xref: /dpdk/drivers/crypto/armv8/rte_armv8_pmd.c (revision b79e4c00af0e7cfb8601ab0208659d226b82bd10)
1 /*
2  *   BSD LICENSE
3  *
4  *   Copyright (C) Cavium networks Ltd. 2017.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Cavium networks nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <stdbool.h>
34 
35 #include <rte_common.h>
36 #include <rte_hexdump.h>
37 #include <rte_cryptodev.h>
38 #include <rte_cryptodev_pmd.h>
39 #include <rte_cryptodev_vdev.h>
40 #include <rte_vdev.h>
41 #include <rte_malloc.h>
42 #include <rte_cpuflags.h>
43 
44 #include "armv8_crypto_defs.h"
45 
46 #include "rte_armv8_pmd_private.h"
47 
48 static int cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev);
49 
50 /**
51  * Pointers to the supported combined mode crypto functions are stored
52  * in the static tables. Each combined (chained) cryptographic operation
53  * can be described by a set of numbers:
54  * - order:	order of operations (cipher, auth) or (auth, cipher)
55  * - direction:	encryption or decryption
56  * - calg:	cipher algorithm such as AES_CBC, AES_CTR, etc.
57  * - aalg:	authentication algorithm such as SHA1, SHA256, etc.
58  * - keyl:	cipher key length, for example 128, 192, 256 bits
59  *
60  * In order to quickly acquire each function pointer based on those numbers,
61  * a hierarchy of arrays is maintained. The final level, 3D array is indexed
62  * by the combined mode function parameters only (cipher algorithm,
63  * authentication algorithm and key length).
64  *
65  * This gives 3 memory accesses to obtain a function pointer instead of
66  * traversing the array manually and comparing function parameters on each loop.
67  *
68  *                   +--+CRYPTO_FUNC
69  *            +--+ENC|
70  *      +--+CA|
71  *      |     +--+DEC
72  * ORDER|
73  *      |     +--+ENC
74  *      +--+AC|
75  *            +--+DEC
76  *
77  */
78 
79 /**
80  * 3D array type for ARM Combined Mode crypto functions pointers.
81  * CRYPTO_CIPHER_MAX:			max cipher ID number
82  * CRYPTO_AUTH_MAX:			max auth ID number
83  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
84  */
85 typedef const crypto_func_t
86 crypto_func_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_AUTH_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
87 
88 /* Evaluate to key length definition */
89 #define KEYL(keyl)		(ARMV8_CRYPTO_CIPHER_KEYLEN_ ## keyl)
90 
91 /* Local aliases for supported ciphers */
92 #define CIPH_AES_CBC		RTE_CRYPTO_CIPHER_AES_CBC
93 /* Local aliases for supported hashes */
94 #define AUTH_SHA1_HMAC		RTE_CRYPTO_AUTH_SHA1_HMAC
95 #define AUTH_SHA256_HMAC	RTE_CRYPTO_AUTH_SHA256_HMAC
96 
97 /**
98  * Arrays containing pointers to particular cryptographic,
99  * combined mode functions.
100  * crypto_op_ca_encrypt:	cipher (encrypt), authenticate
101  * crypto_op_ca_decrypt:	cipher (decrypt), authenticate
102  * crypto_op_ac_encrypt:	authenticate, cipher (encrypt)
103  * crypto_op_ac_decrypt:	authenticate, cipher (decrypt)
104  */
105 static const crypto_func_tbl_t
106 crypto_op_ca_encrypt = {
107 	/* [cipher alg][auth alg][key length] = crypto_function, */
108 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = aes128cbc_sha1_hmac,
109 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = aes128cbc_sha256_hmac,
110 };
111 
112 static const crypto_func_tbl_t
113 crypto_op_ca_decrypt = {
114 	NULL
115 };
116 
117 static const crypto_func_tbl_t
118 crypto_op_ac_encrypt = {
119 	NULL
120 };
121 
122 static const crypto_func_tbl_t
123 crypto_op_ac_decrypt = {
124 	/* [cipher alg][auth alg][key length] = crypto_function, */
125 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = sha1_hmac_aes128cbc_dec,
126 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = sha256_hmac_aes128cbc_dec,
127 };
128 
129 /**
130  * Arrays containing pointers to particular cryptographic function sets,
131  * covering given cipher operation directions (encrypt, decrypt)
132  * for each order of cipher and authentication pairs.
