xref: /dpdk/drivers/crypto/armv8/rte_armv8_pmd.c (revision 27391b53b3fceb84e21173fa663650c3912dffca)
1 /*
2  *   BSD LICENSE
3  *
4  *   Copyright (C) Cavium, Inc. 2017.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Cavium, Inc nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <stdbool.h>
34 
35 #include <rte_common.h>
36 #include <rte_hexdump.h>
37 #include <rte_cryptodev.h>
38 #include <rte_cryptodev_pmd.h>
39 #include <rte_cryptodev_vdev.h>
40 #include <rte_vdev.h>
41 #include <rte_malloc.h>
42 #include <rte_cpuflags.h>
43 
44 #include "armv8_crypto_defs.h"
45 
46 #include "rte_armv8_pmd_private.h"
47 
48 static uint8_t cryptodev_driver_id;
49 
50 static int cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev);
51 
52 /**
53  * Pointers to the supported combined mode crypto functions are stored
54  * in the static tables. Each combined (chained) cryptographic operation
55  * can be described by a set of numbers:
56  * - order:	order of operations (cipher, auth) or (auth, cipher)
57  * - direction:	encryption or decryption
58  * - calg:	cipher algorithm such as AES_CBC, AES_CTR, etc.
59  * - aalg:	authentication algorithm such as SHA1, SHA256, etc.
60  * - keyl:	cipher key length, for example 128, 192, 256 bits
61  *
62  * In order to quickly acquire each function pointer based on those numbers,
63  * a hierarchy of arrays is maintained. The final level, 3D array is indexed
64  * by the combined mode function parameters only (cipher algorithm,
65  * authentication algorithm and key length).
66  *
67  * This gives 3 memory accesses to obtain a function pointer instead of
68  * traversing the array manually and comparing function parameters on each loop.
69  *
70  *                   +--+CRYPTO_FUNC
71  *            +--+ENC|
72  *      +--+CA|
73  *      |     +--+DEC
74  * ORDER|
75  *      |     +--+ENC
76  *      +--+AC|
77  *            +--+DEC
78  *
79  */
80 
81 /**
82  * 3D array type for ARM Combined Mode crypto functions pointers.
83  * CRYPTO_CIPHER_MAX:			max cipher ID number
84  * CRYPTO_AUTH_MAX:			max auth ID number
85  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
86  */
87 typedef const crypto_func_t
88 crypto_func_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_AUTH_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
89 
90 /* Evaluate to key length definition */
91 #define KEYL(keyl)		(ARMV8_CRYPTO_CIPHER_KEYLEN_ ## keyl)
92 
93 /* Local aliases for supported ciphers */
94 #define CIPH_AES_CBC		RTE_CRYPTO_CIPHER_AES_CBC
95 /* Local aliases for supported hashes */
96 #define AUTH_SHA1_HMAC		RTE_CRYPTO_AUTH_SHA1_HMAC
97 #define AUTH_SHA256_HMAC	RTE_CRYPTO_AUTH_SHA256_HMAC
98 
99 /**
100  * Arrays containing pointers to particular cryptographic,
101  * combined mode functions.
102  * crypto_op_ca_encrypt:	cipher (encrypt), authenticate
103  * crypto_op_ca_decrypt:	cipher (decrypt), authenticate
104  * crypto_op_ac_encrypt:	authenticate, cipher (encrypt)
105  * crypto_op_ac_decrypt:	authenticate, cipher (decrypt)
106  */
107 static const crypto_func_tbl_t
108 crypto_op_ca_encrypt = {
109 	/* [cipher alg][auth alg][key length] = crypto_function, */
110 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = aes128cbc_sha1_hmac,
111 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = aes128cbc_sha256_hmac,
112 };
113 
114 static const crypto_func_tbl_t
115 crypto_op_ca_decrypt = {
116 	NULL
117 };
118 
119 static const crypto_func_tbl_t
120 crypto_op_ac_encrypt = {
121 	NULL
122 };
123 
124 static const crypto_func_tbl_t
125 crypto_op_ac_decrypt = {
126 	/* [cipher alg][auth alg][key length] = crypto_function, */
127 	[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = sha1_hmac_aes128cbc_dec,
128 	[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = sha256_hmac_aes128cbc_dec,
129 };
130 
131 /**
132  * Arrays containing pointers to particular cryptographic function sets,
133  * covering given cipher operation directions (encrypt, decrypt)
134  * for each order of cipher and authentication pairs.
