xref: /dpdk/drivers/common/sfc_efx/base/efx_mcdi.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2008-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 
10 #if EFSYS_OPT_MCDI
11 
12 /*
13  * There are three versions of the MCDI interface:
14  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
15  *  - MCDIv1: Siena firmware and Huntington BootROM.
16  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
17  *            Transport uses MCDIv2 headers.
18  *
19  * MCDIv2 Header NOT_EPOCH flag
20  * ----------------------------
21  * A new epoch begins at initial startup or after an MC reboot, and defines when
22  * the MC should reject stale MCDI requests.
23  *
24  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
25  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
26  *
27  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
28  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
29  */
30 
31 
32 
33 #if EFSYS_OPT_SIENA
34 
35 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
36 	siena_mcdi_init,		/* emco_init */
37 	siena_mcdi_send_request,	/* emco_send_request */
38 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
39 	siena_mcdi_poll_response,	/* emco_poll_response */
40 	siena_mcdi_read_response,	/* emco_read_response */
41 	siena_mcdi_fini,		/* emco_fini */
42 	siena_mcdi_feature_supported,	/* emco_feature_supported */
43 	siena_mcdi_get_timeout,		/* emco_get_timeout */
44 };
45 
46 #endif	/* EFSYS_OPT_SIENA */
47 
48 #if EFX_OPTS_EF10()
49 
50 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
51 	ef10_mcdi_init,			/* emco_init */
52 	ef10_mcdi_send_request,		/* emco_send_request */
53 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
54 	ef10_mcdi_poll_response,	/* emco_poll_response */
55 	ef10_mcdi_read_response,	/* emco_read_response */
56 	ef10_mcdi_fini,			/* emco_fini */
57 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
58 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
59 };
60 
61 #endif	/* EFX_OPTS_EF10() */
62 
63 #if EFSYS_OPT_RIVERHEAD
64 
65 static const efx_mcdi_ops_t	__efx_mcdi_rhead_ops = {
66 	ef10_mcdi_init,			/* emco_init */
67 	ef10_mcdi_send_request,		/* emco_send_request */
68 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
69 	ef10_mcdi_poll_response,	/* emco_poll_response */
70 	ef10_mcdi_read_response,	/* emco_read_response */
71 	ef10_mcdi_fini,			/* emco_fini */
72 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
73 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
74 };
75 
76 #endif	/* EFSYS_OPT_RIVERHEAD */
77 
78 
79 
80 	__checkReturn	efx_rc_t
81 efx_mcdi_init(
82 	__in		efx_nic_t *enp,
83 	__in		const efx_mcdi_transport_t *emtp)
84 {
85 	const efx_mcdi_ops_t *emcop;
86 	efx_rc_t rc;
87 
88 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
89 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
90 
91 	switch (enp->en_family) {
92 #if EFSYS_OPT_SIENA
93 	case EFX_FAMILY_SIENA:
94 		emcop = &__efx_mcdi_siena_ops;
95 		break;
96 #endif	/* EFSYS_OPT_SIENA */
97 
98 #if EFSYS_OPT_HUNTINGTON
99 	case EFX_FAMILY_HUNTINGTON:
100 		emcop = &__efx_mcdi_ef10_ops;
101 		break;
102 #endif	/* EFSYS_OPT_HUNTINGTON */
103 
104 #if EFSYS_OPT_MEDFORD
105 	case EFX_FAMILY_MEDFORD:
106 		emcop = &__efx_mcdi_ef10_ops;
107 		break;
108 #endif	/* EFSYS_OPT_MEDFORD */
109 
110 #if EFSYS_OPT_MEDFORD2
111 	case EFX_FAMILY_MEDFORD2:
112 		emcop = &__efx_mcdi_ef10_ops;
113 		break;
114 #endif	/* EFSYS_OPT_MEDFORD2 */
115 
116 #if EFSYS_OPT_RIVERHEAD
117 	case EFX_FAMILY_RIVERHEAD:
118 		emcop = &__efx_mcdi_rhead_ops;
119 		break;
120 #endif	/* EFSYS_OPT_RIVERHEAD */
121 
122 	default:
123 		EFSYS_ASSERT(0);
124 		rc = ENOTSUP;
125 		goto fail1;
126 	}
127 
128 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
129 		/* MCDI requires a DMA buffer in host memory */
130 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
131 			rc = EINVAL;
132 			goto fail2;
133 		}
134 	}
135 	enp->en_mcdi.em_emtp = emtp;
136 
137 	if (emcop != NULL && emcop->emco_init != NULL) {
138 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
139 			goto fail3;
140 	}
141 
142 	enp->en_mcdi.em_emcop = emcop;
143 	enp->en_mod_flags |= EFX_MOD_MCDI;
144 
145 	return (0);
