xref: /dpdk/drivers/crypto/ipsec_mb/pmd_aesni_mb.c (revision f665790a5dbad7b645ff46f31d65e977324e7bfc)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2021 Intel Corporation
3  */
4 
5 #include <unistd.h>
6 
7 #include "pmd_aesni_mb_priv.h"
8 
9 RTE_DEFINE_PER_LCORE(pid_t, pid);
10 
11 uint8_t pmd_driver_id_aesni_mb;
12 
13 struct aesni_mb_op_buf_data {
14 	struct rte_mbuf *m;
15 	uint32_t offset;
16 };
17 
18 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
19 /**
20  * Calculate the authentication pre-computes
21  *
22  * @param one_block_hash	Function pointer
23  *				to calculate digest on ipad/opad
24  * @param ipad			Inner pad output byte array
25  * @param opad			Outer pad output byte array
26  * @param hkey			Authentication key
27  * @param hkey_len		Authentication key length
28  * @param blocksize		Block size of selected hash algo
29  */
30 static void
31 calculate_auth_precomputes(hash_one_block_t one_block_hash,
32 		uint8_t *ipad, uint8_t *opad,
33 		const uint8_t *hkey, uint16_t hkey_len,
34 		uint16_t blocksize)
35 {
36 	uint32_t i, length;
37 
38 	alignas(16) uint8_t ipad_buf[blocksize];
39 	alignas(16) uint8_t opad_buf[blocksize];
40 
41 	/* Setup inner and outer pads */
42 	memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
43 	memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
44 
45 	/* XOR hash key with inner and outer pads */
46 	length = hkey_len > blocksize ? blocksize : hkey_len;
47 
48 	for (i = 0; i < length; i++) {
49 		ipad_buf[i] ^= hkey[i];
50 		opad_buf[i] ^= hkey[i];
51 	}
52 
53 	/* Compute partial hashes */
54 	(*one_block_hash)(ipad_buf, ipad);
55 	(*one_block_hash)(opad_buf, opad);
56 
57 	/* Clean up stack */
58 	memset(ipad_buf, 0, blocksize);
59 	memset(opad_buf, 0, blocksize);
60 }
61 #endif
62 
63 static inline int
64 is_aead_algo(IMB_HASH_ALG hash_alg, IMB_CIPHER_MODE cipher_mode)
65 {
66 	return (hash_alg == IMB_AUTH_CHACHA20_POLY1305 ||
67 		hash_alg == IMB_AUTH_AES_CCM ||
68 		cipher_mode == IMB_CIPHER_GCM);
69 }
70 
71 /** Set session authentication parameters */
72 static int
73 aesni_mb_set_session_auth_parameters(IMB_MGR *mb_mgr,
74 		struct aesni_mb_session *sess,
75 		const struct rte_crypto_sym_xform *xform)
76 {
77 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
78 	hash_one_block_t hash_oneblock_fn = NULL;
79 	unsigned int key_larger_block_size = 0;
80 #endif
81 	uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 };
82 	uint32_t auth_precompute = 1;
83 
84 	if (xform == NULL) {
85 		sess->template_job.hash_alg = IMB_AUTH_NULL;
86 		return 0;
87 	}
88 
89 	if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
90 		IPSEC_MB_LOG(ERR, "Crypto xform struct not of type auth");
91 		return -1;
92 	}
93 
94 	/* Set IV parameters */
95 	sess->auth_iv.offset = xform->auth.iv.offset;
96 
97 	/* Set the request digest size */
98 	sess->auth.req_digest_len = xform->auth.digest_length;
99 
100 	/* Select auth generate/verify */
101 	sess->auth.operation = xform->auth.op;
102 
103 	/* Set Authentication Parameters */
104 	if (xform->auth.algo == RTE_CRYPTO_AUTH_NULL) {
105 		sess->template_job.hash_alg = IMB_AUTH_NULL;
106 		sess->template_job.auth_tag_output_len_in_bytes = 0;
107 		return 0;
108 	}
109 
110 	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
111 		sess->template_job.hash_alg = IMB_AUTH_AES_XCBC;
112 
113 		uint16_t xcbc_mac_digest_len =
114 			get_truncated_digest_byte_length(IMB_AUTH_AES_XCBC);
115 		if (sess->auth.req_digest_len != xcbc_mac_digest_len) {
116 			IPSEC_MB_LOG(ERR, "Invalid digest size");
117 			return -EINVAL;
118 		}
119 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
120 
121 		IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data,
122 				sess->auth.xcbc.k1_expanded,
123 				sess->auth.xcbc.k2, sess->auth.xcbc.k3);
124 		sess->template_job.u.XCBC._k1_expanded = sess->auth.xcbc.k1_expanded;
125 		sess->template_job.u.XCBC._k2 = sess->auth.xcbc.k2;
126 		sess->template_job.u.XCBC._k3 = sess->auth.xcbc.k3;
127 		return 0;
128 	}
129 
130 	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
131 		uint32_t dust[4*15];
132 
133 		sess->template_job.hash_alg = IMB_AUTH_AES_CMAC;
134 
135 		uint16_t cmac_digest_len =
136 				get_digest_byte_length(IMB_AUTH_AES_CMAC);
137 
138 		if (sess->auth.req_digest_len > cmac_digest_len) {
139 			IPSEC_MB_LOG(ERR, "Invalid digest size");
140 			return -EINVAL;
141 		}
142 		/*
143 		 * Multi-buffer lib supports digest sizes from 4 to 16 bytes
144 		 * in version 0.50 and sizes of 12 and 16 bytes,
145 		 * in version 0.49.
146 		 * If size requested is different, generate the full digest
147 		 * (16 bytes) in a temporary location and then memcpy
148 		 * the requested number of bytes.
149 		 */
150 		if (sess->auth.req_digest_len < 4)
151 			sess->template_job.auth_tag_output_len_in_bytes = cmac_digest_len;
152 		else
153 			sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
154 
155 		IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data,
156 				sess->auth.cmac.expkey, dust);
157 		IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey,
158 				sess->auth.cmac.skey1, sess->auth.cmac.skey2);
159 		sess->template_job.u.CMAC._key_expanded = sess->auth.cmac.expkey;
160 		sess->template_job.u.CMAC._skey1 = sess->auth.cmac.skey1;
161 		sess->template_job.u.CMAC._skey2 = sess->auth.cmac.skey2;
162 		return 0;
163 	}
164 
165 	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
166 		if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) {
167 			sess->template_job.cipher_direction = IMB_DIR_ENCRYPT;
168 			sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
169 		} else
170 			sess->template_job.cipher_direction = IMB_DIR_DECRYPT;
171 
172 		if (sess->auth.req_digest_len >
173 			get_digest_byte_length(IMB_AUTH_AES_GMAC)) {
174 			IPSEC_MB_LOG(ERR, "Invalid digest size");
175 			return -EINVAL;
176 		}
177 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
178 		sess->template_job.u.GMAC.iv_len_in_bytes = xform->auth.iv.length;
179 		sess->iv.offset = xform->auth.iv.offset;
180 
181 		switch (xform->auth.key.length) {
182 		case IMB_KEY_128_BYTES:
183 			sess->template_job.hash_alg = IMB_AUTH_AES_GMAC_128;
184 			IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data,
185 				&sess->cipher.gcm_key);
186 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
187 			break;
188 		case IMB_KEY_192_BYTES:
189 			sess->template_job.hash_alg = IMB_AUTH_AES_GMAC_192;
190 			IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data,
191 				&sess->cipher.gcm_key);
192 			sess->template_job.key_len_in_bytes = IMB_KEY_192_BYTES;
193 			break;
194 		case IMB_KEY_256_BYTES:
195 			sess->template_job.hash_alg = IMB_AUTH_AES_GMAC_256;
196 			IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data,
197 				&sess->cipher.gcm_key);
198 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
199 			break;
200 		default:
201 			IPSEC_MB_LOG(ERR, "Invalid authentication key length");
202 			return -EINVAL;
203 		}
204 		sess->template_job.u.GMAC._key = &sess->cipher.gcm_key;
205 
206 		return 0;
207 	}
208 
209 	if (xform->auth.algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
210 		if (xform->auth.key.length == 16) {
211 			sess->template_job.hash_alg = IMB_AUTH_ZUC_EIA3_BITLEN;
212 
213 			if (sess->auth.req_digest_len != 4) {
214 				IPSEC_MB_LOG(ERR, "Invalid digest size");
215 				return -EINVAL;
216 			}
217 		} else if (xform->auth.key.length == 32) {
218 			sess->template_job.hash_alg = IMB_AUTH_ZUC256_EIA3_BITLEN;
219 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
220 			if (sess->auth.req_digest_len != 4 &&
221 					sess->auth.req_digest_len != 8 &&
222 					sess->auth.req_digest_len != 16) {
223 #else
224 			if (sess->auth.req_digest_len != 4) {
225 #endif
226 				IPSEC_MB_LOG(ERR, "Invalid digest size");
227 				return -EINVAL;
228 			}
229 		} else {
230 			IPSEC_MB_LOG(ERR, "Invalid authentication key length");
231 			return -EINVAL;
232 		}
233 
234 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
235 
236 		memcpy(sess->auth.zuc_auth_key, xform->auth.key.data,
237 			xform->auth.key.length);
238 		sess->template_job.u.ZUC_EIA3._key = sess->auth.zuc_auth_key;
239 		return 0;
240 	} else if (xform->auth.algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2) {
241 		sess->template_job.hash_alg = IMB_AUTH_SNOW3G_UIA2_BITLEN;
242 		uint16_t snow3g_uia2_digest_len =
243 			get_truncated_digest_byte_length(
244 						IMB_AUTH_SNOW3G_UIA2_BITLEN);
245 		if (sess->auth.req_digest_len != snow3g_uia2_digest_len) {
246 			IPSEC_MB_LOG(ERR, "Invalid digest size");
247 			return -EINVAL;
248 		}
249 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
250 
251 		IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->auth.key.data,
252 					&sess->auth.pKeySched_snow3g_auth);
253 		sess->template_job.u.SNOW3G_UIA2._key = (void *)
254 			&sess->auth.pKeySched_snow3g_auth;
255 		return 0;
256 	} else if (xform->auth.algo == RTE_CRYPTO_AUTH_KASUMI_F9) {
257 		sess->template_job.hash_alg = IMB_AUTH_KASUMI_UIA1;
258 		uint16_t kasumi_f9_digest_len =
259 			get_truncated_digest_byte_length(IMB_AUTH_KASUMI_UIA1);
260 		if (sess->auth.req_digest_len != kasumi_f9_digest_len) {
261 			IPSEC_MB_LOG(ERR, "Invalid digest size");
262 			return -EINVAL;
263 		}
264 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
265 
266 		IMB_KASUMI_INIT_F9_KEY_SCHED(mb_mgr, xform->auth.key.data,
267 					&sess->auth.pKeySched_kasumi_auth);
268 		sess->template_job.u.KASUMI_UIA1._key = (void *)
269 			&sess->auth.pKeySched_kasumi_auth;
270 		return 0;
271 	}
272 
273 	switch (xform->auth.algo) {
274 	case RTE_CRYPTO_AUTH_MD5_HMAC:
275 		sess->template_job.hash_alg = IMB_AUTH_MD5;
276 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
277 		hash_oneblock_fn = mb_mgr->md5_one_block;
278 #endif
279 		break;
280 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
281 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_1;
282 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
283 		hash_oneblock_fn = mb_mgr->sha1_one_block;
284 #endif
285 		if (xform->auth.key.length > get_auth_algo_blocksize(
286 				IMB_AUTH_HMAC_SHA_1)) {
287 			IMB_SHA1(mb_mgr,
288 				xform->auth.key.data,
289 				xform->auth.key.length,
290 				hashed_key);
291 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
292 			key_larger_block_size = 1;
293 #endif
294 		}
295 		break;
296 	case RTE_CRYPTO_AUTH_SHA1:
297 		sess->template_job.hash_alg = IMB_AUTH_SHA_1;
298 		auth_precompute = 0;
299 		break;
300 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
301 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_224;
302 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
303 		hash_oneblock_fn = mb_mgr->sha224_one_block;
304 #endif
305 		if (xform->auth.key.length > get_auth_algo_blocksize(
306 				IMB_AUTH_HMAC_SHA_224)) {
307 			IMB_SHA224(mb_mgr,
308 				xform->auth.key.data,
309 				xform->auth.key.length,
310 				hashed_key);
311 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
312 			key_larger_block_size = 1;
313 #endif
314 		}
315 		break;
316 	case RTE_CRYPTO_AUTH_SHA224:
317 		sess->template_job.hash_alg = IMB_AUTH_SHA_224;
318 		auth_precompute = 0;
319 		break;
320 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
321 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_256;
322 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
323 		hash_oneblock_fn = mb_mgr->sha256_one_block;
324 #endif
325 		if (xform->auth.key.length > get_auth_algo_blocksize(
326 				IMB_AUTH_HMAC_SHA_256)) {
327 			IMB_SHA256(mb_mgr,
328 				xform->auth.key.data,
329 				xform->auth.key.length,
330 				hashed_key);
331 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
332 			key_larger_block_size = 1;
333 #endif
334 		}
335 		break;
336 	case RTE_CRYPTO_AUTH_SHA256:
337 		sess->template_job.hash_alg = IMB_AUTH_SHA_256;
338 		auth_precompute = 0;
339 		break;
340 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
341 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_384;
342 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
343 		hash_oneblock_fn = mb_mgr->sha384_one_block;
344 #endif
345 		if (xform->auth.key.length > get_auth_algo_blocksize(
346 				IMB_AUTH_HMAC_SHA_384)) {
347 			IMB_SHA384(mb_mgr,
348 				xform->auth.key.data,
349 				xform->auth.key.length,
350 				hashed_key);
351 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
352 			key_larger_block_size = 1;
353 #endif
354 		}
355 		break;