133  */
134 static const crypto_func_tbl_t *
135 crypto_cipher_auth[] = {
136 	&crypto_op_ca_encrypt,
137 	&crypto_op_ca_decrypt,
138 	NULL
139 };
140 
141 static const crypto_func_tbl_t *
142 crypto_auth_cipher[] = {
143 	&crypto_op_ac_encrypt,
144 	&crypto_op_ac_decrypt,
145 	NULL
146 };
147 
148 /**
149  * Top level array containing pointers to particular cryptographic
150  * function sets, covering given order of chained operations.
151  * crypto_cipher_auth:	cipher first, authenticate after
152  * crypto_auth_cipher:	authenticate first, cipher after
153  */
154 static const crypto_func_tbl_t **
155 crypto_chain_order[] = {
156 	crypto_cipher_auth,
157 	crypto_auth_cipher,
158 	NULL
159 };
160 
161 /**
162  * Extract particular combined mode crypto function from the 3D array.
163  */
164 #define CRYPTO_GET_ALGO(order, cop, calg, aalg, keyl)			\
165 ({									\
166 	crypto_func_tbl_t *func_tbl =					\
167 				(crypto_chain_order[(order)])[(cop)];	\
168 									\
169 	((*func_tbl)[(calg)][(aalg)][KEYL(keyl)]);		\
170 })
171 
172 /*----------------------------------------------------------------------------*/
173 
174 /**
175  * 2D array type for ARM key schedule functions pointers.
176  * CRYPTO_CIPHER_MAX:			max cipher ID number
177  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
178  */
179 typedef const crypto_key_sched_t
180 crypto_key_sched_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
181 
182 static const crypto_key_sched_tbl_t
183 crypto_key_sched_encrypt = {
184 	/* [cipher alg][key length] = key_expand_func, */
185 	[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_enc,
186 };
187 
188 static const crypto_key_sched_tbl_t
189 crypto_key_sched_decrypt = {
190 	/* [cipher alg][key length] = key_expand_func, */
191 	[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_dec,
192 };
193 
194 /**
195  * Top level array containing pointers to particular key generation
196  * function sets, covering given operation direction.
197  * crypto_key_sched_encrypt:	keys for encryption
198  * crypto_key_sched_decrypt:	keys for decryption
199  */
200 static const crypto_key_sched_tbl_t *
201 crypto_key_sched_dir[] = {
202 	&crypto_key_sched_encrypt,
203 	&crypto_key_sched_decrypt,
204 	NULL
205 };
206 
207 /**
208  * Extract particular combined mode crypto function from the 3D array.
209  */
210 #define CRYPTO_GET_KEY_SCHED(cop, calg, keyl)				\
211 ({									\
212 	crypto_key_sched_tbl_t *ks_tbl = crypto_key_sched_dir[(cop)];	\
213 									\
214 	((*ks_tbl)[(calg)][KEYL(keyl)]);				\
215 })
216 
217 /*----------------------------------------------------------------------------*/
218 
219 /*
220  *------------------------------------------------------------------------------
221  * Session Prepare
222  *------------------------------------------------------------------------------
223  */
224 
225 /** Get xform chain order */
226 static enum armv8_crypto_chain_order
227 armv8_crypto_get_chain_order(const struct rte_crypto_sym_xform *xform)
228 {
229 
230 	/*
231 	 * This driver currently covers only chained operations.
232 	 * Ignore only cipher or only authentication operations
233 	 * or chains longer than 2 xform structures.
