xref: /dpdk/drivers/crypto/ccp/ccp_dev.c (revision 2bf48044dca1892e571fd4964eecaacf6cb0c1c2)
1 /*   SPDX-License-Identifier: BSD-3-Clause
2  *   Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
3  */
4 
5 #include <dirent.h>
6 #include <fcntl.h>
7 #include <stdio.h>
8 #include <string.h>
9 #include <sys/mman.h>
10 #include <sys/queue.h>
11 #include <sys/types.h>
12 #include <sys/file.h>
13 #include <unistd.h>
14 
15 #include <rte_hexdump.h>
16 #include <rte_memzone.h>
17 #include <rte_malloc.h>
18 #include <rte_memory.h>
19 #include <rte_spinlock.h>
20 #include <rte_string_fns.h>
21 
22 #include "ccp_dev.h"
23 #include "ccp_pmd_private.h"
24 
25 static TAILQ_HEAD(, ccp_device) ccp_list = TAILQ_HEAD_INITIALIZER(ccp_list);
26 static int ccp_dev_id;
27 
28 int
29 ccp_dev_start(struct rte_cryptodev *dev)
30 {
31 	struct ccp_private *priv = dev->data->dev_private;
32 
33 	priv->last_dev = TAILQ_FIRST(&ccp_list);
34 	return 0;
35 }
36 
37 struct ccp_queue *
38 ccp_allot_queue(struct rte_cryptodev *cdev, int slot_req)
39 {
40 	int i, ret = 0;
41 	struct ccp_device *dev;
42 	struct ccp_private *priv = cdev->data->dev_private;
43 
44 	dev = TAILQ_NEXT(priv->last_dev, next);
45 	if (unlikely(dev == NULL))
46 		dev = TAILQ_FIRST(&ccp_list);
47 	priv->last_dev = dev;
48 	if (dev->qidx >= dev->cmd_q_count)
49 		dev->qidx = 0;
50 	ret = rte_atomic64_read(&dev->cmd_q[dev->qidx].free_slots);
51 	if (ret >= slot_req)
52 		return &dev->cmd_q[dev->qidx];
53 	for (i = 0; i < dev->cmd_q_count; i++) {
54 		dev->qidx++;
55 		if (dev->qidx >= dev->cmd_q_count)
56 			dev->qidx = 0;
57 		ret = rte_atomic64_read(&dev->cmd_q[dev->qidx].free_slots);
58 		if (ret >= slot_req)
59 			return &dev->cmd_q[dev->qidx];
60 	}
61 	return NULL;
62 }
63 
64 int
65 ccp_read_hwrng(uint32_t *value)
66 {
67 	struct ccp_device *dev;
68 
69 	TAILQ_FOREACH(dev, &ccp_list, next) {
70 		void *vaddr = (void *)(dev->pci->mem_resource[2].addr);
71 
72 		while (dev->hwrng_retries++ < CCP_MAX_TRNG_RETRIES) {
73 			*value = CCP_READ_REG(vaddr, TRNG_OUT_REG);
74 			if (*value) {
75 				dev->hwrng_retries = 0;
76 				return 0;
77 			}
78 		}
79 		dev->hwrng_retries = 0;
80 	}
81 	return -1;
82 }
83 
84 static const struct rte_memzone *
85 ccp_queue_dma_zone_reserve(const char *queue_name,
86 			   uint32_t queue_size,
87 			   int socket_id)
88 {
89 	const struct rte_memzone *mz;
90 
91 	mz = rte_memzone_lookup(queue_name);
92 	if (mz != 0) {
93 		if (((size_t)queue_size <= mz->len) &&
94 		    ((socket_id == SOCKET_ID_ANY) ||
95 		     (socket_id == mz->socket_id))) {
96 			CCP_LOG_INFO("re-use memzone already "
97 				     "allocated for %s", queue_name);
98 			return mz;
99 		}
100 		CCP_LOG_ERR("Incompatible memzone already "
101 			    "allocated %s, size %u, socket %d. "
102 			    "Requested size %u, socket %u",
103 			    queue_name, (uint32_t)mz->len,
104 			    mz->socket_id, queue_size, socket_id);
105 		return NULL;
106 	}
107 
108 	CCP_LOG_INFO("Allocate memzone for %s, size %u on socket %u",
109 		     queue_name, queue_size, socket_id);
110 
111 	return rte_memzone_reserve_aligned(queue_name, queue_size,
