xref: /dpdk/drivers/common/sfc_efx/efsys.h (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #ifndef _SFC_COMMON_EFSYS_H
11 #define _SFC_COMMON_EFSYS_H
12 
13 #include <stdbool.h>
14 
15 #include <rte_spinlock.h>
16 #include <rte_byteorder.h>
17 #include <rte_debug.h>
18 #include <rte_memzone.h>
19 #include <rte_memory.h>
20 #include <rte_memcpy.h>
21 #include <rte_cycles.h>
22 #include <rte_prefetch.h>
23 #include <rte_common.h>
24 #include <rte_malloc.h>
25 #include <rte_log.h>
26 #include <rte_io.h>
27 
28 #include "sfc_efx_debug.h"
29 #include "sfc_efx_log.h"
30 
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 
35 #define LIBEFX_API		__rte_internal
36 
37 /* No specific decorations required since functions are local by default */
38 #define LIBEFX_INTERNAL
39 
40 #define EFSYS_HAS_UINT64 1
41 #define EFSYS_USE_UINT64 1
42 #define EFSYS_HAS_SSE2_M128 1
43 
44 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
45 #define EFSYS_IS_BIG_ENDIAN 1
46 #define EFSYS_IS_LITTLE_ENDIAN 0
47 #elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
48 #define EFSYS_IS_BIG_ENDIAN 0
49 #define EFSYS_IS_LITTLE_ENDIAN 1
50 #else
51 #error "Cannot determine system endianness"
52 #endif
53 
54 
55 typedef bool boolean_t;
56 
57 #ifndef B_FALSE
58 #define B_FALSE	false
59 #endif
60 #ifndef B_TRUE
61 #define B_TRUE	true
62 #endif
63 
64 /*
65  * RTE_MAX() and RTE_MIN() cannot be used since braced-group within
66  * expression allowed only inside a function, but MAX() is used as
67  * a number of elements in array.
68  */
69 #ifndef MAX
70 #define MAX(v1, v2)	((v1) > (v2) ? (v1) : (v2))
71 #endif
72 #ifndef MIN
73 #define MIN(v1, v2)	((v1) < (v2) ? (v1) : (v2))
74 #endif
75 
76 #ifndef ISP2
77 #define ISP2(x)			rte_is_power_of_2(x)
78 #endif
79 
80 #define ENOTACTIVE	ENOTCONN
81 
82 static inline void
83 prefetch_read_many(const volatile void *addr)
84 {
85 	rte_prefetch0(addr);
86 }
87 
88 static inline void
89 prefetch_read_once(const volatile void *addr)
90 {
91 	rte_prefetch_non_temporal(addr);
92 }
93 
94 /* Code inclusion options */
95 
96 
97 #define EFSYS_OPT_NAMES 1
98 
99 /* Disable SFN5xxx/SFN6xxx since it requires specific support in the PMD */
100 #define EFSYS_OPT_SIENA 0
101 /* Enable SFN7xxx support */
102 #define EFSYS_OPT_HUNTINGTON 1
103 /* Enable SFN8xxx support */
104 #define EFSYS_OPT_MEDFORD 1
105 /* Enable SFN2xxx support */
106 #define EFSYS_OPT_MEDFORD2 1
107 /* Enable Riverhead support */
108 #define EFSYS_OPT_RIVERHEAD 1
109 
110 #ifdef RTE_LIBRTE_SFC_EFX_DEBUG
111 #define EFSYS_OPT_CHECK_REG 1
112 #else
113 #define EFSYS_OPT_CHECK_REG 0
114 #endif
115 
116 /* MCDI is required for SFN7xxx and SFN8xx */
117 #define EFSYS_OPT_MCDI 1
118 #define EFSYS_OPT_MCDI_LOGGING 1
119 #define EFSYS_OPT_MCDI_PROXY_AUTH 1
120 
121 #define EFSYS_OPT_MAC_STATS 1