356 	case RTE_CRYPTO_AUTH_SHA384:
357 		sess->template_job.hash_alg = IMB_AUTH_SHA_384;
358 		auth_precompute = 0;
359 		break;
360 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
361 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_512;
362 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
363 		hash_oneblock_fn = mb_mgr->sha512_one_block;
364 #endif
365 		if (xform->auth.key.length > get_auth_algo_blocksize(
366 				IMB_AUTH_HMAC_SHA_512)) {
367 			IMB_SHA512(mb_mgr,
368 				xform->auth.key.data,
369 				xform->auth.key.length,
370 				hashed_key);
371 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
372 			key_larger_block_size = 1;
373 #endif
374 		}
375 		break;
376 	case RTE_CRYPTO_AUTH_SHA512:
377 		sess->template_job.hash_alg = IMB_AUTH_SHA_512;
378 		auth_precompute = 0;
379 		break;
380 	default:
381 		IPSEC_MB_LOG(ERR,
382 			"Unsupported authentication algorithm selection");
383 		return -ENOTSUP;
384 	}
385 	uint16_t trunc_digest_size =
386 			get_truncated_digest_byte_length(sess->template_job.hash_alg);
387 	uint16_t full_digest_size =
388 			get_digest_byte_length(sess->template_job.hash_alg);
389 
390 	if (sess->auth.req_digest_len > full_digest_size ||
391 			sess->auth.req_digest_len == 0) {
392 		IPSEC_MB_LOG(ERR, "Invalid digest size");
393 		return -EINVAL;
394 	}
395 
396 	if (sess->auth.req_digest_len != trunc_digest_size &&
397 			sess->auth.req_digest_len != full_digest_size)
398 		sess->template_job.auth_tag_output_len_in_bytes = full_digest_size;
399 	else
400 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
401 
402 	/* Plain SHA does not require precompute key */
403 	if (auth_precompute == 0)
404 		return 0;
405 
406 	/* Calculate Authentication precomputes */
407 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
408 		imb_hmac_ipad_opad(mb_mgr, sess->template_job.hash_alg,
409 					xform->auth.key.data, xform->auth.key.length,
410 					sess->auth.pads.inner, sess->auth.pads.outer);
411 #else
412 	if (key_larger_block_size) {
413 		calculate_auth_precomputes(hash_oneblock_fn,
414 			sess->auth.pads.inner, sess->auth.pads.outer,
415 			hashed_key,
416 			xform->auth.key.length,
417 			get_auth_algo_blocksize(sess->template_job.hash_alg));
418 	} else {
419 		calculate_auth_precomputes(hash_oneblock_fn,
420 			sess->auth.pads.inner, sess->auth.pads.outer,
421 			xform->auth.key.data,
422 			xform->auth.key.length,
423 			get_auth_algo_blocksize(sess->template_job.hash_alg));
424 	}
425 #endif
426 	sess->template_job.u.HMAC._hashed_auth_key_xor_ipad =
427 		sess->auth.pads.inner;
428 	sess->template_job.u.HMAC._hashed_auth_key_xor_opad =
429 		sess->auth.pads.outer;
430 
431 	return 0;
432 }
433 
434 /** Set session cipher parameters */
435 static int
436 aesni_mb_set_session_cipher_parameters(const IMB_MGR *mb_mgr,
437 		struct aesni_mb_session *sess,
438 		const struct rte_crypto_sym_xform *xform)
439 {
440 	uint8_t is_aes = 0;
441 	uint8_t is_3DES = 0;
442 	uint8_t is_docsis = 0;
443 	uint8_t is_zuc = 0;
444 	uint8_t is_snow3g = 0;
445 	uint8_t is_kasumi = 0;
446 
447 	if (xform == NULL) {
448 		sess->template_job.cipher_mode = IMB_CIPHER_NULL;
449 		return 0;
450 	}
451 
452 	if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
453 		IPSEC_MB_LOG(ERR, "Crypto xform struct not of type cipher");
454 		return -EINVAL;
455 	}
456 
457 	/* Select cipher direction */
458 	switch (xform->cipher.op) {
459 	case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
460 		sess->template_job.cipher_direction = IMB_DIR_ENCRYPT;
461 		break;
462 	case RTE_CRYPTO_CIPHER_OP_DECRYPT:
463 		sess->template_job.cipher_direction = IMB_DIR_DECRYPT;
464 		break;
465 	default:
466 		IPSEC_MB_LOG(ERR, "Invalid cipher operation parameter");
467 		return -EINVAL;
468 	}
469 
470 	/* Select cipher mode */
471 	switch (xform->cipher.algo) {
472 	case RTE_CRYPTO_CIPHER_AES_CBC:
473 		sess->template_job.cipher_mode = IMB_CIPHER_CBC;
474 		is_aes = 1;
475 		break;
476 	case RTE_CRYPTO_CIPHER_AES_CTR:
477 		sess->template_job.cipher_mode = IMB_CIPHER_CNTR;
478 		is_aes = 1;
479 		break;
480 	case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
481 		sess->template_job.cipher_mode = IMB_CIPHER_DOCSIS_SEC_BPI;
482 		is_docsis = 1;
483 		break;
484 	case RTE_CRYPTO_CIPHER_DES_CBC:
485 		sess->template_job.cipher_mode = IMB_CIPHER_DES;
486 		break;
487 	case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
488 		sess->template_job.cipher_mode = IMB_CIPHER_DOCSIS_DES;
489 		break;
490 	case RTE_CRYPTO_CIPHER_3DES_CBC:
491 		sess->template_job.cipher_mode = IMB_CIPHER_DES3;
492 		is_3DES = 1;
493 		break;
494 	case RTE_CRYPTO_CIPHER_AES_ECB:
495 		sess->template_job.cipher_mode = IMB_CIPHER_ECB;
496 		is_aes = 1;
497 		break;
498 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
499 		sess->template_job.cipher_mode = IMB_CIPHER_ZUC_EEA3;
500 		is_zuc = 1;
501 		break;
502 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
503 		sess->template_job.cipher_mode = IMB_CIPHER_SNOW3G_UEA2_BITLEN;
504 		is_snow3g = 1;
505 		break;
506 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
507 		sess->template_job.cipher_mode = IMB_CIPHER_KASUMI_UEA1_BITLEN;
508 		is_kasumi = 1;
509 		break;
510 	case RTE_CRYPTO_CIPHER_NULL:
511 		sess->template_job.cipher_mode = IMB_CIPHER_NULL;
512 		sess->template_job.key_len_in_bytes = 0;
513 		sess->iv.offset = xform->cipher.iv.offset;
514 		sess->template_job.iv_len_in_bytes = xform->cipher.iv.length;
515 		return 0;
516 	default:
517 		IPSEC_MB_LOG(ERR, "Unsupported cipher mode parameter");
518 		return -ENOTSUP;
519 	}
520 
521 	/* Set IV parameters */
522 	sess->iv.offset = xform->cipher.iv.offset;
523 	sess->template_job.iv_len_in_bytes = xform->cipher.iv.length;
524 
525 	/* Check key length and choose key expansion function for AES */
526 	if (is_aes) {
527 		switch (xform->cipher.key.length) {
528 		case IMB_KEY_128_BYTES:
529 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
530 			IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
531 					sess->cipher.expanded_aes_keys.encode,
532 					sess->cipher.expanded_aes_keys.decode);
533 			break;
534 		case IMB_KEY_192_BYTES:
535 			sess->template_job.key_len_in_bytes = IMB_KEY_192_BYTES;
536 			IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data,
537 					sess->cipher.expanded_aes_keys.encode,
538 					sess->cipher.expanded_aes_keys.decode);
539 			break;
540 		case IMB_KEY_256_BYTES:
541 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
542 			IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
543 					sess->cipher.expanded_aes_keys.encode,
544 					sess->cipher.expanded_aes_keys.decode);
545 			break;
546 		default:
547 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
548 			return -EINVAL;
549 		}
550 
551 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
552 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
553 	} else if (is_docsis) {
554 		switch (xform->cipher.key.length) {
555 		case IMB_KEY_128_BYTES:
556 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
557 			IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
558 					sess->cipher.expanded_aes_keys.encode,
559 					sess->cipher.expanded_aes_keys.decode);
560 			break;
561 		case IMB_KEY_256_BYTES:
562 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
563 			IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
564 					sess->cipher.expanded_aes_keys.encode,
565 					sess->cipher.expanded_aes_keys.decode);
566 			break;
567 		default:
568 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
569 			return -EINVAL;
570 		}
571 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
572 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
573 	} else if (is_3DES) {
574 		uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0],
575 				sess->cipher.exp_3des_keys.key[1],
576 				sess->cipher.exp_3des_keys.key[2]};
577 
578 		switch (xform->cipher.key.length) {
579 		case  24:
580 			IMB_DES_KEYSCHED(mb_mgr, keys[0],
581 					xform->cipher.key.data);
582 			IMB_DES_KEYSCHED(mb_mgr, keys[1],
583 					xform->cipher.key.data + 8);
584 			IMB_DES_KEYSCHED(mb_mgr, keys[2],
585 					xform->cipher.key.data + 16);
586 
587 			/* Initialize keys - 24 bytes: [K1-K2-K3] */
588 			sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
589 			sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
590 			sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2];
591 			break;
592 		case 16:
593 			IMB_DES_KEYSCHED(mb_mgr, keys[0],
594 					xform->cipher.key.data);
595 			IMB_DES_KEYSCHED(mb_mgr, keys[1],
596 					xform->cipher.key.data + 8);
597 			/* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */
598 			sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
599 			sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
600 			sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
601 			break;
602 		case 8:
603 			IMB_DES_KEYSCHED(mb_mgr, keys[0],
604 					xform->cipher.key.data);
605 
606 			/* Initialize keys - 8 bytes: [K1 = K2 = K3] */
607 			sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
608 			sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0];
609 			sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
610 			break;
611 		default:
612 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
613 			return -EINVAL;
614 		}
615 
616 		sess->template_job.enc_keys = sess->cipher.exp_3des_keys.ks_ptr;
617 		sess->template_job.dec_keys = sess->cipher.exp_3des_keys.ks_ptr;
618 		sess->template_job.key_len_in_bytes = 24;
619 	} else if (is_zuc) {
620 		if (xform->cipher.key.length != 16 &&
621 				xform->cipher.key.length != 32) {
622 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
623 			return -EINVAL;
624 		}
625 		sess->template_job.key_len_in_bytes = xform->cipher.key.length;
626 		memcpy(sess->cipher.zuc_cipher_key, xform->cipher.key.data,
627 			xform->cipher.key.length);
628 		sess->template_job.enc_keys = sess->cipher.zuc_cipher_key;
629 		sess->template_job.dec_keys = sess->cipher.zuc_cipher_key;
630 	} else if (is_snow3g) {
631 		if (xform->cipher.key.length != 16) {
632 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
633 			return -EINVAL;
634 		}
635 		sess->template_job.key_len_in_bytes = 16;
636 		IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->cipher.key.data,
637 					&sess->cipher.pKeySched_snow3g_cipher);
638 		sess->template_job.enc_keys = &sess->cipher.pKeySched_snow3g_cipher;
639 		sess->template_job.dec_keys = &sess->cipher.pKeySched_snow3g_cipher;
640 	} else if (is_kasumi) {
641 		if (xform->cipher.key.length != 16) {
642 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
643 			return -EINVAL;
644 		}
645 		sess->template_job.key_len_in_bytes = 16;
646 		IMB_KASUMI_INIT_F8_KEY_SCHED(mb_mgr, xform->cipher.key.data,
647 					&sess->cipher.pKeySched_kasumi_cipher);
648 		sess->template_job.enc_keys = &sess->cipher.pKeySched_kasumi_cipher;
649 		sess->template_job.dec_keys = &sess->cipher.pKeySched_kasumi_cipher;
650 	} else {
651 		if (xform->cipher.key.length != 8) {
652 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
653 			return -EINVAL;
654 		}
655 		sess->template_job.key_len_in_bytes = 8;
656 
657 		IMB_DES_KEYSCHED(mb_mgr,
658 			(uint64_t *)sess->cipher.expanded_aes_keys.encode,
659 				xform->cipher.key.data);
660 		IMB_DES_KEYSCHED(mb_mgr,
661 			(uint64_t *)sess->cipher.expanded_aes_keys.decode,
662 				xform->cipher.key.data);
663 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
664 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
665 	}
666 
667 	return 0;
668 }
669 
670 static int
671 aesni_mb_set_session_aead_parameters(const IMB_MGR *mb_mgr,
672 		struct aesni_mb_session *sess,
673 		const struct rte_crypto_sym_xform *xform)
674 {
675 	switch (xform->aead.op) {
676 	case RTE_CRYPTO_AEAD_OP_ENCRYPT:
677 		sess->template_job.cipher_direction = IMB_DIR_ENCRYPT;
678 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
679 		break;
680 	case RTE_CRYPTO_AEAD_OP_DECRYPT:
681 		sess->template_job.cipher_direction = IMB_DIR_DECRYPT;
682 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
683 		break;
684 	default:
685 		IPSEC_MB_LOG(ERR, "Invalid aead operation parameter");
686 		return -EINVAL;
687 	}
688 
689 	/* Set IV parameters */
690 	sess->iv.offset = xform->aead.iv.offset;
691 	sess->template_job.iv_len_in_bytes = xform->aead.iv.length;
692 
693 	/* Set digest sizes */
694 	sess->auth.req_digest_len = xform->aead.digest_length;
695 	sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
