xref: /dpdk/drivers/crypto/ipsec_mb/pmd_aesni_mb.c (revision 7917b0d38e92e8b9ec5a870415b791420e10f11a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2021 Intel Corporation
3  */
4 
5 #include <unistd.h>
6 
7 #include "pmd_aesni_mb_priv.h"
8 
9 RTE_DEFINE_PER_LCORE(pid_t, pid);
10 
11 uint8_t pmd_driver_id_aesni_mb;
12 
13 struct aesni_mb_op_buf_data {
14 	struct rte_mbuf *m;
15 	uint32_t offset;
16 };
17 
18 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
19 /**
20  * Calculate the authentication pre-computes
21  *
22  * @param one_block_hash	Function pointer
23  *				to calculate digest on ipad/opad
24  * @param ipad			Inner pad output byte array
25  * @param opad			Outer pad output byte array
26  * @param hkey			Authentication key
27  * @param hkey_len		Authentication key length
28  * @param blocksize		Block size of selected hash algo
29  */
30 static void
31 calculate_auth_precomputes(hash_one_block_t one_block_hash,
32 		uint8_t *ipad, uint8_t *opad,
33 		const uint8_t *hkey, uint16_t hkey_len,
34 		uint16_t blocksize)
35 {
36 	uint32_t i, length;
37 
38 	alignas(16) uint8_t ipad_buf[blocksize];
39 	alignas(16) uint8_t opad_buf[blocksize];
40 
41 	/* Setup inner and outer pads */
42 	memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
43 	memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
44 
45 	/* XOR hash key with inner and outer pads */
46 	length = hkey_len > blocksize ? blocksize : hkey_len;
47 
48 	for (i = 0; i < length; i++) {
49 		ipad_buf[i] ^= hkey[i];
50 		opad_buf[i] ^= hkey[i];
51 	}
52 
53 	/* Compute partial hashes */
54 	(*one_block_hash)(ipad_buf, ipad);
55 	(*one_block_hash)(opad_buf, opad);
56 
57 	/* Clean up stack */
58 	memset(ipad_buf, 0, blocksize);
59 	memset(opad_buf, 0, blocksize);
60 }
61 #endif
62 
63 static inline int
64 is_aead_algo(IMB_HASH_ALG hash_alg, IMB_CIPHER_MODE cipher_mode)
65 {
66 	return (hash_alg == IMB_AUTH_CHACHA20_POLY1305 ||
67 		hash_alg == IMB_AUTH_AES_CCM ||
68 		cipher_mode == IMB_CIPHER_GCM);
69 }
70 
71 /** Set session authentication parameters */
72 static int
73 aesni_mb_set_session_auth_parameters(IMB_MGR *mb_mgr,
74 		struct aesni_mb_session *sess,
75 		const struct rte_crypto_sym_xform *xform)
76 {
77 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
78 	hash_one_block_t hash_oneblock_fn = NULL;
79 	unsigned int key_larger_block_size = 0;
80 #endif
81 	uint8_t hashed_key[HMAC_MAX_BLOCK_SIZE] = { 0 };
82 	uint32_t auth_precompute = 1;
83 
84 	if (xform == NULL) {
85 		sess->template_job.hash_alg = IMB_AUTH_NULL;
86 		return 0;
87 	}
88 
89 	if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
90 		IPSEC_MB_LOG(ERR, "Crypto xform struct not of type auth");
91 		return -1;
92 	}
93 
94 	/* Set IV parameters */
95 	sess->auth_iv.offset = xform->auth.iv.offset;
96 
97 	/* Set the request digest size */
98 	sess->auth.req_digest_len = xform->auth.digest_length;
99 
100 	/* Select auth generate/verify */
101 	sess->auth.operation = xform->auth.op;
102 
103 	/* Set Authentication Parameters */
104 	if (xform->auth.algo == RTE_CRYPTO_AUTH_NULL) {
105 		sess->template_job.hash_alg = IMB_AUTH_NULL;
106 		sess->template_job.auth_tag_output_len_in_bytes = 0;
107 		return 0;
108 	}
109 
110 	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
111 		sess->template_job.hash_alg = IMB_AUTH_AES_XCBC;
112 
113 		uint16_t xcbc_mac_digest_len =
114 			get_truncated_digest_byte_length(IMB_AUTH_AES_XCBC);
115 		if (sess->auth.req_digest_len != xcbc_mac_digest_len) {
116 			IPSEC_MB_LOG(ERR, "Invalid digest size");
117 			return -EINVAL;
118 		}
119 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
120 
121 		IMB_AES_XCBC_KEYEXP(mb_mgr, xform->auth.key.data,
122 				sess->auth.xcbc.k1_expanded,
123 				sess->auth.xcbc.k2, sess->auth.xcbc.k3);
124 		sess->template_job.u.XCBC._k1_expanded = sess->auth.xcbc.k1_expanded;
125 		sess->template_job.u.XCBC._k2 = sess->auth.xcbc.k2;
126 		sess->template_job.u.XCBC._k3 = sess->auth.xcbc.k3;
127 		return 0;
128 	}
129 
130 	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
131 		uint32_t dust[4*15];
132 
133 		sess->template_job.hash_alg = IMB_AUTH_AES_CMAC;
134 
135 		uint16_t cmac_digest_len =
136 				get_digest_byte_length(IMB_AUTH_AES_CMAC);
137 
138 		if (sess->auth.req_digest_len > cmac_digest_len) {
139 			IPSEC_MB_LOG(ERR, "Invalid digest size");
140 			return -EINVAL;
141 		}
142 		/*
143 		 * Multi-buffer lib supports digest sizes from 4 to 16 bytes
144 		 * in version 0.50 and sizes of 12 and 16 bytes,
145 		 * in version 0.49.
146 		 * If size requested is different, generate the full digest
147 		 * (16 bytes) in a temporary location and then memcpy
148 		 * the requested number of bytes.
149 		 */
150 		if (sess->auth.req_digest_len < 4)
151 			sess->template_job.auth_tag_output_len_in_bytes = cmac_digest_len;
152 		else
153 			sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
154 
155 		IMB_AES_KEYEXP_128(mb_mgr, xform->auth.key.data,
156 				sess->auth.cmac.expkey, dust);
157 		IMB_AES_CMAC_SUBKEY_GEN_128(mb_mgr, sess->auth.cmac.expkey,
158 				sess->auth.cmac.skey1, sess->auth.cmac.skey2);
159 		sess->template_job.u.CMAC._key_expanded = sess->auth.cmac.expkey;
160 		sess->template_job.u.CMAC._skey1 = sess->auth.cmac.skey1;
161 		sess->template_job.u.CMAC._skey2 = sess->auth.cmac.skey2;
162 		return 0;
163 	}
164 
165 	if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
166 		if (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) {
167 			sess->template_job.cipher_direction = IMB_DIR_ENCRYPT;
168 			sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
169 		} else
170 			sess->template_job.cipher_direction = IMB_DIR_DECRYPT;
171 
172 		if (sess->auth.req_digest_len >
173 			get_digest_byte_length(IMB_AUTH_AES_GMAC)) {
174 			IPSEC_MB_LOG(ERR, "Invalid digest size");
175 			return -EINVAL;
176 		}
177 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
178 		sess->template_job.u.GMAC.iv_len_in_bytes = xform->auth.iv.length;
179 		sess->iv.offset = xform->auth.iv.offset;
180 
181 		switch (xform->auth.key.length) {
182 		case IMB_KEY_128_BYTES:
183 			sess->template_job.hash_alg = IMB_AUTH_AES_GMAC_128;
184 			IMB_AES128_GCM_PRE(mb_mgr, xform->auth.key.data,
185 				&sess->cipher.gcm_key);
186 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
187 			break;
188 		case IMB_KEY_192_BYTES:
189 			sess->template_job.hash_alg = IMB_AUTH_AES_GMAC_192;
190 			IMB_AES192_GCM_PRE(mb_mgr, xform->auth.key.data,
191 				&sess->cipher.gcm_key);
192 			sess->template_job.key_len_in_bytes = IMB_KEY_192_BYTES;
193 			break;
194 		case IMB_KEY_256_BYTES:
195 			sess->template_job.hash_alg = IMB_AUTH_AES_GMAC_256;
196 			IMB_AES256_GCM_PRE(mb_mgr, xform->auth.key.data,
197 				&sess->cipher.gcm_key);
198 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
199 			break;
200 		default:
201 			IPSEC_MB_LOG(ERR, "Invalid authentication key length");
202 			return -EINVAL;
203 		}
204 		sess->template_job.u.GMAC._key = &sess->cipher.gcm_key;
205 
206 		return 0;
207 	}
208 
209 	if (xform->auth.algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
210 		if (xform->auth.key.length == 16) {
211 			sess->template_job.hash_alg = IMB_AUTH_ZUC_EIA3_BITLEN;
212 
213 			if (sess->auth.req_digest_len != 4) {
214 				IPSEC_MB_LOG(ERR, "Invalid digest size");
215 				return -EINVAL;
216 			}
217 		} else if (xform->auth.key.length == 32) {
218 			sess->template_job.hash_alg = IMB_AUTH_ZUC256_EIA3_BITLEN;
219 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
220 			if (sess->auth.req_digest_len != 4 &&
221 					sess->auth.req_digest_len != 8 &&
222 					sess->auth.req_digest_len != 16) {
223 #else
224 			if (sess->auth.req_digest_len != 4) {
225 #endif
226 				IPSEC_MB_LOG(ERR, "Invalid digest size");
227 				return -EINVAL;
228 			}
229 		} else {
230 			IPSEC_MB_LOG(ERR, "Invalid authentication key length");
231 			return -EINVAL;
232 		}
233 
234 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
235 
236 		memcpy(sess->auth.zuc_auth_key, xform->auth.key.data,
237 			xform->auth.key.length);
238 		sess->template_job.u.ZUC_EIA3._key = sess->auth.zuc_auth_key;
239 		return 0;
240 	} else if (xform->auth.algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2) {
241 		sess->template_job.hash_alg = IMB_AUTH_SNOW3G_UIA2_BITLEN;
242 		uint16_t snow3g_uia2_digest_len =
243 			get_truncated_digest_byte_length(
244 						IMB_AUTH_SNOW3G_UIA2_BITLEN);
245 		if (sess->auth.req_digest_len != snow3g_uia2_digest_len) {
246 			IPSEC_MB_LOG(ERR, "Invalid digest size");
247 			return -EINVAL;
248 		}
249 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
250 
251 		IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->auth.key.data,
252 					&sess->auth.pKeySched_snow3g_auth);
253 		sess->template_job.u.SNOW3G_UIA2._key = (void *)
254 			&sess->auth.pKeySched_snow3g_auth;
255 		return 0;
256 	} else if (xform->auth.algo == RTE_CRYPTO_AUTH_KASUMI_F9) {
257 		sess->template_job.hash_alg = IMB_AUTH_KASUMI_UIA1;
258 		uint16_t kasumi_f9_digest_len =
259 			get_truncated_digest_byte_length(IMB_AUTH_KASUMI_UIA1);
260 		if (sess->auth.req_digest_len != kasumi_f9_digest_len) {
261 			IPSEC_MB_LOG(ERR, "Invalid digest size");
262 			return -EINVAL;
263 		}
264 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
265 
266 		IMB_KASUMI_INIT_F9_KEY_SCHED(mb_mgr, xform->auth.key.data,
267 					&sess->auth.pKeySched_kasumi_auth);
268 		sess->template_job.u.KASUMI_UIA1._key = (void *)
269 			&sess->auth.pKeySched_kasumi_auth;
270 		return 0;
271 	}
272 
273 	switch (xform->auth.algo) {
274 	case RTE_CRYPTO_AUTH_MD5_HMAC:
275 		sess->template_job.hash_alg = IMB_AUTH_MD5;
276 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
277 		hash_oneblock_fn = mb_mgr->md5_one_block;
278 #endif
279 		break;
280 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
281 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_1;
282 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
283 		hash_oneblock_fn = mb_mgr->sha1_one_block;
284 #endif
285 		if (xform->auth.key.length > get_auth_algo_blocksize(
286 				IMB_AUTH_HMAC_SHA_1)) {
287 			IMB_SHA1(mb_mgr,
288 				xform->auth.key.data,
289 				xform->auth.key.length,
290 				hashed_key);
291 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
292 			key_larger_block_size = 1;
293 #endif
294 		}
295 		break;
296 	case RTE_CRYPTO_AUTH_SHA1:
297 		sess->template_job.hash_alg = IMB_AUTH_SHA_1;
298 		auth_precompute = 0;
299 		break;
300 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
301 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_224;
302 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
303 		hash_oneblock_fn = mb_mgr->sha224_one_block;
304 #endif
305 		if (xform->auth.key.length > get_auth_algo_blocksize(
306 				IMB_AUTH_HMAC_SHA_224)) {
307 			IMB_SHA224(mb_mgr,
308 				xform->auth.key.data,
309 				xform->auth.key.length,
310 				hashed_key);
311 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
312 			key_larger_block_size = 1;
313 #endif
314 		}
315 		break;
316 	case RTE_CRYPTO_AUTH_SHA224:
317 		sess->template_job.hash_alg = IMB_AUTH_SHA_224;
318 		auth_precompute = 0;
319 		break;
320 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
321 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_256;
322 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
323 		hash_oneblock_fn = mb_mgr->sha256_one_block;
324 #endif
325 		if (xform->auth.key.length > get_auth_algo_blocksize(
326 				IMB_AUTH_HMAC_SHA_256)) {
327 			IMB_SHA256(mb_mgr,
328 				xform->auth.key.data,
329 				xform->auth.key.length,
330 				hashed_key);
331 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
332 			key_larger_block_size = 1;
333 #endif
334 		}
335 		break;
336 	case RTE_CRYPTO_AUTH_SHA256:
337 		sess->template_job.hash_alg = IMB_AUTH_SHA_256;
338 		auth_precompute = 0;
339 		break;
340 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
341 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_384;
342 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
343 		hash_oneblock_fn = mb_mgr->sha384_one_block;
344 #endif
345 		if (xform->auth.key.length > get_auth_algo_blocksize(
346 				IMB_AUTH_HMAC_SHA_384)) {
347 			IMB_SHA384(mb_mgr,
348 				xform->auth.key.data,
349 				xform->auth.key.length,
350 				hashed_key);
351 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
352 			key_larger_block_size = 1;
353 #endif
354 		}
355 		break;
356 	case RTE_CRYPTO_AUTH_SHA384:
357 		sess->template_job.hash_alg = IMB_AUTH_SHA_384;
358 		auth_precompute = 0;
359 		break;
360 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
361 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SHA_512;
362 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
363 		hash_oneblock_fn = mb_mgr->sha512_one_block;
364 #endif
365 		if (xform->auth.key.length > get_auth_algo_blocksize(
366 				IMB_AUTH_HMAC_SHA_512)) {
367 			IMB_SHA512(mb_mgr,
