xref: /dpdk/drivers/crypto/armv8/rte_armv8_pmd.c (revision 3cc6ecfdfe85d2577fef30e1791bb7534e3d60b3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include <stdbool.h>
6 
7 #include <rte_common.h>
8 #include <rte_hexdump.h>
9 #include <rte_cryptodev.h>
10 #include <rte_cryptodev_pmd.h>
11 #include <rte_bus_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_cpuflags.h>
14 
15 #include "AArch64cryptolib.h"
16 
17 #include "armv8_pmd_private.h"
18 
19 static uint8_t cryptodev_driver_id;
20 
21 static int cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev);
22 
23 /**
24  * Pointers to the supported combined mode crypto functions are stored
25  * in the static tables. Each combined (chained) cryptographic operation
26  * can be described by a set of numbers:
27  * - order:	order of operations (cipher, auth) or (auth, cipher)
28  * - direction:	encryption or decryption
29  * - calg:	cipher algorithm such as AES_CBC, AES_CTR, etc.
30  * - aalg:	authentication algorithm such as SHA1, SHA256, etc.
31  * - keyl:	cipher key length, for example 128, 192, 256 bits
32  *
33  * In order to quickly acquire each function pointer based on those numbers,
34  * a hierarchy of arrays is maintained. The final level, 3D array is indexed
35  * by the combined mode function parameters only (cipher algorithm,
36  * authentication algorithm and key length).
37  *
38  * This gives 3 memory accesses to obtain a function pointer instead of
39  * traversing the array manually and comparing function parameters on each loop.
40  *
41  *                   +--+CRYPTO_FUNC
42  *            +--+ENC|
43  *      +--+CA|
44  *      |     +--+DEC
45  * ORDER|
46  *      |     +--+ENC
47  *      +--+AC|
48  *            +--+DEC
49  *
50  */
51 
52 /**
53  * 3D array type for ARM Combined Mode crypto functions pointers.
54  * CRYPTO_CIPHER_MAX:			max cipher ID number
55  * CRYPTO_AUTH_MAX:			max auth ID number
56  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
57  */
58 typedef const crypto_func_t
59 crypto_func_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_AUTH_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
60 
61 /* Evaluate to key length definition */
62 #define KEYL(keyl)		(ARMV8_CRYPTO_CIPHER_KEYLEN_ ## keyl)
63 
64 /* Local aliases for supported ciphers */
65 #define CIPH_AES_CBC		RTE_CRYPTO_CIPHER_AES_CBC
66 /* Local aliases for supported hashes */
67 #define AUTH_SHA1_HMAC		RTE_CRYPTO_AUTH_SHA1_HMAC
68 #define AUTH_SHA256_HMAC	RTE_CRYPTO_AUTH_SHA256_HMAC
69 
70 /**
71  * Arrays containing pointers to particular cryptographic,
72  * combined mode functions.
73  * crypto_op_ca_encrypt:	cipher (encrypt), authenticate
74  * crypto_op_ca_decrypt:	cipher (decrypt), authenticate
75  * crypto_op_ac_encrypt:	authenticate, cipher (encrypt)
76  * crypto_op_ac_decrypt:	authenticate, cipher (decrypt)
77  */
78 static const crypto_func_tbl_t
79 crypto_op_ca_encrypt = {
80 	/* [cipher alg][auth alg][key length] = crypto_function, */
81 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] =
82 		armv8_enc_aes_cbc_sha1_128,
83 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] =
84 		armv8_enc_aes_cbc_sha256_128,
85 };
86 
87 static const crypto_func_tbl_t
88 crypto_op_ca_decrypt = {
89 	{ {NULL} }
90 };
91 
92 static const crypto_func_tbl_t
93 crypto_op_ac_encrypt = {
94 	{ {NULL} }
95 };
96 
97 static const crypto_func_tbl_t
98 crypto_op_ac_decrypt = {
99 	/* [cipher alg][auth alg][key length] = crypto_function, */
100 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] =
101 		armv8_dec_aes_cbc_sha1_128,
102 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] =
103 		armv8_dec_aes_cbc_sha256_128,
104 };
105 
106 /**
107  * Arrays containing pointers to particular cryptographic function sets,
108  * covering given cipher operation directions (encrypt, decrypt)
109  * for each order of cipher and authentication pairs.