122 
123 #define EFSYS_OPT_LOOPBACK 1
124 
125 #define EFSYS_OPT_MON_MCDI 0
126 #define EFSYS_OPT_MON_STATS 0
127 
128 #define EFSYS_OPT_PHY_STATS 0
129 #define EFSYS_OPT_BIST 0
130 #define EFSYS_OPT_PHY_LED_CONTROL 0
131 #define EFSYS_OPT_PHY_FLAGS 0
132 
133 #define EFSYS_OPT_VPD 0
134 #define EFSYS_OPT_NVRAM 0
135 #define EFSYS_OPT_BOOTCFG 0
136 #define EFSYS_OPT_IMAGE_LAYOUT 0
137 
138 #define EFSYS_OPT_DIAG 0
139 #define EFSYS_OPT_RX_SCALE 1
140 #define EFSYS_OPT_QSTATS 0
141 /* Filters support is required for SFN7xxx and SFN8xx */
142 #define EFSYS_OPT_FILTER 1
143 #define EFSYS_OPT_RX_SCATTER 0
144 
145 #define EFSYS_OPT_EV_EXTENDED_WIDTH 0
146 #define EFSYS_OPT_EV_PREFETCH 0
147 
148 #define EFSYS_OPT_DECODE_INTR_FATAL 0
149 
150 #define EFSYS_OPT_LICENSING 0
151 
152 #define EFSYS_OPT_ALLOW_UNCONFIGURED_NIC 0
153 
154 #define EFSYS_OPT_RX_PACKED_STREAM 0
155 
156 #define EFSYS_OPT_RX_ES_SUPER_BUFFER 1
157 
158 #define EFSYS_OPT_TUNNEL 1
159 
160 #define EFSYS_OPT_FW_SUBVARIANT_AWARE 1
161 
162 #define EFSYS_OPT_EVB 1
163 
164 #define EFSYS_OPT_MCDI_PROXY_AUTH_SERVER 0
165 
166 #define EFSYS_OPT_PCI 1
167 
168 #define EFSYS_OPT_DESC_PROXY 0
169 
170 /* ID */
171 
172 typedef struct __efsys_identifier_s efsys_identifier_t;
173 
174 
175 #define EFSYS_PROBE(_name)						\
176 	do { } while (0)
177 
178 #define EFSYS_PROBE1(_name, _type1, _arg1)				\
179 	do { } while (0)
180 
181 #define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2)		\
182 	do { } while (0)
183 
184 #define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2,		\
185 		     _type3, _arg3)					\
186 	do { } while (0)
187 
188 #define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2,		\
189 		     _type3, _arg3, _type4, _arg4)			\
190 	do { } while (0)
191 
192 #define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2,		\
193 		     _type3, _arg3, _type4, _arg4, _type5, _arg5)	\
194 	do { } while (0)
195 
196 #define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2,		\
197 		     _type3, _arg3, _type4, _arg4, _type5, _arg5,	\
198 		     _type6, _arg6)					\
199 	do { } while (0)
200 
201 #define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2,		\
202 		     _type3, _arg3, _type4, _arg4, _type5, _arg5,	\
203 		     _type6, _arg6, _type7, _arg7)			\
204 	do { } while (0)
205 
206 
207 /* DMA */
208 
209 typedef rte_iova_t efsys_dma_addr_t;
210 
211 typedef struct efsys_mem_s {
212 	const struct rte_memzone	*esm_mz;
213 	/*
214 	 * Ideally it should have volatile qualifier to denote that
215 	 * the memory may be updated by someone else. However, it adds
216 	 * qualifier discard warnings when the pointer or its derivative
217 	 * is passed to memset() or rte_mov16().
218 	 * So, skip the qualifier here, but make sure that it is added
219 	 * below in access macros.