696 
697 	switch (xform->aead.algo) {
698 	case RTE_CRYPTO_AEAD_AES_CCM:
699 		sess->template_job.cipher_mode = IMB_CIPHER_CCM;
700 		sess->template_job.hash_alg = IMB_AUTH_AES_CCM;
701 		sess->template_job.u.CCM.aad_len_in_bytes = xform->aead.aad_length;
702 
703 		/* Check key length and choose key expansion function for AES */
704 		switch (xform->aead.key.length) {
705 		case IMB_KEY_128_BYTES:
706 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
707 			IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data,
708 					sess->cipher.expanded_aes_keys.encode,
709 					sess->cipher.expanded_aes_keys.decode);
710 			break;
711 		case IMB_KEY_256_BYTES:
712 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
713 			IMB_AES_KEYEXP_256(mb_mgr, xform->aead.key.data,
714 					sess->cipher.expanded_aes_keys.encode,
715 					sess->cipher.expanded_aes_keys.decode);
716 			break;
717 		default:
718 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
719 			return -EINVAL;
720 		}
721 
722 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
723 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
724 		/* CCM digests must be between 4 and 16 and an even number */
725 		if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN ||
726 			sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN ||
727 			(sess->auth.req_digest_len & 1) == 1) {
728 			IPSEC_MB_LOG(ERR, "Invalid digest size");
729 			return -EINVAL;
730 		}
731 		break;
732 
733 	case RTE_CRYPTO_AEAD_AES_GCM:
734 		sess->template_job.cipher_mode = IMB_CIPHER_GCM;
735 		sess->template_job.hash_alg = IMB_AUTH_AES_GMAC;
736 		sess->template_job.u.GCM.aad_len_in_bytes = xform->aead.aad_length;
737 
738 		switch (xform->aead.key.length) {
739 		case IMB_KEY_128_BYTES:
740 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
741 			IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data,
742 				&sess->cipher.gcm_key);
743 			break;
744 		case IMB_KEY_192_BYTES:
745 			sess->template_job.key_len_in_bytes = IMB_KEY_192_BYTES;
746 			IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data,
747 				&sess->cipher.gcm_key);
748 			break;
749 		case IMB_KEY_256_BYTES:
750 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
751 			IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data,
752 				&sess->cipher.gcm_key);
753 			break;
754 		default:
755 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
756 			return -EINVAL;
757 		}
758 
759 		sess->template_job.enc_keys = &sess->cipher.gcm_key;
760 		sess->template_job.dec_keys = &sess->cipher.gcm_key;
761 		/* GCM digest size must be between 1 and 16 */
762 		if (sess->auth.req_digest_len == 0 ||
763 				sess->auth.req_digest_len > 16) {
764 			IPSEC_MB_LOG(ERR, "Invalid digest size");
765 			return -EINVAL;
766 		}
767 		break;
768 
769 	case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
770 		sess->template_job.cipher_mode = IMB_CIPHER_CHACHA20_POLY1305;
771 		sess->template_job.hash_alg = IMB_AUTH_CHACHA20_POLY1305;
772 		sess->template_job.u.CHACHA20_POLY1305.aad_len_in_bytes =
773 			xform->aead.aad_length;
774 
775 		if (xform->aead.key.length != 32) {
776 			IPSEC_MB_LOG(ERR, "Invalid key length");
777 			return -EINVAL;
778 		}
779 		sess->template_job.key_len_in_bytes = 32;
780 		memcpy(sess->cipher.expanded_aes_keys.encode,
781 			xform->aead.key.data, 32);
782 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
783 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
784 		if (sess->auth.req_digest_len != 16) {
785 			IPSEC_MB_LOG(ERR, "Invalid digest size");
786 			return -EINVAL;
787 		}
788 		break;
789 	default:
790 		IPSEC_MB_LOG(ERR, "Unsupported aead mode parameter");
791 		return -ENOTSUP;
792 	}
793 
794 	return 0;
795 }
796 
797 /** Configure a aesni multi-buffer session from a crypto xform chain */
798 int
799 aesni_mb_session_configure(IMB_MGR *mb_mgr,
800 		void *priv_sess,
801 		const struct rte_crypto_sym_xform *xform)
802 {
803 	const struct rte_crypto_sym_xform *auth_xform = NULL;
804 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
805 	const struct rte_crypto_sym_xform *aead_xform = NULL;
806 	enum ipsec_mb_operation mode;
807 	struct aesni_mb_session *sess = (struct aesni_mb_session *) priv_sess;
808 	int ret;
809 
810 	ret = ipsec_mb_parse_xform(xform, &mode, &auth_xform,
811 				&cipher_xform, &aead_xform);
812 	if (ret)
813 		return ret;
814 
815 	/* Select Crypto operation - hash then cipher / cipher then hash */
816 	switch (mode) {
817 	case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT:
818 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
819 		break;
820 	case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN:
821 	case IPSEC_MB_OP_DECRYPT_THEN_HASH_VERIFY:
822 		sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
823 		break;
824 	case IPSEC_MB_OP_HASH_GEN_ONLY:
825 	case IPSEC_MB_OP_HASH_VERIFY_ONLY:
826 	case IPSEC_MB_OP_HASH_GEN_THEN_ENCRYPT:
827 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
828 		break;
829 	/*
830 	 * Multi buffer library operates only at two modes,
831 	 * IMB_ORDER_CIPHER_HASH and IMB_ORDER_HASH_CIPHER.
832 	 * When doing ciphering only, chain order depends
833 	 * on cipher operation: encryption is always
834 	 * the first operation and decryption the last one.
835 	 */
836 	case IPSEC_MB_OP_ENCRYPT_ONLY:
837 		sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
838 		break;
839 	case IPSEC_MB_OP_DECRYPT_ONLY:
840 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
841 		break;
842 	case IPSEC_MB_OP_AEAD_AUTHENTICATED_ENCRYPT:
843 		sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
844 		break;
845 	case IPSEC_MB_OP_AEAD_AUTHENTICATED_DECRYPT:
846 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
847 		break;
848 	case IPSEC_MB_OP_NOT_SUPPORTED:
849 	default:
850 		IPSEC_MB_LOG(ERR,
851 			"Unsupported operation chain order parameter");
852 		return -ENOTSUP;
853 	}
854 
855 	/* Default IV length = 0 */
856 	sess->template_job.iv_len_in_bytes = 0;
857 
858 	ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform);
859 	if (ret != 0) {
860 		IPSEC_MB_LOG(ERR,
861 			"Invalid/unsupported authentication parameters");
862 		return ret;
863 	}
864 
865 	ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess,
866 			cipher_xform);
867 	if (ret != 0) {
868 		IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
869 		return ret;
870 	}
871 
872 	if (aead_xform) {
873 		ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess,
874 				aead_xform);
875 		if (ret != 0) {
876 			IPSEC_MB_LOG(ERR,
877 				"Invalid/unsupported aead parameters");
878 			return ret;
879 		}
880 	}
881 
882 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
883 	sess->session_id = imb_set_session(mb_mgr, &sess->template_job);
884 	sess->pid = getpid();
885 	RTE_PER_LCORE(pid) = sess->pid;
886 #endif
887 
888 	return 0;
889 }
890 
891 /** Check DOCSIS security session configuration is valid */
892 static int
893 check_docsis_sec_session(struct rte_security_session_conf *conf)
894 {
895 	struct rte_crypto_sym_xform *crypto_sym = conf->crypto_xform;
896 	struct rte_security_docsis_xform *docsis = &conf->docsis;
897 
898 	/* Downlink: CRC generate -> Cipher encrypt */
899 	if (docsis->direction == RTE_SECURITY_DOCSIS_DOWNLINK) {
900 
901 		if (crypto_sym != NULL &&
902 		    crypto_sym->type ==	RTE_CRYPTO_SYM_XFORM_CIPHER &&
903 		    crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
904 		    crypto_sym->cipher.algo ==
905 					RTE_CRYPTO_CIPHER_AES_DOCSISBPI &&
906 		    (crypto_sym->cipher.key.length == IMB_KEY_128_BYTES ||
907 		     crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) &&
908 		    crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE &&
909 		    crypto_sym->next == NULL) {
910 			return 0;
911 		}
912 	/* Uplink: Cipher decrypt -> CRC verify */
913 	} else if (docsis->direction == RTE_SECURITY_DOCSIS_UPLINK) {
914 
915 		if (crypto_sym != NULL &&
916 		    crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
917 		    crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
918 		    crypto_sym->cipher.algo ==
919 					RTE_CRYPTO_CIPHER_AES_DOCSISBPI &&
920 		    (crypto_sym->cipher.key.length == IMB_KEY_128_BYTES ||
921 		     crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) &&
922 		    crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE &&
923 		    crypto_sym->next == NULL) {
924 			return 0;
925 		}
926 	}
927 
928 	return -EINVAL;
929 }
930 
931 /** Set DOCSIS security session auth (CRC) parameters */
932 static int
933 aesni_mb_set_docsis_sec_session_auth_parameters(struct aesni_mb_session *sess,
934 		struct rte_security_docsis_xform *xform)
935 {
936 	if (xform == NULL) {
937 		IPSEC_MB_LOG(ERR, "Invalid DOCSIS xform");
938 		return -EINVAL;
939 	}
940 
941 	/* Select CRC generate/verify */
942 	if (xform->direction == RTE_SECURITY_DOCSIS_UPLINK) {
943 		sess->template_job.hash_alg = IMB_AUTH_DOCSIS_CRC32;
944 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
945 	} else if (xform->direction == RTE_SECURITY_DOCSIS_DOWNLINK) {
946 		sess->template_job.hash_alg = IMB_AUTH_DOCSIS_CRC32;
947 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
948 	} else {
949 		IPSEC_MB_LOG(ERR, "Unsupported DOCSIS direction");
950 		return -ENOTSUP;
951 	}
952 
953 	sess->auth.req_digest_len = RTE_ETHER_CRC_LEN;
954 	sess->template_job.auth_tag_output_len_in_bytes = RTE_ETHER_CRC_LEN;
955 
956 	return 0;
957 }
958 
959 /**
960  * Parse DOCSIS security session configuration and set private session
961  * parameters
962  */
963 static int
964 aesni_mb_set_docsis_sec_session_parameters(
965 		__rte_unused struct rte_cryptodev *dev,
966 		struct rte_security_session_conf *conf,
967 		void *sess)
968 {
969 	IMB_MGR  *mb_mgr = alloc_init_mb_mgr();
970 	struct rte_security_docsis_xform *docsis_xform;
971 	struct rte_crypto_sym_xform *cipher_xform;
972 	struct aesni_mb_session *ipsec_sess = sess;
973 	int ret = 0;
974 
975 	if (!mb_mgr)
976 		return -ENOMEM;
977 
978 	ret = check_docsis_sec_session(conf);
979 	if (ret) {
980 		IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration");
981 		goto error_exit;
982 	}
983 
984 	switch (conf->docsis.direction) {
985 	case RTE_SECURITY_DOCSIS_UPLINK:
986 		ipsec_sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
987 		docsis_xform = &conf->docsis;
988 		cipher_xform = conf->crypto_xform;
989 		break;
990 	case RTE_SECURITY_DOCSIS_DOWNLINK:
991 		ipsec_sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
992 		cipher_xform = conf->crypto_xform;
993 		docsis_xform = &conf->docsis;
994 		break;
995 	default:
996 		IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration");
997 		ret = -EINVAL;
998 		goto error_exit;
999 	}
1000 
1001 	/* Default IV length = 0 */
1002 	ipsec_sess->template_job.iv_len_in_bytes = 0;
1003 
1004 	ret = aesni_mb_set_docsis_sec_session_auth_parameters(ipsec_sess,
1005 			docsis_xform);
1006 	if (ret != 0) {
1007 		IPSEC_MB_LOG(ERR, "Invalid/unsupported DOCSIS parameters");
1008 		goto error_exit;
1009 	}
1010 
1011 	ret = aesni_mb_set_session_cipher_parameters(mb_mgr,
1012 			ipsec_sess, cipher_xform);
1013 
1014 	if (ret != 0) {
1015 		IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
1016 		goto error_exit;
1017 	}
1018 
1019 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1020 	ipsec_sess->session_id = imb_set_session(mb_mgr, &ipsec_sess->template_job);
1021 #endif
1022 
1023 error_exit:
1024 	free_mb_mgr(mb_mgr);
1025 	return ret;
1026 }
1027 
1028 static inline uint64_t
1029 auth_start_offset(struct rte_crypto_op *op, struct aesni_mb_session *session,
1030 		uint32_t oop, const uint32_t auth_offset,
1031 		const uint32_t cipher_offset, const uint32_t auth_length,
1032 		const uint32_t cipher_length, uint8_t lb_sgl)
1033 {
1034 	struct rte_mbuf *m_src, *m_dst;
1035 	uint8_t *p_src, *p_dst;
1036 	uintptr_t u_src, u_dst;
1037 	uint32_t cipher_end, auth_end;
1038 
1039 	/* Only cipher then hash needs special calculation. */
1040 	if (!oop || session->template_job.chain_order != IMB_ORDER_CIPHER_HASH || lb_sgl)
1041 		return auth_offset;
1042 
1043 	m_src = op->sym->m_src;
1044 	m_dst = op->sym->m_dst;
1045 
1046 	p_src = rte_pktmbuf_mtod(m_src, uint8_t *);
1047 	p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
1048 	u_src = (uintptr_t)p_src;
1049 	u_dst = (uintptr_t)p_dst + auth_offset;
1050 
1051 	/**
1052 	 * Copy the content between cipher offset and auth offset for generating
1053 	 * correct digest.