110  */
111 static const crypto_func_tbl_t *
112 crypto_cipher_auth[] = {
113 	&crypto_op_ca_encrypt,
114 	&crypto_op_ca_decrypt,
115 	NULL
116 };
117 
118 static const crypto_func_tbl_t *
119 crypto_auth_cipher[] = {
120 	&crypto_op_ac_encrypt,
121 	&crypto_op_ac_decrypt,
122 	NULL
123 };
124 
125 /**
126  * Top level array containing pointers to particular cryptographic
127  * function sets, covering given order of chained operations.
128  * crypto_cipher_auth:	cipher first, authenticate after
129  * crypto_auth_cipher:	authenticate first, cipher after
130  */
131 static const crypto_func_tbl_t **
132 crypto_chain_order[] = {
133 	crypto_cipher_auth,
134 	crypto_auth_cipher,
135 	NULL
136 };
137 
138 /**
139  * Extract particular combined mode crypto function from the 3D array.
140  */
141 #define CRYPTO_GET_ALGO(order, cop, calg, aalg, keyl)			\
142 ({									\
143 	crypto_func_tbl_t *func_tbl =					\
144 				(crypto_chain_order[(order)])[(cop)];	\
145 									\
146 	((*func_tbl)[(calg)][(aalg)][KEYL(keyl)]);		\
147 })
148 
149 /*----------------------------------------------------------------------------*/
150 
151 /**
152  * 2D array type for ARM key schedule functions pointers.
153  * CRYPTO_CIPHER_MAX:			max cipher ID number
154  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
155  */
156 typedef const crypto_key_sched_t
157 crypto_key_sched_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
158 
159 static const crypto_key_sched_tbl_t
160 crypto_key_sched_encrypt = {
161 	/* [cipher alg][key length] = key_expand_func, */
162 	[CIPH_AES_CBC][KEYL(128)] = armv8_expandkeys_enc_aes_cbc_128,
163 };
164 
165 static const crypto_key_sched_tbl_t
166 crypto_key_sched_decrypt = {
167 	/* [cipher alg][key length] = key_expand_func, */
168 	[CIPH_AES_CBC][KEYL(128)] = armv8_expandkeys_dec_aes_cbc_128,
169 };
170 
171 /**
172  * Top level array containing pointers to particular key generation
173  * function sets, covering given operation direction.
174  * crypto_key_sched_encrypt:	keys for encryption
175  * crypto_key_sched_decrypt:	keys for decryption
176  */
177 static const crypto_key_sched_tbl_t *
178 crypto_key_sched_dir[] = {
179 	&crypto_key_sched_encrypt,
180 	&crypto_key_sched_decrypt,
181 	NULL
182 };
183 
184 /**
185  * Extract particular combined mode crypto function from the 3D array.
186  */
187 #define CRYPTO_GET_KEY_SCHED(cop, calg, keyl)				\
188 ({									\
189 	crypto_key_sched_tbl_t *ks_tbl = crypto_key_sched_dir[(cop)];	\
190 									\
191 	((*ks_tbl)[(calg)][KEYL(keyl)]);				\
192 })
193 
194 /*----------------------------------------------------------------------------*/
195 
196 /*
197  *------------------------------------------------------------------------------
198  * Session Prepare
199  *------------------------------------------------------------------------------
200  */
201 
202 /** Get xform chain order */
203 static enum armv8_crypto_chain_order
204 armv8_crypto_get_chain_order(const struct rte_crypto_sym_xform *xform)
205 {
206 
207 	/*
208 	 * This driver currently covers only chained operations.
209 	 * Ignore only cipher or only authentication operations
210 	 * or chains longer than 2 xform structures.
211 	 */
212 	if (xform->next == NULL || xform->next->next != NULL)
213 		return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
214 
215 	if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
216 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
217 			return ARMV8_CRYPTO_CHAIN_AUTH_CIPHER;
218 	}
219 
220 	if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
221 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
222 			return ARMV8_CRYPTO_CHAIN_CIPHER_AUTH;
223 	}
224 
225 	return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
226 }
227 
228 static inline void
229 auth_hmac_pad_prepare(struct armv8_crypto_session *sess,
230 				const struct rte_crypto_sym_xform *xform)
231 {
232 	size_t i;
233 
234 	/* Generate i_key_pad and o_key_pad */
235 	memset(sess->auth.hmac.i_key_pad, 0, sizeof(sess->auth.hmac.i_key_pad));
236 	rte_memcpy(sess->auth.hmac.i_key_pad, sess->auth.hmac.key,
237 							xform->auth.key.length);
238 	memset(sess->auth.hmac.o_key_pad, 0, sizeof(sess->auth.hmac.o_key_pad));
239 	rte_memcpy(sess->auth.hmac.o_key_pad, sess->auth.hmac.key,
240 							xform->auth.key.length);
241 	/*
242 	 * XOR key with IPAD/OPAD values to obtain i_key_pad
243 	 * and o_key_pad.