220 	 */
221 	void				*esm_base;
222 	efsys_dma_addr_t		esm_addr;
223 } efsys_mem_t;
224 
225 
226 #define EFSYS_MEM_ZERO(_esmp, _size)					\
227 	do {								\
228 		(void)memset((void *)(_esmp)->esm_base, 0, (_size));	\
229 									\
230 		_NOTE(CONSTANTCONDITION);				\
231 	} while (B_FALSE)
232 
233 #define EFSYS_MEM_READD(_esmp, _offset, _edp)				\
234 	do {								\
235 		volatile uint8_t  *_base = (_esmp)->esm_base;		\
236 		volatile uint32_t *_addr;				\
237 									\
238 		_NOTE(CONSTANTCONDITION);				\
239 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
240 						sizeof(efx_dword_t)));	\
241 									\
242 		_addr = (volatile uint32_t *)(_base + (_offset));	\
243 		(_edp)->ed_u32[0] = _addr[0];				\
244 									\
245 		EFSYS_PROBE2(mem_readl, unsigned int, (_offset),	\
246 					 uint32_t, (_edp)->ed_u32[0]);	\
247 									\
248 		_NOTE(CONSTANTCONDITION);				\
249 	} while (B_FALSE)
250 
251 #define EFSYS_MEM_READQ(_esmp, _offset, _eqp)				\
252 	do {								\
253 		volatile uint8_t  *_base = (_esmp)->esm_base;		\
254 		volatile uint64_t *_addr;				\
255 									\
256 		_NOTE(CONSTANTCONDITION);				\
257 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
258 						sizeof(efx_qword_t)));	\
259 									\
260 		_addr = (volatile uint64_t *)(_base + (_offset));	\
261 		(_eqp)->eq_u64[0] = _addr[0];				\
262 									\
263 		EFSYS_PROBE3(mem_readq, unsigned int, (_offset),	\
264 					 uint32_t, (_eqp)->eq_u32[1],	\
265 					 uint32_t, (_eqp)->eq_u32[0]);	\
266 									\
267 		_NOTE(CONSTANTCONDITION);				\
268 	} while (B_FALSE)
269 
270 #define EFSYS_MEM_READO(_esmp, _offset, _eop)				\
271 	do {								\
272 		volatile uint8_t *_base = (_esmp)->esm_base;		\
273 		volatile __m128i *_addr;				\
274 									\
275 		_NOTE(CONSTANTCONDITION);				\
276 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
277 						sizeof(efx_oword_t)));	\
278 									\
279 		_addr = (volatile __m128i *)(_base + (_offset));	\
280 		(_eop)->eo_u128[0] = _addr[0];				\
281 									\
282 		EFSYS_PROBE5(mem_reado, unsigned int, (_offset),	\
283 					 uint32_t, (_eop)->eo_u32[3],	\
284 					 uint32_t, (_eop)->eo_u32[2],	\
285 					 uint32_t, (_eop)->eo_u32[1],	\
286 					 uint32_t, (_eop)->eo_u32[0]);	\
287 									\
288 		_NOTE(CONSTANTCONDITION);				\
289 	} while (B_FALSE)
290 
291 
292 #define EFSYS_MEM_WRITED(_esmp, _offset, _edp)				\
293 	do {								\
294 		volatile uint8_t  *_base = (_esmp)->esm_base;		\
295 		volatile uint32_t *_addr;				\
296 									\
297 		_NOTE(CONSTANTCONDITION);				\
298 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
299 						sizeof(efx_dword_t)));	\
300 									\
301 		EFSYS_PROBE2(mem_writed, unsigned int, (_offset),	\
302 					 uint32_t, (_edp)->ed_u32[0]);	\
303 									\
304 		_addr = (volatile uint32_t *)(_base + (_offset));	\
305 		_addr[0] = (_edp)->ed_u32[0];				\
306 									\
307 		_NOTE(CONSTANTCONDITION);				\
308 	} while (B_FALSE)
309 
310 #define EFSYS_MEM_WRITEQ(_esmp, _offset, _eqp)				\
311 	do {								\
312 		volatile uint8_t  *_base = (_esmp)->esm_base;		\