1054 	 */
1055 	if (cipher_offset > auth_offset)
1056 		memcpy(p_dst + auth_offset,
1057 				p_src + auth_offset,
1058 				cipher_offset -
1059 				auth_offset);
1060 
1061 	/**
1062 	 * Copy the content between (cipher offset + length) and (auth offset +
1063 	 * length) for generating correct digest
1064 	 */
1065 	cipher_end = cipher_offset + cipher_length;
1066 	auth_end = auth_offset + auth_length;
1067 	if (cipher_end < auth_end)
1068 		memcpy(p_dst + cipher_end, p_src + cipher_end,
1069 				auth_end - cipher_end);
1070 
1071 	/**
1072 	 * Since intel-ipsec-mb only supports positive values,
1073 	 * we need to deduct the correct offset between src and dst.
1074 	 */
1075 
1076 	return u_src < u_dst ? (u_dst - u_src) :
1077 			(UINT64_MAX - u_src + u_dst + 1);
1078 }
1079 
1080 static inline void
1081 set_cpu_mb_job_params(IMB_JOB *job, struct aesni_mb_session *session,
1082 		union rte_crypto_sym_ofs sofs, void *buf, uint32_t len,
1083 		struct rte_crypto_va_iova_ptr *iv,
1084 		struct rte_crypto_va_iova_ptr *aad, void *digest, void *udata)
1085 {
1086 	memcpy(job, &session->template_job, sizeof(IMB_JOB));
1087 
1088 	/* Set authentication parameters */
1089 	job->iv = iv->va;
1090 
1091 	switch (job->hash_alg) {
1092 	case IMB_AUTH_AES_CCM:
1093 		job->u.CCM.aad = (uint8_t *)aad->va + 18;
1094 		job->iv++;
1095 		break;
1096 
1097 	case IMB_AUTH_AES_GMAC:
1098 		job->u.GCM.aad = aad->va;
1099 		break;
1100 
1101 	case IMB_AUTH_AES_GMAC_128:
1102 	case IMB_AUTH_AES_GMAC_192:
1103 	case IMB_AUTH_AES_GMAC_256:
1104 		job->u.GMAC._iv = iv->va;
1105 		break;
1106 
1107 	case IMB_AUTH_CHACHA20_POLY1305:
1108 		job->u.CHACHA20_POLY1305.aad = aad->va;
1109 		break;
1110 	default:
1111 		job->u.HMAC._hashed_auth_key_xor_ipad =
1112 				session->auth.pads.inner;
1113 		job->u.HMAC._hashed_auth_key_xor_opad =
1114 				session->auth.pads.outer;
1115 	}
1116 
1117 	/*
1118 	 * Multi-buffer library current only support returning a truncated
1119 	 * digest length as specified in the relevant IPsec RFCs
1120 	 */
1121 
1122 	/* Set digest location and length */
1123 	job->auth_tag_output = digest;
1124 
1125 	/* Data Parameters */
1126 	job->src = buf;
1127 	job->dst = (uint8_t *)buf + sofs.ofs.cipher.head;
1128 	job->cipher_start_src_offset_in_bytes = sofs.ofs.cipher.head;
1129 	job->hash_start_src_offset_in_bytes = sofs.ofs.auth.head;
1130 	job->msg_len_to_hash_in_bytes = len - sofs.ofs.auth.head -
1131 		sofs.ofs.auth.tail;
1132 	job->msg_len_to_cipher_in_bytes = len - sofs.ofs.cipher.head -
1133 		sofs.ofs.cipher.tail;
1134 
1135 	job->user_data = udata;
1136 }
1137 
1138 static int
1139 handle_aead_sgl_job(IMB_JOB *job, IMB_MGR *mb_mgr,
1140 		uint32_t *total_len,
1141 		struct aesni_mb_op_buf_data *src_data,
1142 		struct aesni_mb_op_buf_data *dst_data)
1143 {
1144 	uint32_t data_len, part_len;
1145 
1146 	if (*total_len == 0) {
1147 		job->sgl_state = IMB_SGL_COMPLETE;
1148 		return 0;
1149 	}
1150 
1151 	if (src_data->m == NULL) {
1152 		IPSEC_MB_LOG(ERR, "Invalid source buffer");
1153 		return -EINVAL;
1154 	}
1155 
1156 	job->sgl_state = IMB_SGL_UPDATE;
1157 
1158 	data_len = src_data->m->data_len - src_data->offset;
1159 
1160 	job->src = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *,
1161 			src_data->offset);
1162 
1163 	if (dst_data->m != NULL) {
1164 		if (dst_data->m->data_len - dst_data->offset == 0) {
1165 			dst_data->m = dst_data->m->next;
1166 			if (dst_data->m == NULL) {
1167 				IPSEC_MB_LOG(ERR, "Invalid destination buffer");
1168 				return -EINVAL;
1169 			}
1170 			dst_data->offset = 0;
1171 		}
1172 		part_len = RTE_MIN(data_len, (dst_data->m->data_len -
1173 				dst_data->offset));
1174 		job->dst = rte_pktmbuf_mtod_offset(dst_data->m,
1175 				uint8_t *, dst_data->offset);
1176 		dst_data->offset += part_len;
1177 	} else {
1178 		part_len = RTE_MIN(data_len, *total_len);
1179 		job->dst = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *,
1180 			src_data->offset);
1181 	}
1182 
1183 	job->msg_len_to_cipher_in_bytes = part_len;
1184 	job->msg_len_to_hash_in_bytes = part_len;
1185 
1186 	job = IMB_SUBMIT_JOB(mb_mgr);
1187 
1188 	*total_len -= part_len;
1189 
1190 	if (part_len != data_len) {
1191 		src_data->offset += part_len;
1192 	} else {
1193 		src_data->m = src_data->m->next;
1194 		src_data->offset = 0;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static uint64_t
1201 sgl_linear_cipher_auth_len(IMB_JOB *job, uint64_t *auth_len)
1202 {
1203 	uint64_t cipher_len;
1204 
1205 	if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN ||
1206 			job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN)
1207 		cipher_len = (job->msg_len_to_cipher_in_bits >> 3) +
1208 				(job->cipher_start_src_offset_in_bits >> 3);
1209 	else
1210 		cipher_len = job->msg_len_to_cipher_in_bytes +
1211 				job->cipher_start_src_offset_in_bytes;
1212 
1213 	if (job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN ||
1214 			job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN)
1215 		*auth_len = (job->msg_len_to_hash_in_bits >> 3) +
1216 				job->hash_start_src_offset_in_bytes;
1217 	else
1218 		*auth_len = job->msg_len_to_hash_in_bytes +
1219 				job->hash_start_src_offset_in_bytes;
1220 
1221 	return RTE_MAX(*auth_len, cipher_len);
1222 }
1223 
1224 static int
1225 handle_sgl_linear(IMB_JOB *job, struct rte_crypto_op *op, uint32_t dst_offset,
1226 		struct aesni_mb_session *session)
1227 {
1228 	uint64_t auth_len, total_len;
1229 	uint8_t *src, *linear_buf = NULL;
1230 	int lb_offset = 0;
1231 	struct rte_mbuf *src_seg;
1232 	uint16_t src_len;
1233 
1234 	total_len = sgl_linear_cipher_auth_len(job, &auth_len);
1235 	linear_buf = rte_zmalloc(NULL, total_len + job->auth_tag_output_len_in_bytes, 0);
1236 	if (linear_buf == NULL) {
1237 		IPSEC_MB_LOG(ERR, "Error allocating memory for SGL Linear Buffer");
1238 		return -1;
1239 	}
1240 
1241 	for (src_seg = op->sym->m_src; (src_seg != NULL) &&
1242 			(total_len - lb_offset > 0);
1243 			src_seg = src_seg->next) {
1244 		src = rte_pktmbuf_mtod(src_seg, uint8_t *);
1245 		src_len =  RTE_MIN(src_seg->data_len, total_len - lb_offset);
1246 		rte_memcpy(linear_buf + lb_offset, src, src_len);
1247 		lb_offset += src_len;
1248 	}
1249 
1250 	job->src = linear_buf;
1251 	job->dst = linear_buf + dst_offset;
1252 	job->user_data2 = linear_buf;
1253 
1254 	if (job->hash_alg == IMB_AUTH_AES_GMAC)
1255 		job->u.GCM.aad = linear_buf;
1256 
1257 	if (session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
1258 		job->auth_tag_output = linear_buf + lb_offset;
1259 	else
1260 		job->auth_tag_output = linear_buf + auth_len;
1261 
1262 	return 0;
1263 }
1264 
1265 static inline int
1266 imb_lib_support_sgl_algo(IMB_CIPHER_MODE alg)
1267 {
1268 	if (alg == IMB_CIPHER_CHACHA20_POLY1305 ||
1269 			alg == IMB_CIPHER_CHACHA20_POLY1305_SGL ||
1270 			alg == IMB_CIPHER_GCM_SGL ||
1271 			alg == IMB_CIPHER_GCM)
1272 		return 1;
1273 	return 0;
1274 }
1275 
1276 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
1277 static inline int
1278 single_sgl_job(IMB_JOB *job, struct rte_crypto_op *op,
1279 		int oop, uint32_t offset, struct rte_mbuf *m_src,
1280 		struct rte_mbuf *m_dst, struct IMB_SGL_IOV *sgl_segs)
1281 {
1282 	uint32_t num_segs = 0;
1283 	struct aesni_mb_op_buf_data src_sgl = {0};
1284 	struct aesni_mb_op_buf_data dst_sgl = {0};
1285 	uint32_t total_len;
1286 
1287 	job->sgl_state = IMB_SGL_ALL;
1288 
1289 	src_sgl.m = m_src;
1290 	src_sgl.offset = offset;
1291 
1292 	while (src_sgl.offset >= src_sgl.m->data_len) {
1293 		src_sgl.offset -= src_sgl.m->data_len;
1294 		src_sgl.m = src_sgl.m->next;
1295 
1296 		RTE_ASSERT(src_sgl.m != NULL);
1297 	}
1298 
1299 	if (oop) {
1300 		dst_sgl.m = m_dst;
1301 		dst_sgl.offset = offset;
1302 
1303 		while (dst_sgl.offset >= dst_sgl.m->data_len) {
1304 			dst_sgl.offset -= dst_sgl.m->data_len;
1305 			dst_sgl.m = dst_sgl.m->next;
1306 
1307 			RTE_ASSERT(dst_sgl.m != NULL);
1308 		}
1309 	}
1310 	total_len = op->sym->aead.data.length;
1311 
1312 	while (total_len != 0) {
1313 		uint32_t data_len, part_len;
1314 
1315 		if (src_sgl.m == NULL) {
1316 			IPSEC_MB_LOG(ERR, "Invalid source buffer");
1317 			return -EINVAL;
1318 		}
1319 
1320 		data_len = src_sgl.m->data_len - src_sgl.offset;
1321 
1322 		sgl_segs[num_segs].in = rte_pktmbuf_mtod_offset(src_sgl.m, uint8_t *,
1323 				src_sgl.offset);
1324 
1325 		if (dst_sgl.m != NULL) {
1326 			if (dst_sgl.m->data_len - dst_sgl.offset == 0) {
1327 				dst_sgl.m = dst_sgl.m->next;
1328 				if (dst_sgl.m == NULL) {
1329 					IPSEC_MB_LOG(ERR, "Invalid destination buffer");
1330 					return -EINVAL;
1331 				}
1332 				dst_sgl.offset = 0;
1333 			}
1334 			part_len = RTE_MIN(data_len, (dst_sgl.m->data_len -
1335 					dst_sgl.offset));
1336 			sgl_segs[num_segs].out = rte_pktmbuf_mtod_offset(dst_sgl.m,
1337 					uint8_t *, dst_sgl.offset);
1338 			dst_sgl.offset += part_len;
1339 		} else {
1340 			part_len = RTE_MIN(data_len, total_len);
1341 			sgl_segs[num_segs].out = rte_pktmbuf_mtod_offset(src_sgl.m, uint8_t *,
1342 				src_sgl.offset);
1343 		}
1344 
1345 		sgl_segs[num_segs].len = part_len;
1346 
1347 		total_len -= part_len;
1348 
1349 		if (part_len != data_len) {
1350 			src_sgl.offset += part_len;
1351 		} else {
1352 			src_sgl.m = src_sgl.m->next;
1353 			src_sgl.offset = 0;
1354 		}
1355 		num_segs++;
1356 	}
1357 	job->num_sgl_io_segs = num_segs;
1358 	job->sgl_io_segs = sgl_segs;
1359 	return 0;
1360 }
1361 #endif
1362 
1363 static inline int
1364 multi_sgl_job(IMB_JOB *job, struct rte_crypto_op *op,
1365 		int oop, uint32_t offset, struct rte_mbuf *m_src,
1366 		struct rte_mbuf *m_dst, IMB_MGR *mb_mgr)
1367 {
1368 	int ret;
1369 	IMB_JOB base_job;
1370 	struct aesni_mb_op_buf_data src_sgl = {0};
1371 	struct aesni_mb_op_buf_data dst_sgl = {0};
1372 	uint32_t total_len;
1373 
1374 	base_job = *job;
1375 	job->sgl_state = IMB_SGL_INIT;
1376 	job = IMB_SUBMIT_JOB(mb_mgr);
1377 	total_len = op->sym->aead.data.length;
1378 
1379 	src_sgl.m = m_src;
1380 	src_sgl.offset = offset;
1381 
1382 	while (src_sgl.offset >= src_sgl.m->data_len) {
1383 		src_sgl.offset -= src_sgl.m->data_len;
1384 		src_sgl.m = src_sgl.m->next;
1385 
1386 		RTE_ASSERT(src_sgl.m != NULL);
1387 	}
1388 
1389 	if (oop) {
1390 		dst_sgl.m = m_dst;
1391 		dst_sgl.offset = offset;
1392 
1393 		while (dst_sgl.offset >= dst_sgl.m->data_len) {