244 	 * Byte-by-byte operation may seem to be the less efficient
245 	 * here but in fact it's the opposite.
246 	 * The result ASM code is likely operate on NEON registers
247 	 * (load auth key to Qx, load IPAD/OPAD to multiple
248 	 * elements of Qy, eor 128 bits at once).
249 	 */
250 	for (i = 0; i < SHA_BLOCK_MAX; i++) {
251 		sess->auth.hmac.i_key_pad[i] ^= HMAC_IPAD_VALUE;
252 		sess->auth.hmac.o_key_pad[i] ^= HMAC_OPAD_VALUE;
253 	}
254 }
255 
256 static inline int
257 auth_set_prerequisites(struct armv8_crypto_session *sess,
258 			const struct rte_crypto_sym_xform *xform)
259 {
260 	uint8_t partial[64] = { 0 };
261 	int error;
262 
263 	switch (xform->auth.algo) {
264 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
265 		/*
266 		 * Generate authentication key, i_key_pad and o_key_pad.
267 		 */
268 		/* Zero memory under key */
269 		memset(sess->auth.hmac.key, 0, SHA1_BLOCK_SIZE);
270 
271 		/*
272 		 * Now copy the given authentication key to the session
273 		 * key.
274 		 */
275 		rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
276 						xform->auth.key.length);
277 
278 		/* Prepare HMAC padding: key|pattern */
279 		auth_hmac_pad_prepare(sess, xform);
280 		/*
281 		 * Calculate partial hash values for i_key_pad and o_key_pad.
282 		 * Will be used as initialization state for final HMAC.
283 		 */
284 		error = armv8_sha1_block_partial(NULL,
285 				sess->auth.hmac.i_key_pad,
286 				partial, SHA1_BLOCK_SIZE);
287 		if (error != 0)
288 			return -1;
289 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA1_BLOCK_SIZE);
290 
291 		error = armv8_sha1_block_partial(NULL,
292 				sess->auth.hmac.o_key_pad,
293 				partial, SHA1_BLOCK_SIZE);
294 		if (error != 0)
295 			return -1;
296 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA1_BLOCK_SIZE);
297 
298 		break;
299 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
300 		/*
301 		 * Generate authentication key, i_key_pad and o_key_pad.
302 		 */
303 		/* Zero memory under key */
304 		memset(sess->auth.hmac.key, 0, SHA256_BLOCK_SIZE);
305 
306 		/*
307 		 * Now copy the given authentication key to the session
308 		 * key.
309 		 */
310 		rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
311 						xform->auth.key.length);
312 
313 		/* Prepare HMAC padding: key|pattern */
314 		auth_hmac_pad_prepare(sess, xform);
315 		/*
316 		 * Calculate partial hash values for i_key_pad and o_key_pad.
317 		 * Will be used as initialization state for final HMAC.
