xref: /dpdk/drivers/crypto/armv8/rte_armv8_pmd.c (revision 869fede8d6795ea2b1e528f79b93a363eeff3ad0)
1 /*
2  *   BSD LICENSE
3  *
4  *   Copyright (C) Cavium networks Ltd. 2017.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Cavium networks nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <stdbool.h>
34 
35 #include <rte_common.h>
36 #include <rte_hexdump.h>
37 #include <rte_cryptodev.h>
38 #include <rte_cryptodev_pmd.h>
39 #include <rte_vdev.h>
40 #include <rte_malloc.h>
41 #include <rte_cpuflags.h>
42 
43 #include "armv8_crypto_defs.h"
44 
45 #include "rte_armv8_pmd_private.h"
46 
47 static int cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev);
48 
49 /**
50  * Pointers to the supported combined mode crypto functions are stored
51  * in the static tables. Each combined (chained) cryptographic operation
52  * can be described by a set of numbers:
53  * - order:	order of operations (cipher, auth) or (auth, cipher)
54  * - direction:	encryption or decryption
55  * - calg:	cipher algorithm such as AES_CBC, AES_CTR, etc.
56  * - aalg:	authentication algorithm such as SHA1, SHA256, etc.
57  * - keyl:	cipher key length, for example 128, 192, 256 bits
58  *
59  * In order to quickly acquire each function pointer based on those numbers,
60  * a hierarchy of arrays is maintained. The final level, 3D array is indexed
61  * by the combined mode function parameters only (cipher algorithm,
62  * authentication algorithm and key length).
63  *
64  * This gives 3 memory accesses to obtain a function pointer instead of
65  * traversing the array manually and comparing function parameters on each loop.
66  *
67  *                   +--+CRYPTO_FUNC
68  *            +--+ENC|
69  *      +--+CA|
70  *      |     +--+DEC
71  * ORDER|
72  *      |     +--+ENC
73  *      +--+AC|
74  *            +--+DEC
75  *
76  */
77 
78 /**
79  * 3D array type for ARM Combined Mode crypto functions pointers.
80  * CRYPTO_CIPHER_MAX:			max cipher ID number
81  * CRYPTO_AUTH_MAX:			max auth ID number
82  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
83  */
84 typedef const crypto_func_t
85 crypto_func_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_AUTH_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
86 
87 /* Evaluate to key length definition */
88 #define KEYL(keyl)		(ARMV8_CRYPTO_CIPHER_KEYLEN_ ## keyl)
89 
90 /* Local aliases for supported ciphers */
91 #define CIPH_AES_CBC		RTE_CRYPTO_CIPHER_AES_CBC
92 /* Local aliases for supported hashes */
93 #define AUTH_SHA1_HMAC		RTE_CRYPTO_AUTH_SHA1_HMAC
94 #define AUTH_SHA256_HMAC	RTE_CRYPTO_AUTH_SHA256_HMAC
95 
96 /**
97  * Arrays containing pointers to particular cryptographic,
98  * combined mode functions.
99  * crypto_op_ca_encrypt:	cipher (encrypt), authenticate
100  * crypto_op_ca_decrypt:	cipher (decrypt), authenticate
101  * crypto_op_ac_encrypt:	authenticate, cipher (encrypt)
102  * crypto_op_ac_decrypt:	authenticate, cipher (decrypt)
103  */
104 static const crypto_func_tbl_t
105 crypto_op_ca_encrypt = {
106 	/* [cipher alg][auth alg][key length] = crypto_function, */
107 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = aes128cbc_sha1_hmac,
108 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = aes128cbc_sha256_hmac,
109 };
110 
111 static const crypto_func_tbl_t
112 crypto_op_ca_decrypt = {
113 	NULL
114 };
115 
116 static const crypto_func_tbl_t
117 crypto_op_ac_encrypt = {
118 	NULL
119 };
120 
121 static const crypto_func_tbl_t
122 crypto_op_ac_decrypt = {
123 	/* [cipher alg][auth alg][key length] = crypto_function, */
124 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = sha1_hmac_aes128cbc_dec,
125 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = sha256_hmac_aes128cbc_dec,
126 };
127 
128 /**
129  * Arrays containing pointers to particular cryptographic function sets,
130  * covering given cipher operation directions (encrypt, decrypt)
131  * for each order of cipher and authentication pairs.