368 				xform->auth.key.data,
369 				xform->auth.key.length,
370 				hashed_key);
371 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
372 			key_larger_block_size = 1;
373 #endif
374 		}
375 		break;
376 	case RTE_CRYPTO_AUTH_SHA512:
377 		sess->template_job.hash_alg = IMB_AUTH_SHA_512;
378 		auth_precompute = 0;
379 		break;
380 #if IMB_VERSION(1, 5, 0) <= IMB_VERSION_NUM
381 	case RTE_CRYPTO_AUTH_SM3:
382 		sess->template_job.hash_alg = IMB_AUTH_SM3;
383 		break;
384 	case RTE_CRYPTO_AUTH_SM3_HMAC:
385 		sess->template_job.hash_alg = IMB_AUTH_HMAC_SM3;
386 		break;
387 #endif
388 	default:
389 		IPSEC_MB_LOG(ERR,
390 			"Unsupported authentication algorithm selection");
391 		return -ENOTSUP;
392 	}
393 	uint16_t trunc_digest_size =
394 			get_truncated_digest_byte_length(sess->template_job.hash_alg);
395 	uint16_t full_digest_size =
396 			get_digest_byte_length(sess->template_job.hash_alg);
397 
398 	if (sess->auth.req_digest_len > full_digest_size ||
399 			sess->auth.req_digest_len == 0) {
400 		IPSEC_MB_LOG(ERR, "Invalid digest size");
401 		return -EINVAL;
402 	}
403 
404 	if (sess->auth.req_digest_len != trunc_digest_size &&
405 			sess->auth.req_digest_len != full_digest_size)
406 		sess->template_job.auth_tag_output_len_in_bytes = full_digest_size;
407 	else
408 		sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
409 
410 	/* Plain SHA does not require precompute key */
411 	if (auth_precompute == 0)
412 		return 0;
413 
414 	/* Calculate Authentication precomputes */
415 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
416 		imb_hmac_ipad_opad(mb_mgr, sess->template_job.hash_alg,
417 					xform->auth.key.data, xform->auth.key.length,
418 					sess->auth.pads.inner, sess->auth.pads.outer);
419 #else
420 	if (key_larger_block_size) {
421 		calculate_auth_precomputes(hash_oneblock_fn,
422 			sess->auth.pads.inner, sess->auth.pads.outer,
423 			hashed_key,
424 			xform->auth.key.length,
425 			get_auth_algo_blocksize(sess->template_job.hash_alg));
426 	} else {
427 		calculate_auth_precomputes(hash_oneblock_fn,
428 			sess->auth.pads.inner, sess->auth.pads.outer,
429 			xform->auth.key.data,
430 			xform->auth.key.length,
431 			get_auth_algo_blocksize(sess->template_job.hash_alg));
432 	}
433 #endif
434 	sess->template_job.u.HMAC._hashed_auth_key_xor_ipad =
435 		sess->auth.pads.inner;
436 	sess->template_job.u.HMAC._hashed_auth_key_xor_opad =
437 		sess->auth.pads.outer;
438 
439 	return 0;
440 }
441 
442 /** Set session cipher parameters */
443 static int
444 aesni_mb_set_session_cipher_parameters(const IMB_MGR *mb_mgr,
445 		struct aesni_mb_session *sess,
446 		const struct rte_crypto_sym_xform *xform)
447 {
448 	uint8_t is_aes = 0;
449 	uint8_t is_3DES = 0;
450 	uint8_t is_docsis = 0;
451 	uint8_t is_zuc = 0;
452 	uint8_t is_snow3g = 0;
453 	uint8_t is_kasumi = 0;
454 #if IMB_VERSION(1, 5, 0) <= IMB_VERSION_NUM
455 	uint8_t is_sm4 = 0;
456 #endif
457 
458 	if (xform == NULL) {
459 		sess->template_job.cipher_mode = IMB_CIPHER_NULL;
460 		return 0;
461 	}
462 
463 	if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
464 		IPSEC_MB_LOG(ERR, "Crypto xform struct not of type cipher");
465 		return -EINVAL;
466 	}
467 
468 	/* Select cipher direction */
469 	switch (xform->cipher.op) {
470 	case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
471 		sess->template_job.cipher_direction = IMB_DIR_ENCRYPT;
472 		break;
473 	case RTE_CRYPTO_CIPHER_OP_DECRYPT:
474 		sess->template_job.cipher_direction = IMB_DIR_DECRYPT;
475 		break;
476 	default:
477 		IPSEC_MB_LOG(ERR, "Invalid cipher operation parameter");
478 		return -EINVAL;
479 	}
480 
481 	/* Select cipher mode */
482 	switch (xform->cipher.algo) {
483 	case RTE_CRYPTO_CIPHER_AES_CBC:
484 		sess->template_job.cipher_mode = IMB_CIPHER_CBC;
485 		is_aes = 1;
486 		break;
487 	case RTE_CRYPTO_CIPHER_AES_CTR:
488 		sess->template_job.cipher_mode = IMB_CIPHER_CNTR;
489 		is_aes = 1;
490 		break;
491 	case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
492 		sess->template_job.cipher_mode = IMB_CIPHER_DOCSIS_SEC_BPI;
493 		is_docsis = 1;
494 		break;
495 	case RTE_CRYPTO_CIPHER_DES_CBC:
496 		sess->template_job.cipher_mode = IMB_CIPHER_DES;
497 		break;
498 	case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
499 		sess->template_job.cipher_mode = IMB_CIPHER_DOCSIS_DES;
500 		break;
501 	case RTE_CRYPTO_CIPHER_3DES_CBC:
502 		sess->template_job.cipher_mode = IMB_CIPHER_DES3;
503 		is_3DES = 1;
504 		break;
505 	case RTE_CRYPTO_CIPHER_AES_ECB:
506 		sess->template_job.cipher_mode = IMB_CIPHER_ECB;
507 		is_aes = 1;
508 		break;
509 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
510 		sess->template_job.cipher_mode = IMB_CIPHER_ZUC_EEA3;
511 		is_zuc = 1;
512 		break;
513 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
514 		sess->template_job.cipher_mode = IMB_CIPHER_SNOW3G_UEA2_BITLEN;
515 		is_snow3g = 1;
516 		break;
517 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
518 		sess->template_job.cipher_mode = IMB_CIPHER_KASUMI_UEA1_BITLEN;
519 		is_kasumi = 1;
520 		break;
521 	case RTE_CRYPTO_CIPHER_NULL:
522 		sess->template_job.cipher_mode = IMB_CIPHER_NULL;
523 		sess->template_job.key_len_in_bytes = 0;
524 		sess->iv.offset = xform->cipher.iv.offset;
525 		sess->template_job.iv_len_in_bytes = xform->cipher.iv.length;
526 		return 0;
527 #if IMB_VERSION(1, 5, 0) <= IMB_VERSION_NUM
528 	case RTE_CRYPTO_CIPHER_SM4_CBC:
529 		sess->template_job.cipher_mode = IMB_CIPHER_SM4_CBC;
530 		is_sm4 = 1;
531 		break;
532 	case RTE_CRYPTO_CIPHER_SM4_ECB:
533 		sess->template_job.cipher_mode = IMB_CIPHER_SM4_ECB;
534 		is_sm4 = 1;
535 		break;
536 #endif
537 #if IMB_VERSION(1, 5, 0) < IMB_VERSION_NUM
538 	case RTE_CRYPTO_CIPHER_SM4_CTR:
539 		sess->template_job.cipher_mode = IMB_CIPHER_SM4_CNTR;
540 		is_sm4 = 1;
541 		break;
542 #endif
543 	default:
544 		IPSEC_MB_LOG(ERR, "Unsupported cipher mode parameter");
545 		return -ENOTSUP;
546 	}
547 
548 	/* Set IV parameters */
549 	sess->iv.offset = xform->cipher.iv.offset;
550 	sess->template_job.iv_len_in_bytes = xform->cipher.iv.length;
551 
552 	/* Check key length and choose key expansion function for AES */
553 	if (is_aes) {
554 		switch (xform->cipher.key.length) {
555 		case IMB_KEY_128_BYTES:
556 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
557 			IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
558 					sess->cipher.expanded_aes_keys.encode,
559 					sess->cipher.expanded_aes_keys.decode);
560 			break;
561 		case IMB_KEY_192_BYTES:
562 			sess->template_job.key_len_in_bytes = IMB_KEY_192_BYTES;
563 			IMB_AES_KEYEXP_192(mb_mgr, xform->cipher.key.data,
564 					sess->cipher.expanded_aes_keys.encode,
565 					sess->cipher.expanded_aes_keys.decode);
566 			break;
567 		case IMB_KEY_256_BYTES:
568 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
569 			IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
570 					sess->cipher.expanded_aes_keys.encode,
571 					sess->cipher.expanded_aes_keys.decode);
572 			break;
573 		default:
574 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
575 			return -EINVAL;
576 		}
577 
578 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
579 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
580 	} else if (is_docsis) {
581 		switch (xform->cipher.key.length) {
582 		case IMB_KEY_128_BYTES:
583 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
584 			IMB_AES_KEYEXP_128(mb_mgr, xform->cipher.key.data,
585 					sess->cipher.expanded_aes_keys.encode,
586 					sess->cipher.expanded_aes_keys.decode);
587 			break;
588 		case IMB_KEY_256_BYTES:
589 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
590 			IMB_AES_KEYEXP_256(mb_mgr, xform->cipher.key.data,
591 					sess->cipher.expanded_aes_keys.encode,
592 					sess->cipher.expanded_aes_keys.decode);
593 			break;
594 		default:
595 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
596 			return -EINVAL;
597 		}
598 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
599 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
600 	} else if (is_3DES) {
601 		uint64_t *keys[3] = {sess->cipher.exp_3des_keys.key[0],
602 				sess->cipher.exp_3des_keys.key[1],
603 				sess->cipher.exp_3des_keys.key[2]};
604 
605 		switch (xform->cipher.key.length) {
606 		case  24:
607 			IMB_DES_KEYSCHED(mb_mgr, keys[0],
608 					xform->cipher.key.data);
609 			IMB_DES_KEYSCHED(mb_mgr, keys[1],
610 					xform->cipher.key.data + 8);
611 			IMB_DES_KEYSCHED(mb_mgr, keys[2],
612 					xform->cipher.key.data + 16);
613 
614 			/* Initialize keys - 24 bytes: [K1-K2-K3] */
615 			sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
616 			sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
617 			sess->cipher.exp_3des_keys.ks_ptr[2] = keys[2];
618 			break;
619 		case 16:
620 			IMB_DES_KEYSCHED(mb_mgr, keys[0],
621 					xform->cipher.key.data);
622 			IMB_DES_KEYSCHED(mb_mgr, keys[1],
623 					xform->cipher.key.data + 8);
624 			/* Initialize keys - 16 bytes: [K1=K1,K2=K2,K3=K1] */
625 			sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
626 			sess->cipher.exp_3des_keys.ks_ptr[1] = keys[1];
627 			sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
628 			break;
629 		case 8:
630 			IMB_DES_KEYSCHED(mb_mgr, keys[0],
631 					xform->cipher.key.data);
632 
633 			/* Initialize keys - 8 bytes: [K1 = K2 = K3] */
634 			sess->cipher.exp_3des_keys.ks_ptr[0] = keys[0];
635 			sess->cipher.exp_3des_keys.ks_ptr[1] = keys[0];
636 			sess->cipher.exp_3des_keys.ks_ptr[2] = keys[0];
637 			break;
638 		default:
639 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
640 			return -EINVAL;
641 		}
642 
643 		sess->template_job.enc_keys = sess->cipher.exp_3des_keys.ks_ptr;
644 		sess->template_job.dec_keys = sess->cipher.exp_3des_keys.ks_ptr;
645 		sess->template_job.key_len_in_bytes = 24;
646 	} else if (is_zuc) {
647 		if (xform->cipher.key.length != 16 &&
648 				xform->cipher.key.length != 32) {
649 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
650 			return -EINVAL;
651 		}
652 		sess->template_job.key_len_in_bytes = xform->cipher.key.length;
653 		memcpy(sess->cipher.zuc_cipher_key, xform->cipher.key.data,
654 			xform->cipher.key.length);
655 		sess->template_job.enc_keys = sess->cipher.zuc_cipher_key;
656 		sess->template_job.dec_keys = sess->cipher.zuc_cipher_key;
657 	} else if (is_snow3g) {
658 		if (xform->cipher.key.length != 16) {
659 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
660 			return -EINVAL;
661 		}
662 		sess->template_job.key_len_in_bytes = 16;
663 		IMB_SNOW3G_INIT_KEY_SCHED(mb_mgr, xform->cipher.key.data,
664 					&sess->cipher.pKeySched_snow3g_cipher);
665 		sess->template_job.enc_keys = &sess->cipher.pKeySched_snow3g_cipher;
666 		sess->template_job.dec_keys = &sess->cipher.pKeySched_snow3g_cipher;
667 	} else if (is_kasumi) {
668 		if (xform->cipher.key.length != 16) {
669 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
670 			return -EINVAL;
671 		}
672 		sess->template_job.key_len_in_bytes = 16;
673 		IMB_KASUMI_INIT_F8_KEY_SCHED(mb_mgr, xform->cipher.key.data,
674 					&sess->cipher.pKeySched_kasumi_cipher);
675 		sess->template_job.enc_keys = &sess->cipher.pKeySched_kasumi_cipher;
676 		sess->template_job.dec_keys = &sess->cipher.pKeySched_kasumi_cipher;
677 #if IMB_VERSION(1, 5, 0) <= IMB_VERSION_NUM
678 	} else if (is_sm4) {
679 		sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
680 		IMB_SM4_KEYEXP(mb_mgr, xform->cipher.key.data,
681 				sess->cipher.expanded_sm4_keys.encode,
682 				sess->cipher.expanded_sm4_keys.decode);
683 		sess->template_job.enc_keys = sess->cipher.expanded_sm4_keys.encode;
684 		sess->template_job.dec_keys = sess->cipher.expanded_sm4_keys.decode;
685 #endif
686 	} else {
687 		if (xform->cipher.key.length != 8) {
688 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
689 			return -EINVAL;
690 		}
691 		sess->template_job.key_len_in_bytes = 8;
692 
693 		IMB_DES_KEYSCHED(mb_mgr,
694 			(uint64_t *)sess->cipher.expanded_aes_keys.encode,
695 				xform->cipher.key.data);
696 		IMB_DES_KEYSCHED(mb_mgr,
697 			(uint64_t *)sess->cipher.expanded_aes_keys.decode,
698 				xform->cipher.key.data);
699 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
700 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
701 	}
702 
703 	return 0;
704 }
705 
706 static int
707 aesni_mb_set_session_aead_parameters(const IMB_MGR *mb_mgr,
708 		struct aesni_mb_session *sess,
709 		const struct rte_crypto_sym_xform *xform)
710 {
711 	switch (xform->aead.op) {
712 	case RTE_CRYPTO_AEAD_OP_ENCRYPT:
713 		sess->template_job.cipher_direction = IMB_DIR_ENCRYPT;
714 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
715 		break;
716 	case RTE_CRYPTO_AEAD_OP_DECRYPT:
717 		sess->template_job.cipher_direction = IMB_DIR_DECRYPT;
718 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
719 		break;
720 	default:
721 		IPSEC_MB_LOG(ERR, "Invalid aead operation parameter");