318 		 */
319 		error = armv8_sha256_block_partial(NULL,
320 				sess->auth.hmac.i_key_pad,
321 				partial, SHA256_BLOCK_SIZE);
322 		if (error != 0)
323 			return -1;
324 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA256_BLOCK_SIZE);
325 
326 		error = armv8_sha256_block_partial(NULL,
327 				sess->auth.hmac.o_key_pad,
328 				partial, SHA256_BLOCK_SIZE);
329 		if (error != 0)
330 			return -1;
331 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA256_BLOCK_SIZE);
332 
333 		break;
334 	default:
335 		break;
336 	}
337 
338 	return 0;
339 }
340 
341 static inline int
342 cipher_set_prerequisites(struct armv8_crypto_session *sess,
343 			const struct rte_crypto_sym_xform *xform)
344 {
345 	crypto_key_sched_t cipher_key_sched;
346 
347 	cipher_key_sched = sess->cipher.key_sched;
348 	if (likely(cipher_key_sched != NULL)) {
349 		/* Set up cipher session key */
350 		cipher_key_sched(sess->cipher.key.data, xform->cipher.key.data);
351 	}
352 
353 	return 0;
354 }
355 
356 static int
357 armv8_crypto_set_session_chained_parameters(struct armv8_crypto_session *sess,
358 		const struct rte_crypto_sym_xform *cipher_xform,
359 		const struct rte_crypto_sym_xform *auth_xform)
360 {
361 	enum armv8_crypto_chain_order order;
362 	enum armv8_crypto_cipher_operation cop;
363 	enum rte_crypto_cipher_algorithm calg;
364 	enum rte_crypto_auth_algorithm aalg;
365 
366 	/* Validate and prepare scratch order of combined operations */
367 	switch (sess->chain_order) {
368 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
369 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
370 		order = sess->chain_order;
371 		break;
372 	default:
373 		return -ENOTSUP;
374 	}
375 	/* Select cipher direction */
376 	sess->cipher.direction = cipher_xform->cipher.op;
377 	/* Select cipher key */
378 	sess->cipher.key.length = cipher_xform->cipher.key.length;
379 	/* Set cipher direction */
380 	switch (sess->cipher.direction) {
381 	case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
382 		cop = ARMV8_CRYPTO_CIPHER_OP_ENCRYPT;
383 		break;
384 	case RTE_CRYPTO_CIPHER_OP_DECRYPT:
385 		cop = ARMV8_CRYPTO_CIPHER_OP_DECRYPT;
386 		break;
387 	default:
388 		return -ENOTSUP;
389 	}
390 	/* Set cipher algorithm */
391 	calg = cipher_xform->cipher.algo;
392 
393 	/* Select cipher algo */
394 	switch (calg) {
395 	/* Cover supported cipher algorithms */
396 	case RTE_CRYPTO_CIPHER_AES_CBC:
397 		sess->cipher.algo = calg;
398 		/* IV len is always 16 bytes (block size) for AES CBC */
399 		sess->cipher.iv.length = 16;
400 		break;
401 	default:
402 		return -ENOTSUP;
403 	}
404 	/* Select auth generate/verify */
405 	sess->auth.operation = auth_xform->auth.op;
406 
407 	/* Select auth algo */
408 	switch (auth_xform->auth.algo) {
409 	/* Cover supported hash algorithms */
410 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
411 	case RTE_CRYPTO_AUTH_SHA256_HMAC: /* Fall through */
412 		aalg = auth_xform->auth.algo;
413 		sess->auth.mode = ARMV8_CRYPTO_AUTH_AS_HMAC;
414 		break;
415 	default:
416 		return -ENOTSUP;
417 	}
418 
419 	/* Set the digest length */
420 	sess->auth.digest_length = auth_xform->auth.digest_length;
421 
422 	/* Verify supported key lengths and extract proper algorithm */
423 	switch (cipher_xform->cipher.key.length << 3) {
424 	case 128:
425 		sess->crypto_func =
426 				CRYPTO_GET_ALGO(order, cop, calg, aalg, 128);
427 		sess->cipher.key_sched =
428 				CRYPTO_GET_KEY_SCHED(cop, calg, 128);
429 		break;
430 	case 192:
431 	case 256:
432 		/* These key lengths are not supported yet */
433 	default: /* Fall through */
434 		sess->crypto_func = NULL;
435 		sess->cipher.key_sched = NULL;
436 		return -ENOTSUP;
437 	}
438 
439 	if (unlikely(sess->crypto_func == NULL)) {
440 		/*
441 		 * If we got here that means that there must be a bug
442 		 * in the algorithms selection above. Nevertheless keep
443 		 * it here to catch bug immediately and avoid NULL pointer
444 		 * dereference in OPs processing.