135  */
136 static const crypto_func_tbl_t *
137 crypto_cipher_auth[] = {
138 	&crypto_op_ca_encrypt,
139 	&crypto_op_ca_decrypt,
140 	NULL
141 };
142 
143 static const crypto_func_tbl_t *
144 crypto_auth_cipher[] = {
145 	&crypto_op_ac_encrypt,
146 	&crypto_op_ac_decrypt,
147 	NULL
148 };
149 
150 /**
151  * Top level array containing pointers to particular cryptographic
152  * function sets, covering given order of chained operations.
153  * crypto_cipher_auth:	cipher first, authenticate after
154  * crypto_auth_cipher:	authenticate first, cipher after
155  */
156 static const crypto_func_tbl_t **
157 crypto_chain_order[] = {
158 	crypto_cipher_auth,
159 	crypto_auth_cipher,
160 	NULL
161 };
162 
163 /**
164  * Extract particular combined mode crypto function from the 3D array.
165  */
166 #define CRYPTO_GET_ALGO(order, cop, calg, aalg, keyl)			\
167 ({									\
168 	crypto_func_tbl_t *func_tbl =					\
169 				(crypto_chain_order[(order)])[(cop)];	\
170 									\
171 	((*func_tbl)[(calg)][(aalg)][KEYL(keyl)]);		\
172 })
173 
174 /*----------------------------------------------------------------------------*/
175 
176 /**
177  * 2D array type for ARM key schedule functions pointers.
178  * CRYPTO_CIPHER_MAX:			max cipher ID number
179  * CRYPTO_CIPHER_KEYLEN_MAX:		max key length ID number
180  */
181 typedef const crypto_key_sched_t
182 crypto_key_sched_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
183 
184 static const crypto_key_sched_tbl_t
185 crypto_key_sched_encrypt = {
186 	/* [cipher alg][key length] = key_expand_func, */
187 	[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_enc,
188 };
189 
190 static const crypto_key_sched_tbl_t
191 crypto_key_sched_decrypt = {
192 	/* [cipher alg][key length] = key_expand_func, */
193 	[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_dec,
194 };
195 
196 /**
197  * Top level array containing pointers to particular key generation
198  * function sets, covering given operation direction.
199  * crypto_key_sched_encrypt:	keys for encryption
200  * crypto_key_sched_decrypt:	keys for decryption
201  */
202 static const crypto_key_sched_tbl_t *
203 crypto_key_sched_dir[] = {
204 	&crypto_key_sched_encrypt,
205 	&crypto_key_sched_decrypt,
206 	NULL
207 };
208 
209 /**
210  * Extract particular combined mode crypto function from the 3D array.
211  */
212 #define CRYPTO_GET_KEY_SCHED(cop, calg, keyl)				\
213 ({									\
214 	crypto_key_sched_tbl_t *ks_tbl = crypto_key_sched_dir[(cop)];	\
215 									\
216 	((*ks_tbl)[(calg)][KEYL(keyl)]);				\
217 })
218 
219 /*----------------------------------------------------------------------------*/
220 
221 /*
222  *------------------------------------------------------------------------------
223  * Session Prepare
224  *------------------------------------------------------------------------------
225  */
226 
227 /** Get xform chain order */
228 static enum armv8_crypto_chain_order
229 armv8_crypto_get_chain_order(const struct rte_crypto_sym_xform *xform)
230 {
231 
232 	/*
233 	 * This driver currently covers only chained operations.
234 	 * Ignore only cipher or only authentication operations
235 	 * or chains longer than 2 xform structures.