132  */
133 static const crypto_func_tbl_t *
134 crypto_cipher_auth[] = {
135 	&crypto_op_ca_encrypt,
136 	&crypto_op_ca_decrypt,
137 	NULL
138 };
139 
140 static const crypto_func_tbl_t *
141 crypto_auth_cipher[] = {
142 	&crypto_op_ac_encrypt,
143 	&crypto_op_ac_decrypt,
144 	NULL
145 };
146 
147 /**
148  * Top level array containing pointers to particular cryptographic
149  * function sets, covering given order of chained operations.
150  * crypto_cipher_auth:	cipher first, authenticate after
151  * crypto_auth_cipher:	authenticate first, cipher after
152  */
153 static const crypto_func_tbl_t **
154 crypto_chain_order[] = {
155 	crypto_cipher_auth,
156 	crypto_auth_cipher,
157 	NULL
158 };
159 
160 /**
161  * Extract particular combined mode crypto function from the 3D array.
162  */
163 #define CRYPTO_GET_ALGO(order, cop, calg, aalg, keyl)			\
164 ({									\
165 	crypto_func_tbl_t *func_tbl =					\
166 				(crypto_chain_order[(order)])[(cop)];	\
167 									\
168 	((*func_tbl)[(calg)][(aalg)][KEYL(keyl)]);		\
169 })
170 
171 /*----------------------------------------------------------------------------*/
172 
173 /**
174  * 2D array type for ARM key schedule functions pointers.
175  * CRYPTO_CIPHER_MAX:			max cipher ID number
176  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
177  */
178 typedef const crypto_key_sched_t
179 crypto_key_sched_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
180 
181 static const crypto_key_sched_tbl_t
182 crypto_key_sched_encrypt = {
183 	/* [cipher alg][key length] = key_expand_func, */
184 	[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_enc,
185 };
186 
187 static const crypto_key_sched_tbl_t
188 crypto_key_sched_decrypt = {
189 	/* [cipher alg][key length] = key_expand_func, */
190 	[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_dec,
191 };
192 
193 /**
194  * Top level array containing pointers to particular key generation
195  * function sets, covering given operation direction.
196  * crypto_key_sched_encrypt:	keys for encryption
197  * crypto_key_sched_decrypt:	keys for decryption
198  */
199 static const crypto_key_sched_tbl_t *
200 crypto_key_sched_dir[] = {
201 	&crypto_key_sched_encrypt,
202 	&crypto_key_sched_decrypt,
203 	NULL
204 };
205 
206 /**
207  * Extract particular combined mode crypto function from the 3D array.
208  */
209 #define CRYPTO_GET_KEY_SCHED(cop, calg, keyl)				\
210 ({									\
211 	crypto_key_sched_tbl_t *ks_tbl = crypto_key_sched_dir[(cop)];	\
212 									\
213 	((*ks_tbl)[(calg)][KEYL(keyl)]);				\
214 })
215 
216 /*----------------------------------------------------------------------------*/
217 
218 /*
219  *------------------------------------------------------------------------------
220  * Session Prepare
221  *------------------------------------------------------------------------------
222  */
223 
224 /** Get xform chain order */
225 static enum armv8_crypto_chain_order
226 armv8_crypto_get_chain_order(const struct rte_crypto_sym_xform *xform)
227 {
228 
229 	/*
230 	 * This driver currently covers only chained operations.
231 	 * Ignore only cipher or only authentication operations
232 	 * or chains longer than 2 xform structures.