722 		return -EINVAL;
723 	}
724 
725 	/* Set IV parameters */
726 	sess->iv.offset = xform->aead.iv.offset;
727 	sess->template_job.iv_len_in_bytes = xform->aead.iv.length;
728 
729 	/* Set digest sizes */
730 	sess->auth.req_digest_len = xform->aead.digest_length;
731 	sess->template_job.auth_tag_output_len_in_bytes = sess->auth.req_digest_len;
732 
733 	switch (xform->aead.algo) {
734 	case RTE_CRYPTO_AEAD_AES_CCM:
735 		sess->template_job.cipher_mode = IMB_CIPHER_CCM;
736 		sess->template_job.hash_alg = IMB_AUTH_AES_CCM;
737 		sess->template_job.u.CCM.aad_len_in_bytes = xform->aead.aad_length;
738 
739 		/* Check key length and choose key expansion function for AES */
740 		switch (xform->aead.key.length) {
741 		case IMB_KEY_128_BYTES:
742 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
743 			IMB_AES_KEYEXP_128(mb_mgr, xform->aead.key.data,
744 					sess->cipher.expanded_aes_keys.encode,
745 					sess->cipher.expanded_aes_keys.decode);
746 			break;
747 		case IMB_KEY_256_BYTES:
748 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
749 			IMB_AES_KEYEXP_256(mb_mgr, xform->aead.key.data,
750 					sess->cipher.expanded_aes_keys.encode,
751 					sess->cipher.expanded_aes_keys.decode);
752 			break;
753 		default:
754 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
755 			return -EINVAL;
756 		}
757 
758 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
759 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
760 		/* CCM digests must be between 4 and 16 and an even number */
761 		if (sess->auth.req_digest_len < AES_CCM_DIGEST_MIN_LEN ||
762 			sess->auth.req_digest_len > AES_CCM_DIGEST_MAX_LEN ||
763 			(sess->auth.req_digest_len & 1) == 1) {
764 			IPSEC_MB_LOG(ERR, "Invalid digest size");
765 			return -EINVAL;
766 		}
767 		break;
768 
769 	case RTE_CRYPTO_AEAD_AES_GCM:
770 		sess->template_job.cipher_mode = IMB_CIPHER_GCM;
771 		sess->template_job.hash_alg = IMB_AUTH_AES_GMAC;
772 		sess->template_job.u.GCM.aad_len_in_bytes = xform->aead.aad_length;
773 
774 		switch (xform->aead.key.length) {
775 		case IMB_KEY_128_BYTES:
776 			sess->template_job.key_len_in_bytes = IMB_KEY_128_BYTES;
777 			IMB_AES128_GCM_PRE(mb_mgr, xform->aead.key.data,
778 				&sess->cipher.gcm_key);
779 			break;
780 		case IMB_KEY_192_BYTES:
781 			sess->template_job.key_len_in_bytes = IMB_KEY_192_BYTES;
782 			IMB_AES192_GCM_PRE(mb_mgr, xform->aead.key.data,
783 				&sess->cipher.gcm_key);
784 			break;
785 		case IMB_KEY_256_BYTES:
786 			sess->template_job.key_len_in_bytes = IMB_KEY_256_BYTES;
787 			IMB_AES256_GCM_PRE(mb_mgr, xform->aead.key.data,
788 				&sess->cipher.gcm_key);
789 			break;
790 		default:
791 			IPSEC_MB_LOG(ERR, "Invalid cipher key length");
792 			return -EINVAL;
793 		}
794 
795 		sess->template_job.enc_keys = &sess->cipher.gcm_key;
796 		sess->template_job.dec_keys = &sess->cipher.gcm_key;
797 		/* GCM digest size must be between 1 and 16 */
798 		if (sess->auth.req_digest_len == 0 ||
799 				sess->auth.req_digest_len > 16) {
800 			IPSEC_MB_LOG(ERR, "Invalid digest size");
801 			return -EINVAL;
802 		}
803 		break;
804 
805 	case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
806 		sess->template_job.cipher_mode = IMB_CIPHER_CHACHA20_POLY1305;
807 		sess->template_job.hash_alg = IMB_AUTH_CHACHA20_POLY1305;
808 		sess->template_job.u.CHACHA20_POLY1305.aad_len_in_bytes =
809 			xform->aead.aad_length;
810 
811 		if (xform->aead.key.length != 32) {
812 			IPSEC_MB_LOG(ERR, "Invalid key length");
813 			return -EINVAL;
814 		}
815 		sess->template_job.key_len_in_bytes = 32;
816 		memcpy(sess->cipher.expanded_aes_keys.encode,
817 			xform->aead.key.data, 32);
818 		sess->template_job.enc_keys = sess->cipher.expanded_aes_keys.encode;
819 		sess->template_job.dec_keys = sess->cipher.expanded_aes_keys.decode;
820 		if (sess->auth.req_digest_len != 16) {
821 			IPSEC_MB_LOG(ERR, "Invalid digest size");
822 			return -EINVAL;
823 		}
824 		break;
825 	default:
826 		IPSEC_MB_LOG(ERR, "Unsupported aead mode parameter");
827 		return -ENOTSUP;
828 	}
829 
830 	return 0;
831 }
832 
833 /** Configure a aesni multi-buffer session from a crypto xform chain */
834 int
835 aesni_mb_session_configure(IMB_MGR *mb_mgr,
836 		void *priv_sess,
837 		const struct rte_crypto_sym_xform *xform)
838 {
839 	const struct rte_crypto_sym_xform *auth_xform = NULL;
840 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
841 	const struct rte_crypto_sym_xform *aead_xform = NULL;
842 	enum ipsec_mb_operation mode;
843 	struct aesni_mb_session *sess = (struct aesni_mb_session *) priv_sess;
844 	int ret;
845 
846 	ret = ipsec_mb_parse_xform(xform, &mode, &auth_xform,
847 				&cipher_xform, &aead_xform);
848 	if (ret)
849 		return ret;
850 
851 	/* Select Crypto operation - hash then cipher / cipher then hash */
852 	switch (mode) {
853 	case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT:
854 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
855 		break;
856 	case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN:
857 	case IPSEC_MB_OP_DECRYPT_THEN_HASH_VERIFY:
858 		sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
859 		break;
860 	case IPSEC_MB_OP_HASH_GEN_ONLY:
861 	case IPSEC_MB_OP_HASH_VERIFY_ONLY:
862 	case IPSEC_MB_OP_HASH_GEN_THEN_ENCRYPT:
863 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
864 		break;
865 	/*
866 	 * Multi buffer library operates only at two modes,
867 	 * IMB_ORDER_CIPHER_HASH and IMB_ORDER_HASH_CIPHER.
868 	 * When doing ciphering only, chain order depends
869 	 * on cipher operation: encryption is always
870 	 * the first operation and decryption the last one.
871 	 */
872 	case IPSEC_MB_OP_ENCRYPT_ONLY:
873 		sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
874 		break;
875 	case IPSEC_MB_OP_DECRYPT_ONLY:
876 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
877 		break;
878 	case IPSEC_MB_OP_AEAD_AUTHENTICATED_ENCRYPT:
879 		sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
880 		break;
881 	case IPSEC_MB_OP_AEAD_AUTHENTICATED_DECRYPT:
882 		sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
883 		break;
884 	case IPSEC_MB_OP_NOT_SUPPORTED:
885 	default:
886 		IPSEC_MB_LOG(ERR,
887 			"Unsupported operation chain order parameter");
888 		return -ENOTSUP;
889 	}
890 
891 	/* Default IV length = 0 */
892 	sess->template_job.iv_len_in_bytes = 0;
893 
894 	ret = aesni_mb_set_session_auth_parameters(mb_mgr, sess, auth_xform);
895 	if (ret != 0) {
896 		IPSEC_MB_LOG(ERR,
897 			"Invalid/unsupported authentication parameters");
898 		return ret;
899 	}
900 
901 	ret = aesni_mb_set_session_cipher_parameters(mb_mgr, sess,
902 			cipher_xform);
903 	if (ret != 0) {
904 		IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
905 		return ret;
906 	}
907 
908 	if (aead_xform) {
909 		ret = aesni_mb_set_session_aead_parameters(mb_mgr, sess,
910 				aead_xform);
911 		if (ret != 0) {
912 			IPSEC_MB_LOG(ERR,
913 				"Invalid/unsupported aead parameters");
914 			return ret;
915 		}
916 	}
917 
918 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
919 	sess->session_id = imb_set_session(mb_mgr, &sess->template_job);
920 	sess->pid = getpid();
921 	RTE_PER_LCORE(pid) = sess->pid;
922 #endif
923 
924 	return 0;
925 }
926 
927 /** Check DOCSIS security session configuration is valid */
928 static int
929 check_docsis_sec_session(struct rte_security_session_conf *conf)
930 {
931 	struct rte_crypto_sym_xform *crypto_sym = conf->crypto_xform;
932 	struct rte_security_docsis_xform *docsis = &conf->docsis;
933 
934 	/* Downlink: CRC generate -> Cipher encrypt */
935 	if (docsis->direction == RTE_SECURITY_DOCSIS_DOWNLINK) {
936 
937 		if (crypto_sym != NULL &&
938 		    crypto_sym->type ==	RTE_CRYPTO_SYM_XFORM_CIPHER &&
939 		    crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
940 		    crypto_sym->cipher.algo ==
941 					RTE_CRYPTO_CIPHER_AES_DOCSISBPI &&
942 		    (crypto_sym->cipher.key.length == IMB_KEY_128_BYTES ||
943 		     crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) &&
944 		    crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE &&
945 		    crypto_sym->next == NULL) {
946 			return 0;
947 		}
948 	/* Uplink: Cipher decrypt -> CRC verify */
949 	} else if (docsis->direction == RTE_SECURITY_DOCSIS_UPLINK) {
950 
951 		if (crypto_sym != NULL &&
952 		    crypto_sym->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
953 		    crypto_sym->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
954 		    crypto_sym->cipher.algo ==
955 					RTE_CRYPTO_CIPHER_AES_DOCSISBPI &&
956 		    (crypto_sym->cipher.key.length == IMB_KEY_128_BYTES ||
957 		     crypto_sym->cipher.key.length == IMB_KEY_256_BYTES) &&
958 		    crypto_sym->cipher.iv.length == IMB_AES_BLOCK_SIZE &&
959 		    crypto_sym->next == NULL) {
960 			return 0;
961 		}
962 	}
963 
964 	return -EINVAL;
965 }
966 
967 /** Set DOCSIS security session auth (CRC) parameters */
968 static int
969 aesni_mb_set_docsis_sec_session_auth_parameters(struct aesni_mb_session *sess,
970 		struct rte_security_docsis_xform *xform)
971 {
972 	if (xform == NULL) {
973 		IPSEC_MB_LOG(ERR, "Invalid DOCSIS xform");
974 		return -EINVAL;
975 	}
976 
977 	/* Select CRC generate/verify */
978 	if (xform->direction == RTE_SECURITY_DOCSIS_UPLINK) {
979 		sess->template_job.hash_alg = IMB_AUTH_DOCSIS_CRC32;
980 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
981 	} else if (xform->direction == RTE_SECURITY_DOCSIS_DOWNLINK) {
982 		sess->template_job.hash_alg = IMB_AUTH_DOCSIS_CRC32;
983 		sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
984 	} else {
985 		IPSEC_MB_LOG(ERR, "Unsupported DOCSIS direction");
986 		return -ENOTSUP;
987 	}
988 
989 	sess->auth.req_digest_len = RTE_ETHER_CRC_LEN;
990 	sess->template_job.auth_tag_output_len_in_bytes = RTE_ETHER_CRC_LEN;
991 
992 	return 0;
993 }
994 
995 /**
996  * Parse DOCSIS security session configuration and set private session
997  * parameters
998  */
999 static int
1000 aesni_mb_set_docsis_sec_session_parameters(
1001 		__rte_unused struct rte_cryptodev *dev,
1002 		struct rte_security_session_conf *conf,
1003 		void *sess)
1004 {
1005 	IMB_MGR  *mb_mgr = alloc_init_mb_mgr();
1006 	struct rte_security_docsis_xform *docsis_xform;
1007 	struct rte_crypto_sym_xform *cipher_xform;
1008 	struct aesni_mb_session *ipsec_sess = sess;
1009 	int ret = 0;
1010 
1011 	if (!mb_mgr)
1012 		return -ENOMEM;
1013 
1014 	ret = check_docsis_sec_session(conf);
1015 	if (ret) {
1016 		IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration");
1017 		goto error_exit;
1018 	}
1019 
1020 	switch (conf->docsis.direction) {
1021 	case RTE_SECURITY_DOCSIS_UPLINK:
1022 		ipsec_sess->template_job.chain_order = IMB_ORDER_CIPHER_HASH;
1023 		docsis_xform = &conf->docsis;
1024 		cipher_xform = conf->crypto_xform;
1025 		break;
1026 	case RTE_SECURITY_DOCSIS_DOWNLINK:
1027 		ipsec_sess->template_job.chain_order = IMB_ORDER_HASH_CIPHER;
1028 		cipher_xform = conf->crypto_xform;
1029 		docsis_xform = &conf->docsis;
1030 		break;
1031 	default:
1032 		IPSEC_MB_LOG(ERR, "Unsupported DOCSIS security configuration");
1033 		ret = -EINVAL;
1034 		goto error_exit;
1035 	}
1036 
1037 	/* Default IV length = 0 */
1038 	ipsec_sess->template_job.iv_len_in_bytes = 0;
1039 
1040 	ret = aesni_mb_set_docsis_sec_session_auth_parameters(ipsec_sess,
1041 			docsis_xform);
1042 	if (ret != 0) {
1043 		IPSEC_MB_LOG(ERR, "Invalid/unsupported DOCSIS parameters");
1044 		goto error_exit;
1045 	}
1046 
1047 	ret = aesni_mb_set_session_cipher_parameters(mb_mgr,
1048 			ipsec_sess, cipher_xform);
1049 
1050 	if (ret != 0) {
1051 		IPSEC_MB_LOG(ERR, "Invalid/unsupported cipher parameters");
1052 		goto error_exit;
1053 	}
1054 
1055 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1056 	ipsec_sess->session_id = imb_set_session(mb_mgr, &ipsec_sess->template_job);
1057 #endif
1058 
1059 error_exit:
1060 	free_mb_mgr(mb_mgr);
1061 	return ret;
1062 }
1063 
1064 static inline uint64_t
1065 auth_start_offset(struct rte_crypto_op *op, struct aesni_mb_session *session,
1066 		uint32_t oop, const uint32_t auth_offset,
1067 		const uint32_t cipher_offset, const uint32_t auth_length,
1068 		const uint32_t cipher_length, uint8_t lb_sgl)
1069 {
1070 	struct rte_mbuf *m_src, *m_dst;
1071 	uint8_t *p_src, *p_dst;
1072 	uintptr_t u_src, u_dst;
1073 	uint32_t cipher_end, auth_end;
1074 
1075 	/* Only cipher then hash needs special calculation. */
1076 	if (!oop || session->template_job.chain_order != IMB_ORDER_CIPHER_HASH || lb_sgl)
1077 		return auth_offset;
1078 
1079 	m_src = op->sym->m_src;
1080 	m_dst = op->sym->m_dst;
1081 
1082 	p_src = rte_pktmbuf_mtod(m_src, uint8_t *);
1083 	p_dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
1084 	u_src = (uintptr_t)p_src;
1085 	u_dst = (uintptr_t)p_dst + auth_offset;
1086 
1087 	/**
1088 	 * Copy the content between cipher offset and auth offset for generating
1089 	 * correct digest.