236 	 */
237 	if (xform->next == NULL || xform->next->next != NULL)
238 		return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
239 
240 	if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
241 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
242 			return ARMV8_CRYPTO_CHAIN_AUTH_CIPHER;
243 	}
244 
245 	if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
246 		if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
247 			return ARMV8_CRYPTO_CHAIN_CIPHER_AUTH;
248 	}
249 
250 	return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
251 }
252 
253 static inline void
254 auth_hmac_pad_prepare(struct armv8_crypto_session *sess,
255 				const struct rte_crypto_sym_xform *xform)
256 {
257 	size_t i;
258 
259 	/* Generate i_key_pad and o_key_pad */
260 	memset(sess->auth.hmac.i_key_pad, 0, sizeof(sess->auth.hmac.i_key_pad));
261 	rte_memcpy(sess->auth.hmac.i_key_pad, sess->auth.hmac.key,
262 							xform->auth.key.length);
263 	memset(sess->auth.hmac.o_key_pad, 0, sizeof(sess->auth.hmac.o_key_pad));
264 	rte_memcpy(sess->auth.hmac.o_key_pad, sess->auth.hmac.key,
265 							xform->auth.key.length);
266 	/*
267 	 * XOR key with IPAD/OPAD values to obtain i_key_pad
268 	 * and o_key_pad.
269 	 * Byte-by-byte operation may seem to be the less efficient
270 	 * here but in fact it's the opposite.
271 	 * The result ASM code is likely operate on NEON registers
272 	 * (load auth key to Qx, load IPAD/OPAD to multiple
273 	 * elements of Qy, eor 128 bits at once).
274 	 */
275 	for (i = 0; i < SHA_BLOCK_MAX; i++) {
276 		sess->auth.hmac.i_key_pad[i] ^= HMAC_IPAD_VALUE;
277 		sess->auth.hmac.o_key_pad[i] ^= HMAC_OPAD_VALUE;
278 	}
279 }
280 
281 static inline int
282 auth_set_prerequisites(struct armv8_crypto_session *sess,
283 			const struct rte_crypto_sym_xform *xform)
284 {
285 	uint8_t partial[64] = { 0 };
286 	int error;
287 
288 	switch (xform->auth.algo) {
289 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
290 		/*
291 		 * Generate authentication key, i_key_pad and o_key_pad.
292 		 */
293 		/* Zero memory under key */
294 		memset(sess->auth.hmac.key, 0, SHA1_AUTH_KEY_LENGTH);
295 
296 		if (xform->auth.key.length > SHA1_AUTH_KEY_LENGTH) {
297 			/*
298 			 * In case the key is longer than 160 bits
299 			 * the algorithm will use SHA1(key) instead.
300 			 */
301 			error = sha1_block(NULL, xform->auth.key.data,
302 				sess->auth.hmac.key, xform->auth.key.length);
303 			if (error != 0)
304 				return -1;
305 		} else {
306 			/*
307 			 * Now copy the given authentication key to the session
308 			 * key assuming that the session key is zeroed there is
309 			 * no need for additional zero padding if the key is
310 			 * shorter than SHA1_AUTH_KEY_LENGTH.
311 			 */
312 			rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
313 							xform->auth.key.length);
314 		}
315 
316 		/* Prepare HMAC padding: key|pattern */
317 		auth_hmac_pad_prepare(sess, xform);
318 		/*
319 		 * Calculate partial hash values for i_key_pad and o_key_pad.
320 		 * Will be used as initialization state for final HMAC.
321 		 */
322 		error = sha1_block_partial(NULL, sess->auth.hmac.i_key_pad,
323 		    partial, SHA1_BLOCK_SIZE);
324 		if (error != 0)
325 			return -1;
326 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA1_BLOCK_SIZE);
327 
328 		error = sha1_block_partial(NULL, sess->auth.hmac.o_key_pad,
329 		    partial, SHA1_BLOCK_SIZE);
330 		if (error != 0)
331 			return -1;
332 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA1_BLOCK_SIZE);
333 
334 		break;
335 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
336 		/*
337 		 * Generate authentication key, i_key_pad and o_key_pad.