233 	 */
234 	if (xform->next == NULL || xform->next->next != NULL)
235 		return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
236 
237 	if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
238 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
239 			return ARMV8_CRYPTO_CHAIN_AUTH_CIPHER;
240 	}
241 
242 	if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
243 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
244 			return ARMV8_CRYPTO_CHAIN_CIPHER_AUTH;
245 	}
246 
247 	return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
248 }
249 
250 static inline void
251 auth_hmac_pad_prepare(struct armv8_crypto_session *sess,
252 				const struct rte_crypto_sym_xform *xform)
253 {
254 	size_t i;
255 
256 	/* Generate i_key_pad and o_key_pad */
257 	memset(sess->auth.hmac.i_key_pad, 0, sizeof(sess->auth.hmac.i_key_pad));
258 	rte_memcpy(sess->auth.hmac.i_key_pad, sess->auth.hmac.key,
259 							xform->auth.key.length);
260 	memset(sess->auth.hmac.o_key_pad, 0, sizeof(sess->auth.hmac.o_key_pad));
261 	rte_memcpy(sess->auth.hmac.o_key_pad, sess->auth.hmac.key,
262 							xform->auth.key.length);
263 	/*
264 	 * XOR key with IPAD/OPAD values to obtain i_key_pad
265 	 * and o_key_pad.
266 	 * Byte-by-byte operation may seem to be the less efficient
267 	 * here but in fact it's the opposite.
268 	 * The result ASM code is likely operate on NEON registers
269 	 * (load auth key to Qx, load IPAD/OPAD to multiple
270 	 * elements of Qy, eor 128 bits at once).
271 	 */
272 	for (i = 0; i < SHA_BLOCK_MAX; i++) {
273 		sess->auth.hmac.i_key_pad[i] ^= HMAC_IPAD_VALUE;
274 		sess->auth.hmac.o_key_pad[i] ^= HMAC_OPAD_VALUE;
275 	}
276 }
277 
278 static inline int
279 auth_set_prerequisites(struct armv8_crypto_session *sess,
280 			const struct rte_crypto_sym_xform *xform)
281 {
282 	uint8_t partial[64] = { 0 };
283 	int error;
284 
285 	switch (xform->auth.algo) {
286 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
287 		/*
288 		 * Generate authentication key, i_key_pad and o_key_pad.
289 		 */
290 		/* Zero memory under key */
291 		memset(sess->auth.hmac.key, 0, SHA1_AUTH_KEY_LENGTH);
292 
293 		if (xform->auth.key.length > SHA1_AUTH_KEY_LENGTH) {
294 			/*
295 			 * In case the key is longer than 160 bits
296 			 * the algorithm will use SHA1(key) instead.
297 			 */
298 			error = sha1_block(NULL, xform->auth.key.data,
299 				sess->auth.hmac.key, xform->auth.key.length);
300 			if (error != 0)
301 				return -1;
302 		} else {
303 			/*
304 			 * Now copy the given authentication key to the session
305 			 * key assuming that the session key is zeroed there is
306 			 * no need for additional zero padding if the key is
307 			 * shorter than SHA1_AUTH_KEY_LENGTH.
308 			 */
309 			rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
310 							xform->auth.key.length);
311 		}
312 
313 		/* Prepare HMAC padding: key|pattern */
314 		auth_hmac_pad_prepare(sess, xform);
315 		/*
316 		 * Calculate partial hash values for i_key_pad and o_key_pad.
317 		 * Will be used as initialization state for final HMAC.
318 		 */
319 		error = sha1_block_partial(NULL, sess->auth.hmac.i_key_pad,
320 		    partial, SHA1_BLOCK_SIZE);
321 		if (error != 0)
322 			return -1;
323 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA1_BLOCK_SIZE);
324 
325 		error = sha1_block_partial(NULL, sess->auth.hmac.o_key_pad,
326 		    partial, SHA1_BLOCK_SIZE);
327 		if (error != 0)
328 			return -1;
329 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA1_BLOCK_SIZE);
330 
331 		break;
332 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
333 		/*
334 		 * Generate authentication key, i_key_pad and o_key_pad.