234 	 */
235 	if (xform->next == NULL || xform->next->next != NULL)
236 		return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
237 
238 	if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
239 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
240 			return ARMV8_CRYPTO_CHAIN_AUTH_CIPHER;
241 	}
242 
243 	if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
244 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
245 			return ARMV8_CRYPTO_CHAIN_CIPHER_AUTH;
246 	}
247 
248 	return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
249 }
250 
251 static inline void
252 auth_hmac_pad_prepare(struct armv8_crypto_session *sess,
253 				const struct rte_crypto_sym_xform *xform)
254 {
255 	size_t i;
256 
257 	/* Generate i_key_pad and o_key_pad */
258 	memset(sess->auth.hmac.i_key_pad, 0, sizeof(sess->auth.hmac.i_key_pad));
259 	rte_memcpy(sess->auth.hmac.i_key_pad, sess->auth.hmac.key,
260 							xform->auth.key.length);
261 	memset(sess->auth.hmac.o_key_pad, 0, sizeof(sess->auth.hmac.o_key_pad));
262 	rte_memcpy(sess->auth.hmac.o_key_pad, sess->auth.hmac.key,
263 							xform->auth.key.length);
264 	/*
265 	 * XOR key with IPAD/OPAD values to obtain i_key_pad
266 	 * and o_key_pad.
267 	 * Byte-by-byte operation may seem to be the less efficient
268 	 * here but in fact it's the opposite.
269 	 * The result ASM code is likely operate on NEON registers
270 	 * (load auth key to Qx, load IPAD/OPAD to multiple
271 	 * elements of Qy, eor 128 bits at once).
272 	 */
273 	for (i = 0; i < SHA_BLOCK_MAX; i++) {
274 		sess->auth.hmac.i_key_pad[i] ^= HMAC_IPAD_VALUE;
275 		sess->auth.hmac.o_key_pad[i] ^= HMAC_OPAD_VALUE;
276 	}
277 }
278 
279 static inline int
280 auth_set_prerequisites(struct armv8_crypto_session *sess,
281 			const struct rte_crypto_sym_xform *xform)
282 {
283 	uint8_t partial[64] = { 0 };
284 	int error;
285 
286 	switch (xform->auth.algo) {
287 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
288 		/*
289 		 * Generate authentication key, i_key_pad and o_key_pad.
290 		 */
291 		/* Zero memory under key */
292 		memset(sess->auth.hmac.key, 0, SHA1_AUTH_KEY_LENGTH);
293 
294 		if (xform->auth.key.length > SHA1_AUTH_KEY_LENGTH) {
295 			/*
296 			 * In case the key is longer than 160 bits
297 			 * the algorithm will use SHA1(key) instead.
298 			 */
299 			error = sha1_block(NULL, xform->auth.key.data,
300 				sess->auth.hmac.key, xform->auth.key.length);
301 			if (error != 0)
302 				return -1;
303 		} else {
304 			/*
305 			 * Now copy the given authentication key to the session
306 			 * key assuming that the session key is zeroed there is
307 			 * no need for additional zero padding if the key is
308 			 * shorter than SHA1_AUTH_KEY_LENGTH.
309 			 */
310 			rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
311 							xform->auth.key.length);
312 		}
313 
314 		/* Prepare HMAC padding: key|pattern */
315 		auth_hmac_pad_prepare(sess, xform);
316 		/*
317 		 * Calculate partial hash values for i_key_pad and o_key_pad.
318 		 * Will be used as initialization state for final HMAC.
319 		 */
320 		error = sha1_block_partial(NULL, sess->auth.hmac.i_key_pad,
321 		    partial, SHA1_BLOCK_SIZE);
322 		if (error != 0)
323 			return -1;
324 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA1_BLOCK_SIZE);
325 
326 		error = sha1_block_partial(NULL, sess->auth.hmac.o_key_pad,
327 		    partial, SHA1_BLOCK_SIZE);
328 		if (error != 0)
329 			return -1;
330 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA1_BLOCK_SIZE);
331 
332 		break;
333 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
334 		/*
335 		 * Generate authentication key, i_key_pad and o_key_pad.