338 		 */
339 		/* Zero memory under key */
340 		memset(sess->auth.hmac.key, 0, SHA256_AUTH_KEY_LENGTH);
341 
342 		if (xform->auth.key.length > SHA256_AUTH_KEY_LENGTH) {
343 			/*
344 			 * In case the key is longer than 256 bits
345 			 * the algorithm will use SHA256(key) instead.
346 			 */
347 			error = sha256_block(NULL, xform->auth.key.data,
348 				sess->auth.hmac.key, xform->auth.key.length);
349 			if (error != 0)
350 				return -1;
351 		} else {
352 			/*
353 			 * Now copy the given authentication key to the session
354 			 * key assuming that the session key is zeroed there is
355 			 * no need for additional zero padding if the key is
356 			 * shorter than SHA256_AUTH_KEY_LENGTH.
357 			 */
358 			rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
359 							xform->auth.key.length);
360 		}
361 
362 		/* Prepare HMAC padding: key|pattern */
363 		auth_hmac_pad_prepare(sess, xform);
364 		/*
365 		 * Calculate partial hash values for i_key_pad and o_key_pad.
366 		 * Will be used as initialization state for final HMAC.
367 		 */
368 		error = sha256_block_partial(NULL, sess->auth.hmac.i_key_pad,
369 		    partial, SHA256_BLOCK_SIZE);
370 		if (error != 0)
371 			return -1;
372 		memcpy(sess->auth.hmac.i_key_pad, partial, SHA256_BLOCK_SIZE);
373 
374 		error = sha256_block_partial(NULL, sess->auth.hmac.o_key_pad,
375 		    partial, SHA256_BLOCK_SIZE);
376 		if (error != 0)
377 			return -1;
378 		memcpy(sess->auth.hmac.o_key_pad, partial, SHA256_BLOCK_SIZE);
379 
380 		break;
381 	default:
382 		break;
383 	}
384 
385 	return 0;
386 }
387 
388 static inline int
389 cipher_set_prerequisites(struct armv8_crypto_session *sess,
390 			const struct rte_crypto_sym_xform *xform)
391 {
392 	crypto_key_sched_t cipher_key_sched;
393 
394 	cipher_key_sched = sess->cipher.key_sched;
395 	if (likely(cipher_key_sched != NULL)) {
396 		/* Set up cipher session key */
397 		cipher_key_sched(sess->cipher.key.data, xform->cipher.key.data);
398 	}
399 
400 	return 0;
401 }
402 
403 static int
404 armv8_crypto_set_session_chained_parameters(struct armv8_crypto_session *sess,
405 		const struct rte_crypto_sym_xform *cipher_xform,
406 		const struct rte_crypto_sym_xform *auth_xform)
407 {
408 	enum armv8_crypto_chain_order order;
409 	enum armv8_crypto_cipher_operation cop;
410 	enum rte_crypto_cipher_algorithm calg;
411 	enum rte_crypto_auth_algorithm aalg;
412 
413 	/* Validate and prepare scratch order of combined operations */
414 	switch (sess->chain_order) {
415 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
416 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
417 		order = sess->chain_order;
418 		break;
419 	default:
420 		return -ENOTSUP;
421 	}
422 	/* Select cipher direction */
423 	sess->cipher.direction = cipher_xform->cipher.op;
424 	/* Select cipher key */
425 	sess->cipher.key.length = cipher_xform->cipher.key.length;
426 	/* Set cipher direction */
427 	cop = sess->cipher.direction;
428 	/* Set cipher algorithm */
429 	calg = cipher_xform->cipher.algo;
430 
431 	/* Select cipher algo */
432 	switch (calg) {
433 	/* Cover supported cipher algorithms */
434 	case RTE_CRYPTO_CIPHER_AES_CBC:
435 		sess->cipher.algo = calg;
436 		/* IV len is always 16 bytes (block size) for AES CBC */
437 		sess->cipher.iv.length = 16;
438 		break;
439 	default:
440 		return -ENOTSUP;
441 	}
442 	/* Select auth generate/verify */
443 	sess->auth.operation = auth_xform->auth.op;
444 
445 	/* Select auth algo */
446 	switch (auth_xform->auth.algo) {
447 	/* Cover supported hash algorithms */
448 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
449 	case RTE_CRYPTO_AUTH_SHA256_HMAC: /* Fall through */
450 		aalg = auth_xform->auth.algo;