146 
147 fail3:
148 	EFSYS_PROBE(fail3);
149 fail2:
150 	EFSYS_PROBE(fail2);
151 fail1:
152 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
153 
154 	enp->en_mcdi.em_emcop = NULL;
155 	enp->en_mcdi.em_emtp = NULL;
156 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
157 
158 	return (rc);
159 }
160 
161 			void
162 efx_mcdi_fini(
163 	__in		efx_nic_t *enp)
164 {
165 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
166 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
167 
168 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
169 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
170 
171 	if (emcop != NULL && emcop->emco_fini != NULL)
172 		emcop->emco_fini(enp);
173 
174 	emip->emi_port = 0;
175 	emip->emi_aborted = 0;
176 
177 	enp->en_mcdi.em_emcop = NULL;
178 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
179 }
180 
181 			void
182 efx_mcdi_new_epoch(
183 	__in		efx_nic_t *enp)
184 {
185 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
186 	efsys_lock_state_t state;
187 
188 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
189 	EFSYS_LOCK(enp->en_eslp, state);
190 	emip->emi_new_epoch = B_TRUE;
191 	EFSYS_UNLOCK(enp->en_eslp, state);
192 }
193 
194 static			void
195 efx_mcdi_send_request(
196 	__in		efx_nic_t *enp,
197 	__in		void *hdrp,
198 	__in		size_t hdr_len,
199 	__in		void *sdup,
200 	__in		size_t sdu_len)
201 {
202 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
203 
204 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
205 }
206 
207 static			efx_rc_t
208 efx_mcdi_poll_reboot(
209 	__in		efx_nic_t *enp)
210 {
211 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
212 	efx_rc_t rc;
213 
214 	rc = emcop->emco_poll_reboot(enp);
215 	return (rc);
216 }
217 
218 static			boolean_t
219 efx_mcdi_poll_response(
220 	__in		efx_nic_t *enp)
221 {
222 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
223 	boolean_t available;
224 
225 	available = emcop->emco_poll_response(enp);
226 	return (available);
227 }
228 
229 static			void
230 efx_mcdi_read_response(
231 	__in		efx_nic_t *enp,
232 	__out		void *bufferp,
233 	__in		size_t offset,
234 	__in		size_t length)
235 {
236 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
237 
238 	emcop->emco_read_response(enp, bufferp, offset, length);
239 }
240 
241 			void
242 efx_mcdi_request_start(
243 	__in		efx_nic_t *enp,
244 	__in		efx_mcdi_req_t *emrp,
245 	__in		boolean_t ev_cpl)
246 {
247 #if EFSYS_OPT_MCDI_LOGGING
248 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
249 #endif
250 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
251 	efx_dword_t hdr[2];
252 	size_t hdr_len;
253 	unsigned int max_version;
254 	unsigned int seq;
255 	unsigned int xflags;
256 	boolean_t new_epoch;
257 	efsys_lock_state_t state;
258 
259 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
260 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
261 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
262 
263 	/*
264 	 * efx_mcdi_request_start() is naturally serialised against both
265 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
266 	 * by virtue of there only being one outstanding MCDI request.
267 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
268 	 * at any time, to timeout a pending mcdi request, That request may
269 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
270 	 * efx_mcdi_ev_death() may end up running in parallel with
271 	 * efx_mcdi_request_start(). This race is handled by ensuring that
272 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
273 	 * en_eslp lock.
274 	 */
275 	EFSYS_LOCK(enp->en_eslp, state);
276 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
277 	emip->emi_pending_req = emrp;
278 	emip->emi_ev_cpl = ev_cpl;
279 	emip->emi_poll_cnt = 0;
280 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
281 	new_epoch = emip->emi_new_epoch;
282 	max_version = emip->emi_max_version;
283 	EFSYS_UNLOCK(enp->en_eslp, state);
284 
285 	xflags = 0;
286 	if (ev_cpl)
287 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
288 
289 	/*
290 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
291 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
292 	 * possible to support this.