1090 	 */
1091 	if (cipher_offset > auth_offset)
1092 		memcpy(p_dst + auth_offset,
1093 				p_src + auth_offset,
1094 				cipher_offset -
1095 				auth_offset);
1096 
1097 	/**
1098 	 * Copy the content between (cipher offset + length) and (auth offset +
1099 	 * length) for generating correct digest
1100 	 */
1101 	cipher_end = cipher_offset + cipher_length;
1102 	auth_end = auth_offset + auth_length;
1103 	if (cipher_end < auth_end)
1104 		memcpy(p_dst + cipher_end, p_src + cipher_end,
1105 				auth_end - cipher_end);
1106 
1107 	/**
1108 	 * Since intel-ipsec-mb only supports positive values,
1109 	 * we need to deduct the correct offset between src and dst.
1110 	 */
1111 
1112 	return u_src < u_dst ? (u_dst - u_src) :
1113 			(UINT64_MAX - u_src + u_dst + 1);
1114 }
1115 
1116 static inline void
1117 set_cpu_mb_job_params(IMB_JOB *job, struct aesni_mb_session *session,
1118 		union rte_crypto_sym_ofs sofs, void *buf, uint32_t len,
1119 		struct rte_crypto_va_iova_ptr *iv,
1120 		struct rte_crypto_va_iova_ptr *aad, void *digest, void *udata)
1121 {
1122 	memcpy(job, &session->template_job, sizeof(IMB_JOB));
1123 
1124 	/* Set authentication parameters */
1125 	job->iv = iv->va;
1126 
1127 	switch (job->hash_alg) {
1128 	case IMB_AUTH_AES_CCM:
1129 		job->u.CCM.aad = (uint8_t *)aad->va + 18;
1130 		job->iv++;
1131 		break;
1132 
1133 	case IMB_AUTH_AES_GMAC:
1134 		job->u.GCM.aad = aad->va;
1135 		break;
1136 
1137 	case IMB_AUTH_AES_GMAC_128:
1138 	case IMB_AUTH_AES_GMAC_192:
1139 	case IMB_AUTH_AES_GMAC_256:
1140 		job->u.GMAC._iv = iv->va;
1141 		break;
1142 
1143 	case IMB_AUTH_CHACHA20_POLY1305:
1144 		job->u.CHACHA20_POLY1305.aad = aad->va;
1145 		break;
1146 	default:
1147 		job->u.HMAC._hashed_auth_key_xor_ipad =
1148 				session->auth.pads.inner;
1149 		job->u.HMAC._hashed_auth_key_xor_opad =
1150 				session->auth.pads.outer;
1151 	}
1152 
1153 	/*
1154 	 * Multi-buffer library current only support returning a truncated
1155 	 * digest length as specified in the relevant IPsec RFCs
1156 	 */
1157 
1158 	/* Set digest location and length */
1159 	job->auth_tag_output = digest;
1160 
1161 	/* Data Parameters */
1162 	job->src = buf;
1163 	job->dst = (uint8_t *)buf + sofs.ofs.cipher.head;
1164 	job->cipher_start_src_offset_in_bytes = sofs.ofs.cipher.head;
1165 	job->hash_start_src_offset_in_bytes = sofs.ofs.auth.head;
1166 	job->msg_len_to_hash_in_bytes = len - sofs.ofs.auth.head -
1167 		sofs.ofs.auth.tail;
1168 	job->msg_len_to_cipher_in_bytes = len - sofs.ofs.cipher.head -
1169 		sofs.ofs.cipher.tail;
1170 
1171 	job->user_data = udata;
1172 }
1173 
1174 static int
1175 handle_aead_sgl_job(IMB_JOB *job, IMB_MGR *mb_mgr,
1176 		uint32_t *total_len,
1177 		struct aesni_mb_op_buf_data *src_data,
1178 		struct aesni_mb_op_buf_data *dst_data)
1179 {
1180 	uint32_t data_len, part_len;
1181 
1182 	if (*total_len == 0) {
1183 		job->sgl_state = IMB_SGL_COMPLETE;
1184 		return 0;
1185 	}
1186 
1187 	if (src_data->m == NULL) {
1188 		IPSEC_MB_LOG(ERR, "Invalid source buffer");
1189 		return -EINVAL;
1190 	}
1191 
1192 	job->sgl_state = IMB_SGL_UPDATE;
1193 
1194 	data_len = src_data->m->data_len - src_data->offset;
1195 
1196 	job->src = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *,
1197 			src_data->offset);
1198 
1199 	if (dst_data->m != NULL) {
1200 		if (dst_data->m->data_len - dst_data->offset == 0) {
1201 			dst_data->m = dst_data->m->next;
1202 			if (dst_data->m == NULL) {
1203 				IPSEC_MB_LOG(ERR, "Invalid destination buffer");
1204 				return -EINVAL;
1205 			}
1206 			dst_data->offset = 0;
1207 		}
1208 		part_len = RTE_MIN(data_len, (dst_data->m->data_len -
1209 				dst_data->offset));
1210 		job->dst = rte_pktmbuf_mtod_offset(dst_data->m,
1211 				uint8_t *, dst_data->offset);
1212 		dst_data->offset += part_len;
1213 	} else {
1214 		part_len = RTE_MIN(data_len, *total_len);
1215 		job->dst = rte_pktmbuf_mtod_offset(src_data->m, uint8_t *,
1216 			src_data->offset);
1217 	}
1218 
1219 	job->msg_len_to_cipher_in_bytes = part_len;
1220 	job->msg_len_to_hash_in_bytes = part_len;
1221 
1222 	job = IMB_SUBMIT_JOB(mb_mgr);
1223 
1224 	*total_len -= part_len;
1225 
1226 	if (part_len != data_len) {
1227 		src_data->offset += part_len;
1228 	} else {
1229 		src_data->m = src_data->m->next;
1230 		src_data->offset = 0;
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 static uint64_t
1237 sgl_linear_cipher_auth_len(IMB_JOB *job, uint64_t *auth_len)
1238 {
1239 	uint64_t cipher_len;
1240 
1241 	if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN ||
1242 			job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN)
1243 		cipher_len = (job->msg_len_to_cipher_in_bits >> 3) +
1244 				(job->cipher_start_src_offset_in_bits >> 3);
1245 	else
1246 		cipher_len = job->msg_len_to_cipher_in_bytes +
1247 				job->cipher_start_src_offset_in_bytes;
1248 
1249 	if (job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN ||
1250 			job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN)
1251 		*auth_len = (job->msg_len_to_hash_in_bits >> 3) +
1252 				job->hash_start_src_offset_in_bytes;
1253 	else
1254 		*auth_len = job->msg_len_to_hash_in_bytes +
1255 				job->hash_start_src_offset_in_bytes;
1256 
1257 	return RTE_MAX(*auth_len, cipher_len);
1258 }
1259 
1260 static int
1261 handle_sgl_linear(IMB_JOB *job, struct rte_crypto_op *op, uint32_t dst_offset,
1262 		struct aesni_mb_session *session)
1263 {
1264 	uint64_t auth_len, total_len;
1265 	uint8_t *src, *linear_buf = NULL;
1266 	int lb_offset = 0;
1267 	struct rte_mbuf *src_seg;
1268 	uint16_t src_len;
1269 
1270 	total_len = sgl_linear_cipher_auth_len(job, &auth_len);
1271 	linear_buf = rte_zmalloc(NULL, total_len + job->auth_tag_output_len_in_bytes, 0);
1272 	if (linear_buf == NULL) {
1273 		IPSEC_MB_LOG(ERR, "Error allocating memory for SGL Linear Buffer");
1274 		return -1;
1275 	}
1276 
1277 	for (src_seg = op->sym->m_src; (src_seg != NULL) &&
1278 			(total_len - lb_offset > 0);
1279 			src_seg = src_seg->next) {
1280 		src = rte_pktmbuf_mtod(src_seg, uint8_t *);
1281 		src_len =  RTE_MIN(src_seg->data_len, total_len - lb_offset);
1282 		rte_memcpy(linear_buf + lb_offset, src, src_len);
1283 		lb_offset += src_len;
1284 	}
1285 
1286 	job->src = linear_buf;
1287 	job->dst = linear_buf + dst_offset;
1288 	job->user_data2 = linear_buf;
1289 
1290 	if (job->hash_alg == IMB_AUTH_AES_GMAC)
1291 		job->u.GCM.aad = linear_buf;
1292 
1293 	if (session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
1294 		job->auth_tag_output = linear_buf + lb_offset;
1295 	else
1296 		job->auth_tag_output = linear_buf + auth_len;
1297 
1298 	return 0;
1299 }
1300 
1301 static inline int
1302 imb_lib_support_sgl_algo(IMB_CIPHER_MODE alg)
1303 {
1304 	if (alg == IMB_CIPHER_CHACHA20_POLY1305 ||
1305 			alg == IMB_CIPHER_CHACHA20_POLY1305_SGL ||
1306 			alg == IMB_CIPHER_GCM_SGL ||
1307 			alg == IMB_CIPHER_GCM)
1308 		return 1;
1309 	return 0;
1310 }
1311 
1312 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
1313 static inline int
1314 single_sgl_job(IMB_JOB *job, struct rte_crypto_op *op,
1315 		int oop, uint32_t offset, struct rte_mbuf *m_src,
1316 		struct rte_mbuf *m_dst, struct IMB_SGL_IOV *sgl_segs)
1317 {
1318 	uint32_t num_segs = 0;
1319 	struct aesni_mb_op_buf_data src_sgl = {0};
1320 	struct aesni_mb_op_buf_data dst_sgl = {0};
1321 	uint32_t total_len;
1322 
1323 	job->sgl_state = IMB_SGL_ALL;
1324 
1325 	src_sgl.m = m_src;
1326 	src_sgl.offset = offset;
1327 
1328 	while (src_sgl.offset >= src_sgl.m->data_len) {
1329 		src_sgl.offset -= src_sgl.m->data_len;
1330 		src_sgl.m = src_sgl.m->next;
1331 
1332 		RTE_ASSERT(src_sgl.m != NULL);
1333 	}
1334 
1335 	if (oop) {
1336 		dst_sgl.m = m_dst;
1337 		dst_sgl.offset = offset;
1338 
1339 		while (dst_sgl.offset >= dst_sgl.m->data_len) {
1340 			dst_sgl.offset -= dst_sgl.m->data_len;
1341 			dst_sgl.m = dst_sgl.m->next;
1342 
1343 			RTE_ASSERT(dst_sgl.m != NULL);
1344 		}
1345 	}
1346 	total_len = op->sym->aead.data.length;
1347 
1348 	while (total_len != 0) {
1349 		uint32_t data_len, part_len;
1350 
1351 		if (src_sgl.m == NULL) {
1352 			IPSEC_MB_LOG(ERR, "Invalid source buffer");
1353 			return -EINVAL;
1354 		}
1355 
1356 		data_len = src_sgl.m->data_len - src_sgl.offset;
1357 
1358 		sgl_segs[num_segs].in = rte_pktmbuf_mtod_offset(src_sgl.m, uint8_t *,
1359 				src_sgl.offset);
1360 
1361 		if (dst_sgl.m != NULL) {
1362 			if (dst_sgl.m->data_len - dst_sgl.offset == 0) {
1363 				dst_sgl.m = dst_sgl.m->next;
1364 				if (dst_sgl.m == NULL) {
1365 					IPSEC_MB_LOG(ERR, "Invalid destination buffer");
1366 					return -EINVAL;
1367 				}
1368 				dst_sgl.offset = 0;
1369 			}
1370 			part_len = RTE_MIN(data_len, (dst_sgl.m->data_len -
1371 					dst_sgl.offset));
1372 			sgl_segs[num_segs].out = rte_pktmbuf_mtod_offset(dst_sgl.m,
1373 					uint8_t *, dst_sgl.offset);
1374 			dst_sgl.offset += part_len;
1375 		} else {
1376 			part_len = RTE_MIN(data_len, total_len);
1377 			sgl_segs[num_segs].out = rte_pktmbuf_mtod_offset(src_sgl.m, uint8_t *,
1378 				src_sgl.offset);
1379 		}
1380 
1381 		sgl_segs[num_segs].len = part_len;
1382 
1383 		total_len -= part_len;
1384 
1385 		if (part_len != data_len) {
1386 			src_sgl.offset += part_len;
1387 		} else {
1388 			src_sgl.m = src_sgl.m->next;
1389 			src_sgl.offset = 0;
1390 		}
1391 		num_segs++;
1392 	}
1393 	job->num_sgl_io_segs = num_segs;
1394 	job->sgl_io_segs = sgl_segs;
1395 	return 0;
1396 }
1397 #endif
1398 
1399 static inline int
1400 multi_sgl_job(IMB_JOB *job, struct rte_crypto_op *op,
1401 		int oop, uint32_t offset, struct rte_mbuf *m_src,
1402 		struct rte_mbuf *m_dst, IMB_MGR *mb_mgr)
1403 {
1404 	int ret;
1405 	IMB_JOB base_job;
1406 	struct aesni_mb_op_buf_data src_sgl = {0};
1407 	struct aesni_mb_op_buf_data dst_sgl = {0};
1408 	uint32_t total_len;
1409 
1410 	base_job = *job;
1411 	job->sgl_state = IMB_SGL_INIT;
1412 	job = IMB_SUBMIT_JOB(mb_mgr);
1413 	total_len = op->sym->aead.data.length;
1414 
1415 	src_sgl.m = m_src;
1416 	src_sgl.offset = offset;
1417 
1418 	while (src_sgl.offset >= src_sgl.m->data_len) {
1419 		src_sgl.offset -= src_sgl.m->data_len;
1420 		src_sgl.m = src_sgl.m->next;
1421 
1422 		RTE_ASSERT(src_sgl.m != NULL);
1423 	}
1424 
1425 	if (oop) {
1426 		dst_sgl.m = m_dst;
1427 		dst_sgl.offset = offset;
1428 
1429 		while (dst_sgl.offset >= dst_sgl.m->data_len) {