313 		volatile uint64_t *_addr;				\
314 									\
315 		_NOTE(CONSTANTCONDITION);				\
316 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
317 						sizeof(efx_qword_t)));	\
318 									\
319 		EFSYS_PROBE3(mem_writeq, unsigned int, (_offset),	\
320 					 uint32_t, (_eqp)->eq_u32[1],	\
321 					 uint32_t, (_eqp)->eq_u32[0]);	\
322 									\
323 		_addr = (volatile uint64_t *)(_base + (_offset));	\
324 		_addr[0] = (_eqp)->eq_u64[0];				\
325 									\
326 		_NOTE(CONSTANTCONDITION);				\
327 	} while (B_FALSE)
328 
329 #define EFSYS_MEM_WRITEO(_esmp, _offset, _eop)				\
330 	do {								\
331 		volatile uint8_t *_base = (_esmp)->esm_base;		\
332 		volatile __m128i *_addr;				\
333 									\
334 		_NOTE(CONSTANTCONDITION);				\
335 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
336 						sizeof(efx_oword_t)));	\
337 									\
338 									\
339 		EFSYS_PROBE5(mem_writeo, unsigned int, (_offset),	\
340 					 uint32_t, (_eop)->eo_u32[3],	\
341 					 uint32_t, (_eop)->eo_u32[2],	\
342 					 uint32_t, (_eop)->eo_u32[1],	\
343 					 uint32_t, (_eop)->eo_u32[0]);	\
344 									\
345 		_addr = (volatile __m128i *)(_base + (_offset));	\
346 		_addr[0] = (_eop)->eo_u128[0];				\
347 									\
348 		_NOTE(CONSTANTCONDITION);				\
349 	} while (B_FALSE)
350 
351 
352 #define	EFSYS_MEM_SIZE(_esmp)						\
353 	((_esmp)->esm_mz->len)
354 
355 #define EFSYS_MEM_ADDR(_esmp)						\
356 	((_esmp)->esm_addr)
357 
358 #define EFSYS_MEM_IS_NULL(_esmp)					\
359 	((_esmp)->esm_base == NULL)
360 
361 #define EFSYS_MEM_PREFETCH(_esmp, _offset)				\
362 	do {								\
363 		volatile uint8_t *_base = (_esmp)->esm_base;		\
364 									\
365 		rte_prefetch0(_base + (_offset));			\
366 	} while (0)
367 
368 
369 /* BAR */
370 
371 typedef struct efsys_bar_s {
372 	rte_spinlock_t		esb_lock;
373 	int			esb_rid;
374 	struct rte_pci_device	*esb_dev;
375 	/*
376 	 * Ideally it should have volatile qualifier to denote that
377 	 * the memory may be updated by someone else. However, it adds
378 	 * qualifier discard warnings when the pointer or its derivative
379 	 * is passed to memset() or rte_mov16().
380 	 * So, skip the qualifier here, but make sure that it is added
381 	 * below in access macros.
382 	 */
383 	void			*esb_base;
384 } efsys_bar_t;
385 
386 #define SFC_BAR_LOCK_INIT(_esbp, _ifname)				\
387 	do {								\
388 		rte_spinlock_init(&(_esbp)->esb_lock);			\
389 		_NOTE(CONSTANTCONDITION);				\
390 	} while (B_FALSE)
391 #define SFC_BAR_LOCK_DESTROY(_esbp)	((void)0)
392 #define SFC_BAR_LOCK(_esbp)		rte_spinlock_lock(&(_esbp)->esb_lock)
393 #define SFC_BAR_UNLOCK(_esbp)		rte_spinlock_unlock(&(_esbp)->esb_lock)
394 
395 #define EFSYS_BAR_READD(_esbp, _offset, _edp, _lock)			\
396 	do {								\
397 		volatile uint8_t  *_base = (_esbp)->esb_base;		\
398 		volatile uint32_t *_addr;				\
399 									\
400 		_NOTE(CONSTANTCONDITION);				\
401 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
402 						sizeof(efx_dword_t)));	\
403 		_NOTE(CONSTANTCONDITION);				\
404 		if (_lock)						\
405 			SFC_BAR_LOCK(_esbp);				\