112 			socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
113 }
114 
115 /* bitmap support apis */
116 static inline void
117 ccp_set_bit(unsigned long *bitmap, int n)
118 {
119 	__sync_fetch_and_or(&bitmap[WORD_OFFSET(n)], (1UL << BIT_OFFSET(n)));
120 }
121 
122 static inline void
123 ccp_clear_bit(unsigned long *bitmap, int n)
124 {
125 	__sync_fetch_and_and(&bitmap[WORD_OFFSET(n)], ~(1UL << BIT_OFFSET(n)));
126 }
127 
128 static inline uint32_t
129 ccp_get_bit(unsigned long *bitmap, int n)
130 {
131 	return ((bitmap[WORD_OFFSET(n)] & (1 << BIT_OFFSET(n))) != 0);
132 }
133 
134 
135 static inline uint32_t
136 ccp_ffz(unsigned long word)
137 {
138 	unsigned long first_zero;
139 
140 	first_zero = __builtin_ffsl(~word);
141 	return first_zero ? (first_zero - 1) :
142 		BITS_PER_WORD;
143 }
144 
145 static inline uint32_t
146 ccp_find_first_zero_bit(unsigned long *addr, uint32_t limit)
147 {
148 	uint32_t i;
149 	uint32_t nwords = 0;
150 
151 	nwords = (limit - 1) / BITS_PER_WORD + 1;
152 	for (i = 0; i < nwords; i++) {
153 		if (addr[i] == 0UL)
154 			return i * BITS_PER_WORD;
155 		if (addr[i] < ~(0UL))
156 			break;
157 	}
158 	return (i == nwords) ? limit : i * BITS_PER_WORD + ccp_ffz(addr[i]);
159 }
160 
161 static void
162 ccp_bitmap_set(unsigned long *map, unsigned int start, int len)
163 {
164 	unsigned long *p = map + WORD_OFFSET(start);
165 	const unsigned int size = start + len;
166 	int bits_to_set = BITS_PER_WORD - (start % BITS_PER_WORD);
167 	unsigned long mask_to_set = CCP_BITMAP_FIRST_WORD_MASK(start);
168 
169 	while (len - bits_to_set >= 0) {
170 		*p |= mask_to_set;
171 		len -= bits_to_set;
172 		bits_to_set = BITS_PER_WORD;
173 		mask_to_set = ~0UL;
174 		p++;
175 	}
176 	if (len) {
177 		mask_to_set &= CCP_BITMAP_LAST_WORD_MASK(size);
178 		*p |= mask_to_set;
179 	}
180 }
181 
182 static void
183 ccp_bitmap_clear(unsigned long *map, unsigned int start, int len)
184 {
185 	unsigned long *p = map + WORD_OFFSET(start);
186 	const unsigned int size = start + len;
187 	int bits_to_clear = BITS_PER_WORD - (start % BITS_PER_WORD);
188 	unsigned long mask_to_clear = CCP_BITMAP_FIRST_WORD_MASK(start);
189 
190 	while (len - bits_to_clear >= 0) {
191 		*p &= ~mask_to_clear;
192 		len -= bits_to_clear;
193 		bits_to_clear = BITS_PER_WORD;
194 		mask_to_clear = ~0UL;
195 		p++;
196 	}
197 	if (len) {
198 		mask_to_clear &= CCP_BITMAP_LAST_WORD_MASK(size);
199 		*p &= ~mask_to_clear;
200 	}
201 }
202 
203 
204 static unsigned long
205 _ccp_find_next_bit(const unsigned long *addr,
206 		   unsigned long nbits,
207 		   unsigned long start,
208 		   unsigned long invert)
209 {
210 	unsigned long tmp;
211 
212 	if (!nbits || start >= nbits)
213 		return nbits;
214 
215 	tmp = addr[start / BITS_PER_WORD] ^ invert;
216 
217 	/* Handle 1st word. */
218 	tmp &= CCP_BITMAP_FIRST_WORD_MASK(start);
219 	start = ccp_round_down(start, BITS_PER_WORD);
220 
221 	while (!tmp) {
222 		start += BITS_PER_WORD;
223 		if (start >= nbits)
224 			return nbits;
225 
226 		tmp = addr[start / BITS_PER_WORD] ^ invert;
227 	}
228 
