ipsec_mb_sym_session_clear 363 }; 364 365 struct rte_cryptodev_ops *rte_zuc_pmd_ops = &zuc_pmd_ops; 366 367 static int 368 zuc_probe(struct rte_vdev_device *vdev) 369 { 370 return ipsec_mb_create(vdev, IPSEC_MB_PMD_TYPE_ZUC); 371 } 372 373 static struct rte_vdev_driver cryptodev_zuc_pmd_drv = { 374 .probe = zuc_probe, 375 .remove = ipsec_mb_remove 376 377 }; 378 379 static struct cryptodev_driver zuc_crypto_drv; 380 381 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ZUC_PMD, cryptodev_zuc_pmd_drv); 382 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_ZUC_PMD, cryptodev_zuc_pmd); 383 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ZUC_PMD, 384 "max_nb_queue_pairs=<int> socket_id=<int>"); 385 RTE_PMD_REGISTER_CRYPTO_DRIVER(zuc_crypto_drv, cryptodev_zuc_pmd_drv.driver, 386 pmd_driver_id_zuc); 387 388 /* Constructor function to register zuc PMD */ 389 RTE_INIT(ipsec_mb_register_zuc) 390 { 391 struct ipsec_mb_internals *zuc_data 392 = &ipsec_mb_pmds[IPSEC_MB_PMD_TYPE_ZUC]; 393 394 zuc_data->caps = zuc_capabilities; 395 zuc_data->dequeue_burst = zuc_pmd_dequeue_burst; 396 zuc_data->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO 397 | RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING 398 | RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA 399 | RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT 400 | RTE_CRYPTODEV_FF_SYM_SESSIONLESS 401 | RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT; 402 zuc_data->internals_priv_size = 0; 403 zuc_data->ops = &zuc_pmd_ops; 404 zuc_data->qp_priv_size = sizeof(struct zuc_qp_data); 405 zuc_data->session_configure = zuc_session_configure; 406 zuc_data->session_priv_size = sizeof(struct zuc_session); 407 } 408