1430 			dst_sgl.offset -= dst_sgl.m->data_len;
1431 			dst_sgl.m = dst_sgl.m->next;
1432 
1433 			RTE_ASSERT(dst_sgl.m != NULL);
1434 		}
1435 	}
1436 
1437 	while (job->sgl_state != IMB_SGL_COMPLETE) {
1438 		job = IMB_GET_NEXT_JOB(mb_mgr);
1439 		*job = base_job;
1440 		ret = handle_aead_sgl_job(job, mb_mgr, &total_len,
1441 			&src_sgl, &dst_sgl);
1442 		if (ret < 0)
1443 			return ret;
1444 	}
1445 	return 0;
1446 }
1447 
1448 static inline int
1449 set_gcm_job(IMB_MGR *mb_mgr, IMB_JOB *job, const uint8_t sgl,
1450 	struct aesni_mb_qp_data *qp_data,
1451 	struct rte_crypto_op *op, uint8_t *digest_idx,
1452 	const struct aesni_mb_session *session,
1453 	struct rte_mbuf *m_src, struct rte_mbuf *m_dst,
1454 	const int oop)
1455 {
1456 	const uint32_t m_offset = op->sym->aead.data.offset;
1457 
1458 	job->u.GCM.aad = op->sym->aead.aad.data;
1459 	if (sgl) {
1460 		job->u.GCM.ctx = &qp_data->gcm_sgl_ctx;
1461 		job->cipher_mode = IMB_CIPHER_GCM_SGL;
1462 		job->hash_alg = IMB_AUTH_GCM_SGL;
1463 		job->hash_start_src_offset_in_bytes = 0;
1464 		job->msg_len_to_hash_in_bytes = 0;
1465 		job->msg_len_to_cipher_in_bytes = 0;
1466 		job->cipher_start_src_offset_in_bytes = 0;
1467 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1468 		imb_set_session(mb_mgr, job);
1469 #endif
1470 	} else {
1471 		job->hash_start_src_offset_in_bytes =
1472 				op->sym->aead.data.offset;
1473 		job->msg_len_to_hash_in_bytes =
1474 				op->sym->aead.data.length;
1475 		job->cipher_start_src_offset_in_bytes =
1476 			op->sym->aead.data.offset;
1477 		job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
1478 	}
1479 
1480 	if (session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1481 		job->auth_tag_output = qp_data->temp_digests[*digest_idx];
1482 		*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1483 	} else {
1484 		job->auth_tag_output = op->sym->aead.digest.data;
1485 	}
1486 
1487 	job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1488 			session->iv.offset);
1489 
1490 	/* Set user data to be crypto operation data struct */
1491 	job->user_data = op;
1492 
1493 	if (sgl) {
1494 		job->src = NULL;
1495 		job->dst = NULL;
1496 
1497 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
1498 		if (m_src->nb_segs <= MAX_NUM_SEGS)
1499 			return single_sgl_job(job, op, oop,
1500 					m_offset, m_src, m_dst,
1501 					qp_data->sgl_segs);
1502 		else
1503 #endif
1504 			return multi_sgl_job(job, op, oop,
1505 					m_offset, m_src, m_dst, mb_mgr);
1506 	} else {
1507 		job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
1508 		job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 /** Check if conditions are met for digest-appended operations */
1515 static uint8_t *
1516 aesni_mb_digest_appended_in_src(struct rte_crypto_op *op, IMB_JOB *job,
1517 		uint32_t oop)
1518 {
1519 	unsigned int auth_size, cipher_size;
1520 	uint8_t *end_cipher;
1521 	uint8_t *start_cipher;
1522 
1523 	if (job->cipher_mode == IMB_CIPHER_NULL)
1524 		return NULL;
1525 
1526 	if (job->cipher_mode == IMB_CIPHER_ZUC_EEA3 ||
1527 		job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN ||
1528 		job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN) {
1529 		cipher_size = (op->sym->cipher.data.offset >> 3) +
1530 			(op->sym->cipher.data.length >> 3);
1531 	} else {
1532 		cipher_size = (op->sym->cipher.data.offset) +
1533 			(op->sym->cipher.data.length);
1534 	}
1535 	if (job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN ||
1536 		job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN ||
1537 		job->hash_alg == IMB_AUTH_KASUMI_UIA1 ||
1538 		job->hash_alg == IMB_AUTH_ZUC256_EIA3_BITLEN) {
1539 		auth_size = (op->sym->auth.data.offset >> 3) +
1540 			(op->sym->auth.data.length >> 3);
1541 	} else {
1542 		auth_size = (op->sym->auth.data.offset) +
1543 			(op->sym->auth.data.length);
1544 	}
1545 
1546 	if (!oop) {
1547 		end_cipher = rte_pktmbuf_mtod_offset(op->sym->m_src, uint8_t *, cipher_size);
1548 		start_cipher = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
1549 	} else {
1550 		end_cipher = rte_pktmbuf_mtod_offset(op->sym->m_dst, uint8_t *, cipher_size);
1551 		start_cipher = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
1552 	}
1553 
1554 	if (start_cipher < op->sym->auth.digest.data &&
1555 		op->sym->auth.digest.data < end_cipher) {
1556 		return rte_pktmbuf_mtod_offset(op->sym->m_src, uint8_t *, auth_size);
1557 	} else {
1558 		return NULL;
1559 	}
1560 }
1561 
1562 /**
1563  * Process a crypto operation and complete a IMB_JOB job structure for
1564  * submission to the multi buffer library for processing.
1565  *
1566  * @param	qp		queue pair
1567  * @param	job		IMB_JOB structure to fill
1568  * @param	op		crypto op to process
1569  * @param	digest_idx	ID for digest to use
1570  *
1571  * @return
1572  * - 0 on success, the IMB_JOB will be filled
1573  * - -1 if invalid session or errors allocating SGL linear buffer,
1574  *   IMB_JOB will not be filled
1575  */
1576 static inline int
1577 set_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp,
1578 		struct rte_crypto_op *op, uint8_t *digest_idx,
1579 		IMB_MGR *mb_mgr, pid_t pid)
1580 {
1581 	struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
1582 	struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp);
1583 	struct aesni_mb_session *session;
1584 	uint32_t m_offset;
1585 	int oop;
1586 	uint32_t auth_off_in_bytes;
1587 	uint32_t ciph_off_in_bytes;
1588 	uint32_t auth_len_in_bytes;
1589 	uint32_t ciph_len_in_bytes;
1590 	uint8_t sgl = 0;
1591 	uint8_t lb_sgl = 0;
1592 
1593 #if IMB_VERSION(1, 3, 0) >= IMB_VERSION_NUM
1594 	(void) pid;
1595 #endif
1596 
1597 	session = ipsec_mb_get_session_private(qp, op);
1598 	if (session == NULL) {
1599 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
1600 		return -1;
1601 	}
1602 
1603 	const IMB_CIPHER_MODE cipher_mode =
1604 			session->template_job.cipher_mode;
1605 
1606 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1607 	if (session->pid != pid) {
1608 		memcpy(job, &session->template_job, sizeof(IMB_JOB));
1609 		imb_set_session(mb_mgr, job);
1610 	} else if (job->session_id != session->session_id)
1611 #endif
1612 		memcpy(job, &session->template_job, sizeof(IMB_JOB));
1613 
1614 	if (!op->sym->m_dst) {
1615 		/* in-place operation */
1616 		m_dst = m_src;
1617 		oop = 0;
1618 	} else if (op->sym->m_dst == op->sym->m_src) {
1619 		/* in-place operation */
1620 		m_dst = m_src;
1621 		oop = 0;
1622 	} else {
1623 		/* out-of-place operation */
1624 		m_dst = op->sym->m_dst;
1625 		oop = 1;
1626 	}
1627 
1628 	if (m_src->nb_segs > 1 || m_dst->nb_segs > 1) {
1629 		sgl = 1;
1630 		if (!imb_lib_support_sgl_algo(cipher_mode))
1631 			lb_sgl = 1;
1632 	}
1633 
1634 	if (cipher_mode == IMB_CIPHER_GCM)
1635 		return set_gcm_job(mb_mgr, job, sgl, qp_data,
1636 				op, digest_idx, session, m_src, m_dst, oop);
1637 
1638 	/* Set authentication parameters */
1639 	const int aead = is_aead_algo(job->hash_alg, cipher_mode);
1640 
1641 	switch (job->hash_alg) {
1642 	case IMB_AUTH_AES_CCM:
1643 		job->u.CCM.aad = op->sym->aead.aad.data + 18;
1644 		break;
1645 
1646 	case IMB_AUTH_AES_GMAC:
1647 		job->u.GCM.aad = op->sym->aead.aad.data;
1648 		if (sgl) {
1649 			job->u.GCM.ctx = &qp_data->gcm_sgl_ctx;
1650 			job->cipher_mode = IMB_CIPHER_GCM_SGL;
1651 			job->hash_alg = IMB_AUTH_GCM_SGL;
1652 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1653 			imb_set_session(mb_mgr, job);
1654 #endif
1655 		}
1656 		break;
1657 	case IMB_AUTH_AES_GMAC_128:
1658 	case IMB_AUTH_AES_GMAC_192:
1659 	case IMB_AUTH_AES_GMAC_256:
1660 		job->u.GMAC._iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1661 						session->auth_iv.offset);
1662 		break;
1663 	case IMB_AUTH_ZUC_EIA3_BITLEN:
1664 	case IMB_AUTH_ZUC256_EIA3_BITLEN:
1665 		job->u.ZUC_EIA3._iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1666 						session->auth_iv.offset);
1667 		break;
1668 	case IMB_AUTH_SNOW3G_UIA2_BITLEN:
1669 		job->u.SNOW3G_UIA2._iv =
1670 			rte_crypto_op_ctod_offset(op, uint8_t *,
1671 						session->auth_iv.offset);
1672 		break;
1673 	case IMB_AUTH_CHACHA20_POLY1305:
1674 		job->u.CHACHA20_POLY1305.aad = op->sym->aead.aad.data;
1675 		if (sgl) {
1676 			job->u.CHACHA20_POLY1305.ctx = &qp_data->chacha_sgl_ctx;
1677 			job->cipher_mode = IMB_CIPHER_CHACHA20_POLY1305_SGL;
1678 			job->hash_alg = IMB_AUTH_CHACHA20_POLY1305_SGL;
1679 #if IMB_VERSION(1, 3, 0) < IMB_VERSION_NUM
1680 			imb_set_session(mb_mgr, job);
1681 #endif
1682 		}
1683 		break;
1684 	default:
1685 		break;
1686 	}
1687 
1688 	if (aead)
1689 		m_offset = op->sym->aead.data.offset;
1690 	else
1691 		m_offset = op->sym->cipher.data.offset;
1692 
1693 	if (cipher_mode == IMB_CIPHER_ZUC_EEA3)
1694 		m_offset >>= 3;
1695 	else if (cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN)
1696 		m_offset = 0;
1697 	else if (cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN)
1698 		m_offset = 0;
1699 
1700 	/* Set digest output location */
1701 	if (job->hash_alg != IMB_AUTH_NULL &&
1702 			session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1703 		job->auth_tag_output = qp_data->temp_digests[*digest_idx];
1704 		*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1705 	} else {
1706 		if (aead)
1707 			job->auth_tag_output = op->sym->aead.digest.data;
1708 		else {
1709 			job->auth_tag_output = aesni_mb_digest_appended_in_src(op, job, oop);
1710 			if (job->auth_tag_output == NULL) {
1711 				job->auth_tag_output = op->sym->auth.digest.data;
1712 			}
1713 		}
1714 		if (session->auth.req_digest_len !=
1715 				job->auth_tag_output_len_in_bytes) {
1716 			job->auth_tag_output =
1717 				qp_data->temp_digests[*digest_idx];
1718 			*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1719 		}
1720 	}
1721 	/*
1722 	 * Multi-buffer library current only support returning a truncated
1723 	 * digest length as specified in the relevant IPsec RFCs
1724 	 */
1725 
1726 	/* Data Parameters */
1727 	if (sgl) {
1728 		job->src = NULL;
1729 		job->dst = NULL;
1730 	} else {
1731 		job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
1732 		job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
1733 	}
1734 
1735 	switch (job->hash_alg) {
1736 	case IMB_AUTH_AES_CCM:
1737 		job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
1738 		job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;
1739 