406 									\
407 		_addr = (volatile uint32_t *)(_base + (_offset));	\
408 		rte_rmb();						\
409 		(_edp)->ed_u32[0] = rte_read32_relaxed(_addr);		\
410 									\
411 		EFSYS_PROBE2(bar_readd, unsigned int, (_offset),	\
412 					 uint32_t, (_edp)->ed_u32[0]);	\
413 									\
414 		_NOTE(CONSTANTCONDITION);				\
415 		if (_lock)						\
416 			SFC_BAR_UNLOCK(_esbp);				\
417 		_NOTE(CONSTANTCONDITION);				\
418 	} while (B_FALSE)
419 
420 #define EFSYS_BAR_READQ(_esbp, _offset, _eqp)				\
421 	do {								\
422 		volatile uint8_t  *_base = (_esbp)->esb_base;		\
423 		volatile uint64_t *_addr;				\
424 									\
425 		_NOTE(CONSTANTCONDITION);				\
426 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
427 						sizeof(efx_qword_t)));	\
428 									\
429 		SFC_BAR_LOCK(_esbp);					\
430 									\
431 		_addr = (volatile uint64_t *)(_base + (_offset));	\
432 		rte_rmb();						\
433 		(_eqp)->eq_u64[0] = rte_read64_relaxed(_addr);		\
434 									\
435 		EFSYS_PROBE3(bar_readq, unsigned int, (_offset),	\
436 					 uint32_t, (_eqp)->eq_u32[1],	\
437 					 uint32_t, (_eqp)->eq_u32[0]);	\
438 									\
439 		SFC_BAR_UNLOCK(_esbp);					\
440 		_NOTE(CONSTANTCONDITION);				\
441 	} while (B_FALSE)
442 
443 #define EFSYS_BAR_READO(_esbp, _offset, _eop, _lock)			\
444 	do {								\
445 		volatile uint8_t *_base = (_esbp)->esb_base;		\
446 		volatile __m128i *_addr;				\
447 									\
448 		_NOTE(CONSTANTCONDITION);				\
449 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
450 						sizeof(efx_oword_t)));	\
451 									\
452 		_NOTE(CONSTANTCONDITION);				\
453 		if (_lock)						\
454 			SFC_BAR_LOCK(_esbp);				\
455 									\
456 		_addr = (volatile __m128i *)(_base + (_offset));	\
457 		rte_rmb();						\
458 		/* There is no rte_read128_relaxed() yet */		\
459 		(_eop)->eo_u128[0] = _addr[0];				\
460 									\
461 		EFSYS_PROBE5(bar_reado, unsigned int, (_offset),	\
462 					 uint32_t, (_eop)->eo_u32[3],	\
463 					 uint32_t, (_eop)->eo_u32[2],	\
464 					 uint32_t, (_eop)->eo_u32[1],	\
465 					 uint32_t, (_eop)->eo_u32[0]);	\
466 									\
467 		_NOTE(CONSTANTCONDITION);				\
468 		if (_lock)						\
469 			SFC_BAR_UNLOCK(_esbp);				\
470 		_NOTE(CONSTANTCONDITION);				\
471 	} while (B_FALSE)
472 
473 
474 #define EFSYS_BAR_WRITED(_esbp, _offset, _edp, _lock)			\
475 	do {								\
476 		volatile uint8_t  *_base = (_esbp)->esb_base;		\
477 		volatile uint32_t *_addr;				\
478 									\
479 		_NOTE(CONSTANTCONDITION);				\
480 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
481 						sizeof(efx_dword_t)));	\
482 									\
483 		_NOTE(CONSTANTCONDITION);				\
484 		if (_lock)						\
485 			SFC_BAR_LOCK(_esbp);				\
486 									\
487 		EFSYS_PROBE2(bar_writed, unsigned int, (_offset),	\
488 					 uint32_t, (_edp)->ed_u32[0]);	\
489 									\
490 		_addr = (volatile uint32_t *)(_base + (_offset));	\
491 		rte_write32_relaxed((_edp)->ed_u32[0], _addr);		\
492 		rte_wmb();						\
493 									\
494 		_NOTE(CONSTANTCONDITION);				\
495 		if (_lock)						\
496 			SFC_BAR_UNLOCK(_esbp);				\