451 		sess->auth.mode = ARMV8_CRYPTO_AUTH_AS_HMAC;
452 		break;
453 	default:
454 		return -ENOTSUP;
455 	}
456 
457 	/* Set the digest length */
458 	sess->auth.digest_length = auth_xform->auth.digest_length;
459 
460 	/* Verify supported key lengths and extract proper algorithm */
461 	switch (cipher_xform->cipher.key.length << 3) {
462 	case 128:
463 		sess->crypto_func =
464 				CRYPTO_GET_ALGO(order, cop, calg, aalg, 128);
465 		sess->cipher.key_sched =
466 				CRYPTO_GET_KEY_SCHED(cop, calg, 128);
467 		break;
468 	case 192:
469 	case 256:
470 		/* These key lengths are not supported yet */
471 	default: /* Fall through */
472 		sess->crypto_func = NULL;
473 		sess->cipher.key_sched = NULL;
474 		return -ENOTSUP;
475 	}
476 
477 	if (unlikely(sess->crypto_func == NULL)) {
478 		/*
479 		 * If we got here that means that there must be a bug
480 		 * in the algorithms selection above. Nevertheless keep
481 		 * it here to catch bug immediately and avoid NULL pointer
482 		 * dereference in OPs processing.
483 		 */
484 		ARMV8_CRYPTO_LOG_ERR(
485 			"No appropriate crypto function for given parameters");
486 		return -EINVAL;
487 	}
488 
489 	/* Set up cipher session prerequisites */
490 	if (cipher_set_prerequisites(sess, cipher_xform) != 0)
491 		return -EINVAL;
492 
493 	/* Set up authentication session prerequisites */
494 	if (auth_set_prerequisites(sess, auth_xform) != 0)
495 		return -EINVAL;
496 
497 	return 0;
498 }
499 
500 /** Parse crypto xform chain and set private session parameters */
501 int
502 armv8_crypto_set_session_parameters(struct armv8_crypto_session *sess,
503 		const struct rte_crypto_sym_xform *xform)
504 {
505 	const struct rte_crypto_sym_xform *cipher_xform = NULL;
506 	const struct rte_crypto_sym_xform *auth_xform = NULL;
507 	bool is_chained_op;
508 	int ret;
509 
510 	/* Filter out spurious/broken requests */
511 	if (xform == NULL)
512 		return -EINVAL;
513 
514 	sess->chain_order = armv8_crypto_get_chain_order(xform);
515 	switch (sess->chain_order) {
516 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
517 		cipher_xform = xform;
518 		auth_xform = xform->next;
519 		is_chained_op = true;
520 		break;
521 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
522 		auth_xform = xform;
523 		cipher_xform = xform->next;
524 		is_chained_op = true;
525 		break;
526 	default:
527 		is_chained_op = false;
528 		return -ENOTSUP;
529 	}
530 
531 	/* Set IV offset */
532 	sess->cipher.iv.offset = cipher_xform->cipher.iv.offset;
533 
534 	if (is_chained_op) {
535 		ret = armv8_crypto_set_session_chained_parameters(sess,
536 						cipher_xform, auth_xform);
537 		if (unlikely(ret != 0)) {
538 			ARMV8_CRYPTO_LOG_ERR(
539 			"Invalid/unsupported chained (cipher/auth) parameters");
540 			return ret;
541 		}
542 	} else {
543 		ARMV8_CRYPTO_LOG_ERR("Invalid/unsupported operation");
544 		return -ENOTSUP;
545 	}
546 
547 	return 0;
548 }
549 
550 /** Provide session for operation */
551 static inline struct armv8_crypto_session *
552 get_session(struct armv8_crypto_qp *qp, struct rte_crypto_op *op)
553 {
554 	struct armv8_crypto_session *sess = NULL;
555 
556 	if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
557 		/* get existing session */
558 		if (likely(op->sym->session != NULL)) {
559 			sess = (struct armv8_crypto_session *)
560 					get_session_private_data(
561 					op->sym->session,
562 					cryptodev_driver_id);
563 		}
564 	} else {
565 		/* provide internal session */
566 		void *_sess = NULL;
567 		void *_sess_private_data = NULL;
568 
569 		if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
570 			return NULL;
571 
572 		if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