335 		 */
336 		/* Zero memory under key */
337 		memset(sess->auth.hmac.key, 0, SHA256_AUTH_KEY_LENGTH);
338 
339 		if (xform->auth.key.length > SHA256_AUTH_KEY_LENGTH) {
340 			/*
341 			 * In case the key is longer than 256 bits
342 			 * the algorithm will use SHA256(key) instead.
343 			 */
344 			error = sha256_block(NULL, xform->auth.key.data,
345 				sess->auth.hmac.key, xform->auth.key.length);
346 			if (error != 0)
347 				return -1;
348 		} else {
349 			/*
350 			 * Now copy the given authentication key to the session
351 			 * key assuming that the session key is zeroed there is
352 			 * no need for additional zero padding if the key is
353 			 * shorter than SHA256_AUTH_KEY_LENGTH.
354 			 */
355 			rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
356 							xform->auth.key.length);
357 		}
358 
359 		/* Prepare HMAC padding: key|pattern */
360 		auth_hmac_pad_prepare(sess, xform);
361 		/*
362 		 * Calculate partial hash values for i_key_pad and o_key_pad.
363 		 * Will be used as initialization state for final HMAC.
364 		 */
365 		error = sha256_block_partial(NULL, sess->auth.hmac.i_key_pad,
366 		    partial, SHA256_BLOCK_SIZE);
367 		if (error != 0)
368 			return -1;
369 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA256_BLOCK_SIZE);
370 
371 		error = sha256_block_partial(NULL, sess->auth.hmac.o_key_pad,
372 		    partial, SHA256_BLOCK_SIZE);
373 		if (error != 0)
374 			return -1;
375 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA256_BLOCK_SIZE);
376 
377 		break;
378 	default:
379 		break;
380 	}
381 
382 	return 0;
383 }
384 
385 static inline int
386 cipher_set_prerequisites(struct armv8_crypto_session *sess,
387 			const struct rte_crypto_sym_xform *xform)
388 {
389 	crypto_key_sched_t cipher_key_sched;
390 
391 	cipher_key_sched = sess->cipher.key_sched;
392 	if (likely(cipher_key_sched != NULL)) {
393 		/* Set up cipher session key */
394 		cipher_key_sched(sess->cipher.key.data, xform->cipher.key.data);
395 	}
396 
397 	return 0;
398 }
399 
400 static int
401 armv8_crypto_set_session_chained_parameters(struct armv8_crypto_session *sess,
402 		const struct rte_crypto_sym_xform *cipher_xform,
403 		const struct rte_crypto_sym_xform *auth_xform)
404 {
405 	enum armv8_crypto_chain_order order;
406 	enum armv8_crypto_cipher_operation cop;
407 	enum rte_crypto_cipher_algorithm calg;
408 	enum rte_crypto_auth_algorithm aalg;
409 
410 	/* Validate and prepare scratch order of combined operations */
411 	switch (sess->chain_order) {
412 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
413 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
414 		order = sess->chain_order;
415 		break;
416 	default:
417 		return -EINVAL;
418 	}
419 	/* Select cipher direction */
420 	sess->cipher.direction = cipher_xform->cipher.op;
421 	/* Select cipher key */
422 	sess->cipher.key.length = cipher_xform->cipher.key.length;
423 	/* Set cipher direction */
424 	cop = sess->cipher.direction;
425 	/* Set cipher algorithm */
426 	calg = cipher_xform->cipher.algo;
427 
428 	/* Select cipher algo */
429 	switch (calg) {
430 	/* Cover supported cipher algorithms */
431 	case RTE_CRYPTO_CIPHER_AES_CBC:
432 		sess->cipher.algo = calg;
433 		/* IV len is always 16 bytes (block size) for AES CBC */
434 		sess->cipher.iv_len = 16;
435 		break;
436 	default:
437 		return -EINVAL;
438 	}
439 	/* Select auth generate/verify */
440 	sess->auth.operation = auth_xform->auth.op;
441 
442 	/* Select auth algo */
443 	switch (auth_xform->auth.algo) {
444 	/* Cover supported hash algorithms */
445 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