1740 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1741 			session->iv.offset + 1);
1742 		break;
1743 
1744 	case IMB_AUTH_AES_GMAC:
1745 		job->hash_start_src_offset_in_bytes =
1746 				op->sym->aead.data.offset;
1747 		job->msg_len_to_hash_in_bytes =
1748 				op->sym->aead.data.length;
1749 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1750 				session->iv.offset);
1751 		break;
1752 	case IMB_AUTH_AES_GMAC_128:
1753 	case IMB_AUTH_AES_GMAC_192:
1754 	case IMB_AUTH_AES_GMAC_256:
1755 		job->hash_start_src_offset_in_bytes =
1756 				op->sym->auth.data.offset;
1757 		job->msg_len_to_hash_in_bytes =
1758 				op->sym->auth.data.length;
1759 		break;
1760 
1761 	case IMB_AUTH_GCM_SGL:
1762 	case IMB_AUTH_CHACHA20_POLY1305_SGL:
1763 		job->hash_start_src_offset_in_bytes = 0;
1764 		job->msg_len_to_hash_in_bytes = 0;
1765 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1766 			session->iv.offset);
1767 		break;
1768 
1769 	case IMB_AUTH_CHACHA20_POLY1305:
1770 		job->hash_start_src_offset_in_bytes =
1771 			op->sym->aead.data.offset;
1772 		job->msg_len_to_hash_in_bytes =
1773 					op->sym->aead.data.length;
1774 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1775 				session->iv.offset);
1776 		break;
1777 	/* ZUC and SNOW3G require length in bits and offset in bytes */
1778 	case IMB_AUTH_ZUC_EIA3_BITLEN:
1779 	case IMB_AUTH_ZUC256_EIA3_BITLEN:
1780 	case IMB_AUTH_SNOW3G_UIA2_BITLEN:
1781 		auth_off_in_bytes = op->sym->auth.data.offset >> 3;
1782 		ciph_off_in_bytes = op->sym->cipher.data.offset >> 3;
1783 		auth_len_in_bytes = op->sym->auth.data.length >> 3;
1784 		ciph_len_in_bytes = op->sym->cipher.data.length >> 3;
1785 
1786 		job->hash_start_src_offset_in_bytes = auth_start_offset(op,
1787 				session, oop, auth_off_in_bytes,
1788 				ciph_off_in_bytes, auth_len_in_bytes,
1789 				ciph_len_in_bytes, lb_sgl);
1790 		job->msg_len_to_hash_in_bits = op->sym->auth.data.length;
1791 
1792 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1793 			session->iv.offset);
1794 		break;
1795 
1796 	/* KASUMI requires lengths and offset in bytes */
1797 	case IMB_AUTH_KASUMI_UIA1:
1798 		auth_off_in_bytes = op->sym->auth.data.offset >> 3;
1799 		ciph_off_in_bytes = op->sym->cipher.data.offset >> 3;
1800 		auth_len_in_bytes = op->sym->auth.data.length >> 3;
1801 		ciph_len_in_bytes = op->sym->cipher.data.length >> 3;
1802 
1803 		job->hash_start_src_offset_in_bytes = auth_start_offset(op,
1804 				session, oop, auth_off_in_bytes,
1805 				ciph_off_in_bytes, auth_len_in_bytes,
1806 				ciph_len_in_bytes, lb_sgl);
1807 		job->msg_len_to_hash_in_bytes = auth_len_in_bytes;
1808 
1809 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1810 			session->iv.offset);
1811 		break;
1812 
1813 	default:
1814 		job->hash_start_src_offset_in_bytes = auth_start_offset(op,
1815 				session, oop, op->sym->auth.data.offset,
1816 				op->sym->cipher.data.offset,
1817 				op->sym->auth.data.length,
1818 				op->sym->cipher.data.length, lb_sgl);
1819 		job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
1820 
1821 		job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1822 			session->iv.offset);
1823 	}
1824 
1825 	switch (job->cipher_mode) {
1826 	/* ZUC requires length and offset in bytes */
1827 	case IMB_CIPHER_ZUC_EEA3:
1828 		job->cipher_start_src_offset_in_bytes =
1829 					op->sym->cipher.data.offset >> 3;
1830 		job->msg_len_to_cipher_in_bytes =
1831 					op->sym->cipher.data.length >> 3;
1832 		break;
1833 	/* ZUC and SNOW3G require length and offset in bits */
1834 	case IMB_CIPHER_SNOW3G_UEA2_BITLEN:
1835 	case IMB_CIPHER_KASUMI_UEA1_BITLEN:
1836 		job->cipher_start_src_offset_in_bits =
1837 					op->sym->cipher.data.offset;
1838 		job->msg_len_to_cipher_in_bits =
1839 					op->sym->cipher.data.length;
1840 		break;
1841 	case IMB_CIPHER_GCM:
1842 		job->cipher_start_src_offset_in_bytes =
1843 				op->sym->aead.data.offset;
1844 		job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
1845 		break;
1846 	case IMB_CIPHER_CCM:
1847 	case IMB_CIPHER_CHACHA20_POLY1305:
1848 		job->cipher_start_src_offset_in_bytes =
1849 				op->sym->aead.data.offset;
1850 		job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
1851 		break;
1852 	case IMB_CIPHER_GCM_SGL:
1853 	case IMB_CIPHER_CHACHA20_POLY1305_SGL:
1854 		job->msg_len_to_cipher_in_bytes = 0;
1855 		job->cipher_start_src_offset_in_bytes = 0;
1856 		break;
1857 	default:
1858 		job->cipher_start_src_offset_in_bytes =
1859 					op->sym->cipher.data.offset;
1860 		job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
1861 	}
1862 
1863 	if (cipher_mode == IMB_CIPHER_NULL && oop) {
1864 		memcpy(job->dst + job->cipher_start_src_offset_in_bytes,
1865 			job->src + job->cipher_start_src_offset_in_bytes,
1866 			job->msg_len_to_cipher_in_bytes);
1867 	}
1868 
1869 	/* Set user data to be crypto operation data struct */
1870 	job->user_data = op;
1871 
1872 	if (sgl) {
1873 
1874 		if (lb_sgl)
1875 			return handle_sgl_linear(job, op, m_offset, session);
1876 
1877 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
1878 		if (m_src->nb_segs <= MAX_NUM_SEGS)
1879 			return single_sgl_job(job, op, oop,
1880 					m_offset, m_src, m_dst,
1881 					qp_data->sgl_segs);
1882 		else
1883 #endif
1884 			return multi_sgl_job(job, op, oop,
1885 					m_offset, m_src, m_dst, mb_mgr);
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 /**
1892  * Process a crypto operation containing a security op and complete a
1893  * IMB_JOB job structure for submission to the multi buffer library for
1894  * processing.
1895  */
1896 static inline int
1897 set_sec_mb_job_params(IMB_JOB *job, struct ipsec_mb_qp *qp,
1898 			struct rte_crypto_op *op, uint8_t *digest_idx)
1899 {
1900 	struct aesni_mb_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp);
1901 	struct rte_mbuf *m_src, *m_dst;
1902 	struct rte_crypto_sym_op *sym;
1903 	struct aesni_mb_session *session = NULL;
1904 
1905 	if (unlikely(op->sess_type != RTE_CRYPTO_OP_SECURITY_SESSION)) {
1906 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
1907 		return -1;
1908 	}
1909 	session = SECURITY_GET_SESS_PRIV(op->sym->session);
1910 
1911 	if (unlikely(session == NULL)) {
1912 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
1913 		return -1;
1914 	}
1915 	/* Only DOCSIS protocol operations supported now */
1916 	if (session->template_job.cipher_mode != IMB_CIPHER_DOCSIS_SEC_BPI ||
1917 			session->template_job.hash_alg != IMB_AUTH_DOCSIS_CRC32) {
1918 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1919 		return -1;
1920 	}
1921 
1922 	sym = op->sym;
1923 	m_src = sym->m_src;
1924 
1925 	if (likely(sym->m_dst == NULL || sym->m_dst == m_src)) {
1926 		/* in-place operation */
1927 		m_dst = m_src;
1928 	} else {
1929 		/* out-of-place operation not supported */
1930 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1931 		return -ENOTSUP;
1932 	}
1933 
1934 	memcpy(job, &session->template_job, sizeof(IMB_JOB));
1935 
1936 	/* Set cipher parameters */
1937 	job->enc_keys = session->cipher.expanded_aes_keys.encode;
1938 	job->dec_keys = session->cipher.expanded_aes_keys.decode;
1939 
1940 	/* Set IV parameters */
1941 	job->iv = (uint8_t *)op + session->iv.offset;
1942 
1943 	/* Set digest output location */
1944 	job->auth_tag_output = qp_data->temp_digests[*digest_idx];
1945 	*digest_idx = (*digest_idx + 1) % IMB_MAX_JOBS;
1946 
1947 	/* Set data parameters */
1948 	job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
1949 	job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *,
1950 						sym->cipher.data.offset);
1951 
1952 	job->cipher_start_src_offset_in_bytes = sym->cipher.data.offset;
1953 	job->msg_len_to_cipher_in_bytes = sym->cipher.data.length;
1954 
1955 	job->hash_start_src_offset_in_bytes = sym->auth.data.offset;
1956 	job->msg_len_to_hash_in_bytes = sym->auth.data.length;
1957 
1958 	job->user_data = op;
1959 
1960 	return 0;
1961 }
1962 
1963 static inline void
1964 verify_docsis_sec_crc(IMB_JOB *job, uint8_t *status)
1965 {
1966 	uint16_t crc_offset;
1967 	uint8_t *crc;
1968 
1969 	if (!job->msg_len_to_hash_in_bytes)
1970 		return;
1971 
1972 	crc_offset = job->hash_start_src_offset_in_bytes +
1973 			job->msg_len_to_hash_in_bytes -
1974 			job->cipher_start_src_offset_in_bytes;
1975 	crc = job->dst + crc_offset;
1976 
1977 	/* Verify CRC (at the end of the message) */
1978 	if (memcmp(job->auth_tag_output, crc, RTE_ETHER_CRC_LEN) != 0)
1979 		*status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1980 }
1981 
1982 static inline void
1983 verify_digest(IMB_JOB *job, void *digest, uint16_t len, uint8_t *status)
1984 {
1985 	/* Verify digest if required */
1986 	if (memcmp(job->auth_tag_output, digest, len) != 0)
1987 		*status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1988 }
1989 
1990 static inline void
1991 generate_digest(IMB_JOB *job, struct rte_crypto_op *op,
1992 		struct aesni_mb_session *sess)
1993 {
1994 	/* No extra copy needed */
1995 	if (likely(sess->auth.req_digest_len == job->auth_tag_output_len_in_bytes))
1996 		return;
1997 
1998 	/*
1999 	 * This can only happen for HMAC, so only digest
2000 	 * for authentication algos is required
2001 	 */
2002 	memcpy(op->sym->auth.digest.data, job->auth_tag_output,
2003 			sess->auth.req_digest_len);
2004 }
2005 
2006 static void
2007 post_process_sgl_linear(struct rte_crypto_op *op, IMB_JOB *job,
2008 		struct aesni_mb_session *sess, uint8_t *linear_buf)
2009 {
2010 
2011 	int lb_offset = 0;
2012 	struct rte_mbuf *m_dst = op->sym->m_dst == NULL ?
2013 			op->sym->m_src : op->sym->m_dst;
2014 	uint16_t total_len, dst_len;
2015 	uint64_t auth_len;
2016 	uint8_t *dst;
2017 
2018 	total_len = sgl_linear_cipher_auth_len(job, &auth_len);
2019 
2020 	if (sess->auth.operation != RTE_CRYPTO_AUTH_OP_VERIFY)
2021 		total_len += job->auth_tag_output_len_in_bytes;
2022 
2023 	for (; (m_dst != NULL) && (total_len - lb_offset > 0); m_dst = m_dst->next) {
2024 		dst = rte_pktmbuf_mtod(m_dst, uint8_t *);
2025 		dst_len = RTE_MIN(m_dst->data_len, total_len - lb_offset);
2026 		rte_memcpy(dst, linear_buf + lb_offset, dst_len);
2027 		lb_offset += dst_len;
2028 	}
2029 }
2030 
2031 /**
2032  * Process a completed job and return rte_mbuf which job processed
2033  *
2034  * @param qp	Queue Pair to process
2035  * @param job	IMB_JOB job to process
2036  *
2037  * @return
2038  * - Returns processed crypto operation.