497 		_NOTE(CONSTANTCONDITION);				\
498 	} while (B_FALSE)
499 
500 #define EFSYS_BAR_WRITEQ(_esbp, _offset, _eqp)				\
501 	do {								\
502 		volatile uint8_t  *_base = (_esbp)->esb_base;		\
503 		volatile uint64_t *_addr;				\
504 									\
505 		_NOTE(CONSTANTCONDITION);				\
506 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
507 						sizeof(efx_qword_t)));	\
508 									\
509 		SFC_BAR_LOCK(_esbp);					\
510 									\
511 		EFSYS_PROBE3(bar_writeq, unsigned int, (_offset),	\
512 					 uint32_t, (_eqp)->eq_u32[1],	\
513 					 uint32_t, (_eqp)->eq_u32[0]);	\
514 									\
515 		_addr = (volatile uint64_t *)(_base + (_offset));	\
516 		rte_write64_relaxed((_eqp)->eq_u64[0], _addr);		\
517 		rte_wmb();						\
518 									\
519 		SFC_BAR_UNLOCK(_esbp);					\
520 		_NOTE(CONSTANTCONDITION);				\
521 	} while (B_FALSE)
522 
523 /*
524  * Guarantees 64bit aligned 64bit writes to write combined BAR mapping
525  * (required by PIO hardware).
526  *
527  * Neither VFIO, nor UIO, nor NIC UIO (on FreeBSD) support
528  * write-combined memory mapped to user-land, so just abort if used.
529  */
530 #define EFSYS_BAR_WC_WRITEQ(_esbp, _offset, _eqp)			\
531 	do {								\
532 		rte_panic("Write-combined BAR access not supported");	\
533 	} while (B_FALSE)
534 
535 #define EFSYS_BAR_WRITEO(_esbp, _offset, _eop, _lock)			\
536 	do {								\
537 		volatile uint8_t *_base = (_esbp)->esb_base;		\
538 		volatile __m128i *_addr;				\
539 									\
540 		_NOTE(CONSTANTCONDITION);				\
541 		SFC_EFX_ASSERT(EFX_IS_P2ALIGNED(size_t, _offset,	\
542 						sizeof(efx_oword_t)));	\
543 									\
544 		_NOTE(CONSTANTCONDITION);				\
545 		if (_lock)						\
546 			SFC_BAR_LOCK(_esbp);				\
547 									\
548 		EFSYS_PROBE5(bar_writeo, unsigned int, (_offset),	\
549 					 uint32_t, (_eop)->eo_u32[3],	\
550 					 uint32_t, (_eop)->eo_u32[2],	\
551 					 uint32_t, (_eop)->eo_u32[1],	\
552 					 uint32_t, (_eop)->eo_u32[0]);	\
553 									\
554 		_addr = (volatile __m128i *)(_base + (_offset));	\
555 		/* There is no rte_write128_relaxed() yet */		\
556 		_addr[0] = (_eop)->eo_u128[0];				\
557 		rte_wmb();						\
558 									\
559 		_NOTE(CONSTANTCONDITION);				\
560 		if (_lock)						\
561 			SFC_BAR_UNLOCK(_esbp);				\
562 		_NOTE(CONSTANTCONDITION);				\
563 	} while (B_FALSE)
564 
565 /* Use the standard octo-word write for doorbell writes */
566 #define EFSYS_BAR_DOORBELL_WRITEO(_esbp, _offset, _eop)			\
567 	do {								\
568 		EFSYS_BAR_WRITEO((_esbp), (_offset), (_eop), B_FALSE);	\
569 		_NOTE(CONSTANTCONDITION);				\
570 	} while (B_FALSE)
571 
572 /* SPIN */
573 
574 #define EFSYS_SPIN(_us)							\
575 	do {								\
576 		rte_delay_us(_us);					\
577 		_NOTE(CONSTANTCONDITION);				\
578 	} while (B_FALSE)
579 
580 #define EFSYS_SLEEP EFSYS_SPIN
581 
582 /* BARRIERS */
583 
584 #define EFSYS_MEM_READ_BARRIER()	rte_rmb()
585 #define EFSYS_PIO_WRITE_BARRIER()	rte_io_wmb()
586 
587 /* DMA SYNC */
588 
589 /*
590  * DPDK does not provide any DMA syncing API, and no PMD drivers
591  * have any traces of explicit DMA syncing.