293 	 */
294 	if ((max_version >= 2) &&
295 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
296 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) ||
297 	    (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
298 		/* Construct MCDI v2 header */
299 		hdr_len = sizeof (hdr);
300 		EFX_POPULATE_DWORD_8(hdr[0],
301 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
302 		    MCDI_HEADER_RESYNC, 1,
303 		    MCDI_HEADER_DATALEN, 0,
304 		    MCDI_HEADER_SEQ, seq,
305 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
306 		    MCDI_HEADER_ERROR, 0,
307 		    MCDI_HEADER_RESPONSE, 0,
308 		    MCDI_HEADER_XFLAGS, xflags);
309 
310 		EFX_POPULATE_DWORD_2(hdr[1],
311 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
312 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
313 	} else {
314 		/* Construct MCDI v1 header */
315 		hdr_len = sizeof (hdr[0]);
316 		EFX_POPULATE_DWORD_8(hdr[0],
317 		    MCDI_HEADER_CODE, emrp->emr_cmd,
318 		    MCDI_HEADER_RESYNC, 1,
319 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
320 		    MCDI_HEADER_SEQ, seq,
321 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
322 		    MCDI_HEADER_ERROR, 0,
323 		    MCDI_HEADER_RESPONSE, 0,
324 		    MCDI_HEADER_XFLAGS, xflags);
325 	}
326 
327 #if EFSYS_OPT_MCDI_LOGGING
328 	if (emtp->emt_logger != NULL) {
329 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
330 		    &hdr[0], hdr_len,
331 		    emrp->emr_in_buf, emrp->emr_in_length);
332 	}
333 #endif /* EFSYS_OPT_MCDI_LOGGING */
334 
335 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
336 	    emrp->emr_in_buf, emrp->emr_in_length);
337 }
338 
339 
340 static			void
341 efx_mcdi_read_response_header(
342 	__in		efx_nic_t *enp,
343 	__inout		efx_mcdi_req_t *emrp)
344 {
345 #if EFSYS_OPT_MCDI_LOGGING
346 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
347 #endif /* EFSYS_OPT_MCDI_LOGGING */
348 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
349 	efx_dword_t hdr[2];
350 	unsigned int hdr_len;
351 	unsigned int data_len;
352 	unsigned int seq;
353 	unsigned int cmd;
354 	unsigned int error;
355 	efx_rc_t rc;
356 
357 	EFSYS_ASSERT(emrp != NULL);
358 
359 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
360 	hdr_len = sizeof (hdr[0]);
361 
362 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
363 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
364 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
365 
366 	if (cmd != MC_CMD_V2_EXTN) {
367 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
368 	} else {
369 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
370 		hdr_len += sizeof (hdr[1]);
371 
372 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
373 		data_len =
374 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
375 	}
376 
377 	if (error && (data_len == 0)) {
378 		/* The MC has rebooted since the request was sent. */
379 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
380 		efx_mcdi_poll_reboot(enp);
381 		rc = EIO;
382 		goto fail1;
383 	}
384 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
385 	if (((cmd != emrp->emr_cmd) && (emrp->emr_cmd != MC_CMD_PROXY_CMD)) ||
386 #else
387 	if ((cmd != emrp->emr_cmd) ||
388 #endif
389 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
390 		/* Response is for a different request */
391 		rc = EIO;
392 		goto fail2;
393 	}
394 	if (error) {
395 		efx_dword_t err[2];
396 		unsigned int err_len = MIN(data_len, sizeof (err));
397 		int err_code = MC_CMD_ERR_EPROTO;
398 		int err_arg = 0;
399 
400 		/* Read error code (and arg num for MCDI v2 commands) */
401 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
402 
403 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
404 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
405 #ifdef WITH_MCDI_V2
406 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
407 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
408 #endif
409 		emrp->emr_err_code = err_code;
410 		emrp->emr_err_arg = err_arg;
411 
412 #if EFSYS_OPT_MCDI_PROXY_AUTH
413 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
414 		    (err_len == sizeof (err))) {
415 			/*
416 			 * The MCDI request would normally fail with EPERM, but
417 			 * firmware has forwarded it to an authorization agent
418 			 * attached to a privileged PF.