445 		 */
446 		ARMV8_CRYPTO_LOG_ERR(
447 			"No appropriate crypto function for given parameters");
448 		return -EINVAL;
449 	}
450 
451 	/* Set up cipher session prerequisites */
452 	if (cipher_set_prerequisites(sess, cipher_xform) != 0)
453 		return -EINVAL;
454 
455 	/* Set up authentication session prerequisites */
456 	if (auth_set_prerequisites(sess, auth_xform) != 0)
457 		return -EINVAL;
458 
459 	return 0;
460 }
461 
462 /** Parse crypto xform chain and set private session parameters */
463 int
464 armv8_crypto_set_session_parameters(struct armv8_crypto_session *sess,
465 		const struct rte_crypto_sym_xform *xform)
466 {
467 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
468 	const struct rte_crypto_sym_xform *auth_xform = NULL;
469 	bool is_chained_op;
470 	int ret;
471 
472 	/* Filter out spurious/broken requests */
473 	if (xform == NULL)
474 		return -EINVAL;
475 
476 	sess->chain_order = armv8_crypto_get_chain_order(xform);
477 	switch (sess->chain_order) {
478 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
479 		cipher_xform = xform;
480 		auth_xform = xform->next;
481 		is_chained_op = true;
482 		break;
483 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
484 		auth_xform = xform;
485 		cipher_xform = xform->next;
486 		is_chained_op = true;
487 		break;
488 	default:
489 		is_chained_op = false;
490 		return -ENOTSUP;
491 	}
492 
493 	/* Set IV offset */
494 	sess->cipher.iv.offset = cipher_xform->cipher.iv.offset;
495 
496 	if (is_chained_op) {
497 		ret = armv8_crypto_set_session_chained_parameters(sess,
498 						cipher_xform, auth_xform);
499 		if (unlikely(ret != 0)) {
500 			ARMV8_CRYPTO_LOG_ERR(
501 			"Invalid/unsupported chained (cipher/auth) parameters");
502 			return ret;
503 		}
504 	} else {
505 		ARMV8_CRYPTO_LOG_ERR("Invalid/unsupported operation");
506 		return -ENOTSUP;
507 	}
508 
509 	return 0;
510 }
511 
512 /** Provide session for operation */
513 static inline struct armv8_crypto_session *
514 get_session(struct armv8_crypto_qp *qp, struct rte_crypto_op *op)
515 {
516 	struct armv8_crypto_session *sess = NULL;
517 
518 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
519 		/* get existing session */
520 		if (likely(op->sym->session != NULL)) {
521 			sess = (struct armv8_crypto_session *)
522 					get_sym_session_private_data(
523 					op->sym->session,
524 					cryptodev_driver_id);
525 		}
526 	} else {
527 		/* provide internal session */
528 		void *_sess = NULL;
529 		void *_sess_private_data = NULL;
530 
531 		if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
532 			return NULL;
533 
534 		if (rte_mempool_get(qp->sess_mp_priv,
535 				(void **)&_sess_private_data))
536 			return NULL;
537 
538 		sess = (struct armv8_crypto_session *)_sess_private_data;
539 
540 		if (unlikely(armv8_crypto_set_session_parameters(sess,
541 				op->sym->xform) != 0)) {
542 			rte_mempool_put(qp->sess_mp, _sess);
543 			rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
544 			sess = NULL;
545 		}
546 		op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
547 		set_sym_session_private_data(op->sym->session,
548 				cryptodev_driver_id, _sess_private_data);
549 	}
550 
551 	if (unlikely(sess == NULL))
552 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
553 
554 	return sess;
555 }
556 
557 /*
558  *------------------------------------------------------------------------------
559  * Process Operations
560  *------------------------------------------------------------------------------
561  */
562 
563 /*----------------------------------------------------------------------------*/
564 
565 /** Process cipher operation */
566 static inline void
567 process_armv8_chained_op(struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
568 		struct armv8_crypto_session *sess,
569 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
570 {
571 	crypto_func_t crypto_func;
572 	armv8_cipher_digest_t arg;
573 	struct rte_mbuf *m_asrc, *m_adst;
574 	uint8_t *csrc, *cdst;
575 	uint8_t *adst, *asrc;
576 	uint64_t clen, alen;
577 	int error;
578 
579 	clen = op->sym->cipher.data.length;
580 	alen = op->sym->auth.data.length;
581 
582 	csrc = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
583 			op->sym->cipher.data.offset);
584 	cdst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
585 			op->sym->cipher.data.offset);
586 
587 	switch (sess->chain_order) {
588 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