592  * DMA mapping is assumed to be coherent.
593  */
594 
595 #define EFSYS_DMA_SYNC_FOR_KERNEL(_esmp, _offset, _size)	((void)0)
596 
597 /* Just avoid store and compiler (impliciltly) reordering */
598 #define EFSYS_DMA_SYNC_FOR_DEVICE(_esmp, _offset, _size)	rte_wmb()
599 
600 /* TIMESTAMP */
601 
602 typedef uint64_t efsys_timestamp_t;
603 
604 #define EFSYS_TIMESTAMP(_usp)						\
605 	do {								\
606 		*(_usp) = rte_get_timer_cycles() * 1000000 /		\
607 			rte_get_timer_hz();				\
608 		_NOTE(CONSTANTCONDITION);				\
609 	} while (B_FALSE)
610 
611 /* KMEM */
612 
613 #define EFSYS_KMEM_ALLOC(_esip, _size, _p)				\
614 	do {								\
615 		(_esip) = (_esip);					\
616 		(_p) = rte_zmalloc("sfc", (_size), 0);			\
617 		_NOTE(CONSTANTCONDITION);				\
618 	} while (B_FALSE)
619 
620 #define EFSYS_KMEM_FREE(_esip, _size, _p)				\
621 	do {								\
622 		(void)(_esip);						\
623 		(void)(_size);						\
624 		rte_free((_p));						\
625 		_NOTE(CONSTANTCONDITION);				\
626 	} while (B_FALSE)
627 
628 /* LOCK */
629 
630 typedef rte_spinlock_t efsys_lock_t;
631 
632 #define SFC_EFSYS_LOCK_INIT(_eslp, _ifname, _label)	\
633 	rte_spinlock_init((_eslp))
634 #define SFC_EFSYS_LOCK_DESTROY(_eslp) ((void)0)
635 #define SFC_EFSYS_LOCK(_eslp)				\
636 	rte_spinlock_lock((_eslp))
637 #define SFC_EFSYS_UNLOCK(_eslp)				\
638 	rte_spinlock_unlock((_eslp))
639 #define SFC_EFSYS_LOCK_ASSERT_OWNED(_eslp)		\
640 	SFC_EFX_ASSERT(rte_spinlock_is_locked((_eslp)))
641 
642 typedef int efsys_lock_state_t;
643 
644 #define EFSYS_LOCK_MAGIC	0x000010c4
645 
646 #define EFSYS_LOCK(_lockp, _state)				\
647 	do {							\
648 		SFC_EFSYS_LOCK(_lockp);				\
649 		(_state) = EFSYS_LOCK_MAGIC;			\
650 		_NOTE(CONSTANTCONDITION);			\
651 	} while (B_FALSE)
652 
653 #define EFSYS_UNLOCK(_lockp, _state)				\
654 	do {							\
655 		SFC_EFX_ASSERT((_state) == EFSYS_LOCK_MAGIC);	\
656 		SFC_EFSYS_UNLOCK(_lockp);			\
657 		_NOTE(CONSTANTCONDITION);			\
658 	} while (B_FALSE)
659 
660 /* STAT */
661 
662 typedef uint64_t	efsys_stat_t;
663 
664 #define EFSYS_STAT_INCR(_knp, _delta)				\
665 	do {							\
666 		*(_knp) += (_delta);				\
667 		_NOTE(CONSTANTCONDITION);			\
668 	} while (B_FALSE)
669 
670 #define EFSYS_STAT_DECR(_knp, _delta)				\
671 	do {							\
672 		*(_knp) -= (_delta);				\
673 		_NOTE(CONSTANTCONDITION);			\