446 	case RTE_CRYPTO_AUTH_SHA256_HMAC: /* Fall through */
447 		aalg = auth_xform->auth.algo;
448 		sess->auth.mode = ARMV8_CRYPTO_AUTH_AS_HMAC;
449 		break;
450 	default:
451 		return -EINVAL;
452 	}
453 
454 	/* Verify supported key lengths and extract proper algorithm */
455 	switch (cipher_xform->cipher.key.length << 3) {
456 	case 128:
457 		sess->crypto_func =
458 				CRYPTO_GET_ALGO(order, cop, calg, aalg, 128);
459 		sess->cipher.key_sched =
460 				CRYPTO_GET_KEY_SCHED(cop, calg, 128);
461 		break;
462 	case 192:
463 	case 256:
464 		/* These key lengths are not supported yet */
465 	default: /* Fall through */
466 		sess->crypto_func = NULL;
467 		sess->cipher.key_sched = NULL;
468 		return -EINVAL;
469 	}
470 
471 	if (unlikely(sess->crypto_func == NULL)) {
472 		/*
473 		 * If we got here that means that there must be a bug
474 		 * in the algorithms selection above. Nevertheless keep
475 		 * it here to catch bug immediately and avoid NULL pointer
476 		 * dereference in OPs processing.
477 		 */
478 		ARMV8_CRYPTO_LOG_ERR(
479 			"No appropriate crypto function for given parameters");
480 		return -EINVAL;
481 	}
482 
483 	/* Set up cipher session prerequisites */
484 	if (cipher_set_prerequisites(sess, cipher_xform) != 0)
485 		return -EINVAL;
486 
487 	/* Set up authentication session prerequisites */
488 	if (auth_set_prerequisites(sess, auth_xform) != 0)
489 		return -EINVAL;
490 
491 	return 0;
492 }
493 
494 /** Parse crypto xform chain and set private session parameters */
495 int
496 armv8_crypto_set_session_parameters(struct armv8_crypto_session *sess,
497 		const struct rte_crypto_sym_xform *xform)
498 {
499 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
500 	const struct rte_crypto_sym_xform *auth_xform = NULL;
501 	bool is_chained_op;
502 	int ret;
503 
504 	/* Filter out spurious/broken requests */
505 	if (xform == NULL)
506 		return -EINVAL;
507 
508 	sess->chain_order = armv8_crypto_get_chain_order(xform);
509 	switch (sess->chain_order) {
510 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
511 		cipher_xform = xform;
512 		auth_xform = xform->next;
513 		is_chained_op = true;
514 		break;
515 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
516 		auth_xform = xform;
517 		cipher_xform = xform->next;
518 		is_chained_op = true;
519 		break;
520 	default:
521 		is_chained_op = false;
522 		return -EINVAL;
523 	}
524 
525 	if (is_chained_op) {
526 		ret = armv8_crypto_set_session_chained_parameters(sess,
527 						cipher_xform, auth_xform);
528 		if (unlikely(ret != 0)) {
529 			ARMV8_CRYPTO_LOG_ERR(
530 			"Invalid/unsupported chained (cipher/auth) parameters");
531 			return -EINVAL;
532 		}
533 	} else {
534 		ARMV8_CRYPTO_LOG_ERR("Invalid/unsupported operation");
535 		return -EINVAL;
536 	}
537 
538 	return 0;
539 }
540 
541 /** Provide session for operation */
542 static inline struct armv8_crypto_session *
543 get_session(struct armv8_crypto_qp *qp, struct rte_crypto_op *op)
544 {
545 	struct armv8_crypto_session *sess = NULL;
546 
547 	if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_WITH_SESSION) {
548 		/* get existing session */
549 		if (likely(op->sym->session != NULL &&
550 				op->sym->session->dev_type ==
551 				RTE_CRYPTODEV_ARMV8_PMD)) {
552 			sess = (struct armv8_crypto_session *)
553 				op->sym->session->_private;
554 		}
555 	} else {
556 		/* provide internal session */
557 		void *_sess = NULL;
558 
559 		if (!rte_mempool_get(qp->sess_mp, (void **)&_sess)) {
560 			sess = (struct armv8_crypto_session *)