2039  * - Returns NULL on invalid job
2040  */
2041 static inline struct rte_crypto_op *
2042 post_process_mb_job(struct ipsec_mb_qp *qp, IMB_JOB *job)
2043 {
2044 	struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
2045 	struct aesni_mb_session *sess = NULL;
2046 	uint8_t *linear_buf = NULL;
2047 	int sgl = 0;
2048 	uint8_t oop = 0;
2049 	uint8_t is_docsis_sec = 0;
2050 
2051 	if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
2052 		/*
2053 		 * Assuming at this point that if it's a security type op, that
2054 		 * this is for DOCSIS
2055 		 */
2056 		is_docsis_sec = 1;
2057 		sess = SECURITY_GET_SESS_PRIV(op->sym->session);
2058 	} else
2059 		sess = CRYPTODEV_GET_SYM_SESS_PRIV(op->sym->session);
2060 
2061 	if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
2062 		switch (job->status) {
2063 		case IMB_STATUS_COMPLETED:
2064 			op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2065 
2066 			if ((op->sym->m_src->nb_segs > 1 ||
2067 					(op->sym->m_dst != NULL &&
2068 					op->sym->m_dst->nb_segs > 1)) &&
2069 					!imb_lib_support_sgl_algo(job->cipher_mode)) {
2070 				linear_buf = (uint8_t *) job->user_data2;
2071 				sgl = 1;
2072 
2073 				post_process_sgl_linear(op, job, sess, linear_buf);
2074 			}
2075 
2076 			if (job->hash_alg == IMB_AUTH_NULL)
2077 				break;
2078 
2079 			if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
2080 				if (is_aead_algo(job->hash_alg,
2081 						job->cipher_mode))
2082 					verify_digest(job,
2083 						op->sym->aead.digest.data,
2084 						sess->auth.req_digest_len,
2085 						&op->status);
2086 				else if (is_docsis_sec)
2087 					verify_docsis_sec_crc(job,
2088 						&op->status);
2089 				else
2090 					verify_digest(job,
2091 						op->sym->auth.digest.data,
2092 						sess->auth.req_digest_len,
2093 						&op->status);
2094 			} else {
2095 				if (!op->sym->m_dst || op->sym->m_dst == op->sym->m_src) {
2096 					/* in-place operation */
2097 					oop = 0;
2098 				} else { /* out-of-place operation */
2099 					oop = 1;
2100 				}
2101 
2102 				/* Enable digest check */
2103 				if (op->sym->m_src->nb_segs == 1 && op->sym->m_dst != NULL
2104 				&& !is_aead_algo(job->hash_alg,	sess->template_job.cipher_mode) &&
2105 				aesni_mb_digest_appended_in_src(op, job, oop) != NULL) {
2106 					unsigned int auth_size, cipher_size;
2107 					int unencrypted_bytes = 0;
2108 					if (job->cipher_mode == IMB_CIPHER_SNOW3G_UEA2_BITLEN ||
2109 						job->cipher_mode == IMB_CIPHER_KASUMI_UEA1_BITLEN ||
2110 						job->cipher_mode == IMB_CIPHER_ZUC_EEA3) {
2111 						cipher_size = (op->sym->cipher.data.offset >> 3) +
2112 							(op->sym->cipher.data.length >> 3);
2113 					} else {
2114 						cipher_size = (op->sym->cipher.data.offset) +
2115 							(op->sym->cipher.data.length);
2116 					}
2117 					if (job->hash_alg == IMB_AUTH_ZUC_EIA3_BITLEN ||
2118 						job->hash_alg == IMB_AUTH_SNOW3G_UIA2_BITLEN ||
2119 						job->hash_alg == IMB_AUTH_KASUMI_UIA1 ||
2120 						job->hash_alg == IMB_AUTH_ZUC256_EIA3_BITLEN) {
2121 						auth_size = (op->sym->auth.data.offset >> 3) +
2122 							(op->sym->auth.data.length >> 3);
2123 					} else {
2124 						auth_size = (op->sym->auth.data.offset) +
2125 						(op->sym->auth.data.length);
2126 					}
2127 					/* Check for unencrypted bytes in partial digest cases */
2128 					if (job->cipher_mode != IMB_CIPHER_NULL) {
2129 						unencrypted_bytes = auth_size +
2130 						job->auth_tag_output_len_in_bytes - cipher_size;
2131 					}
2132 					if (unencrypted_bytes > 0)
2133 						rte_memcpy(
2134 						rte_pktmbuf_mtod_offset(op->sym->m_dst, uint8_t *,
2135 						cipher_size),
2136 						rte_pktmbuf_mtod_offset(op->sym->m_src, uint8_t *,
2137 						cipher_size),
2138 						unencrypted_bytes);
2139 				}
2140 				generate_digest(job, op, sess);
2141 			}
2142 			break;
2143 		default:
2144 			op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2145 		}
2146 		if (sgl)
2147 			rte_free(linear_buf);
2148 	}
2149 
2150 	/* Free session if a session-less crypto op */
2151 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2152 		memset(sess, 0, sizeof(struct aesni_mb_session));
2153 		rte_mempool_put(qp->sess_mp, op->sym->session);
2154 		op->sym->session = NULL;
2155 	}
2156 
2157 	return op;
2158 }
2159 
2160 static inline void
2161 post_process_mb_sync_job(IMB_JOB *job)
2162 {
2163 	uint32_t *st;
2164 
2165 	st = job->user_data;
2166 	st[0] = (job->status == IMB_STATUS_COMPLETED) ? 0 : EBADMSG;
2167 }
2168 
2169 static inline uint32_t
2170 handle_completed_sync_jobs(IMB_JOB *job, IMB_MGR *mb_mgr)
2171 {
2172 	uint32_t i;
2173 
2174 	for (i = 0; job != NULL; i++, job = IMB_GET_COMPLETED_JOB(mb_mgr))
2175 		post_process_mb_sync_job(job);
2176 
2177 	return i;
2178 }
2179 
2180 static inline uint32_t
2181 flush_mb_sync_mgr(IMB_MGR *mb_mgr)
2182 {
2183 	IMB_JOB *job;
2184 
2185 	job = IMB_FLUSH_JOB(mb_mgr);
2186 	return handle_completed_sync_jobs(job, mb_mgr);
2187 }
2188 
2189 static inline IMB_JOB *
2190 set_job_null_op(IMB_JOB *job, struct rte_crypto_op *op)
2191 {
2192 	job->chain_order = IMB_ORDER_HASH_CIPHER;
2193 	job->cipher_mode = IMB_CIPHER_NULL;
2194 	job->hash_alg = IMB_AUTH_NULL;
2195 	job->cipher_direction = IMB_DIR_DECRYPT;
2196 
2197 	/* Set user data to be crypto operation data struct */
2198 	job->user_data = op;
2199 
2200 	return job;
2201 }
2202 
2203 #if IMB_VERSION(1, 2, 0) < IMB_VERSION_NUM
2204 uint16_t
2205 aesni_mb_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2206 		uint16_t nb_ops)
2207 {
2208 	struct ipsec_mb_qp *qp = queue_pair;
2209 	IMB_MGR *mb_mgr = qp->mb_mgr;
2210 	struct rte_crypto_op *op;
2211 	struct rte_crypto_op *deqd_ops[IMB_MAX_BURST_SIZE];
2212 	IMB_JOB *job;
2213 	int retval, processed_jobs = 0;
2214 	uint16_t i, nb_jobs;
2215 	IMB_JOB *jobs[IMB_MAX_BURST_SIZE] = {NULL};
2216 	pid_t pid;
2217 
2218 	if (unlikely(nb_ops == 0 || mb_mgr == NULL))
2219 		return 0;
2220 
2221 	uint8_t digest_idx = qp->digest_idx;
2222 	uint16_t burst_sz = (nb_ops > IMB_MAX_BURST_SIZE) ?
2223 		IMB_MAX_BURST_SIZE : nb_ops;
2224 
2225 	/*
2226 	 * If nb_ops is greater than the max supported
2227 	 * ipsec_mb burst size, then process in bursts of
2228 	 * IMB_MAX_BURST_SIZE until all operations are submitted
2229 	 */
2230 	while (nb_ops) {
2231 		uint16_t nb_submit_ops;
2232 		uint16_t n = (nb_ops / burst_sz) ?
2233 			burst_sz : nb_ops;
2234 
2235 		if (unlikely((IMB_GET_NEXT_BURST(mb_mgr, n, jobs)) < n)) {
2236 			/*
2237 			 * Not enough free jobs in the queue
2238 			 * Flush n jobs until enough jobs available
2239 			 */
2240 			nb_jobs = IMB_FLUSH_BURST(mb_mgr, n, jobs);
2241 			for (i = 0; i < nb_jobs; i++) {
2242 				job = jobs[i];
2243 
2244 				op = post_process_mb_job(qp, job);
2245 				if (op) {
2246 					ops[processed_jobs++] = op;
2247 					qp->stats.dequeued_count++;
2248 				} else {
2249 					qp->stats.dequeue_err_count++;
2250 					break;
2251 				}
2252 			}
2253 			nb_ops -= i;
2254 			continue;
2255 		}
2256 
2257 		if (!RTE_PER_LCORE(pid))
2258 			RTE_PER_LCORE(pid) = getpid();
2259 
2260 		pid = RTE_PER_LCORE(pid);
2261 
2262 		/*
2263 		 * Get the next operations to process from ingress queue.
2264 		 * There is no need to return the job to the IMB_MGR
2265 		 * if there are no more operations to process, since
2266 		 * the IMB_MGR can use that pointer again in next
2267 		 * get_next calls.
2268 		 */
2269 		nb_submit_ops = rte_ring_dequeue_burst(qp->ingress_queue,
2270 						(void **)deqd_ops, n, NULL);
2271 		for (i = 0; i < nb_submit_ops; i++) {
2272 			job = jobs[i];
2273 			op = deqd_ops[i];
2274 
2275 			if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
2276 				retval = set_sec_mb_job_params(job, qp, op,
2277 							       &digest_idx);
2278 			else
2279 				retval = set_mb_job_params(job, qp, op,
2280 							   &digest_idx, mb_mgr, pid);
2281 
2282 			if (unlikely(retval != 0)) {
2283 				qp->stats.dequeue_err_count++;
2284 				set_job_null_op(job, op);
2285 			}
2286 		}
2287 
2288 		/* Submit jobs to multi-buffer for processing */
2289 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
2290 		int err = 0;
2291 
2292 		nb_jobs = IMB_SUBMIT_BURST(mb_mgr, nb_submit_ops, jobs);
2293 		err = imb_get_errno(mb_mgr);
2294 		if (err)
2295 			IPSEC_MB_LOG(ERR, "%s", imb_get_strerror(err));
2296 #else
2297 		nb_jobs = IMB_SUBMIT_BURST_NOCHECK(mb_mgr,
2298 						   nb_submit_ops, jobs);
2299 #endif
2300 		for (i = 0; i < nb_jobs; i++) {
2301 			job = jobs[i];
2302 
2303 			op = post_process_mb_job(qp, job);
2304 			if (op) {
2305 				ops[processed_jobs++] = op;
2306 				qp->stats.dequeued_count++;
2307 			} else {
2308 				qp->stats.dequeue_err_count++;
2309 				break;
2310 			}
2311 		}
2312 
2313 		qp->digest_idx = digest_idx;
2314 
2315 		if (processed_jobs < 1) {
2316 			nb_jobs = IMB_FLUSH_BURST(mb_mgr, n, jobs);
2317 
2318 			for (i = 0; i < nb_jobs; i++) {
2319 				job = jobs[i];
2320 
2321 				op = post_process_mb_job(qp, job);
2322 				if (op) {
2323 					ops[processed_jobs++] = op;
2324 					qp->stats.dequeued_count++;
2325 				} else {
2326 					qp->stats.dequeue_err_count++;
2327 					break;
2328 				}
2329 			}
2330 		}
2331 		nb_ops -= n;
2332 	}
2333 
2334 	return processed_jobs;
2335 }
2336 #else
2337 
2338 /**
2339  * Process a completed IMB_JOB job and keep processing jobs until
2340  * get_completed_job return NULL
2341  *
2342  * @param qp		Queue Pair to process
2343  * @param mb_mgr	IMB_MGR to use
2344  * @param job		IMB_JOB job
2345  * @param ops		crypto ops to fill
2346  * @param nb_ops	number of crypto ops
2347  *
2348  * @return
2349  * - Number of processed jobs
2350  */
2351 static unsigned
2352 handle_completed_jobs(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr,
2353 		IMB_JOB *job, struct rte_crypto_op **ops,
2354 		uint16_t nb_ops)
2355 {
2356 	struct rte_crypto_op *op = NULL;
2357 	uint16_t processed_jobs = 0;
2358 
2359 	while (job != NULL) {
2360 		op = post_process_mb_job(qp, job);
2361 
2362 		if (op) {
2363 			ops[processed_jobs++] = op;
2364 			qp->stats.dequeued_count++;
2365 		} else {
2366 			qp->stats.dequeue_err_count++;
2367 			break;
2368 		}
2369 		if (processed_jobs == nb_ops)
2370 			break;
2371 
2372 		job = IMB_GET_COMPLETED_JOB(mb_mgr);
2373 	}
2374 
2375 	return processed_jobs;
2376 }
2377 
2378 static inline uint16_t
2379 flush_mb_mgr(struct ipsec_mb_qp *qp, IMB_MGR *mb_mgr,
2380 		struct rte_crypto_op **ops, uint16_t nb_ops)
2381 {
2382 	int processed_ops = 0;
2383 
2384 	/* Flush the remaining jobs */
2385 	IMB_JOB *job = IMB_FLUSH_JOB(mb_mgr);
2386 
2387 	if (job)
2388 		processed_ops += handle_completed_jobs(qp, mb_mgr, job,
2389 				&ops[processed_ops], nb_ops - processed_ops);
2390 
2391 	return processed_ops;
2392 }
2393 
2394 uint16_t
2395 aesni_mb_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2396 		uint16_t nb_ops)
2397 {
2398 	struct ipsec_mb_qp *qp = queue_pair;
2399 	IMB_MGR *mb_mgr = qp->mb_mgr;
2400 	struct rte_crypto_op *op;
2401 	IMB_JOB *job;
2402 	int retval, processed_jobs = 0;
2403 	pid_t pid = 0;
2404 
2405 	if (unlikely(nb_ops == 0 || mb_mgr == NULL))
2406 		return 0;
2407 
2408 	uint8_t digest_idx = qp->digest_idx;
2409 
2410 	do {
2411 		/* Get next free mb job struct from mb manager */
2412 		job = IMB_GET_NEXT_JOB(mb_mgr);
2413 		if (unlikely(job == NULL)) {
2414 			/* if no free mb job structs we need to flush mb_mgr */
2415 			processed_jobs += flush_mb_mgr(qp, mb_mgr,
2416 					&ops[processed_jobs],
2417 					nb_ops - processed_jobs);
2418 
2419 			if (nb_ops == processed_jobs)
2420 				break;
2421 
2422 			job = IMB_GET_NEXT_JOB(mb_mgr);
2423 		}
2424 
2425 		/*
2426 		 * Get next operation to process from ingress queue.