419 			 *
420 			 * Save the authorization request handle. The client
421 			 * must wait for a PROXY_RESPONSE event, or timeout.
422 			 */
423 			emrp->emr_proxy_handle = err_arg;
424 		}
425 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
426 
427 #if EFSYS_OPT_MCDI_LOGGING
428 		if (emtp->emt_logger != NULL) {
429 			emtp->emt_logger(emtp->emt_context,
430 			    EFX_LOG_MCDI_RESPONSE,
431 			    &hdr[0], hdr_len,
432 			    &err[0], err_len);
433 		}
434 #endif /* EFSYS_OPT_MCDI_LOGGING */
435 
436 		if (!emrp->emr_quiet) {
437 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
438 			    int, err_code, int, err_arg);
439 		}
440 
441 		rc = efx_mcdi_request_errcode(err_code);
442 		goto fail3;
443 	}
444 
445 	emrp->emr_rc = 0;
446 	emrp->emr_out_length_used = data_len;
447 #if EFSYS_OPT_MCDI_PROXY_AUTH
448 	emrp->emr_proxy_handle = 0;
449 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
450 	return;
451 
452 fail3:
453 fail2:
454 fail1:
455 	emrp->emr_rc = rc;
456 	emrp->emr_out_length_used = 0;
457 }
458 
459 static			void
460 efx_mcdi_finish_response(
461 	__in		efx_nic_t *enp,
462 	__in		efx_mcdi_req_t *emrp)
463 {
464 #if EFSYS_OPT_MCDI_LOGGING
465 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
466 #endif /* EFSYS_OPT_MCDI_LOGGING */
467 	efx_dword_t hdr[2];
468 	unsigned int hdr_len;
469 	size_t bytes;
470 	unsigned int resp_off;
471 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
472 	unsigned int resp_cmd;
473 	boolean_t proxied_cmd_resp = B_FALSE;
474 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
475 
476 	if (emrp->emr_out_buf == NULL)
477 		return;
478 
479 	/* Read the command header to detect MCDI response format */
480 	hdr_len = sizeof (hdr[0]);
481 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
482 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
483 		/*
484 		 * Read the actual payload length. The length given in the event
485 		 * is only correct for responses with the V1 format.
486 		 */
487 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
488 		hdr_len += sizeof (hdr[1]);
489 		resp_off = hdr_len;
490 
491 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
492 						MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
493 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
494 		/*
495 		 * A proxy MCDI command is executed by PF on behalf of
496 		 * one of its VFs. The command to be proxied follows
497 		 * immediately afterward in the host buffer.
498 		 * PROXY_CMD inner call complete response should be copied to
499 		 * output buffer so that it can be returned to the requesting
500 		 * function in MC_CMD_PROXY_COMPLETE payload.
501 		 */
502 		resp_cmd =
503 			EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
504 		proxied_cmd_resp = ((emrp->emr_cmd == MC_CMD_PROXY_CMD) &&
505 					(resp_cmd != MC_CMD_PROXY_CMD));
506 		if (proxied_cmd_resp) {
507 			resp_off = 0;
508 			emrp->emr_out_length_used += hdr_len;
509 		}
510 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
511 	} else {
512 		resp_off = hdr_len;
513 	}
514 
515 	/* Copy payload out into caller supplied buffer */
516 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
517 	efx_mcdi_read_response(enp, emrp->emr_out_buf, resp_off, bytes);
518 
519 #if EFSYS_OPT_MCDI_LOGGING
520 	if (emtp->emt_logger != NULL) {
521 		emtp->emt_logger(emtp->emt_context,
522 		    EFX_LOG_MCDI_RESPONSE,
523 		    &hdr[0], hdr_len,
524 		    emrp->emr_out_buf, bytes);
525 	}
526 #endif /* EFSYS_OPT_MCDI_LOGGING */
527 }
528 
529 
530 	__checkReturn	boolean_t
531 efx_mcdi_request_poll(
532 	__in		efx_nic_t *enp)
533 {
534 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