1394 			dst_sgl.offset -= dst_sgl.m->data_len;
1395 			dst_sgl.m = dst_sgl.m->next;
1396 
1397 			RTE_ASSERT(dst_sgl.m != NULL);
1398 		}
1399 	}
1400 
1401 	while (job->sgl_state != IMB_SGL_COMPLETE) {
1402 		job = IMB_GET_NEXT_JOB(mb_mgr);
1403 		*job = base_job;
1404 		ret = handle_aead_sgl_job(job, mb_mgr, &total_len,
1405 			&src_sgl, &dst_sgl);
1406 		if (ret < 0)
1407 			return ret;
1408 	}
1409 	return 0;
1410 }
1411 
1412 static inline int
1413 set_gcm_job(IMB_MGR *mb_mgr, IMB_JOB *job, const uint8_t sgl,
1414 	struct aesni_mb_qp_data *qp_data,
1415 	struct rte_crypto_op *op, uint8_t *digest_idx,
1416 	const struct aesni_mb_session *session,
1417 	struct rte_mbuf *m_src, struct rte_mbuf *m_dst,
1418 	const int oop)
1419 {
1420 	const uint32_t m_offset = op->sym->aead.data.offset;
1421 
1422 	job->u.GCM.aad = op->sym->aead.aad.data;
1423 	if (sgl) {
1424 		job->u.GCM.ctx = &qp_data->gcm_sgl_ctx;
1425 		job->cipher_mode = IMB_CIPHER_GCM_SGL;
1426 		job->hash_alg = IMB_AUTH_GCM_SGL;
1427 		job->hash_start_src_offset_in_bytes = 0;
1428 		job->msg_len_to_hash_in_bytes = 0;
1429 		job->msg_len_to_cipher_in_bytes = 0;
1430 		job->cipher_start_src_offset_in_bytes = 0;
1431 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1432 		imb_set_session(mb_mgr, job);
1433 #endif
1434 	} else {
1435 		job->hash_start_src_offset_in_bytes =
1436 				op->sym->aead.data.offset;
1437 		job->msg_len_to_hash_in_bytes =
1438 				op->sym->aead.data.length;
1439 		job->cipher_start_src_offset_in_bytes =
1440 			op->sym->aead.data.offset;
1441 		job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
1442 	}
1443 
1444 	if (session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1445 		job->auth_tag_output = qp_data->temp_digests[*digest_idx];
1446 		*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1447 	} else {
1448 		job->auth_tag_output = op->sym->aead.digest.data;
1449 	}
1450 
1451 	job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1452 			session->iv.offset);
1453 
1454 	/* Set user data to be crypto operation data struct */
1455 	job->user_data = op;
1456 
1457 	if (sgl) {
1458 		job->src = NULL;
1459 		job->dst = NULL;
1460 
1461 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
1462 		if (m_src->nb_segs <= MAX_NUM_SEGS)
1463 			return single_sgl_job(job, op, oop,
1464 					m_offset, m_src, m_dst,
1465 					qp_data->sgl_segs);
1466 		else
1467 #endif
1468 			return multi_sgl_job(job, op, oop,
1469 					m_offset, m_src, m_dst, mb_mgr);
1470 	} else {
1471 		job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
1472 		job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 /** Check if conditions are met for digest-appended operations */
1479 static uint8_t *
1480 aesni_mb_digest_appended_in_src(struct rte_crypto_op *op, IMB_JOB *job,
1481 		uint32_t oop)
1482 {
1483 	unsigned int auth_size, cipher_size;
1484 	uint8_t *end_cipher;
1485 	uint8_t *start_cipher;
1486 
1487 	if (job->cipher_mode == IMB_CIPHER_NULL)
1488 		return NULL;
1489 
1490 	if (job->cipher_mode == IMB_CIPHER_ZUC_EEA3 ||
1491 		job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN ||
1492 		job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN) {
1493 		cipher_size = (op->sym->cipher.data.offset >> 3) +
1494 			(op->sym->cipher.data.length >> 3);
1495 	} else {
1496 		cipher_size = (op->sym->cipher.data.offset) +
1497 			(op->sym->cipher.data.length);
1498 	}
1499 	if (job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN ||
1500 		job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN ||
1501 		job->hash_alg == IMB_AUTH_KASUMI_UIA1 ||
1502 		job->hash_alg == IMB_AUTH_ZUC256_EIA3_BITLEN) {
1503 		auth_size = (op->sym->auth.data.offset >> 3) +
1504 			(op->sym->auth.data.length >> 3);
1505 	} else {
1506 		auth_size = (op->sym->auth.data.offset) +
1507 			(op->sym->auth.data.length);
1508 	}
1509 
1510 	if (!oop) {
1511 		end_cipher = rte_pktmbuf_mtod_offset(op->sym->m_src, uint8_t *, cipher_size);
1512 		start_cipher = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
1513 	} else {
1514 		end_cipher = rte_pktmbuf_mtod_offset(op->sym->m_dst, uint8_t *, cipher_size);
1515 		start_cipher = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
1516 	}
1517 
1518 	if (start_cipher < op->sym->auth.digest.data &&
1519 		op->sym->auth.digest.data < end_cipher) {
1520 		return rte_pktmbuf_mtod_offset(op->sym->m_src, uint8_t *, auth_size);
1521 	} else {
1522 		return NULL;
1523 	}
1524 }
1525 
1526 /**
1527  * Process a crypto operation and complete a IMB_JOB job structure for
1528  * submission to the multi buffer library for processing.
1529  *
1530  * @param	qp		queue pair
1531  * @param	job		IMB_JOB structure to fill
1532  * @param	op		crypto op to process
1533  * @param	digest_idx	ID for digest to use
1534  *
1535  * @return
1536  * - 0 on success, the IMB_JOB will be filled
1537  * - -1 if invalid session or errors allocating SGL linear buffer,
1538  *   IMB_JOB will not be filled
1539  */
1540 static inline int
1541 set_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp,
1542 		struct rte_crypto_op *op, uint8_t *digest_idx,
1543 		IMB_MGR *mb_mgr, pid_t pid)
1544 {
1545 	struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
1546 	struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp);
1547 	struct aesni_mb_session *session;
1548 	uint32_t m_offset;
1549 	int oop;
1550 	uint32_t auth_off_in_bytes;
1551 	uint32_t ciph_off_in_bytes;
1552 	uint32_t auth_len_in_bytes;
1553 	uint32_t ciph_len_in_bytes;
1554 	uint8_t sgl = 0;
1555 	uint8_t lb_sgl = 0;
1556 
1557 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
1558 	(void) pid;
1559 #endif
1560 
1561 	session = ipsec_mb_get_session_private(qp, op);
1562 	if (session == NULL) {
1563 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
1564 		return -1;
1565 	}
1566 
1567 	const IMB_CIPHER_MODE cipher_mode =
1568 			session->template_job.cipher_mode;
1569 
1570 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1571 	if (session->pid != pid) {
1572 		memcpy(job, &session->template_job, sizeof(IMB_JOB));
1573 		imb_set_session(mb_mgr, job);
1574 	} else if (job->session_id != session->session_id)
1575 #endif
1576 		memcpy(job, &session->template_job, sizeof(IMB_JOB));
1577 
1578 	if (!op->sym->m_dst) {
1579 		/* in-place operation */
1580 		m_dst = m_src;
1581 		oop = 0;
1582 	} else if (op->sym->m_dst == op->sym->m_src) {
1583 		/* in-place operation */
1584 		m_dst = m_src;
1585 		oop = 0;
1586 	} else {
1587 		/* out-of-place operation */
1588 		m_dst = op->sym->m_dst;
1589 		oop = 1;
1590 	}
1591 
1592 	if (m_src->nb_segs > 1 || m_dst->nb_segs > 1) {
1593 		sgl = 1;
1594 		if (!imb_lib_support_sgl_algo(cipher_mode))
1595 			lb_sgl = 1;
1596 	}
1597 
1598 	if (cipher_mode == IMB_CIPHER_GCM)
1599 		return set_gcm_job(mb_mgr, job, sgl, qp_data,
1600 				op, digest_idx, session, m_src, m_dst, oop);
1601 
1602 	/* Set authentication parameters */
1603 	const int aead = is_aead_algo(job->hash_alg, cipher_mode);
1604 
1605 	switch (job->hash_alg) {
1606 	case IMB_AUTH_AES_CCM:
1607 		job->u.CCM.aad = op->sym->aead.aad.data + 18;
1608 		break;
1609 
1610 	case IMB_AUTH_AES_GMAC:
1611 		job->u.GCM.aad = op->sym->aead.aad.data;
1612 		if (sgl) {
1613 			job->u.GCM.ctx = &qp_data->gcm_sgl_ctx;
1614 			job->cipher_mode = IMB_CIPHER_GCM_SGL;
1615 			job->hash_alg = IMB_AUTH_GCM_SGL;
1616 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1617 			imb_set_session(mb_mgr, job);
1618 #endif
1619 		}
1620 		break;
1621 	case IMB_AUTH_AES_GMAC_128:
1622 	case IMB_AUTH_AES_GMAC_192:
1623 	case IMB_AUTH_AES_GMAC_256:
1624 		job->u.GMAC._iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1625 						session->auth_iv.offset);
1626 		break;
1627 	case IMB_AUTH_ZUC_EIA3_BITLEN:
1628 	case IMB_AUTH_ZUC256_EIA3_BITLEN:
1629 		job->u.ZUC_EIA3._iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1630 						session->auth_iv.offset);
1631 		break;
1632 	case IMB_AUTH_SNOW3G_UIA2_BITLEN:
1633 		job->u.SNOW3G_UIA2._iv =
1634 			rte_crypto_op_ctod_offset(op, uint8_t *,
1635 						session->auth_iv.offset);
1636 		break;
1637 	case IMB_AUTH_CHACHA20_POLY1305:
1638 		job->u.CHACHA20_POLY1305.aad = op->sym->aead.aad.data;
1639 		if (sgl) {
1640 			job->u.CHACHA20_POLY1305.ctx = &qp_data->chacha_sgl_ctx;
1641 			job->cipher_mode = IMB_CIPHER_CHACHA20_POLY1305_SGL;
1642 			job->hash_alg = IMB_AUTH_CHACHA20_POLY1305_SGL;
1643 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1644 			imb_set_session(mb_mgr, job);
1645 #endif
1646 		}
1647 		break;
1648 	default:
1649 		break;
1650 	}
1651 
1652 	if (aead)
1653 		m_offset = op->sym->aead.data.offset;
1654 	else
1655 		m_offset = op->sym->cipher.data.offset;
1656 
1657 	if (cipher_mode == IMB_CIPHER_ZUC_EEA3)
1658 		m_offset >>= 3;
1659 	else if (cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN)
1660 		m_offset = 0;
1661 	else if (cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN)
1662 		m_offset = 0;
1663 
1664 	/* Set digest output location */
1665 	if (job->hash_alg != IMB_AUTH_NULL &&
1666 			session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1667 		job->auth_tag_output = qp_data->temp_digests[*digest_idx];
1668 		*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1669 	} else {
1670 		if (aead)
1671 			job->auth_tag_output = op->sym->aead.digest.data;
1672 		else {
1673 			job->auth_tag_output = aesni_mb_digest_appended_in_src(op, job, oop);
1674 			if (job->auth_tag_output == NULL) {
1675 				job->auth_tag_output = op->sym->auth.digest.data;
1676 			}
1677 		}
1678 		if (session->auth.req_digest_len !=
1679 				job->auth_tag_output_len_in_bytes) {
1680 			job->auth_tag_output =
1681 				qp_data->temp_digests[*digest_idx];
1682 			*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1683 		}
1684 	}
1685 	/*
1686 	 * Multi-buffer library current only support returning a truncated
1687 	 * digest length as specified in the relevant IPsec RFCs
1688 	 */
1689 
1690 	/* Data Parameters */
1691 	if (sgl) {
1692 		job->src = NULL;
1693 		job->dst = NULL;
1694 	} else {
1695 		job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
1696 		job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
1697 	}
1698 
1699 	switch (job->hash_alg) {
1700 	case IMB_AUTH_AES_CCM:
1701 		job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
1702 		job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;
1703 