573 			return NULL;
574 
575 		sess = (struct armv8_crypto_session *)_sess_private_data;
576 
577 		if (unlikely(armv8_crypto_set_session_parameters(sess,
578 				op->sym->xform) != 0)) {
579 			rte_mempool_put(qp->sess_mp, _sess);
580 			rte_mempool_put(qp->sess_mp, _sess_private_data);
581 			sess = NULL;
582 		}
583 		op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
584 		set_session_private_data(op->sym->session, cryptodev_driver_id,
585 			_sess_private_data);
586 	}
587 
588 	if (unlikely(sess == NULL))
589 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
590 
591 	return sess;
592 }
593 
594 /*
595  *------------------------------------------------------------------------------
596  * Process Operations
597  *------------------------------------------------------------------------------
598  */
599 
600 /*----------------------------------------------------------------------------*/
601 
602 /** Process cipher operation */
603 static inline void
604 process_armv8_chained_op
605 		(struct rte_crypto_op *op, struct armv8_crypto_session *sess,
606 		struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
607 {
608 	crypto_func_t crypto_func;
609 	crypto_arg_t arg;
610 	struct rte_mbuf *m_asrc, *m_adst;
611 	uint8_t *csrc, *cdst;
612 	uint8_t *adst, *asrc;
613 	uint64_t clen, alen;
614 	int error;
615 
616 	clen = op->sym->cipher.data.length;
617 	alen = op->sym->auth.data.length;
618 
619 	csrc = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
620 			op->sym->cipher.data.offset);
621 	cdst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
622 			op->sym->cipher.data.offset);
623 
624 	switch (sess->chain_order) {
625 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
626 		m_asrc = m_adst = mbuf_dst;
627 		break;
628 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
629 		m_asrc = mbuf_src;
630 		m_adst = mbuf_dst;
631 		break;
632 	default:
633 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
634 		return;
635 	}
636 	asrc = rte_pktmbuf_mtod_offset(m_asrc, uint8_t *,
637 				op->sym->auth.data.offset);
638 
639 	switch (sess->auth.mode) {
640 	case ARMV8_CRYPTO_AUTH_AS_AUTH:
641 		/* Nothing to do here, just verify correct option */
642 		break;
643 	case ARMV8_CRYPTO_AUTH_AS_HMAC:
644 		arg.digest.hmac.key = sess->auth.hmac.key;
645 		arg.digest.hmac.i_key_pad = sess->auth.hmac.i_key_pad;
646 		arg.digest.hmac.o_key_pad = sess->auth.hmac.o_key_pad;
647 		break;
648 	default:
649 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
650 		return;
651 	}
652 
653 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) {
654 		adst = op->sym->auth.digest.data;
655 		if (adst == NULL) {
656 			adst = rte_pktmbuf_mtod_offset(m_adst,
657 					uint8_t *,
658 					op->sym->auth.data.offset +
659 					op->sym->auth.data.length);
660 		}
661 	} else {
662 		adst = (uint8_t *)rte_pktmbuf_append(m_asrc,
663 				sess->auth.digest_length);
664 	}
665 
666 	arg.cipher.iv = rte_crypto_op_ctod_offset(op, uint8_t *,
667 					sess->cipher.iv.offset);
668 	arg.cipher.key = sess->cipher.key.data;
669 	/* Acquire combined mode function */
670 	crypto_func = sess->crypto_func;
671 	ARMV8_CRYPTO_ASSERT(crypto_func != NULL);
672 	error = crypto_func(csrc, cdst, clen, asrc, adst, alen, &arg);
673 	if (error != 0) {
674 		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
675 		return;
676 	}
677 
678 	op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
679 	if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
680 		if (memcmp(adst, op->sym->auth.digest.data,
681 				sess->auth.digest_length) != 0) {
682 			op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
683 		}
684 		/* Trim area used for digest from mbuf. */