535 	efx_mcdi_req_t *emrp;
536 	efsys_lock_state_t state;
537 	efx_rc_t rc;
538 
539 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
540 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
541 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
542 
543 	/* Serialise against post-watchdog efx_mcdi_ev* */
544 	EFSYS_LOCK(enp->en_eslp, state);
545 
546 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
547 	EFSYS_ASSERT(!emip->emi_ev_cpl);
548 	emrp = emip->emi_pending_req;
549 
550 	/* Check if hardware is unavailable */
551 	if (efx_nic_hw_unavailable(enp)) {
552 		EFSYS_UNLOCK(enp->en_eslp, state);
553 		return (B_FALSE);
554 	}
555 
556 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
557 	if (emip->emi_poll_cnt++ == 0) {
558 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
559 			emip->emi_pending_req = NULL;
560 			EFSYS_UNLOCK(enp->en_eslp, state);
561 
562 			/* Reboot/Assertion */
563 			if (rc == EIO || rc == EINTR)
564 				efx_mcdi_raise_exception(enp, emrp, rc);
565 
566 			goto fail1;
567 		}
568 	}
569 
570 	/* Check if a response is available */
571 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
572 		EFSYS_UNLOCK(enp->en_eslp, state);
573 		return (B_FALSE);
574 	}
575 
576 	/* Read the response header */
577 	efx_mcdi_read_response_header(enp, emrp);
578 
579 	/* Request complete */
580 	emip->emi_pending_req = NULL;
581 
582 	/* Ensure stale MCDI requests fail after an MC reboot. */
583 	emip->emi_new_epoch = B_FALSE;
584 
585 	EFSYS_UNLOCK(enp->en_eslp, state);
586 
587 	if ((rc = emrp->emr_rc) != 0)
588 		goto fail2;
589 
590 	efx_mcdi_finish_response(enp, emrp);
591 	return (B_TRUE);
592 
593 fail2:
594 	if (!emrp->emr_quiet)
595 		EFSYS_PROBE(fail2);
596 fail1:
597 	if (!emrp->emr_quiet)
598 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
599 
600 	return (B_TRUE);
601 }
602 
603 	__checkReturn	boolean_t
604 efx_mcdi_request_abort(
605 	__in		efx_nic_t *enp)
606 {
607 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
608 	efx_mcdi_req_t *emrp;
609 	boolean_t aborted;
610 	efsys_lock_state_t state;
611 
612 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
613 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
614 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
615 
616 	/*
617 	 * efx_mcdi_ev_* may have already completed this event, and be
618 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
619 	 * to for emi_pending_req to be NULL. If there is a pending event
620 	 * completed request, then provide a "credit" to allow
621 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
622 	 */
623 	EFSYS_LOCK(enp->en_eslp, state);
624 	emrp = emip->emi_pending_req;
625 	aborted = (emrp != NULL);
626 	if (aborted) {
627 		emip->emi_pending_req = NULL;
628 
629 		/* Error the request */
630 		emrp->emr_out_length_used = 0;
631 		emrp->emr_rc = ETIMEDOUT;
632 
633 		/* Provide a credit for seqno/emr_pending_req mismatches */
634 		if (emip->emi_ev_cpl)
635 			++emip->emi_aborted;
636 
637 		/*
638 		 * The upper layer has called us, so we don't
639 		 * need to complete the request.
640 		 */
641 	}
642 	EFSYS_UNLOCK(enp->en_eslp, state);
643 
644 	return (aborted);
645 }
646 
647 			void
648 efx_mcdi_get_timeout(
649 	__in		efx_nic_t *enp,
650 	__in		efx_mcdi_req_t *emrp,
651 	__out		uint32_t *timeoutp)
652 {
653 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
654 
655 	emcop->emco_get_timeout(enp, emrp, timeoutp);
656 }
657 
658 	__checkReturn	efx_rc_t
659 efx_mcdi_request_errcode(
660 	__in		unsigned int err)
661 {
662 
663 	switch (err) {
664 		/* MCDI v1 */
665 	case MC_CMD_ERR_EPERM:
666 		return (EACCES);