1704 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1705 			session->iv.offset + 1);
1706 		break;
1707 
1708 	case IMB_AUTH_AES_GMAC:
1709 		job->hash_start_src_offset_in_bytes =
1710 				op->sym->aead.data.offset;
1711 		job->msg_len_to_hash_in_bytes =
1712 				op->sym->aead.data.length;
1713 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1714 				session->iv.offset);
1715 		break;
1716 	case IMB_AUTH_AES_GMAC_128:
1717 	case IMB_AUTH_AES_GMAC_192:
1718 	case IMB_AUTH_AES_GMAC_256:
1719 		job->hash_start_src_offset_in_bytes =
1720 				op->sym->auth.data.offset;
1721 		job->msg_len_to_hash_in_bytes =
1722 				op->sym->auth.data.length;
1723 		break;
1724 
1725 	case IMB_AUTH_GCM_SGL:
1726 	case IMB_AUTH_CHACHA20_POLY1305_SGL:
1727 		job->hash_start_src_offset_in_bytes = 0;
1728 		job->msg_len_to_hash_in_bytes = 0;
1729 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1730 			session->iv.offset);
1731 		break;
1732 
1733 	case IMB_AUTH_CHACHA20_POLY1305:
1734 		job->hash_start_src_offset_in_bytes =
1735 			op->sym->aead.data.offset;
1736 		job->msg_len_to_hash_in_bytes =
1737 					op->sym->aead.data.length;
1738 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1739 				session->iv.offset);
1740 		break;
1741 	/* ZUC and SNOW3G require length in bits and offset in bytes */
1742 	case IMB_AUTH_ZUC_EIA3_BITLEN:
1743 	case IMB_AUTH_ZUC256_EIA3_BITLEN:
1744 	case IMB_AUTH_SNOW3G_UIA2_BITLEN:
1745 		auth_off_in_bytes = op->sym->auth.data.offset >> 3;
1746 		ciph_off_in_bytes = op->sym->cipher.data.offset >> 3;
1747 		auth_len_in_bytes = op->sym->auth.data.length >> 3;
1748 		ciph_len_in_bytes = op->sym->cipher.data.length >> 3;
1749 
1750 		job->hash_start_src_offset_in_bytes = auth_start_offset(op,
1751 				session, oop, auth_off_in_bytes,
1752 				ciph_off_in_bytes, auth_len_in_bytes,
1753 				ciph_len_in_bytes, lb_sgl);
1754 		job->msg_len_to_hash_in_bits = op->sym->auth.data.length;
1755 
1756 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1757 			session->iv.offset);
1758 		break;
1759 
1760 	/* KASUMI requires lengths and offset in bytes */
1761 	case IMB_AUTH_KASUMI_UIA1:
1762 		auth_off_in_bytes = op->sym->auth.data.offset >> 3;
1763 		ciph_off_in_bytes = op->sym->cipher.data.offset >> 3;
1764 		auth_len_in_bytes = op->sym->auth.data.length >> 3;
1765 		ciph_len_in_bytes = op->sym->cipher.data.length >> 3;
1766 
1767 		job->hash_start_src_offset_in_bytes = auth_start_offset(op,
1768 				session, oop, auth_off_in_bytes,
1769 				ciph_off_in_bytes, auth_len_in_bytes,
1770 				ciph_len_in_bytes, lb_sgl);
1771 		job->msg_len_to_hash_in_bytes = auth_len_in_bytes;
1772 
1773 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1774 			session->iv.offset);
1775 		break;
1776 
1777 	default:
1778 		job->hash_start_src_offset_in_bytes = auth_start_offset(op,
1779 				session, oop, op->sym->auth.data.offset,
1780 				op->sym->cipher.data.offset,
1781 				op->sym->auth.data.length,
1782 				op->sym->cipher.data.length, lb_sgl);
1783 		job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
1784 
1785 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1786 			session->iv.offset);
1787 	}
1788 
1789 	switch (job->cipher_mode) {
1790 	/* ZUC requires length and offset in bytes */
1791 	case IMB_CIPHER_ZUC_EEA3:
1792 		job->cipher_start_src_offset_in_bytes =
1793 					op->sym->cipher.data.offset >> 3;
1794 		job->msg_len_to_cipher_in_bytes =
1795 					op->sym->cipher.data.length >> 3;
1796 		break;
1797 	/* ZUC and SNOW3G require length and offset in bits */
1798 	case IMB_CIPHER_SNOW3G_UEA2_BITLEN:
1799 	case IMB_CIPHER_KASUMI_UEA1_BITLEN:
1800 		job->cipher_start_src_offset_in_bits =
1801 					op->sym->cipher.data.offset;
1802 		job->msg_len_to_cipher_in_bits =
1803 					op->sym->cipher.data.length;
1804 		break;
1805 	case IMB_CIPHER_GCM:
1806 		job->cipher_start_src_offset_in_bytes =
1807 				op->sym->aead.data.offset;
1808 		job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
1809 		break;
1810 	case IMB_CIPHER_CCM:
1811 	case IMB_CIPHER_CHACHA20_POLY1305:
1812 		job->cipher_start_src_offset_in_bytes =
1813 				op->sym->aead.data.offset;
1814 		job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
1815 		break;
1816 	case IMB_CIPHER_GCM_SGL:
1817 	case IMB_CIPHER_CHACHA20_POLY1305_SGL:
1818 		job->msg_len_to_cipher_in_bytes = 0;
1819 		job->cipher_start_src_offset_in_bytes = 0;
1820 		break;
1821 	default:
1822 		job->cipher_start_src_offset_in_bytes =
1823 					op->sym->cipher.data.offset;
1824 		job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
1825 	}
1826 
1827 	if (cipher_mode == IMB_CIPHER_NULL && oop) {
1828 		memcpy(job->dst + job->cipher_start_src_offset_in_bytes,
1829 			job->src + job->cipher_start_src_offset_in_bytes,
1830 			job->msg_len_to_cipher_in_bytes);
1831 	}
1832 
1833 	/* Set user data to be crypto operation data struct */
1834 	job->user_data = op;
1835 
1836 	if (sgl) {
1837 
1838 		if (lb_sgl)
1839 			return handle_sgl_linear(job, op, m_offset, session);
1840 
1841 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
1842 		if (m_src->nb_segs <= MAX_NUM_SEGS)
1843 			return single_sgl_job(job, op, oop,
1844 					m_offset, m_src, m_dst,
1845 					qp_data->sgl_segs);
1846 		else
1847 #endif
1848 			return multi_sgl_job(job, op, oop,
1849 					m_offset, m_src, m_dst, mb_mgr);
1850 	}
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  * Process a crypto operation containing a security op and complete a
1857  * IMB_JOB job structure for submission to the multi buffer library for
1858  * processing.
1859  */
1860 static inline int
1861 set_sec_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp,
1862 			struct rte_crypto_op *op, uint8_t *digest_idx)
1863 {
1864 	struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp);
1865 	struct rte_mbuf *m_src, *m_dst;
1866 	struct rte_crypto_sym_op *sym;
1867 	struct aesni_mb_session *session = NULL;
1868 
1869 	if (unlikely(op->sess_type != RTE_CRYPTO_OP_SECURITY_SESSION)) {
1870 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
1871 		return -1;
1872 	}
1873 	session = SECURITY_GET_SESS_PRIV(op->sym->session);
1874 
1875 	if (unlikely(session == NULL)) {
1876 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
1877 		return -1;
1878 	}
1879 	/* Only DOCSIS protocol operations supported now */
1880 	if (session->template_job.cipher_mode != IMB_CIPHER_DOCSIS_SEC_BPI ||
1881 			session->template_job.hash_alg != IMB_AUTH_DOCSIS_CRC32) {
1882 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1883 		return -1;
1884 	}
1885 
1886 	sym = op->sym;
1887 	m_src = sym->m_src;
1888 
1889 	if (likely(sym->m_dst == NULL || sym->m_dst == m_src)) {
1890 		/* in-place operation */
1891 		m_dst = m_src;
1892 	} else {
1893 		/* out-of-place operation not supported */
1894 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1895 		return -ENOTSUP;
1896 	}
1897 
1898 	memcpy(job, &session->template_job, sizeof(IMB_JOB));
1899 
1900 	/* Set cipher parameters */
1901 	job->enc_keys = session->cipher.expanded_aes_keys.encode;
1902 	job->dec_keys = session->cipher.expanded_aes_keys.decode;
1903 
1904 	/* Set IV parameters */
1905 	job->iv = (uint8_t *)op + session->iv.offset;
1906 
1907 	/* Set digest output location */
1908 	job->auth_tag_output = qp_data->temp_digests[*digest_idx];
1909 	*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1910 
1911 	/* Set data parameters */
1912 	job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
1913 	job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *,
1914 						sym->cipher.data.offset);
1915 
1916 	job->cipher_start_src_offset_in_bytes = sym->cipher.data.offset;
1917 	job->msg_len_to_cipher_in_bytes = sym->cipher.data.length;
1918 
1919 	job->hash_start_src_offset_in_bytes = sym->auth.data.offset;
1920 	job->msg_len_to_hash_in_bytes = sym->auth.data.length;
1921 
1922 	job->user_data = op;
1923 
1924 	return 0;
1925 }
1926 
1927 static inline void
1928 verify_docsis_sec_crc(IMB_JOB *job, uint8_t *status)
1929 {
1930 	uint16_t crc_offset;
1931 	uint8_t *crc;
1932 
1933 	if (!job->msg_len_to_hash_in_bytes)
1934 		return;
1935 
1936 	crc_offset = job->hash_start_src_offset_in_bytes +
1937 			job->msg_len_to_hash_in_bytes -
1938 			job->cipher_start_src_offset_in_bytes;
1939 	crc = job->dst + crc_offset;
1940 
1941 	/* Verify CRC (at the end of the message) */
1942 	if (memcmp(job->auth_tag_output, crc, RTE_ETHER_CRC_LEN) != 0)
1943 		*status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1944 }
1945 
1946 static inline void
1947 verify_digest(IMB_JOB *job, void *digest, uint16_t len, uint8_t *status)
1948 {
1949 	/* Verify digest if required */
1950 	if (memcmp(job->auth_tag_output, digest, len) != 0)
1951 		*status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1952 }
1953 
1954 static inline void
1955 generate_digest(IMB_JOB *job, struct rte_crypto_op *op,
1956 		struct aesni_mb_session *sess)
1957 {
1958 	/* No extra copy needed */
1959 	if (likely(sess->auth.req_digest_len == job->auth_tag_output_len_in_bytes))
1960 		return;
1961 
1962 	/*
1963 	 * This can only happen for HMAC, so only digest
1964 	 * for authentication algos is required
1965 	 */
1966 	memcpy(op->sym->auth.digest.data, job->auth_tag_output,
1967 			sess->auth.req_digest_len);
1968 }
1969 
1970 static void
1971 post_process_sgl_linear(struct rte_crypto_op *op, IMB_JOB *job,
1972 		struct aesni_mb_session *sess, uint8_t *linear_buf)
1973 {
1974 
1975 	int lb_offset = 0;
1976 	struct rte_mbuf *m_dst = op->sym->m_dst == NULL ?
1977 			op->sym->m_src : op->sym->m_dst;
1978 	uint16_t total_len, dst_len;
1979 	uint64_t auth_len;
1980 	uint8_t *dst;
1981 
1982 	total_len = sgl_linear_cipher_auth_len(job, &auth_len);
1983 
1984 	if (sess->auth.operation != RTE_CRYPTO_AUTH_OP_VERIFY)
1985 		total_len += job->auth_tag_output_len_in_bytes;
1986 
1987 	for (; (m_dst != NULL) && (total_len - lb_offset > 0); m_dst = m_dst->next) {
1988 		dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
1989 		dst_len = RTE_MIN(m_dst->data_len, total_len - lb_offset);
1990 		rte_memcpy(dst, linear_buf + lb_offset, dst_len);
1991 		lb_offset += dst_len;
1992 	}
1993 }
1994 
1995 /**
1996  * Process a completed job and return rte_mbuf which job processed
1997  *
1998  * @param qp	Queue Pair to process
1999  * @param job	IMB_JOB job to process
2000  *
2001  * @return
2002  * - Returns processed crypto operation.