561 				((struct rte_cryptodev_sym_session *)_sess)
562 				->_private;
563 
564 			if (unlikely(armv8_crypto_set_session_parameters(
565 					sess, op->sym->xform) != 0)) {
566 				rte_mempool_put(qp->sess_mp, _sess);
567 				sess = NULL;
568 			} else
569 				op->sym->session = _sess;
570 		}
571 	}
572 
573 	if (unlikely(sess == NULL))
574 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
575 
576 	return sess;
577 }
578 
579 /*
580  *------------------------------------------------------------------------------
581  * Process Operations
582  *------------------------------------------------------------------------------
583  */
584 
585 /*----------------------------------------------------------------------------*/
586 
587 /** Process cipher operation */
588 static inline void
589 process_armv8_chained_op
590 		(struct rte_crypto_op *op, struct armv8_crypto_session *sess,
591 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
592 {
593 	crypto_func_t crypto_func;
594 	crypto_arg_t arg;
595 	struct rte_mbuf *m_asrc, *m_adst;
596 	uint8_t *csrc, *cdst;
597 	uint8_t *adst, *asrc;
598 	uint64_t clen, alen;
599 	int error;
600 
601 	clen = op->sym->cipher.data.length;
602 	alen = op->sym->auth.data.length;
603 
604 	csrc = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
605 			op->sym->cipher.data.offset);
606 	cdst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
607 			op->sym->cipher.data.offset);
608 
609 	switch (sess->chain_order) {
610 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
611 		m_asrc = m_adst = mbuf_dst;
612 		break;
613 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
614 		m_asrc = mbuf_src;
615 		m_adst = mbuf_dst;
616 		break;
617 	default:
618 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
619 		return;
620 	}
621 	asrc = rte_pktmbuf_mtod_offset(m_asrc, uint8_t *,
622 				op->sym->auth.data.offset);
623 
624 	switch (sess->auth.mode) {
625 	case ARMV8_CRYPTO_AUTH_AS_AUTH:
626 		/* Nothing to do here, just verify correct option */
627 		break;
628 	case ARMV8_CRYPTO_AUTH_AS_HMAC:
629 		arg.digest.hmac.key = sess->auth.hmac.key;
630 		arg.digest.hmac.i_key_pad = sess->auth.hmac.i_key_pad;
631 		arg.digest.hmac.o_key_pad = sess->auth.hmac.o_key_pad;
632 		break;
633 	default:
634 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
635 		return;
636 	}
637 
638 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) {
639 		adst = op->sym->auth.digest.data;
640 		if (adst == NULL) {
641 			adst = rte_pktmbuf_mtod_offset(m_adst,
642 					uint8_t *,
643 					op->sym->auth.data.offset +
644 					op->sym->auth.data.length);
645 		}
646 	} else {
647 		adst = (uint8_t *)rte_pktmbuf_append(m_asrc,
648 				op->sym->auth.digest.length);
649 	}
650 
651 	if (unlikely(op->sym->cipher.iv.length != sess->cipher.iv_len)) {
652 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
653 		return;
654 	}
655 
656 	arg.cipher.iv = op->sym->cipher.iv.data;
657 	arg.cipher.key = sess->cipher.key.data;
658 	/* Acquire combined mode function */
659 	crypto_func = sess->crypto_func;
660 	ARMV8_CRYPTO_ASSERT(crypto_func != NULL);
661 	error = crypto_func(csrc, cdst, clen, asrc, adst, alen, &arg);
662 	if (error != 0) {
663 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
664 		return;
665 	}
666 
667 	op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
668 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
669 		if (memcmp(adst, op->sym->auth.digest.data,
670 				op->sym->auth.digest.length) != 0) {
671 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
672 		}
673 		/* Trim area used for digest from mbuf. */