667 	case MC_CMD_ERR_ENOENT:
668 		return (ENOENT);
669 	case MC_CMD_ERR_EINTR:
670 		return (EINTR);
671 	case MC_CMD_ERR_EACCES:
672 		return (EACCES);
673 	case MC_CMD_ERR_EBUSY:
674 		return (EBUSY);
675 	case MC_CMD_ERR_EINVAL:
676 		return (EINVAL);
677 	case MC_CMD_ERR_EDEADLK:
678 		return (EDEADLK);
679 	case MC_CMD_ERR_ENOSYS:
680 		return (ENOTSUP);
681 	case MC_CMD_ERR_ETIME:
682 		return (ETIMEDOUT);
683 	case MC_CMD_ERR_ENOTSUP:
684 		return (ENOTSUP);
685 	case MC_CMD_ERR_EALREADY:
686 		return (EALREADY);
687 
688 		/* MCDI v2 */
689 	case MC_CMD_ERR_EEXIST:
690 		return (EEXIST);
691 #ifdef MC_CMD_ERR_EAGAIN
692 	case MC_CMD_ERR_EAGAIN:
693 		return (EAGAIN);
694 #endif
695 #ifdef MC_CMD_ERR_ENOSPC
696 	case MC_CMD_ERR_ENOSPC:
697 		return (ENOSPC);
698 #endif
699 	case MC_CMD_ERR_ERANGE:
700 		return (ERANGE);
701 
702 	case MC_CMD_ERR_ALLOC_FAIL:
703 		return (ENOMEM);
704 	case MC_CMD_ERR_NO_VADAPTOR:
705 		return (ENOENT);
706 	case MC_CMD_ERR_NO_EVB_PORT:
707 		return (ENOENT);
708 	case MC_CMD_ERR_NO_VSWITCH:
709 		return (ENODEV);
710 	case MC_CMD_ERR_VLAN_LIMIT:
711 		return (EINVAL);
712 	case MC_CMD_ERR_BAD_PCI_FUNC:
713 		return (ENODEV);
714 	case MC_CMD_ERR_BAD_VLAN_MODE:
715 		return (EINVAL);
716 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
717 		return (EINVAL);
718 	case MC_CMD_ERR_BAD_VPORT_TYPE:
719 		return (EINVAL);
720 	case MC_CMD_ERR_MAC_EXIST:
721 		return (EEXIST);
722 
723 	case MC_CMD_ERR_PROXY_PENDING:
724 		return (EAGAIN);
725 
726 	default:
727 		EFSYS_PROBE1(mc_pcol_error, int, err);
728 		return (EIO);
729 	}
730 }
731 
732 			void
733 efx_mcdi_raise_exception(
734 	__in		efx_nic_t *enp,
735 	__in_opt	efx_mcdi_req_t *emrp,
736 	__in		int rc)
737 {
738 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
739 	efx_mcdi_exception_t exception;
740 
741 	/* Reboot or Assertion failure only */
742 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
743 
744 	/*
745 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
746 	 * then the EIO is not worthy of an exception.
747 	 */
748 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
749 		return;
750 
751 	exception = (rc == EIO)
752 		? EFX_MCDI_EXCEPTION_MC_REBOOT
753 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
754 
755 	emtp->emt_exception(emtp->emt_context, exception);
756 }
757 
758 			void
759 efx_mcdi_execute(
760 	__in		efx_nic_t *enp,
761 	__inout		efx_mcdi_req_t *emrp)
762 {
763 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
764 
765 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
766 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
767 
768 	emrp->emr_quiet = B_FALSE;
769 	emtp->emt_execute(emtp->emt_context, emrp);
770 }
771 
772 			void
773 efx_mcdi_execute_quiet(
774 	__in		efx_nic_t *enp,
775 	__inout		efx_mcdi_req_t *emrp)
776 {
777 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
778 
779 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
780 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
781 
782 	emrp->emr_quiet = B_TRUE;
783 	emtp->emt_execute(emtp->emt_context, emrp);
784 }
785 
786 			void
787 efx_mcdi_ev_cpl(
788 	__in		efx_nic_t *enp,
789 	__in		unsigned int seq,
790 	__in		unsigned int outlen,
791 	__in		int errcode)
792 {
793 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
794 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
795 	efx_mcdi_req_t *emrp;
796 	efsys_lock_state_t state;
797 
798 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
799 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
800 
801 	/*
802 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
803 	 * when we're completing an aborted request.