589 		m_asrc = m_adst = mbuf_dst;
590 		break;
591 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
592 		m_asrc = mbuf_src;
593 		m_adst = mbuf_dst;
594 		break;
595 	default:
596 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
597 		return;
598 	}
599 	asrc = rte_pktmbuf_mtod_offset(m_asrc, uint8_t *,
600 				op->sym->auth.data.offset);
601 
602 	switch (sess->auth.mode) {
603 	case ARMV8_CRYPTO_AUTH_AS_AUTH:
604 		/* Nothing to do here, just verify correct option */
605 		break;
606 	case ARMV8_CRYPTO_AUTH_AS_HMAC:
607 		arg.digest.hmac.key = sess->auth.hmac.key;
608 		arg.digest.hmac.i_key_pad = sess->auth.hmac.i_key_pad;
609 		arg.digest.hmac.o_key_pad = sess->auth.hmac.o_key_pad;
610 		break;
611 	default:
612 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
613 		return;
614 	}
615 
616 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) {
617 		adst = op->sym->auth.digest.data;
618 		if (adst == NULL) {
619 			adst = rte_pktmbuf_mtod_offset(m_adst,
620 					uint8_t *,
621 					op->sym->auth.data.offset +
622 					op->sym->auth.data.length);
623 		}
624 	} else {
625 		adst = qp->temp_digest;
626 	}
627 
628 	arg.cipher.iv = rte_crypto_op_ctod_offset(op, uint8_t *,
629 					sess->cipher.iv.offset);
630 	arg.cipher.key = sess->cipher.key.data;
631 	/* Acquire combined mode function */
632 	crypto_func = sess->crypto_func;
633 	RTE_VERIFY(crypto_func != NULL);
634 	error = crypto_func(csrc, cdst, clen, asrc, adst, alen, &arg);
635 	if (error != 0) {
636 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
637 		return;
638 	}
639 
640 	op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
641 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
642 		if (memcmp(adst, op->sym->auth.digest.data,
643 				sess->auth.digest_length) != 0) {
644 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
645 		}
646 	}
647 }
648 
649 /** Process crypto operation for mbuf */
650 static inline int
651 process_op(struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
652 		struct armv8_crypto_session *sess)
653 {
654 	struct rte_mbuf *msrc, *mdst;
655 
656 	msrc = op->sym->m_src;
657 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
658 
659 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
660 
661 	switch (sess->chain_order) {
662 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
663 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER: /* Fall through */
664 		process_armv8_chained_op(qp, op, sess, msrc, mdst);
665 		break;
666 	default:
667 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
668 		break;
669 	}
670 
671 	/* Free session if a session-less crypto op */
672 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
673 		memset(sess, 0, sizeof(struct armv8_crypto_session));
674 		memset(op->sym->session, 0,
675 			rte_cryptodev_sym_get_existing_header_session_size(
676 				op->sym->session));
677 		rte_mempool_put(qp->sess_mp, sess);
678 		rte_mempool_put(qp->sess_mp_priv, op->sym->session);
679 		op->sym->session = NULL;
680 	}
681 
682 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
683 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
684 
685 	if (unlikely(op->status == RTE_CRYPTO_OP_STATUS_ERROR))
686 		return -1;
687 
688 	return 0;
689 }
690 
691 /*
692  *------------------------------------------------------------------------------
693  * PMD Framework
694  *------------------------------------------------------------------------------
695  */
696 
697 /** Enqueue burst */
698 static uint16_t
699 armv8_crypto_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
700 		uint16_t nb_ops)
701 {
702 	struct armv8_crypto_session *sess;
703 	struct armv8_crypto_qp *qp = queue_pair;
704 	int i, retval;
705 
706 	for (i = 0; i < nb_ops; i++) {
707 		sess = get_session(qp, ops[i]);
708 		if (unlikely(sess == NULL))
709 			goto enqueue_err;
710 
711 		retval = process_op(qp, ops[i], sess);
712 		if (unlikely(retval < 0))
713 			goto enqueue_err;
714 	}
715 
716 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
717 			NULL);
718 	qp->stats.enqueued_count += retval;
719 
720 	return retval;
721 
722 enqueue_err:
723 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
724 			NULL);
725 	if (ops[i] != NULL)
726 		ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
727 
728 	qp->stats.enqueue_err_count++;
729 	return retval;
730 }
731 
732 /** Dequeue burst */
733 static uint16_t