685 		rte_pktmbuf_trim(m_asrc,
686 				sess->auth.digest_length);
687 	}
688 }
689 
690 /** Process crypto operation for mbuf */
691 static inline int
692 process_op(const struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
693 		struct armv8_crypto_session *sess)
694 {
695 	struct rte_mbuf *msrc, *mdst;
696 
697 	msrc = op->sym->m_src;
698 	mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
699 
700 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
701 
702 	switch (sess->chain_order) {
703 	case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
704 	case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER: /* Fall through */
705 		process_armv8_chained_op(op, sess, msrc, mdst);
706 		break;
707 	default:
708 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
709 		break;
710 	}
711 
712 	/* Free session if a session-less crypto op */
713 	if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
714 		memset(sess, 0, sizeof(struct armv8_crypto_session));
715 		memset(op->sym->session, 0,
716 				rte_cryptodev_get_header_session_size());
717 		rte_mempool_put(qp->sess_mp, sess);
718 		rte_mempool_put(qp->sess_mp, op->sym->session);
719 		op->sym->session = NULL;
720 	}
721 
722 	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
723 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
724 
725 	if (unlikely(op->status == RTE_CRYPTO_OP_STATUS_ERROR))
726 		return -1;
727 
728 	return 0;
729 }
730 
731 /*
732  *------------------------------------------------------------------------------
733  * PMD Framework
734  *------------------------------------------------------------------------------
735  */
736 
737 /** Enqueue burst */
738 static uint16_t
739 armv8_crypto_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
740 		uint16_t nb_ops)
741 {
742 	struct armv8_crypto_session *sess;
743 	struct armv8_crypto_qp *qp = queue_pair;
744 	int i, retval;
745 
746 	for (i = 0; i < nb_ops; i++) {
747 		sess = get_session(qp, ops[i]);
748 		if (unlikely(sess == NULL))
749 			goto enqueue_err;
750 
751 		retval = process_op(qp, ops[i], sess);
752 		if (unlikely(retval < 0))
753 			goto enqueue_err;
754 	}
755 
756 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
757 			NULL);
758 	qp->stats.enqueued_count += retval;
759 
760 	return retval;
761 
762 enqueue_err:
763 	retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
764 			NULL);
765 	if (ops[i] != NULL)
766 		ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
767 
768 	qp->stats.enqueue_err_count++;
769 	return retval;
770 }
771 
772 /** Dequeue burst */
773 static uint16_t
774 armv8_crypto_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
775 		uint16_t nb_ops)
776 {
777 	struct armv8_crypto_qp *qp = queue_pair;
778 
779 	unsigned int nb_dequeued = 0;
780 
781 	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
782 			(void **)ops, nb_ops, NULL);
783 	qp->stats.dequeued_count += nb_dequeued;
784 
785 	return nb_dequeued;
786 }
787 
788 /** Create ARMv8 crypto device */
789 static int
790 cryptodev_armv8_crypto_create(const char *name,
791 			struct rte_vdev_device *vdev,
792 			struct rte_crypto_vdev_init_params *init_params)
793 {
794 	struct rte_cryptodev *dev;
795 	struct armv8_crypto_private *internals;
796 
797 	/* Check CPU for support for AES instruction set */
798 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
799 		ARMV8_CRYPTO_LOG_ERR(
800 			"AES instructions not supported by CPU");
801 		return -EFAULT;
802 	}
803 
804 	/* Check CPU for support for SHA instruction set */
805 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA1) ||
806 	    !rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA2)) {
807 		ARMV8_CRYPTO_LOG_ERR(