674 		rte_pktmbuf_trim(m_asrc,
675 				op->sym->auth.digest.length);
676 	}
677 }
678 
679 /** Process crypto operation for mbuf */
680 static inline int
681 process_op(const struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
682 		struct armv8_crypto_session *sess)
683 {
684 	struct rte_mbuf *msrc, *mdst;
685 
686 	msrc = op->sym->m_src;
687 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
688 
689 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
690 
691 	switch (sess->chain_order) {
692 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
693 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER: /* Fall through */
694 		process_armv8_chained_op(op, sess, msrc, mdst);
695 		break;
696 	default:
697 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
698 		break;
699 	}
700 
701 	/* Free session if a session-less crypto op */
702 	if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
703 		memset(sess, 0, sizeof(struct armv8_crypto_session));
704 		rte_mempool_put(qp->sess_mp, op->sym->session);
705 		op->sym->session = NULL;
706 	}
707 
708 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
709 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
710 
711 	if (unlikely(op->status == RTE_CRYPTO_OP_STATUS_ERROR))
712 		return -1;
713 
714 	return 0;
715 }
716 
717 /*
718  *------------------------------------------------------------------------------
719  * PMD Framework
720  *------------------------------------------------------------------------------
721  */
722 
723 /** Enqueue burst */
724 static uint16_t
725 armv8_crypto_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
726 		uint16_t nb_ops)
727 {
728 	struct armv8_crypto_session *sess;
729 	struct armv8_crypto_qp *qp = queue_pair;
730 	int i, retval;
731 
732 	for (i = 0; i < nb_ops; i++) {
733 		sess = get_session(qp, ops[i]);
734 		if (unlikely(sess == NULL))
735 			goto enqueue_err;
736 
737 		retval = process_op(qp, ops[i], sess);
738 		if (unlikely(retval < 0))
739 			goto enqueue_err;
740 	}
741 
742 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
743 			NULL);
744 	qp->stats.enqueued_count += retval;
745 
746 	return retval;
747 
748 enqueue_err:
749 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
750 			NULL);
751 	if (ops[i] != NULL)
752 		ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
753 
754 	qp->stats.enqueue_err_count++;
755 	return retval;
756 }
757 
758 /** Dequeue burst */
759 static uint16_t
760 armv8_crypto_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
761 		uint16_t nb_ops)
762 {
763 	struct armv8_crypto_qp *qp = queue_pair;
764 
765 	unsigned int nb_dequeued = 0;
766 
767 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
768 			(void **)ops, nb_ops, NULL);
769 	qp->stats.dequeued_count += nb_dequeued;
770 
771 	return nb_dequeued;
772 }
773 
774 /** Create ARMv8 crypto device */
775 static int
776 cryptodev_armv8_crypto_create(const char *name,
777 			struct rte_vdev_device *vdev,
778 			struct rte_crypto_vdev_init_params *init_params)
779 {
780 	struct rte_cryptodev *dev;
781 	struct armv8_crypto_private *internals;
782 
783 	/* Check CPU for support for AES instruction set */
784 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
785 		ARMV8_CRYPTO_LOG_ERR(
786 			"AES instructions not supported by CPU");
787 		return -EFAULT;
788 	}
789 
790 	/* Check CPU for support for SHA instruction set */
791 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA1) ||
792 	    !rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA2)) {
793 		ARMV8_CRYPTO_LOG_ERR(
794 			"SHA1/SHA2 instructions not supported by CPU");