2003  * - Returns NULL on invalid job
2004  */
2005 static inline struct rte_crypto_op *
2006 post_process_mb_job(struct ipsec_mb_qp *qp, IMB_JOB *job)
2007 {
2008 	struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
2009 	struct aesni_mb_session *sess = NULL;
2010 	uint8_t *linear_buf = NULL;
2011 	int sgl = 0;
2012 	uint8_t oop = 0;
2013 	uint8_t is_docsis_sec = 0;
2014 
2015 	if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
2016 		/*
2017 		 * Assuming at this point that if it's a security type op, that
2018 		 * this is for DOCSIS
2019 		 */
2020 		is_docsis_sec = 1;
2021 		sess = SECURITY_GET_SESS_PRIV(op->sym->session);
2022 	} else
2023 		sess = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session);
2024 
2025 	if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
2026 		switch (job->status) {
2027 		case IMB_STATUS_COMPLETED:
2028 			op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2029 
2030 			if ((op->sym->m_src->nb_segs > 1 ||
2031 					(op->sym->m_dst != NULL &&
2032 					op->sym->m_dst->nb_segs > 1)) &&
2033 					!imb_lib_support_sgl_algo(job->cipher_mode)) {
2034 				linear_buf = (uint8_t *) job->user_data2;
2035 				sgl = 1;
2036 
2037 				post_process_sgl_linear(op, job, sess, linear_buf);
2038 			}
2039 
2040 			if (job->hash_alg == IMB_AUTH_NULL)
2041 				break;
2042 
2043 			if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
2044 				if (is_aead_algo(job->hash_alg,
2045 						job->cipher_mode))
2046 					verify_digest(job,
2047 						op->sym->aead.digest.data,
2048 						sess->auth.req_digest_len,
2049 						&op->status);
2050 				else if (is_docsis_sec)
2051 					verify_docsis_sec_crc(job,
2052 						&op->status);
2053 				else
2054 					verify_digest(job,
2055 						op->sym->auth.digest.data,
2056 						sess->auth.req_digest_len,
2057 						&op->status);
2058 			} else {
2059 				if (!op->sym->m_dst || op->sym->m_dst == op->sym->m_src) {
2060 					/* in-place operation */
2061 					oop = 0;
2062 				} else { /* out-of-place operation */
2063 					oop = 1;
2064 				}
2065 
2066 				/* Enable digest check */
2067 				if (op->sym->m_src->nb_segs == 1 && op->sym->m_dst != NULL
2068 				&& !is_aead_algo(job->hash_alg,	sess->template_job.cipher_mode) &&
2069 				aesni_mb_digest_appended_in_src(op, job, oop) != NULL) {
2070 					unsigned int auth_size, cipher_size;
2071 					int unencrypted_bytes = 0;
2072 					if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN ||
2073 						job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN ||
2074 						job->cipher_mode == IMB_CIPHER_ZUC_EEA3) {
2075 						cipher_size = (op->sym->cipher.data.offset >> 3) +
2076 							(op->sym->cipher.data.length >> 3);
2077 					} else {
2078 						cipher_size = (op->sym->cipher.data.offset) +
2079 							(op->sym->cipher.data.length);
2080 					}
2081 					if (job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN ||
2082 						job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN ||
2083 						job->hash_alg == IMB_AUTH_KASUMI_UIA1 ||
2084 						job->hash_alg == IMB_AUTH_ZUC256_EIA3_BITLEN) {
2085 						auth_size = (op->sym->auth.data.offset >> 3) +
2086 							(op->sym->auth.data.length >> 3);
2087 					} else {
2088 						auth_size = (op->sym->auth.data.offset) +
2089 						(op->sym->auth.data.length);
2090 					}
2091 					/* Check for unencrypted bytes in partial digest cases */
2092 					if (job->cipher_mode != IMB_CIPHER_NULL) {
2093 						unencrypted_bytes = auth_size +
2094 						job->auth_tag_output_len_in_bytes - cipher_size;
2095 					}
2096 					if (unencrypted_bytes > 0)
2097 						rte_memcpy(
2098 						rte_pktmbuf_mtod_offset(op->sym->m_dst, uint8_t *,
2099 						cipher_size),
2100 						rte_pktmbuf_mtod_offset(op->sym->m_src, uint8_t *,
2101 						cipher_size),
2102 						unencrypted_bytes);
2103 				}
2104 				generate_digest(job, op, sess);
2105 			}
2106 			break;
2107 		default:
2108 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2109 		}
2110 		if (sgl)
2111 			rte_free(linear_buf);
2112 	}
2113 
2114 	/* Free session if a session-less crypto op */
2115 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2116 		memset(sess, 0, sizeof(struct aesni_mb_session));
2117 		rte_mempool_put(qp->sess_mp, op->sym->session);
2118 		op->sym->session = NULL;
2119 	}
2120 
2121 	return op;
2122 }
2123 
2124 static inline void
2125 post_process_mb_sync_job(IMB_JOB *job)
2126 {
2127 	uint32_t *st;
2128 
2129 	st = job->user_data;
2130 	st[0] = (job->status == IMB_STATUS_COMPLETED) ? 0 : EBADMSG;
2131 }
2132 
2133 static inline uint32_t
2134 handle_completed_sync_jobs(IMB_JOB *job, IMB_MGR *mb_mgr)
2135 {
2136 	uint32_t i;
2137 
2138 	for (i = 0; job != NULL; i++, job = IMB_GET_COMPLETED_JOB(mb_mgr))
2139 		post_process_mb_sync_job(job);
2140 
2141 	return i;
2142 }
2143 
2144 static inline uint32_t
2145 flush_mb_sync_mgr(IMB_MGR *mb_mgr)
2146 {
2147 	IMB_JOB *job;
2148 
2149 	job = IMB_FLUSH_JOB(mb_mgr);
2150 	return handle_completed_sync_jobs(job, mb_mgr);
2151 }
2152 
2153 static inline IMB_JOB *
2154 set_job_null_op(IMB_JOB *job, struct rte_crypto_op *op)
2155 {
2156 	job->chain_order = IMB_ORDER_HASH_CIPHER;
2157 	job->cipher_mode = IMB_CIPHER_NULL;
2158 	job->hash_alg = IMB_AUTH_NULL;
2159 	job->cipher_direction = IMB_DIR_DECRYPT;
2160 
2161 	/* Set user data to be crypto operation data struct */
2162 	job->user_data = op;
2163 
2164 	return job;
2165 }
2166 
2167 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
2168 uint16_t
2169 aesni_mb_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2170 		uint16_t nb_ops)
2171 {
2172 	struct ipsec_mb_qp *qp = queue_pair;
2173 	IMB_MGR *mb_mgr = qp->mb_mgr;
2174 	struct rte_crypto_op *op;
2175 	struct rte_crypto_op *deqd_ops[IMB_MAX_BURST_SIZE];
2176 	IMB_JOB *job;
2177 	int retval, processed_jobs = 0;
2178 	uint16_t i, nb_jobs;
2179 	IMB_JOB *jobs[IMB_MAX_BURST_SIZE] = {NULL};
2180 	pid_t pid;
2181 
2182 	if (unlikely(nb_ops == 0 || mb_mgr == NULL))
2183 		return 0;
2184 
2185 	uint8_t digest_idx = qp->digest_idx;
2186 	uint16_t burst_sz = (nb_ops > IMB_MAX_BURST_SIZE) ?
2187 		IMB_MAX_BURST_SIZE : nb_ops;
2188 
2189 	/*
2190 	 * If nb_ops is greater than the max supported
2191 	 * ipsec_mb burst size, then process in bursts of
2192 	 * IMB_MAX_BURST_SIZE until all operations are submitted
2193 	 */
2194 	while (nb_ops) {
2195 		uint16_t nb_submit_ops;
2196 		uint16_t n = (nb_ops / burst_sz) ?
2197 			burst_sz : nb_ops;
2198 
2199 		if (unlikely((IMB_GET_NEXT_BURST(mb_mgr, n, jobs)) < n)) {
2200 			/*
2201 			 * Not enough free jobs in the queue
2202 			 * Flush n jobs until enough jobs available
2203 			 */
2204 			nb_jobs = IMB_FLUSH_BURST(mb_mgr, n, jobs);
2205 			for (i = 0; i < nb_jobs; i++) {
2206 				job = jobs[i];
2207 
2208 				op = post_process_mb_job(qp, job);
2209 				if (op) {
2210 					ops[processed_jobs++] = op;
2211 					qp->stats.dequeued_count++;
2212 				} else {
2213 					qp->stats.dequeue_err_count++;
2214 					break;
2215 				}
2216 			}
2217 			nb_ops -= i;
2218 			continue;
2219 		}
2220 
2221 		if (!RTE_PER_LCORE(pid))
2222 			RTE_PER_LCORE(pid) = getpid();
2223 
2224 		pid = RTE_PER_LCORE(pid);
2225 
2226 		/*
2227 		 * Get the next operations to process from ingress queue.
2228 		 * There is no need to return the job to the IMB_MGR
2229 		 * if there are no more operations to process, since
2230 		 * the IMB_MGR can use that pointer again in next
2231 		 * get_next calls.
2232 		 */
2233 		nb_submit_ops = rte_ring_dequeue_burst(qp->ingress_queue,
2234 						(void **)deqd_ops, n, NULL);
2235 		for (i = 0; i < nb_submit_ops; i++) {
2236 			job = jobs[i];
2237 			op = deqd_ops[i];
2238 
2239 			if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
2240 				retval = set_sec_mb_job_params(job, qp, op,
2241 							       &digest_idx);
2242 			else
2243 				retval = set_mb_job_params(job, qp, op,
2244 							   &digest_idx, mb_mgr, pid);
2245 
2246 			if (unlikely(retval != 0)) {
2247 				qp->stats.dequeue_err_count++;
2248 				set_job_null_op(job, op);
2249 			}
2250 		}
2251 
2252 		/* Submit jobs to multi-buffer for processing */
2253 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
2254 		int err = 0;
2255 
2256 		nb_jobs = IMB_SUBMIT_BURST(mb_mgr, nb_submit_ops, jobs);
2257 		err = imb_get_errno(mb_mgr);
2258 		if (err)
2259 			IPSEC_MB_LOG(ERR, "%s", imb_get_strerror(err));
2260 #else
2261 		nb_jobs = IMB_SUBMIT_BURST_NOCHECK(mb_mgr,
2262 						   nb_submit_ops, jobs);
2263 #endif
2264 		for (i = 0; i < nb_jobs; i++) {
2265 			job = jobs[i];
2266 
2267 			op = post_process_mb_job(qp, job);
2268 			if (op) {
2269 				ops[processed_jobs++] = op;
2270 				qp->stats.dequeued_count++;
2271 			} else {
2272 				qp->stats.dequeue_err_count++;
2273 				break;
2274 			}
2275 		}
2276 
2277 		qp->digest_idx = digest_idx;
2278 
2279 		if (processed_jobs < 1) {
2280 			nb_jobs = IMB_FLUSH_BURST(mb_mgr, n, jobs);
2281 
2282 			for (i = 0; i < nb_jobs; i++) {
2283 				job = jobs[i];
2284 
2285 				op = post_process_mb_job(qp, job);
2286 				if (op) {
2287 					ops[processed_jobs++] = op;
2288 					qp->stats.dequeued_count++;
2289 				} else {
2290 					qp->stats.dequeue_err_count++;
2291 					break;
2292 				}
2293 			}
2294 		}
2295 		nb_ops -= n;
2296 	}
2297 
2298 	return processed_jobs;
2299 }
2300 #else
2301 
2302 /**
2303  * Process a completed IMB_JOB job and keep processing jobs until
2304  * get_completed_job return NULL
2305  *
2306  * @param qp		Queue Pair to process
2307  * @param mb_mgr	IMB_MGR to use
2308  * @param job		IMB_JOB job
2309  * @param ops		crypto ops to fill
2310  * @param nb_ops	number of crypto ops
2311  *
2312  * @return
2313  * - Number of processed jobs
2314  */
2315 static unsigned
2316 handle_completed_jobs(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr,
2317 		IMB_JOB *job, struct rte_crypto_op **ops,
2318 		uint16_t nb_ops)
2319 {
2320 	struct rte_crypto_op *op = NULL;
2321 	uint16_t processed_jobs = 0;
2322 
2323 	while (job != NULL) {
2324 		op = post_process_mb_job(qp, job);
2325 
2326 		if (op) {
2327 			ops[processed_jobs++] = op;
2328 			qp->stats.dequeued_count++;
2329 		} else {
2330 			qp->stats.dequeue_err_count++;
2331 			break;
2332 		}
2333 		if (processed_jobs == nb_ops)
2334 			break;
2335 
2336 		job = IMB_GET_COMPLETED_JOB(mb_mgr);
2337 	}
2338 
2339 	return processed_jobs;
2340 }
2341 
2342 static inline uint16_t
2343 flush_mb_mgr(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr,
2344 		struct rte_crypto_op **ops, uint16_t nb_ops)
2345 {
2346 	int processed_ops = 0;
2347 
2348 	/* Flush the remaining jobs */
2349 	IMB_JOB *job = IMB_FLUSH_JOB(mb_mgr);
2350 
2351 	if (job)
2352 		processed_ops += handle_completed_jobs(qp, mb_mgr, job,
2353 				&ops[processed_ops], nb_ops - processed_ops);
2354 
2355 	return processed_ops;
2356 }
2357 
2358 uint16_t
2359 aesni_mb_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2360 		uint16_t nb_ops)
2361 {
2362 	struct ipsec_mb_qp *qp = queue_pair;
2363 	IMB_MGR *mb_mgr = qp->mb_mgr;
2364 	struct rte_crypto_op *op;
2365 	IMB_JOB *job;
2366 	int retval, processed_jobs = 0;
2367 	pid_t pid = 0;
2368 
2369 	if (unlikely(nb_ops == 0 || mb_mgr == NULL))
2370 		return 0;
2371 
2372 	uint8_t digest_idx = qp->digest_idx;
2373 
2374 	do {
2375 		/* Get next free mb job struct from mb manager */
2376 		job = IMB_GET_NEXT_JOB(mb_mgr);
2377 		if (unlikely(job == NULL)) {
2378 			/* if no free mb job structs we need to flush mb_mgr */
2379 			processed_jobs += flush_mb_mgr(qp, mb_mgr,
2380 					&ops[processed_jobs],
2381 					nb_ops - processed_jobs);
2382 
2383 			if (nb_ops == processed_jobs)
2384 				break;
2385 
2386 			job = IMB_GET_NEXT_JOB(mb_mgr);
2387 		}
2388 
2389 		/*
2390 		 * Get next operation to process from ingress queue.