808 			"SHA1/SHA2 instructions not supported by CPU");
809 		return -EFAULT;
810 	}
811 
812 	/* Check CPU for support for Advance SIMD instruction set */
813 	if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON)) {
814 		ARMV8_CRYPTO_LOG_ERR(
815 			"Advanced SIMD instructions not supported by CPU");
816 		return -EFAULT;
817 	}
818 
819 	if (init_params->name[0] == '\0')
820 		snprintf(init_params->name, sizeof(init_params->name),
821 				"%s", name);
822 
823 	dev = rte_cryptodev_vdev_pmd_init(init_params->name,
824 				sizeof(struct armv8_crypto_private),
825 				init_params->socket_id,
826 				vdev);
827 	if (dev == NULL) {
828 		ARMV8_CRYPTO_LOG_ERR("failed to create cryptodev vdev");
829 		goto init_error;
830 	}
831 
832 	dev->driver_id = cryptodev_driver_id;
833 	dev->dev_ops = rte_armv8_crypto_pmd_ops;
834 
835 	/* register rx/tx burst functions for data path */
836 	dev->dequeue_burst = armv8_crypto_pmd_dequeue_burst;
837 	dev->enqueue_burst = armv8_crypto_pmd_enqueue_burst;
838 
839 	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
840 			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
841 			RTE_CRYPTODEV_FF_CPU_NEON |
842 			RTE_CRYPTODEV_FF_CPU_ARM_CE;
843 
844 	/* Set vector instructions mode supported */
845 	internals = dev->data->dev_private;
846 
847 	internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
848 	internals->max_nb_sessions = init_params->max_nb_sessions;
849 
850 	return 0;
851 
852 init_error:
853 	ARMV8_CRYPTO_LOG_ERR(
854 		"driver %s: cryptodev_armv8_crypto_create failed",
855 		init_params->name);
856 
857 	cryptodev_armv8_crypto_uninit(vdev);
858 	return -EFAULT;
859 }
860 
861 /** Initialise ARMv8 crypto device */
862 static int
863 cryptodev_armv8_crypto_init(struct rte_vdev_device *vdev)
864 {
865 	struct rte_crypto_vdev_init_params init_params = {
866 		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
867 		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
868 		rte_socket_id(),
869 		{0}
870 	};
871 	const char *name;
872 	const char *input_args;
873 
874 	name = rte_vdev_device_name(vdev);
875 	if (name == NULL)
876 		return -EINVAL;
877 	input_args = rte_vdev_device_args(vdev);
878 	rte_cryptodev_vdev_parse_init_params(&init_params, input_args);
879 
880 	RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
881 			init_params.socket_id);
882 	if (init_params.name[0] != '\0') {
883 		RTE_LOG(INFO, PMD, "  User defined name = %s\n",
884 			init_params.name);
885 	}
886 	RTE_LOG(INFO, PMD, "  Max number of queue pairs = %d\n",
887 			init_params.max_nb_queue_pairs);
888 	RTE_LOG(INFO, PMD, "  Max number of sessions = %d\n",
889 			init_params.max_nb_sessions);
890 
891 	return cryptodev_armv8_crypto_create(name, vdev, &init_params);
892 }
893 
894 /** Uninitialise ARMv8 crypto device */
895 static int
896 cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev)
897 {
898 	const char *name;
899 
900 	name = rte_vdev_device_name(vdev);
901 	if (name == NULL)
902 		return -EINVAL;
903 
904 	RTE_LOG(INFO, PMD,
905 		"Closing ARMv8 crypto device %s on numa socket %u\n",
906 		name, rte_socket_id());
907 
908 	return 0;
909 }
910 
911 static struct rte_vdev_driver armv8_crypto_drv = {
912 	.probe = cryptodev_armv8_crypto_init,
913 	.remove = cryptodev_armv8_crypto_uninit
914 };
915 
916 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ARMV8_PMD, armv8_crypto_drv);
917 RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_ARMV8_PMD, cryptodev_armv8_pmd);
918 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ARMV8_PMD,
919 	"max_nb_queue_pairs=<int> "
920 	"max_nb_sessions=<int> "
921 	"socket_id=<int>");
922 RTE_PMD_REGISTER_CRYPTO_DRIVER(armv8_crypto_drv, cryptodev_driver_id);
923