336 		 */
337 		/* Zero memory under key */
338 		memset(sess->auth.hmac.key, 0, SHA256_AUTH_KEY_LENGTH);
339 
340 		if (xform->auth.key.length > SHA256_AUTH_KEY_LENGTH) {
341 			/*
342 			 * In case the key is longer than 256 bits
343 			 * the algorithm will use SHA256(key) instead.
344 			 */
345 			error = sha256_block(NULL, xform->auth.key.data,
346 				sess->auth.hmac.key, xform->auth.key.length);
347 			if (error != 0)
348 				return -1;
349 		} else {
350 			/*
351 			 * Now copy the given authentication key to the session
352 			 * key assuming that the session key is zeroed there is
353 			 * no need for additional zero padding if the key is
354 			 * shorter than SHA256_AUTH_KEY_LENGTH.
355 			 */
356 			rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
357 							xform->auth.key.length);
358 		}
359 
360 		/* Prepare HMAC padding: key|pattern */
361 		auth_hmac_pad_prepare(sess, xform);
362 		/*
363 		 * Calculate partial hash values for i_key_pad and o_key_pad.
364 		 * Will be used as initialization state for final HMAC.
365 		 */
366 		error = sha256_block_partial(NULL, sess->auth.hmac.i_key_pad,
367 		    partial, SHA256_BLOCK_SIZE);
368 		if (error != 0)
369 			return -1;
370 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA256_BLOCK_SIZE);
371 
372 		error = sha256_block_partial(NULL, sess->auth.hmac.o_key_pad,
373 		    partial, SHA256_BLOCK_SIZE);
374 		if (error != 0)
375 			return -1;
376 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA256_BLOCK_SIZE);
377 
378 		break;
379 	default:
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 static inline int
387 cipher_set_prerequisites(struct armv8_crypto_session *sess,
388 			const struct rte_crypto_sym_xform *xform)
389 {
390 	crypto_key_sched_t cipher_key_sched;
391 
392 	cipher_key_sched = sess->cipher.key_sched;
393 	if (likely(cipher_key_sched != NULL)) {
394 		/* Set up cipher session key */
395 		cipher_key_sched(sess->cipher.key.data, xform->cipher.key.data);
396 	}
397 
398 	return 0;
399 }
400 
401 static int
402 armv8_crypto_set_session_chained_parameters(struct armv8_crypto_session *sess,
403 		const struct rte_crypto_sym_xform *cipher_xform,
404 		const struct rte_crypto_sym_xform *auth_xform)
405 {
406 	enum armv8_crypto_chain_order order;
407 	enum armv8_crypto_cipher_operation cop;
408 	enum rte_crypto_cipher_algorithm calg;
409 	enum rte_crypto_auth_algorithm aalg;
410 
411 	/* Validate and prepare scratch order of combined operations */
412 	switch (sess->chain_order) {
413 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
414 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
415 		order = sess->chain_order;
416 		break;
417 	default:
418 		return -EINVAL;
419 	}
420 	/* Select cipher direction */
421 	sess->cipher.direction = cipher_xform->cipher.op;
422 	/* Select cipher key */
423 	sess->cipher.key.length = cipher_xform->cipher.key.length;
424 	/* Set cipher direction */
425 	cop = sess->cipher.direction;
426 	/* Set cipher algorithm */
427 	calg = cipher_xform->cipher.algo;
428 
429 	/* Select cipher algo */
430 	switch (calg) {
431 	/* Cover supported cipher algorithms */
432 	case RTE_CRYPTO_CIPHER_AES_CBC:
433 		sess->cipher.algo = calg;
434 		/* IV len is always 16 bytes (block size) for AES CBC */
435 		sess->cipher.iv.length = 16;
436 		break;
437 	default:
438 		return -EINVAL;
439 	}
440 	/* Select auth generate/verify */
441 	sess->auth.operation = auth_xform->auth.op;
442 
443 	/* Select auth algo */
444 	switch (auth_xform->auth.algo) {
445 	/* Cover supported hash algorithms */
446 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