804 	 */
805 	EFSYS_LOCK(enp->en_eslp, state);
806 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
807 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
808 		EFSYS_ASSERT(emip->emi_aborted > 0);
809 		if (emip->emi_aborted > 0)
810 			--emip->emi_aborted;
811 		EFSYS_UNLOCK(enp->en_eslp, state);
812 		return;
813 	}
814 
815 	emrp = emip->emi_pending_req;
816 	emip->emi_pending_req = NULL;
817 	EFSYS_UNLOCK(enp->en_eslp, state);
818 
819 	if (emip->emi_max_version >= 2) {
820 		/* MCDIv2 response details do not fit into an event. */
821 		efx_mcdi_read_response_header(enp, emrp);
822 	} else {
823 		if (errcode != 0) {
824 			if (!emrp->emr_quiet) {
825 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
826 				    int, errcode);
827 			}
828 			emrp->emr_out_length_used = 0;
829 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
830 		} else {
831 			emrp->emr_out_length_used = outlen;
832 			emrp->emr_rc = 0;
833 		}
834 	}
835 	if (emrp->emr_rc == 0)
836 		efx_mcdi_finish_response(enp, emrp);
837 
838 	emtp->emt_ev_cpl(emtp->emt_context);
839 }
840 
841 #if EFSYS_OPT_MCDI_PROXY_AUTH
842 
843 	__checkReturn	efx_rc_t
844 efx_mcdi_get_proxy_handle(
845 	__in		efx_nic_t *enp,
846 	__in		efx_mcdi_req_t *emrp,
847 	__out		uint32_t *handlep)
848 {
849 	efx_rc_t rc;
850 
851 	_NOTE(ARGUNUSED(enp))
852 
853 	/*
854 	 * Return proxy handle from MCDI request that returned with error
855 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
856 	 * PROXY_RESPONSE event.
857 	 */
858 	if ((emrp == NULL) || (handlep == NULL)) {
859 		rc = EINVAL;
860 		goto fail1;
861 	}
862 	if ((emrp->emr_rc != 0) &&
863 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
864 		*handlep = emrp->emr_proxy_handle;
865 		rc = 0;
866 	} else {
867 		*handlep = 0;
868 		rc = ENOENT;
869 	}
870 	return (rc);
871 
872 fail1:
873 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
874 	return (rc);
875 }
876 
877 			void
878 efx_mcdi_ev_proxy_response(
879 	__in		efx_nic_t *enp,
880 	__in		unsigned int handle,
881 	__in		unsigned int status)
882 {
883 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
884 	efx_rc_t rc;
885 
886 	/*
887 	 * Handle results of an authorization request for a privileged MCDI
888 	 * command. If authorization was granted then we must re-issue the
889 	 * original MCDI request. If authorization failed or timed out,
890 	 * then the original MCDI request should be completed with the
891 	 * result code from this event.
892 	 */
893 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
894 
895 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
896 }
897 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
898 
899 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
900 			void
901 efx_mcdi_ev_proxy_request(
902 	__in		efx_nic_t *enp,
903 	__in		unsigned int index)
904 {
905 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
906 
907 	if (emtp->emt_ev_proxy_request != NULL)
908 		emtp->emt_ev_proxy_request(emtp->emt_context, index);
909 }
910 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
911 			void
912 efx_mcdi_ev_death(
913 	__in		efx_nic_t *enp,
914 	__in		int rc)
915 {
916 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
917 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
918 	efx_mcdi_req_t *emrp = NULL;
919 	boolean_t ev_cpl;
920 	efsys_lock_state_t state;
921 
922 	/*
923 	 * The MCDI request (if there is one) has been terminated, either
924 	 * by a BADASSERT or REBOOT event.
925 	 *
926 	 * If there is an outstanding event-completed MCDI operation, then we
927 	 * will never receive the completion event (because both MCDI
928 	 * completions and BADASSERT events are sent to the same evq). So
929 	 * complete this MCDI op.
930 	 *
931 	 * This function might run in parallel with efx_mcdi_request_poll()
932 	 * for poll completed mcdi requests, and also with
933 	 * efx_mcdi_request_start() for post-watchdog completions.
934 	 */
935 	EFSYS_LOCK(enp->en_eslp, state);
936 	emrp = emip->emi_pending_req;
937 	ev_cpl = emip->emi_ev_cpl;
938 	if (emrp != NULL && emip->emi_ev_cpl) {
939 		emip->emi_pending_req = NULL;
940 
941 		emrp->emr_out_length_used = 0;
942 		emrp->emr_rc = rc;
943 		++emip->emi_aborted;
944 	}
945 
946 	/*
947 	 * Since we're running in parallel with a request, consume the
948 	 * status word before dropping the lock.