2427 		 * There is no need to return the job to the IMB_MGR
2428 		 * if there are no more operations to process, since the IMB_MGR
2429 		 * can use that pointer again in next get_next calls.
2430 		 */
2431 		retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
2432 		if (retval < 0)
2433 			break;
2434 
2435 		if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
2436 			retval = set_sec_mb_job_params(job, qp, op,
2437 						&digest_idx);
2438 		else
2439 			retval = set_mb_job_params(job, qp, op,
2440 				&digest_idx, mb_mgr, pid);
2441 
2442 		if (unlikely(retval != 0)) {
2443 			qp->stats.dequeue_err_count++;
2444 			set_job_null_op(job, op);
2445 		}
2446 
2447 		/* Submit job to multi-buffer for processing */
2448 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
2449 		job = IMB_SUBMIT_JOB(mb_mgr);
2450 #else
2451 		job = IMB_SUBMIT_JOB_NOCHECK(mb_mgr);
2452 #endif
2453 		/*
2454 		 * If submit returns a processed job then handle it,
2455 		 * before submitting subsequent jobs
2456 		 */
2457 		if (job)
2458 			processed_jobs += handle_completed_jobs(qp, mb_mgr,
2459 					job, &ops[processed_jobs],
2460 					nb_ops - processed_jobs);
2461 
2462 	} while (processed_jobs < nb_ops);
2463 
2464 	qp->digest_idx = digest_idx;
2465 
2466 	if (processed_jobs < 1)
2467 		processed_jobs += flush_mb_mgr(qp, mb_mgr,
2468 				&ops[processed_jobs],
2469 				nb_ops - processed_jobs);
2470 
2471 	return processed_jobs;
2472 }
2473 #endif
2474 static inline int
2475 check_crypto_sgl(union rte_crypto_sym_ofs so, const struct rte_crypto_sgl *sgl)
2476 {
2477 	/* no multi-seg support with current AESNI-MB PMD */
2478 	if (sgl->num != 1)
2479 		return -ENOTSUP;
2480 	else if (so.ofs.cipher.head + so.ofs.cipher.tail > sgl->vec[0].len)
2481 		return -EINVAL;
2482 	return 0;
2483 }
2484 
2485 static inline IMB_JOB *
2486 submit_sync_job(IMB_MGR *mb_mgr)
2487 {
2488 #ifdef RTE_LIBRTE_PMD_AESNI_MB_DEBUG
2489 	return IMB_SUBMIT_JOB(mb_mgr);
2490 #else
2491 	return IMB_SUBMIT_JOB_NOCHECK(mb_mgr);
2492 #endif
2493 }
2494 
2495 static inline uint32_t
2496 generate_sync_dgst(struct rte_crypto_sym_vec *vec,
2497 	const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
2498 {
2499 	uint32_t i, k;
2500 
2501 	for (i = 0, k = 0; i != vec->num; i++) {
2502 		if (vec->status[i] == 0) {
2503 			memcpy(vec->digest[i].va, dgst[i], len);
2504 			k++;
2505 		}
2506 	}
2507 
2508 	return k;
2509 }
2510 
2511 static inline uint32_t
2512 verify_sync_dgst(struct rte_crypto_sym_vec *vec,
2513 	const uint8_t dgst[][DIGEST_LENGTH_MAX], uint32_t len)
2514 {
2515 	uint32_t i, k;
2516 
2517 	for (i = 0, k = 0; i != vec->num; i++) {
2518 		if (vec->status[i] == 0) {
2519 			if (memcmp(vec->digest[i].va, dgst[i], len) != 0)
2520 				vec->status[i] = EBADMSG;
2521 			else
2522 				k++;
2523 		}
2524 	}
2525 
2526 	return k;
2527 }
2528 
2529 uint32_t
2530 aesni_mb_process_bulk(struct rte_cryptodev *dev __rte_unused,
2531 	struct rte_cryptodev_sym_session *sess, union rte_crypto_sym_ofs sofs,
2532 	struct rte_crypto_sym_vec *vec)
2533 {
2534 	int32_t ret;
2535 	uint32_t i, j, k, len;
2536 	void *buf;
2537 	IMB_JOB *job;
2538 	IMB_MGR *mb_mgr;
2539 	struct aesni_mb_session *s = CRYPTODEV_GET_SYM_SESS_PRIV(sess);
2540 	uint8_t tmp_dgst[vec->num][DIGEST_LENGTH_MAX];
2541 
2542 	/* get per-thread MB MGR, create one if needed */
2543 	mb_mgr = get_per_thread_mb_mgr();
2544 	if (unlikely(mb_mgr == NULL))
2545 		return 0;
2546 
2547 	for (i = 0, j = 0, k = 0; i != vec->num; i++) {
2548 		ret = check_crypto_sgl(sofs, vec->src_sgl + i);
2549 		if (ret != 0) {
2550 			vec->status[i] = ret;
2551 			continue;
2552 		}
2553 
2554 		buf = vec->src_sgl[i].vec[0].base;
2555 		len = vec->src_sgl[i].vec[0].len;
2556 
2557 		job = IMB_GET_NEXT_JOB(mb_mgr);
2558 		if (job == NULL) {
2559 			k += flush_mb_sync_mgr(mb_mgr);
2560 			job = IMB_GET_NEXT_JOB(mb_mgr);
2561 			RTE_ASSERT(job != NULL);
2562 		}
2563 
2564 		/* Submit job for processing */
2565 		set_cpu_mb_job_params(job, s, sofs, buf, len, &vec->iv[i],
2566 			&vec->aad[i], tmp_dgst[i], &vec->status[i]);
2567 		job = submit_sync_job(mb_mgr);
2568 		j++;
2569 
2570 		/* handle completed jobs */
2571 		k += handle_completed_sync_jobs(job, mb_mgr);
2572 	}
2573 
2574 	/* flush remaining jobs */
2575 	while (k != j)
2576 		k += flush_mb_sync_mgr(mb_mgr);
2577 
2578 	/* finish processing for successful jobs: check/update digest */
2579 	if (k != 0) {
2580 		if (s->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY)
2581 			k = verify_sync_dgst(vec,
2582 				(const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
2583 				s->auth.req_digest_len);
2584 		else
2585 			k = generate_sync_dgst(vec,
2586 				(const uint8_t (*)[DIGEST_LENGTH_MAX])tmp_dgst,
2587 				s->auth.req_digest_len);
2588 	}
2589 
2590 	return k;
2591 }
2592 
2593 struct rte_cryptodev_ops aesni_mb_pmd_ops = {
2594 	.dev_configure = ipsec_mb_config,
2595 	.dev_start = ipsec_mb_start,
2596 	.dev_stop = ipsec_mb_stop,
2597 	.dev_close = ipsec_mb_close,
2598 
2599 	.stats_get = ipsec_mb_stats_get,
2600 	.stats_reset = ipsec_mb_stats_reset,
2601 
2602 	.dev_infos_get = ipsec_mb_info_get,
2603 
2604 	.queue_pair_setup = ipsec_mb_qp_setup,
2605 	.queue_pair_release = ipsec_mb_qp_release,
2606 
2607 	.sym_cpu_process = aesni_mb_process_bulk,
2608 
2609 	.sym_session_get_size = ipsec_mb_sym_session_get_size,
2610 	.sym_session_configure = ipsec_mb_sym_session_configure,
2611 	.sym_session_clear = ipsec_mb_sym_session_clear
2612 };
2613 
2614 /**
2615  * Configure a aesni multi-buffer session from a security session
2616  * configuration
2617  */
2618 static int
2619 aesni_mb_pmd_sec_sess_create(void *dev, struct rte_security_session_conf *conf,
2620 		struct rte_security_session *sess)
2621 {
2622 	void *sess_private_data = SECURITY_GET_SESS_PRIV(sess);
2623 	struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev;
2624 	int ret;
2625 
2626 	if (conf->action_type != RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL ||
2627 			conf->protocol != RTE_SECURITY_PROTOCOL_DOCSIS) {
2628 		IPSEC_MB_LOG(ERR, "Invalid security protocol");
2629 		return -EINVAL;
2630 	}
2631 
2632 	ret = aesni_mb_set_docsis_sec_session_parameters(cdev, conf,
2633 			sess_private_data);
2634 
2635 	if (ret != 0) {
2636 		IPSEC_MB_LOG(ERR, "Failed to configure session parameters");
2637 		return ret;
2638 	}
2639 
2640 	return ret;
2641 }
2642 
2643 /** Clear the memory of session so it does not leave key material behind */
2644 static int
2645 aesni_mb_pmd_sec_sess_destroy(void *dev __rte_unused,
2646 		struct rte_security_session *sess)
2647 {
2648 	void *sess_priv = SECURITY_GET_SESS_PRIV(sess);
2649 
2650 	if (sess_priv) {
2651 		memset(sess_priv, 0, sizeof(struct aesni_mb_session));
2652 	}
2653 	return 0;
2654 }
2655 
2656 static unsigned int
2657 aesni_mb_pmd_sec_sess_get_size(void *device __rte_unused)
2658 {
2659 	return sizeof(struct aesni_mb_session);
2660 }
2661 
2662 /** Get security capabilities for aesni multi-buffer */
2663 static const struct rte_security_capability *
2664 aesni_mb_pmd_sec_capa_get(void *device __rte_unused)
2665 {
2666 	return aesni_mb_pmd_security_cap;
2667 }
2668 
2669 static struct rte_security_ops aesni_mb_pmd_sec_ops = {
2670 		.session_create = aesni_mb_pmd_sec_sess_create,
2671 		.session_update = NULL,
2672 		.session_get_size = aesni_mb_pmd_sec_sess_get_size,
2673 		.session_stats_get = NULL,
2674 		.session_destroy = aesni_mb_pmd_sec_sess_destroy,
2675 		.set_pkt_metadata = NULL,
2676 		.capabilities_get = aesni_mb_pmd_sec_capa_get
2677 };
2678 
2679 struct rte_security_ops *rte_aesni_mb_pmd_sec_ops = &aesni_mb_pmd_sec_ops;
2680 
2681 static int
2682 aesni_mb_configure_dev(struct rte_cryptodev *dev)
2683 {
2684 	struct rte_security_ctx *security_instance;
2685 
2686 	security_instance = rte_malloc("aesni_mb_sec",
2687 				sizeof(struct rte_security_ctx),
2688 				RTE_CACHE_LINE_SIZE);
2689 	if (security_instance != NULL) {
2690 		security_instance->device = (void *)dev;
2691 		security_instance->ops = rte_aesni_mb_pmd_sec_ops;
2692 		security_instance->sess_cnt = 0;
2693 		dev->security_ctx = security_instance;
2694 
2695 		return 0;
2696 	}
2697 
2698 	return -ENOMEM;
2699 }
2700 
2701 static int
2702 aesni_mb_probe(struct rte_vdev_device *vdev)
2703 {
2704 	return ipsec_mb_create(vdev, IPSEC_MB_PMD_TYPE_AESNI_MB);
2705 }
2706 
2707 static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
2708 	.probe = aesni_mb_probe,
2709 	.remove = ipsec_mb_remove
2710 };
2711 
2712 static struct cryptodev_driver aesni_mb_crypto_drv;
2713 
2714 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD,
2715 	cryptodev_aesni_mb_pmd_drv);
2716 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
2717 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
2718 			"max_nb_queue_pairs=<int> socket_id=<int>");
2719 RTE_PMD_REGISTER_CRYPTO_DRIVER(
2720 	aesni_mb_crypto_drv,
2721 	cryptodev_aesni_mb_pmd_drv.driver,
2722 	pmd_driver_id_aesni_mb);
2723 
2724 /* Constructor function to register aesni-mb PMD */
2725 RTE_INIT(ipsec_mb_register_aesni_mb)
2726 {
2727 	struct ipsec_mb_internals *aesni_mb_data =
2728 		&ipsec_mb_pmds[IPSEC_MB_PMD_TYPE_AESNI_MB];
2729 
2730 	aesni_mb_data->caps = aesni_mb_capabilities;
2731 	aesni_mb_data->dequeue_burst = aesni_mb_dequeue_burst;
2732 	aesni_mb_data->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2733 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2734 			RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2735 			RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO |
2736 			RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA |
2737 			RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
2738 			RTE_CRYPTODEV_FF_IN_PLACE_SGL |
2739 			RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
2740 			RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
2741 			RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2742 			RTE_CRYPTODEV_FF_SECURITY |
2743 			RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
2744 
2745 	aesni_mb_data->internals_priv_size = 0;
2746 	aesni_mb_data->ops = &aesni_mb_pmd_ops;
2747 	aesni_mb_data->qp_priv_size = sizeof(struct aesni_mb_qp_data);
2748 	aesni_mb_data->queue_pair_configure = NULL;
2749 	aesni_mb_data->security_ops = &aesni_mb_pmd_sec_ops;
2750 	aesni_mb_data->dev_config = aesni_mb_configure_dev;
2751 	aesni_mb_data->session_configure = aesni_mb_session_configure;
2752 	aesni_mb_data->session_priv_size = sizeof(struct aesni_mb_session);
2753 }
2754