734 armv8_crypto_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
735 		uint16_t nb_ops)
736 {
737 	struct armv8_crypto_qp *qp = queue_pair;
738 
739 	unsigned int nb_dequeued = 0;
740 
741 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
742 			(void **)ops, nb_ops, NULL);
743 	qp->stats.dequeued_count += nb_dequeued;
744 
745 	return nb_dequeued;
746 }
747 
748 /** Create ARMv8 crypto device */
749 static int
750 cryptodev_armv8_crypto_create(const char *name,
751 			struct rte_vdev_device *vdev,
752 			struct rte_cryptodev_pmd_init_params *init_params)
753 {
754 	struct rte_cryptodev *dev;
755 	struct armv8_crypto_private *internals;
756 
757 	/* Check CPU for support for AES instruction set */
758 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
759 		ARMV8_CRYPTO_LOG_ERR(
760 			"AES instructions not supported by CPU");
761 		return -EFAULT;
762 	}
763 
764 	/* Check CPU for support for SHA instruction set */
765 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA1) ||
766 	    !rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA2)) {
767 		ARMV8_CRYPTO_LOG_ERR(
768 			"SHA1/SHA2 instructions not supported by CPU");
769 		return -EFAULT;
770 	}
771 
772 	/* Check CPU for support for Advance SIMD instruction set */
773 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON)) {
774 		ARMV8_CRYPTO_LOG_ERR(
775 			"Advanced SIMD instructions not supported by CPU");
776 		return -EFAULT;
777 	}
778 
779 	dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
780 	if (dev == NULL) {
781 		ARMV8_CRYPTO_LOG_ERR("failed to create cryptodev vdev");
782 		goto init_error;
783 	}
784 
785 	dev->driver_id = cryptodev_driver_id;
786 	dev->dev_ops = rte_armv8_crypto_pmd_ops;
787 
788 	/* register rx/tx burst functions for data path */
789 	dev->dequeue_burst = armv8_crypto_pmd_dequeue_burst;
790 	dev->enqueue_burst = armv8_crypto_pmd_enqueue_burst;
791 
792 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
793 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
794 			RTE_CRYPTODEV_FF_CPU_NEON |
795 			RTE_CRYPTODEV_FF_CPU_ARM_CE |
796 			RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
797 
798 	internals = dev->data->dev_private;
799 
800 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
801 
802 	return 0;
803 
804 init_error:
805 	ARMV8_CRYPTO_LOG_ERR(
806 		"driver %s: cryptodev_armv8_crypto_create failed",
807 		init_params->name);
808 
809 	cryptodev_armv8_crypto_uninit(vdev);
810 	return -EFAULT;
811 }
812 
813 /** Initialise ARMv8 crypto device */
814 static int
815 cryptodev_armv8_crypto_init(struct rte_vdev_device *vdev)
816 {
817 	struct rte_cryptodev_pmd_init_params init_params = {
818 		"",
819 		sizeof(struct armv8_crypto_private),
820 		rte_socket_id(),
821 		RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
822 	};
823 	const char *name;
824 	const char *input_args;
825 
826 	name = rte_vdev_device_name(vdev);
827 	if (name == NULL)
828 		return -EINVAL;
829 	input_args = rte_vdev_device_args(vdev);
830 	rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
831 
832 	return cryptodev_armv8_crypto_create(name, vdev, &init_params);
833 }
834 
835 /** Uninitialise ARMv8 crypto device */
836 static int
837 cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev)
838 {
839 	struct rte_cryptodev *cryptodev;
840 	const char *name;
841 
842 	name = rte_vdev_device_name(vdev);
843 	if (name == NULL)
844 		return -EINVAL;
845 
846 	RTE_LOG(INFO, PMD,
847 		"Closing ARMv8 crypto device %s on numa socket %u\n",
848 		name, rte_socket_id());
849 
850 	cryptodev = rte_cryptodev_pmd_get_named_dev(name);
851 	if (cryptodev == NULL)
852 		return -ENODEV;
853 
854 	return rte_cryptodev_pmd_destroy(cryptodev);
855 }
856 
857 static struct rte_vdev_driver armv8_crypto_pmd_drv = {
858 	.probe = cryptodev_armv8_crypto_init,
859 	.remove = cryptodev_armv8_crypto_uninit
860 };
861 
862 static struct cryptodev_driver armv8_crypto_drv;
863 
864 RTE_LOG_REGISTER(crypto_armv8_log_type, pmd.crypto.armv8, ERR);
865 
866 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ARMV8_PMD, armv8_crypto_pmd_drv);
867 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_ARMV8_PMD, cryptodev_armv8_pmd);
868 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ARMV8_PMD,
869 	"max_nb_queue_pairs=<int> "
870 	"socket_id=<int>");
871 RTE_PMD_REGISTER_CRYPTO_DRIVER(armv8_crypto_drv, armv8_crypto_pmd_drv.driver,
872 		cryptodev_driver_id);
873