447 	case RTE_CRYPTO_AUTH_SHA256_HMAC: /* Fall through */
448 		aalg = auth_xform->auth.algo;
449 		sess->auth.mode = ARMV8_CRYPTO_AUTH_AS_HMAC;
450 		break;
451 	default:
452 		return -EINVAL;
453 	}
454 
455 	/* Set the digest length */
456 	sess->auth.digest_length = auth_xform->auth.digest_length;
457 
458 	/* Verify supported key lengths and extract proper algorithm */
459 	switch (cipher_xform->cipher.key.length << 3) {
460 	case 128:
461 		sess->crypto_func =
462 				CRYPTO_GET_ALGO(order, cop, calg, aalg, 128);
463 		sess->cipher.key_sched =
464 				CRYPTO_GET_KEY_SCHED(cop, calg, 128);
465 		break;
466 	case 192:
467 	case 256:
468 		/* These key lengths are not supported yet */
469 	default: /* Fall through */
470 		sess->crypto_func = NULL;
471 		sess->cipher.key_sched = NULL;
472 		return -EINVAL;
473 	}
474 
475 	if (unlikely(sess->crypto_func == NULL)) {
476 		/*
477 		 * If we got here that means that there must be a bug
478 		 * in the algorithms selection above. Nevertheless keep
479 		 * it here to catch bug immediately and avoid NULL pointer
480 		 * dereference in OPs processing.
481 		 */
482 		ARMV8_CRYPTO_LOG_ERR(
483 			"No appropriate crypto function for given parameters");
484 		return -EINVAL;
485 	}
486 
487 	/* Set up cipher session prerequisites */
488 	if (cipher_set_prerequisites(sess, cipher_xform) != 0)
489 		return -EINVAL;
490 
491 	/* Set up authentication session prerequisites */
492 	if (auth_set_prerequisites(sess, auth_xform) != 0)
493 		return -EINVAL;
494 
495 	return 0;
496 }
497 
498 /** Parse crypto xform chain and set private session parameters */
499 int
500 armv8_crypto_set_session_parameters(struct armv8_crypto_session *sess,
501 		const struct rte_crypto_sym_xform *xform)
502 {
503 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
504 	const struct rte_crypto_sym_xform *auth_xform = NULL;
505 	bool is_chained_op;
506 	int ret;
507 
508 	/* Filter out spurious/broken requests */
509 	if (xform == NULL)
510 		return -EINVAL;
511 
512 	sess->chain_order = armv8_crypto_get_chain_order(xform);
513 	switch (sess->chain_order) {
514 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
515 		cipher_xform = xform;
516 		auth_xform = xform->next;
517 		is_chained_op = true;
518 		break;
519 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
520 		auth_xform = xform;
521 		cipher_xform = xform->next;
522 		is_chained_op = true;
523 		break;
524 	default:
525 		is_chained_op = false;
526 		return -EINVAL;
527 	}
528 
529 	/* Set IV offset */
530 	sess->cipher.iv.offset = cipher_xform->cipher.iv.offset;
531 
532 	if (is_chained_op) {
533 		ret = armv8_crypto_set_session_chained_parameters(sess,
534 						cipher_xform, auth_xform);
535 		if (unlikely(ret != 0)) {
536 			ARMV8_CRYPTO_LOG_ERR(
537 			"Invalid/unsupported chained (cipher/auth) parameters");
538 			return -EINVAL;
539 		}
540 	} else {
541 		ARMV8_CRYPTO_LOG_ERR("Invalid/unsupported operation");
542 		return -EINVAL;
543 	}
544 
545 	return 0;
546 }
547 
548 /** Provide session for operation */
549 static inline struct armv8_crypto_session *
550 get_session(struct armv8_crypto_qp *qp, struct rte_crypto_op *op)
551 {
552 	struct armv8_crypto_session *sess = NULL;
553 
554 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
555 		/* get existing session */
556 		if (likely(op->sym->session != NULL &&
557 				op->sym->session->dev_type ==
558 				RTE_CRYPTODEV_ARMV8_PMD)) {
559 			sess = (struct armv8_crypto_session *)
560 				op->sym->session->_private;
561 		}
562 	} else {
563 		/* provide internal session */