2391 		 * There is no need to return the job to the IMB_MGR
2392 		 * if there are no more operations to process, since the IMB_MGR
2393 		 * can use that pointer again in next get_next calls.
2394 		 */
2395 		retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
2396 		if (retval < 0)
2397 			break;
2398 
2399 		if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
2400 			retval = set_sec_mb_job_params(job, qp, op,
2401 						&digest_idx);
2402 		else
2403 			retval = set_mb_job_params(job, qp, op,
2404 				&digest_idx, mb_mgr, pid);
2405 
2406 		if (unlikely(retval != 0)) {
2407 			qp->stats.dequeue_err_count++;
2408 			set_job_null_op(job, op);
2409 		}
2410 
2411 		/* Submit job to multi-buffer for processing */
2412 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
2413 		job = IMB_SUBMIT_JOB(mb_mgr);
2414 #else
2415 		job = IMB_SUBMIT_JOB_NOCHECK(mb_mgr);
2416 #endif
2417 		/*
2418 		 * If submit returns a processed job then handle it,
2419 		 * before submitting subsequent jobs
2420 		 */
2421 		if (job)
2422 			processed_jobs += handle_completed_jobs(qp, mb_mgr,
2423 					job, &ops[processed_jobs],
2424 					nb_ops - processed_jobs);
2425 
2426 	} while (processed_jobs < nb_ops);
2427 
2428 	qp->digest_idx = digest_idx;
2429 
2430 	if (processed_jobs < 1)
2431 		processed_jobs += flush_mb_mgr(qp, mb_mgr,
2432 				&ops[processed_jobs],
2433 				nb_ops - processed_jobs);
2434 
2435 	return processed_jobs;
2436 }
2437 #endif
2438 static inline int
2439 check_crypto_sgl(union rte_crypto_sym_ofs so, const struct rte_crypto_sgl *sgl)
2440 {
2441 	/* no multi-seg support with current AESNI-MB PMD */
2442 	if (sgl->num != 1)
2443 		return -ENOTSUP;
2444 	else if (so.ofs.cipher.head + so.ofs.cipher.tail > sgl->vec[0].len)
2445 		return -EINVAL;
2446 	return 0;
2447 }
2448 
2449 static inline IMB_JOB *
2450 submit_sync_job(IMB_MGR *mb_mgr)
2451 {
2452 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
2453 	return IMB_SUBMIT_JOB(mb_mgr);
2454 #else
2455 	return IMB_SUBMIT_JOB_NOCHECK(mb_mgr);
2456 #endif
2457 }
2458 
2459 static inline uint32_t
2460 generate_sync_dgst(struct rte_crypto_sym_vec *vec,
2461 	const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
2462 {
2463 	uint32_t i, k;
2464 
2465 	for (i = 0, k = 0; i != vec->num; i++) {
2466 		if (vec->status[i] == 0) {
2467 			memcpy(vec->digest[i].va, dgst[i], len);
2468 			k++;
2469 		}
2470 	}
2471 
2472 	return k;
2473 }
2474 
2475 static inline uint32_t
2476 verify_sync_dgst(struct rte_crypto_sym_vec *vec,
2477 	const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
2478 {
2479 	uint32_t i, k;
2480 
2481 	for (i = 0, k = 0; i != vec->num; i++) {
2482 		if (vec->status[i] == 0) {
2483 			if (memcmp(vec->digest[i].va, dgst[i], len) != 0)
2484 				vec->status[i] = EBADMSG;
2485 			else
2486 				k++;
2487 		}
2488 	}
2489 
2490 	return k;
2491 }
2492 
2493 uint32_t
2494 aesni_mb_process_bulk(struct rte_cryptodev *dev __rte_unused,
2495 	struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs sofs,
2496 	struct rte_crypto_sym_vec *vec)
2497 {
2498 	int32_t ret;
2499 	uint32_t i, j, k, len;
2500 	void *buf;
2501 	IMB_JOB *job;
2502 	IMB_MGR *mb_mgr;
2503 	struct aesni_mb_session *s = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
2504 	uint8_t tmp_dgst[vec->num][DIGEST_LENGTH_MAX];
2505 
2506 	/* get per-thread MB MGR, create one if needed */
2507 	mb_mgr = get_per_thread_mb_mgr();
2508 	if (unlikely(mb_mgr == NULL))
2509 		return 0;
2510 
2511 	for (i = 0, j = 0, k = 0; i != vec->num; i++) {
2512 		ret = check_crypto_sgl(sofs, vec->src_sgl + i);
2513 		if (ret != 0) {
2514 			vec->status[i] = ret;
2515 			continue;
2516 		}
2517 
2518 		buf = vec->src_sgl[i].vec[0].base;
2519 		len = vec->src_sgl[i].vec[0].len;
2520 
2521 		job = IMB_GET_NEXT_JOB(mb_mgr);
2522 		if (job == NULL) {
2523 			k += flush_mb_sync_mgr(mb_mgr);
2524 			job = IMB_GET_NEXT_JOB(mb_mgr);
2525 			RTE_ASSERT(job != NULL);
2526 		}
2527 
2528 		/* Submit job for processing */
2529 		set_cpu_mb_job_params(job, s, sofs, buf, len, &vec->iv[i],
2530 			&vec->aad[i], tmp_dgst[i], &vec->status[i]);
2531 		job = submit_sync_job(mb_mgr);
2532 		j++;
2533 
2534 		/* handle completed jobs */
2535 		k += handle_completed_sync_jobs(job, mb_mgr);
2536 	}
2537 
2538 	/* flush remaining jobs */
2539 	while (k != j)
2540 		k += flush_mb_sync_mgr(mb_mgr);
2541 
2542 	/* finish processing for successful jobs: check/update digest */
2543 	if (k != 0) {
2544 		if (s->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
2545 			k = verify_sync_dgst(vec,
2546 				(const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
2547 				s->auth.req_digest_len);
2548 		else
2549 			k = generate_sync_dgst(vec,
2550 				(const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
2551 				s->auth.req_digest_len);
2552 	}
2553 
2554 	return k;
2555 }
2556 
2557 struct rte_cryptodev_ops aesni_mb_pmd_ops = {
2558 	.dev_configure = ipsec_mb_config,
2559 	.dev_start = ipsec_mb_start,
2560 	.dev_stop = ipsec_mb_stop,
2561 	.dev_close = ipsec_mb_close,
2562 
2563 	.stats_get = ipsec_mb_stats_get,
2564 	.stats_reset = ipsec_mb_stats_reset,
2565 
2566 	.dev_infos_get = ipsec_mb_info_get,
2567 
2568 	.queue_pair_setup = ipsec_mb_qp_setup,
2569 	.queue_pair_release = ipsec_mb_qp_release,
2570 
2571 	.sym_cpu_process = aesni_mb_process_bulk,
2572 
2573 	.sym_session_get_size = ipsec_mb_sym_session_get_size,
2574 	.sym_session_configure = ipsec_mb_sym_session_configure,
2575 	.sym_session_clear = ipsec_mb_sym_session_clear
2576 };
2577 
2578 /**
2579  * Configure a aesni multi-buffer session from a security session
2580  * configuration
2581  */
2582 static int
2583 aesni_mb_pmd_sec_sess_create(void *dev, struct rte_security_session_conf *conf,
2584 		struct rte_security_session *sess)
2585 {
2586 	void *sess_private_data = SECURITY_GET_SESS_PRIV(sess);
2587 	struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev;
2588 	int ret;
2589 
2590 	if (conf->action_type != RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL ||
2591 			conf->protocol != RTE_SECURITY_PROTOCOL_DOCSIS) {
2592 		IPSEC_MB_LOG(ERR, "Invalid security protocol");
2593 		return -EINVAL;
2594 	}
2595 
2596 	ret = aesni_mb_set_docsis_sec_session_parameters(cdev, conf,
2597 			sess_private_data);
2598 
2599 	if (ret != 0) {
2600 		IPSEC_MB_LOG(ERR, "Failed to configure session parameters");
2601 		return ret;
2602 	}
2603 
2604 	return ret;
2605 }
2606 
2607 /** Clear the memory of session so it does not leave key material behind */
2608 static int
2609 aesni_mb_pmd_sec_sess_destroy(void *dev __rte_unused,
2610 		struct rte_security_session *sess)
2611 {
2612 	void *sess_priv = SECURITY_GET_SESS_PRIV(sess);
2613 
2614 	if (sess_priv) {
2615 		memset(sess_priv, 0, sizeof(struct aesni_mb_session));
2616 	}
2617 	return 0;
2618 }
2619 
2620 static unsigned int
2621 aesni_mb_pmd_sec_sess_get_size(void *device __rte_unused)
2622 {
2623 	return sizeof(struct aesni_mb_session);
2624 }
2625 
2626 /** Get security capabilities for aesni multi-buffer */
2627 static const struct rte_security_capability *
2628 aesni_mb_pmd_sec_capa_get(void *device __rte_unused)
2629 {
2630 	return aesni_mb_pmd_security_cap;
2631 }
2632 
2633 static struct rte_security_ops aesni_mb_pmd_sec_ops = {
2634 		.session_create = aesni_mb_pmd_sec_sess_create,
2635 		.session_update = NULL,
2636 		.session_get_size = aesni_mb_pmd_sec_sess_get_size,
2637 		.session_stats_get = NULL,
2638 		.session_destroy = aesni_mb_pmd_sec_sess_destroy,
2639 		.set_pkt_metadata = NULL,
2640 		.capabilities_get = aesni_mb_pmd_sec_capa_get
2641 };
2642 
2643 struct rte_security_ops *rte_aesni_mb_pmd_sec_ops = &aesni_mb_pmd_sec_ops;
2644 
2645 static int
2646 aesni_mb_configure_dev(struct rte_cryptodev *dev)
2647 {
2648 	struct rte_security_ctx *security_instance;
2649 
2650 	security_instance = rte_malloc("aesni_mb_sec",
2651 				sizeof(struct rte_security_ctx),
2652 				RTE_CACHE_LINE_SIZE);
2653 	if (security_instance != NULL) {
2654 		security_instance->device = (void *)dev;
2655 		security_instance->ops = rte_aesni_mb_pmd_sec_ops;
2656 		security_instance->sess_cnt = 0;
2657 		dev->security_ctx = security_instance;
2658 
2659 		return 0;
2660 	}
2661 
2662 	return -ENOMEM;
2663 }
2664 
2665 static int
2666 aesni_mb_probe(struct rte_vdev_device *vdev)
2667 {
2668 	return ipsec_mb_create(vdev, IPSEC_MB_PMD_TYPE_AESNI_MB);
2669 }
2670 
2671 static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
2672 	.probe = aesni_mb_probe,
2673 	.remove = ipsec_mb_remove
2674 };
2675 
2676 static struct cryptodev_driver aesni_mb_crypto_drv;
2677 
2678 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD,
2679 	cryptodev_aesni_mb_pmd_drv);
2680 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
2681 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
2682 			"max_nb_queue_pairs=<int> socket_id=<int>");
2683 RTE_PMD_REGISTER_CRYPTO_DRIVER(
2684 	aesni_mb_crypto_drv,
2685 	cryptodev_aesni_mb_pmd_drv.driver,
2686 	pmd_driver_id_aesni_mb);
2687 
2688 /* Constructor function to register aesni-mb PMD */
2689 RTE_INIT(ipsec_mb_register_aesni_mb)
2690 {
2691 	struct ipsec_mb_internals *aesni_mb_data =
2692 		&ipsec_mb_pmds[IPSEC_MB_PMD_TYPE_AESNI_MB];
2693 
2694 	aesni_mb_data->caps = aesni_mb_capabilities;
2695 	aesni_mb_data->dequeue_burst = aesni_mb_dequeue_burst;
2696 	aesni_mb_data->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2697 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2698 			RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2699 			RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO |
2700 			RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA |
2701 			RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
2702 			RTE_CRYPTODEV_FF_IN_PLACE_SGL |
2703 			RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
2704 			RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
2705 			RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2706 			RTE_CRYPTODEV_FF_SECURITY |
2707 			RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
2708 
2709 	aesni_mb_data->internals_priv_size = 0;
2710 	aesni_mb_data->ops = &aesni_mb_pmd_ops;
2711 	aesni_mb_data->qp_priv_size = sizeof(struct aesni_mb_qp_data);
2712 	aesni_mb_data->queue_pair_configure = NULL;
2713 	aesni_mb_data->security_ops = &aesni_mb_pmd_sec_ops;
2714 	aesni_mb_data->dev_config = aesni_mb_configure_dev;
2715 	aesni_mb_data->session_configure = aesni_mb_session_configure;
2716 	aesni_mb_data->session_priv_size = sizeof(struct aesni_mb_session);
2717 }
2718