674 	} while (B_FALSE)
675 
676 #define EFSYS_STAT_SET(_knp, _val)				\
677 	do {							\
678 		*(_knp) = (_val);				\
679 		_NOTE(CONSTANTCONDITION);			\
680 	} while (B_FALSE)
681 
682 #define EFSYS_STAT_SET_QWORD(_knp, _valp)			\
683 	do {							\
684 		*(_knp) = rte_le_to_cpu_64((_valp)->eq_u64[0]);	\
685 		_NOTE(CONSTANTCONDITION);			\
686 	} while (B_FALSE)
687 
688 #define EFSYS_STAT_SET_DWORD(_knp, _valp)			\
689 	do {							\
690 		*(_knp) = rte_le_to_cpu_32((_valp)->ed_u32[0]);	\
691 		_NOTE(CONSTANTCONDITION);			\
692 	} while (B_FALSE)
693 
694 #define EFSYS_STAT_INCR_QWORD(_knp, _valp)				\
695 	do {								\
696 		*(_knp) += rte_le_to_cpu_64((_valp)->eq_u64[0]);	\
697 		_NOTE(CONSTANTCONDITION);				\
698 	} while (B_FALSE)
699 
700 #define EFSYS_STAT_SUBR_QWORD(_knp, _valp)				\
701 	do {								\
702 		*(_knp) -= rte_le_to_cpu_64((_valp)->eq_u64[0]);	\
703 		_NOTE(CONSTANTCONDITION);				\
704 	} while (B_FALSE)
705 
706 /* ERR */
707 
708 #if EFSYS_OPT_DECODE_INTR_FATAL
709 #define EFSYS_ERR(_esip, _code, _dword0, _dword1)			\
710 	do {								\
711 		(void)(_esip);						\
712 		SFC_EFX_LOG(ERR, "FATAL ERROR #%u (0x%08x%08x)",	\
713 			(_code), (_dword0), (_dword1));			\
714 		_NOTE(CONSTANTCONDITION);				\
715 	} while (B_FALSE)
716 #endif
717 
718 /* ASSERT */
719 
720 /* RTE_VERIFY from DPDK treats expressions with % operator incorrectly,
721  * so we re-implement it here
722  */
723 #ifdef RTE_LIBRTE_SFC_EFX_DEBUG
724 #define EFSYS_ASSERT(_exp)						\
725 	do {								\
726 		if (unlikely(!(_exp)))					\
727 			rte_panic("line %d\tassert \"%s\" failed\n",	\
728 				  __LINE__, (#_exp));			\
729 	} while (0)
730 #else
731 #define EFSYS_ASSERT(_exp)		(void)(_exp)
732 #endif
733 
734 #define EFSYS_ASSERT3(_x, _op, _y, _t)	EFSYS_ASSERT((_t)(_x) _op (_t)(_y))
735 
736 #define EFSYS_ASSERT3U(_x, _op, _y)	EFSYS_ASSERT3(_x, _op, _y, uint64_t)
737 #define EFSYS_ASSERT3S(_x, _op, _y)	EFSYS_ASSERT3(_x, _op, _y, int64_t)
738 #define EFSYS_ASSERT3P(_x, _op, _y)	EFSYS_ASSERT3(_x, _op, _y, uintptr_t)
739 
740 /* ROTATE */
741 
742 #define EFSYS_HAS_ROTL_DWORD	0
743 
744 /* PCI */
745 
746 typedef struct efsys_pci_config_s {
747 	struct rte_pci_device	*espc_dev;
748 } efsys_pci_config_t;
749 
750 #ifdef __cplusplus
751 }
752 #endif
753 
754 #endif  /* _SFC_COMMON_EFSYS_H */
755