564 		void *_sess = NULL;
565 
566 		if (!rte_mempool_get(qp->sess_mp, (void **)&_sess)) {
567 			sess = (struct armv8_crypto_session *)
568 				((struct rte_cryptodev_sym_session *)_sess)
569 				->_private;
570 
571 			if (unlikely(armv8_crypto_set_session_parameters(
572 					sess, op->sym->xform) != 0)) {
573 				rte_mempool_put(qp->sess_mp, _sess);
574 				sess = NULL;
575 			} else
576 				op->sym->session = _sess;
577 		}
578 	}
579 
580 	if (unlikely(sess == NULL))
581 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
582 
583 	return sess;
584 }
585 
586 /*
587  *------------------------------------------------------------------------------
588  * Process Operations
589  *------------------------------------------------------------------------------
590  */
591 
592 /*----------------------------------------------------------------------------*/
593 
594 /** Process cipher operation */
595 static inline void
596 process_armv8_chained_op
597 		(struct rte_crypto_op *op, struct armv8_crypto_session *sess,
598 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
599 {
600 	crypto_func_t crypto_func;
601 	crypto_arg_t arg;
602 	struct rte_mbuf *m_asrc, *m_adst;
603 	uint8_t *csrc, *cdst;
604 	uint8_t *adst, *asrc;
605 	uint64_t clen, alen;
606 	int error;
607 
608 	clen = op->sym->cipher.data.length;
609 	alen = op->sym->auth.data.length;
610 
611 	csrc = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
612 			op->sym->cipher.data.offset);
613 	cdst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
614 			op->sym->cipher.data.offset);
615 
616 	switch (sess->chain_order) {
617 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
618 		m_asrc = m_adst = mbuf_dst;
619 		break;
620 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
621 		m_asrc = mbuf_src;
622 		m_adst = mbuf_dst;
623 		break;
624 	default:
625 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
626 		return;
627 	}
628 	asrc = rte_pktmbuf_mtod_offset(m_asrc, uint8_t *,
629 				op->sym->auth.data.offset);
630 
631 	switch (sess->auth.mode) {
632 	case ARMV8_CRYPTO_AUTH_AS_AUTH:
633 		/* Nothing to do here, just verify correct option */
634 		break;
635 	case ARMV8_CRYPTO_AUTH_AS_HMAC:
636 		arg.digest.hmac.key = sess->auth.hmac.key;
637 		arg.digest.hmac.i_key_pad = sess->auth.hmac.i_key_pad;
638 		arg.digest.hmac.o_key_pad = sess->auth.hmac.o_key_pad;
639 		break;
640 	default:
641 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
642 		return;
643 	}
644 
645 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) {
646 		adst = op->sym->auth.digest.data;
647 		if (adst == NULL) {
648 			adst = rte_pktmbuf_mtod_offset(m_adst,
649 					uint8_t *,
650 					op->sym->auth.data.offset +
651 					op->sym->auth.data.length);
652 		}
653 	} else {
654 		adst = (uint8_t *)rte_pktmbuf_append(m_asrc,
655 				sess->auth.digest_length);
656 	}
657 
658 	arg.cipher.iv = rte_crypto_op_ctod_offset(op, uint8_t *,
659 					sess->cipher.iv.offset);
660 	arg.cipher.key = sess->cipher.key.data;
661 	/* Acquire combined mode function */
662 	crypto_func = sess->crypto_func;
663 	ARMV8_CRYPTO_ASSERT(crypto_func != NULL);
664 	error = crypto_func(csrc, cdst, clen, asrc, adst, alen, &arg);
665 	if (error != 0) {
666 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
667 		return;
668 	}
669 
670 	op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
671 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
672 		if (memcmp(adst, op->sym->auth.digest.data,
673 				sess->auth.digest_length) != 0) {
674 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
675 		}
676 		/* Trim area used for digest from mbuf. */