229 	return RTE_MIN(start + (ffs(tmp) - 1), nbits);
230 }
231 
232 static unsigned long
233 ccp_find_next_bit(const unsigned long *addr,
234 		  unsigned long size,
235 		  unsigned long offset)
236 {
237 	return _ccp_find_next_bit(addr, size, offset, 0UL);
238 }
239 
240 static unsigned long
241 ccp_find_next_zero_bit(const unsigned long *addr,
242 		       unsigned long size,
243 		       unsigned long offset)
244 {
245 	return _ccp_find_next_bit(addr, size, offset, ~0UL);
246 }
247 
248 /**
249  * bitmap_find_next_zero_area - find a contiguous aligned zero area
250  * @map: The address to base the search on
251  * @size: The bitmap size in bits
252  * @start: The bitnumber to start searching at
253  * @nr: The number of zeroed bits we're looking for
254  */
255 static unsigned long
256 ccp_bitmap_find_next_zero_area(unsigned long *map,
257 			       unsigned long size,
258 			       unsigned long start,
259 			       unsigned int nr)
260 {
261 	unsigned long index, end, i;
262 
263 again:
264 	index = ccp_find_next_zero_bit(map, size, start);
265 
266 	end = index + nr;
267 	if (end > size)
268 		return end;
269 	i = ccp_find_next_bit(map, end, index);
270 	if (i < end) {
271 		start = i + 1;
272 		goto again;
273 	}
274 	return index;
275 }
276 
277 static uint32_t
278 ccp_lsb_alloc(struct ccp_queue *cmd_q, unsigned int count)
279 {
280 	struct ccp_device *ccp;
281 	int start;
282 
283 	/* First look at the map for the queue */
284 	if (cmd_q->lsb >= 0) {
285 		start = (uint32_t)ccp_bitmap_find_next_zero_area(cmd_q->lsbmap,
286 								 LSB_SIZE, 0,
287 								 count);
288 		if (start < LSB_SIZE) {
289 			ccp_bitmap_set(cmd_q->lsbmap, start, count);
290 			return start + cmd_q->lsb * LSB_SIZE;
291 		}
292 	}
293 
294 	/* try to get an entry from the shared blocks */
295 	ccp = cmd_q->dev;
296 
297 	rte_spinlock_lock(&ccp->lsb_lock);
298 
299 	start = (uint32_t)ccp_bitmap_find_next_zero_area(ccp->lsbmap,
300 						    MAX_LSB_CNT * LSB_SIZE,
301 						    0, count);
302 	if (start <= MAX_LSB_CNT * LSB_SIZE) {
303 		ccp_bitmap_set(ccp->lsbmap, start, count);
304 		rte_spinlock_unlock(&ccp->lsb_lock);
305 		return start * LSB_ITEM_SIZE;
306 	}
307 	CCP_LOG_ERR("NO LSBs available");
308 
309 	rte_spinlock_unlock(&ccp->lsb_lock);
310 
311 	return 0;
312 }
313 
314 static void __rte_unused
315 ccp_lsb_free(struct ccp_queue *cmd_q,
316 	     unsigned int start,
317 	     unsigned int count)
318 {
319 	int lsbno = start / LSB_SIZE;
320 
321 	if (!start)
322 		return;
323 
324 	if (cmd_q->lsb == lsbno) {
325 		/* An entry from the private LSB */
326 		ccp_bitmap_clear(cmd_q->lsbmap, start % LSB_SIZE, count);
327 	} else {
328 		/* From the shared LSBs */
329 		struct ccp_device *ccp = cmd_q->dev;
330 
331 		rte_spinlock_lock(&ccp->lsb_lock);
332 		ccp_bitmap_clear(ccp->lsbmap, start, count);
333 		rte_spinlock_unlock(&ccp->lsb_lock);
334 	}
335 }
336 
337 static int
338 ccp_find_lsb_regions(struct ccp_queue *cmd_q, uint64_t status)
339 {
340 	int q_mask = 1 << cmd_q->id;
341 	int weight = 0;
342 	int j;
343 
344 	/* Build a bit mask to know which LSBs
345 	 * this queue has access to.