795 		return -EFAULT;
796 	}
797 
798 	/* Check CPU for support for Advance SIMD instruction set */
799 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON)) {
800 		ARMV8_CRYPTO_LOG_ERR(
801 			"Advanced SIMD instructions not supported by CPU");
802 		return -EFAULT;
803 	}
804 
805 	if (init_params->name[0] == '\0')
806 		snprintf(init_params->name, sizeof(init_params->name),
807 				"%s", name);
808 
809 	dev = rte_cryptodev_pmd_virtual_dev_init(init_params->name,
810 				sizeof(struct armv8_crypto_private),
811 				init_params->socket_id);
812 	if (dev == NULL) {
813 		ARMV8_CRYPTO_LOG_ERR("failed to create cryptodev vdev");
814 		goto init_error;
815 	}
816 
817 	dev->dev_type = RTE_CRYPTODEV_ARMV8_PMD;
818 	dev->dev_ops = rte_armv8_crypto_pmd_ops;
819 
820 	/* register rx/tx burst functions for data path */
821 	dev->dequeue_burst = armv8_crypto_pmd_dequeue_burst;
822 	dev->enqueue_burst = armv8_crypto_pmd_enqueue_burst;
823 
824 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
825 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
826 			RTE_CRYPTODEV_FF_CPU_NEON |
827 			RTE_CRYPTODEV_FF_CPU_ARM_CE;
828 
829 	/* Set vector instructions mode supported */
830 	internals = dev->data->dev_private;
831 
832 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
833 	internals->max_nb_sessions = init_params->max_nb_sessions;
834 
835 	return 0;
836 
837 init_error:
838 	ARMV8_CRYPTO_LOG_ERR(
839 		"driver %s: cryptodev_armv8_crypto_create failed",
840 		init_params->name);
841 
842 	cryptodev_armv8_crypto_uninit(vdev);
843 	return -EFAULT;
844 }
845 
846 /** Initialise ARMv8 crypto device */
847 static int
848 cryptodev_armv8_crypto_init(struct rte_vdev_device *vdev)
849 {
850 	struct rte_crypto_vdev_init_params init_params = {
851 		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
852 		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
853 		rte_socket_id(),
854 		{0}
855 	};
856 	const char *name;
857 	const char *input_args;
858 
859 	name = rte_vdev_device_name(vdev);
860 	if (name == NULL)
861 		return -EINVAL;
862 	input_args = rte_vdev_device_args(vdev);
863 	rte_cryptodev_parse_vdev_init_params(&init_params, input_args);
864 
865 	RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
866 			init_params.socket_id);
867 	if (init_params.name[0] != '\0') {
868 		RTE_LOG(INFO, PMD, "  User defined name = %s\n",
869 			init_params.name);
870 	}
871 	RTE_LOG(INFO, PMD, "  Max number of queue pairs = %d\n",
872 			init_params.max_nb_queue_pairs);
873 	RTE_LOG(INFO, PMD, "  Max number of sessions = %d\n",
874 			init_params.max_nb_sessions);
875 
876 	return cryptodev_armv8_crypto_create(name, vdev, &init_params);
877 }
878 
879 /** Uninitialise ARMv8 crypto device */
880 static int
881 cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev)
882 {
883 	const char *name;
884 
885 	name = rte_vdev_device_name(vdev);
886 	if (name == NULL)
887 		return -EINVAL;
888 
889 	RTE_LOG(INFO, PMD,
890 		"Closing ARMv8 crypto device %s on numa socket %u\n",
891 		name, rte_socket_id());
892 
893 	return 0;
894 }
895 
896 static struct rte_vdev_driver armv8_crypto_drv = {
897 	.probe = cryptodev_armv8_crypto_init,
898 	.remove = cryptodev_armv8_crypto_uninit
899 };
900 
901 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ARMV8_PMD, armv8_crypto_drv);
902 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_ARMV8_PMD, cryptodev_armv8_pmd);
903 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ARMV8_PMD,
904 	"max_nb_queue_pairs=<int> "
905 	"max_nb_sessions=<int> "
906 	"socket_id=<int>");
907