677 		rte_pktmbuf_trim(m_asrc,
678 				sess->auth.digest_length);
679 	}
680 }
681 
682 /** Process crypto operation for mbuf */
683 static inline int
684 process_op(const struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
685 		struct armv8_crypto_session *sess)
686 {
687 	struct rte_mbuf *msrc, *mdst;
688 
689 	msrc = op->sym->m_src;
690 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
691 
692 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
693 
694 	switch (sess->chain_order) {
695 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
696 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER: /* Fall through */
697 		process_armv8_chained_op(op, sess, msrc, mdst);
698 		break;
699 	default:
700 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
701 		break;
702 	}
703 
704 	/* Free session if a session-less crypto op */
705 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
706 		memset(sess, 0, sizeof(struct armv8_crypto_session));
707 		rte_mempool_put(qp->sess_mp, op->sym->session);
708 		op->sym->session = NULL;
709 	}
710 
711 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
712 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
713 
714 	if (unlikely(op->status == RTE_CRYPTO_OP_STATUS_ERROR))
715 		return -1;
716 
717 	return 0;
718 }
719 
720 /*
721  *------------------------------------------------------------------------------
722  * PMD Framework
723  *------------------------------------------------------------------------------
724  */
725 
726 /** Enqueue burst */
727 static uint16_t
728 armv8_crypto_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
729 		uint16_t nb_ops)
730 {
731 	struct armv8_crypto_session *sess;
732 	struct armv8_crypto_qp *qp = queue_pair;
733 	int i, retval;
734 
735 	for (i = 0; i < nb_ops; i++) {
736 		sess = get_session(qp, ops[i]);
737 		if (unlikely(sess == NULL))
738 			goto enqueue_err;
739 
740 		retval = process_op(qp, ops[i], sess);
741 		if (unlikely(retval < 0))
742 			goto enqueue_err;
743 	}
744 
745 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
746 			NULL);
747 	qp->stats.enqueued_count += retval;
748 
749 	return retval;
750 
751 enqueue_err:
752 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
753 			NULL);
754 	if (ops[i] != NULL)
755 		ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
756 
757 	qp->stats.enqueue_err_count++;
758 	return retval;
759 }
760 
761 /** Dequeue burst */
762 static uint16_t
763 armv8_crypto_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
764 		uint16_t nb_ops)
765 {
766 	struct armv8_crypto_qp *qp = queue_pair;
767 
768 	unsigned int nb_dequeued = 0;
769 
770 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
771 			(void **)ops, nb_ops, NULL);
772 	qp->stats.dequeued_count += nb_dequeued;
773 
774 	return nb_dequeued;
775 }
776 
777 /** Create ARMv8 crypto device */
778 static int
779 cryptodev_armv8_crypto_create(const char *name,
780 			struct rte_vdev_device *vdev,
781 			struct rte_crypto_vdev_init_params *init_params)
782 {
783 	struct rte_cryptodev *dev;
784 	struct armv8_crypto_private *internals;
785 
786 	/* Check CPU for support for AES instruction set */
787 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
788 		ARMV8_CRYPTO_LOG_ERR(
789 			"AES instructions not supported by CPU");
790 		return -EFAULT;
791 	}
792 
793 	/* Check CPU for support for SHA instruction set */
794 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA1) ||
795 	    !rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA2)) {
796 		ARMV8_CRYPTO_LOG_ERR(
797 			"SHA1/SHA2 instructions not supported by CPU");