346 	 * Don't bother with segment 0
347 	 * as it has special
348 	 * privileges.
349 	 */
350 	cmd_q->lsbmask = 0;
351 	status >>= LSB_REGION_WIDTH;
352 	for (j = 1; j < MAX_LSB_CNT; j++) {
353 		if (status & q_mask)
354 			ccp_set_bit(&cmd_q->lsbmask, j);
355 
356 		status >>= LSB_REGION_WIDTH;
357 	}
358 
359 	for (j = 0; j < MAX_LSB_CNT; j++)
360 		if (ccp_get_bit(&cmd_q->lsbmask, j))
361 			weight++;
362 
363 	CCP_LOG_DBG("Queue %d can access %d LSB regions  of mask  %lu\n",
364 	       (int)cmd_q->id, weight, cmd_q->lsbmask);
365 
366 	return weight ? 0 : -EINVAL;
367 }
368 
369 static int
370 ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
371 			     int lsb_cnt, int n_lsbs,
372 			     unsigned long *lsb_pub)
373 {
374 	unsigned long qlsb = 0;
375 	int bitno = 0;
376 	int qlsb_wgt = 0;
377 	int i, j;
378 
379 	/* For each queue:
380 	 * If the count of potential LSBs available to a queue matches the
381 	 * ordinal given to us in lsb_cnt:
382 	 * Copy the mask of possible LSBs for this queue into "qlsb";
383 	 * For each bit in qlsb, see if the corresponding bit in the
384 	 * aggregation mask is set; if so, we have a match.
385 	 *     If we have a match, clear the bit in the aggregation to
386 	 *     mark it as no longer available.
387 	 *     If there is no match, clear the bit in qlsb and keep looking.
388 	 */
389 	for (i = 0; i < ccp->cmd_q_count; i++) {
390 		struct ccp_queue *cmd_q = &ccp->cmd_q[i];
391 
392 		qlsb_wgt = 0;
393 		for (j = 0; j < MAX_LSB_CNT; j++)
394 			if (ccp_get_bit(&cmd_q->lsbmask, j))
395 				qlsb_wgt++;
396 
397 		if (qlsb_wgt == lsb_cnt) {
398 			qlsb = cmd_q->lsbmask;
399 
400 			bitno = ffs(qlsb) - 1;
401 			while (bitno < MAX_LSB_CNT) {
402 				if (ccp_get_bit(lsb_pub, bitno)) {
403 					/* We found an available LSB
404 					 * that this queue can access
405 					 */
406 					cmd_q->lsb = bitno;
407 					ccp_clear_bit(lsb_pub, bitno);
408 					break;
409 				}
410 				ccp_clear_bit(&qlsb, bitno);
411 				bitno = ffs(qlsb) - 1;
412 			}
413 			if (bitno >= MAX_LSB_CNT)
414 				return -EINVAL;
415 			n_lsbs--;
416 		}
417 	}
418 	return n_lsbs;
419 }
420 
421 /* For each queue, from the most- to least-constrained:
422  * find an LSB that can be assigned to the queue. If there are N queues that
423  * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
424  * dedicated LSB. Remaining LSB regions become a shared resource.
425  * If we have fewer LSBs than queues, all LSB regions become shared
426  * resources.
427  */
428 static int
429 ccp_assign_lsbs(struct ccp_device *ccp)
430 {
431 	unsigned long lsb_pub = 0, qlsb = 0;
432 	int n_lsbs = 0;
433 	int bitno;
434 	int i, lsb_cnt;
435 	int rc = 0;
436 
437 	rte_spinlock_init(&ccp->lsb_lock);
438 
439 	/* Create an aggregate bitmap to get a total count of available LSBs */
440 	for (i = 0; i < ccp->cmd_q_count; i++)
441 		lsb_pub |= ccp->cmd_q[i].lsbmask;
442 
443 	for (i = 0; i < MAX_LSB_CNT; i++)
444 		if (ccp_get_bit(&lsb_pub, i))
445 			n_lsbs++;
446 
447 	if (n_lsbs >= ccp->cmd_q_count) {
448 		/* We have enough LSBS to give every queue a private LSB.