798 		return -EFAULT;
799 	}
800 
801 	/* Check CPU for support for Advance SIMD instruction set */
802 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON)) {
803 		ARMV8_CRYPTO_LOG_ERR(
804 			"Advanced SIMD instructions not supported by CPU");
805 		return -EFAULT;
806 	}
807 
808 	if (init_params->name[0] == '\0')
809 		snprintf(init_params->name, sizeof(init_params->name),
810 				"%s", name);
811 
812 	dev = rte_cryptodev_vdev_pmd_init(init_params->name,
813 				sizeof(struct armv8_crypto_private),
814 				init_params->socket_id,
815 				vdev);
816 	if (dev == NULL) {
817 		ARMV8_CRYPTO_LOG_ERR("failed to create cryptodev vdev");
818 		goto init_error;
819 	}
820 
821 	dev->dev_type = RTE_CRYPTODEV_ARMV8_PMD;
822 	dev->dev_ops = rte_armv8_crypto_pmd_ops;
823 
824 	/* register rx/tx burst functions for data path */
825 	dev->dequeue_burst = armv8_crypto_pmd_dequeue_burst;
826 	dev->enqueue_burst = armv8_crypto_pmd_enqueue_burst;
827 
828 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
829 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
830 			RTE_CRYPTODEV_FF_CPU_NEON |
831 			RTE_CRYPTODEV_FF_CPU_ARM_CE;
832 
833 	/* Set vector instructions mode supported */
834 	internals = dev->data->dev_private;
835 
836 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
837 	internals->max_nb_sessions = init_params->max_nb_sessions;
838 
839 	return 0;
840 
841 init_error:
842 	ARMV8_CRYPTO_LOG_ERR(
843 		"driver %s: cryptodev_armv8_crypto_create failed",
844 		init_params->name);
845 
846 	cryptodev_armv8_crypto_uninit(vdev);
847 	return -EFAULT;
848 }
849 
850 /** Initialise ARMv8 crypto device */
851 static int
852 cryptodev_armv8_crypto_init(struct rte_vdev_device *vdev)
853 {
854 	struct rte_crypto_vdev_init_params init_params = {
855 		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
856 		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
857 		rte_socket_id(),
858 		{0}
859 	};
860 	const char *name;
861 	const char *input_args;
862 
863 	name = rte_vdev_device_name(vdev);
864 	if (name == NULL)
865 		return -EINVAL;
866 	input_args = rte_vdev_device_args(vdev);
867 	rte_cryptodev_vdev_parse_init_params(&init_params, input_args);
868 
869 	RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
870 			init_params.socket_id);
871 	if (init_params.name[0] != '\0') {
872 		RTE_LOG(INFO, PMD, "  User defined name = %s\n",
873 			init_params.name);
874 	}
875 	RTE_LOG(INFO, PMD, "  Max number of queue pairs = %d\n",
876 			init_params.max_nb_queue_pairs);
877 	RTE_LOG(INFO, PMD, "  Max number of sessions = %d\n",
878 			init_params.max_nb_sessions);
879 
880 	return cryptodev_armv8_crypto_create(name, vdev, &init_params);
881 }
882 
883 /** Uninitialise ARMv8 crypto device */
884 static int
885 cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev)
886 {
887 	const char *name;
888 
889 	name = rte_vdev_device_name(vdev);
890 	if (name == NULL)
891 		return -EINVAL;
892 
893 	RTE_LOG(INFO, PMD,
894 		"Closing ARMv8 crypto device %s on numa socket %u\n",
895 		name, rte_socket_id());
896 
897 	return 0;
898 }
899 
900 static struct rte_vdev_driver armv8_crypto_drv = {
901 	.probe = cryptodev_armv8_crypto_init,
902 	.remove = cryptodev_armv8_crypto_uninit
903 };
904 
905 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ARMV8_PMD, armv8_crypto_drv);
906 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_ARMV8_PMD, cryptodev_armv8_pmd);
907 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ARMV8_PMD,
908 	"max_nb_queue_pairs=<int> "
909 	"max_nb_sessions=<int> "
910 	"socket_id=<int>");
911