449 		 * Brute force search to start with the queues that are more
450 		 * constrained in LSB choice. When an LSB is privately
451 		 * assigned, it is removed from the public mask.
452 		 * This is an ugly N squared algorithm with some optimization.
453 		 */
454 		for (lsb_cnt = 1; n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
455 		     lsb_cnt++) {
456 			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
457 							  &lsb_pub);
458 			if (rc < 0)
459 				return -EINVAL;
460 			n_lsbs = rc;
461 		}
462 	}
463 
464 	rc = 0;
465 	/* What's left of the LSBs, according to the public mask, now become
466 	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
467 	 * that can't be used as a shared resource, so mark the LSB slots for
468 	 * them as "in use".
469 	 */
470 	qlsb = lsb_pub;
471 	bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
472 	while (bitno < MAX_LSB_CNT) {
473 		ccp_bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
474 		ccp_set_bit(&qlsb, bitno);
475 		bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
476 	}
477 
478 	return rc;
479 }
480 
481 static int
482 ccp_add_device(struct ccp_device *dev)
483 {
484 	int i;
485 	uint32_t qmr, status_lo, status_hi, dma_addr_lo, dma_addr_hi;
486 	uint64_t status;
487 	struct ccp_queue *cmd_q;
488 	const struct rte_memzone *q_mz;
489 	void *vaddr;
490 
491 	if (dev == NULL)
492 		return -1;
493 
494 	dev->id = ccp_dev_id++;
495 	dev->qidx = 0;
496 	vaddr = (void *)(dev->pci->mem_resource[2].addr);
497 
498 	if (dev->pci->id.device_id == AMD_PCI_CCP_5B) {
499 		CCP_WRITE_REG(vaddr, CMD_TRNG_CTL_OFFSET, 0x00012D57);
500 		CCP_WRITE_REG(vaddr, CMD_CONFIG_0_OFFSET, 0x00000003);
501 		for (i = 0; i < 12; i++) {
502 			CCP_WRITE_REG(vaddr, CMD_AES_MASK_OFFSET,
503 				      CCP_READ_REG(vaddr, TRNG_OUT_REG));
504 		}
505 		CCP_WRITE_REG(vaddr, CMD_QUEUE_MASK_OFFSET, 0x0000001F);
506 		CCP_WRITE_REG(vaddr, CMD_QUEUE_PRIO_OFFSET, 0x00005B6D);
507 		CCP_WRITE_REG(vaddr, CMD_CMD_TIMEOUT_OFFSET, 0x00000000);
508 
509 		CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET, 0x3FFFFFFF);
510 		CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET, 0x000003FF);
511 
512 		CCP_WRITE_REG(vaddr, CMD_CLK_GATE_CTL_OFFSET, 0x00108823);
513 	}
514 	CCP_WRITE_REG(vaddr, CMD_REQID_CONFIG_OFFSET, 0x0);
515 
516 	/* Copy the private LSB mask to the public registers */
517 	status_lo = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET);
518 	status_hi = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET);
519 	CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_LO_OFFSET, status_lo);
520 	CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_HI_OFFSET, status_hi);
521 	status = ((uint64_t)status_hi<<30) | ((uint64_t)status_lo);
522 
523 	dev->cmd_q_count = 0;
524 	/* Find available queues */
525 	qmr = CCP_READ_REG(vaddr, Q_MASK_REG);
526 	for (i = 0; i < MAX_HW_QUEUES; i++) {
527 		if (!(qmr & (1 << i)))
528 			continue;
529 		cmd_q = &dev->cmd_q[dev->cmd_q_count++];
530 		cmd_q->dev = dev;
531 		cmd_q->id = i;
532 		cmd_q->qidx = 0;
533 		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
534 
535 		cmd_q->reg_base = (uint8_t *)vaddr +
536 			CMD_Q_STATUS_INCR * (i + 1);
537 
538 		/* CCP queue memory */
539 		snprintf(cmd_q->memz_name, sizeof(cmd_q->memz_name),
540 			 "%s_%d_%s_%d_%s",
541 			 "ccp_dev",
542 			 (int)dev->id, "queue",
543 			 (int)cmd_q->id, "mem");
544 		q_mz = ccp_queue_dma_zone_reserve(cmd_q->memz_name,
545 						  cmd_q->qsize, SOCKET_ID_ANY);
546 		cmd_q->qbase_addr = (void *)q_mz->addr;
547 		cmd_q->qbase_desc = (void *)q_mz->addr;
548 		cmd_q->qbase_phys_addr =  q_mz->iova;
549 
550 		cmd_q->qcontrol = 0;
551 		/* init control reg to zero */
552 		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
553 			      cmd_q->qcontrol);
554 
555 		/* Disable the interrupts */
556 		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INT_ENABLE_BASE, 0x00);
557 		CCP_READ_REG(cmd_q->reg_base, CMD_Q_INT_STATUS_BASE);
558 		CCP_READ_REG(cmd_q->reg_base, CMD_Q_STATUS_BASE);
559 
560 		/* Clear the interrupts */
561 		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INTERRUPT_STATUS_BASE,
562 			      ALL_INTERRUPTS);
563 
564 		/* Configure size of each virtual queue accessible to host */
565 		cmd_q->qcontrol &= ~(CMD_Q_SIZE << CMD_Q_SHIFT);
566 		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD_Q_SHIFT;
567 
568 		dma_addr_lo = low32_value(cmd_q->qbase_phys_addr);
569 		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_TAIL_LO_BASE,
570 			      (uint32_t)dma_addr_lo);
571 		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_HEAD_LO_BASE,
572 			      (uint32_t)dma_addr_lo);
573 
574 		dma_addr_hi = high32_value(cmd_q->qbase_phys_addr);
575 		cmd_q->qcontrol |= (dma_addr_hi << 16);
576 		CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
577 			      cmd_q->qcontrol);
578 
579 		/* create LSB Mask map */
580 		if (ccp_find_lsb_regions(cmd_q, status))
581 			CCP_LOG_ERR("queue doesn't have lsb regions");
582 		cmd_q->lsb = -1;
583 
584 		rte_atomic64_init(&cmd_q->free_slots);
585 		rte_atomic64_set(&cmd_q->free_slots, (COMMANDS_PER_QUEUE - 1));
586 		/* unused slot barrier b/w H&T */
587 	}
588 
589 	if (ccp_assign_lsbs(dev))
590 		CCP_LOG_ERR("Unable to assign lsb region");
591 
592 	/* pre-allocate LSB slots */
593 	for (i = 0; i < dev->cmd_q_count; i++) {
594 		dev->cmd_q[i].sb_key =
595 			ccp_lsb_alloc(&dev->cmd_q[i], 1);
596 		dev->cmd_q[i].sb_iv =
597 			ccp_lsb_alloc(&dev->cmd_q[i], 1);
598 		dev->cmd_q[i].sb_sha =
599 			ccp_lsb_alloc(&dev->cmd_q[i], 2);
600 		dev->cmd_q[i].sb_hmac =
601 			ccp_lsb_alloc(&dev->cmd_q[i], 2);
602 	}
603 
604 	TAILQ_INSERT_TAIL(&ccp_list, dev, next);
605 	return 0;
606 }
607 
608 static void
609 ccp_remove_device(struct ccp_device *dev)
610 {
611 	if (dev == NULL)
612 		return;
613 
614 	TAILQ_REMOVE(&ccp_list, dev, next);
615 }
616 
617 int
618 ccp_probe_device(struct rte_pci_device *pci_dev)
619 {
620 	struct ccp_device *ccp_dev;
621 
622 	ccp_dev = rte_zmalloc("ccp_device", sizeof(*ccp_dev),
623 			      RTE_CACHE_LINE_SIZE);
624 	if (ccp_dev == NULL)
625 		goto fail;
626 
627 	ccp_dev->pci = pci_dev;
628 
629 	/* device is valid, add in list */
630 	if (ccp_add_device(ccp_dev)) {
631 		ccp_remove_device(ccp_dev);
632 		goto fail;
633 	}
634 
635 	return 0;
636 fail:
637 	CCP_LOG_ERR("CCP Device probe failed");
638 	rte_free(ccp_dev);
639 	return -1;
640 }
641