949 	 */
950 	if (rc == EIO || rc == EINTR) {
951 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
952 		(void) efx_mcdi_poll_reboot(enp);
953 		emip->emi_new_epoch = B_TRUE;
954 	}
955 
956 	EFSYS_UNLOCK(enp->en_eslp, state);
957 
958 	efx_mcdi_raise_exception(enp, emrp, rc);
959 
960 	if (emrp != NULL && ev_cpl)
961 		emtp->emt_ev_cpl(emtp->emt_context);
962 }
963 
964 	__checkReturn		efx_rc_t
965 efx_mcdi_version(
966 	__in			efx_nic_t *enp,
967 	__out_ecount_opt(4)	uint16_t versionp[4],
968 	__out_opt		uint32_t *buildp,
969 	__out_opt		efx_mcdi_boot_t *statusp)
970 {
971 	efx_mcdi_req_t req;
972 	EFX_MCDI_DECLARE_BUF(payload,
973 		MAX(MC_CMD_GET_VERSION_IN_LEN, MC_CMD_GET_BOOT_STATUS_IN_LEN),
974 		MAX(MC_CMD_GET_VERSION_OUT_LEN,
975 			MC_CMD_GET_BOOT_STATUS_OUT_LEN));
976 	efx_word_t *ver_words;
977 	uint16_t version[4];
978 	uint32_t build;
979 	efx_mcdi_boot_t status;
980 	efx_rc_t rc;
981 
982 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
983 
984 	req.emr_cmd = MC_CMD_GET_VERSION;
985 	req.emr_in_buf = payload;
986 	req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
987 	req.emr_out_buf = payload;
988 	req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
989 
990 	efx_mcdi_execute(enp, &req);
991 
992 	if (req.emr_rc != 0) {
993 		rc = req.emr_rc;
994 		goto fail1;
995 	}
996 
997 	/* bootrom support */
998 	if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
999 		version[0] = version[1] = version[2] = version[3] = 0;
1000 		build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1001 
1002 		goto version;
1003 	}
1004 
1005 	if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) {
1006 		rc = EMSGSIZE;
1007 		goto fail2;
1008 	}
1009 
1010 	ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
1011 	version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
1012 	version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
1013 	version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
1014 	version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
1015 	build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1016 
1017 version:
1018 	/* The bootrom doesn't understand BOOT_STATUS */
1019 	if (MC_FW_VERSION_IS_BOOTLOADER(build)) {
1020 		status = EFX_MCDI_BOOT_ROM;
1021 		goto out;
1022 	}
1023 
1024 	(void) memset(payload, 0, sizeof (payload));
1025 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
1026 	req.emr_in_buf = payload;
1027 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
1028 	req.emr_out_buf = payload;
1029 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
1030 
1031 	efx_mcdi_execute_quiet(enp, &req);
1032 
1033 	if (req.emr_rc == EACCES) {
1034 		/* Unprivileged functions cannot access BOOT_STATUS */
1035 		status = EFX_MCDI_BOOT_PRIMARY;
1036 		version[0] = version[1] = version[2] = version[3] = 0;
1037 		build = 0;
1038 		goto out;
1039 	}
1040 
1041 	if (req.emr_rc != 0) {
1042 		rc = req.emr_rc;
1043 		goto fail3;
1044 	}
1045 
1046 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
1047 		rc = EMSGSIZE;
1048 		goto fail4;
1049 	}
1050 
1051 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
1052 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
1053 		status = EFX_MCDI_BOOT_PRIMARY;
1054 	else
1055 		status = EFX_MCDI_BOOT_SECONDARY;
1056 
1057 out:
1058 	if (versionp != NULL)
1059 		memcpy(versionp, version, sizeof (version));
1060 	if (buildp != NULL)
1061 		*buildp = build;
1062 	if (statusp != NULL)
1063 		*statusp = status;
1064 
1065 	return (0);
1066 
1067 fail4:
1068 	EFSYS_PROBE(fail4);
1069 fail3:
1070 	EFSYS_PROBE(fail3);
1071 fail2:
1072 	EFSYS_PROBE(fail2);
1073 fail1:
1074 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1075 
1076 	return (rc);
1077 }
1078 
1079 	__checkReturn	efx_rc_t
1080 efx_mcdi_get_capabilities(
1081 	__in		efx_nic_t *enp,
1082 	__out_opt	uint32_t *flagsp,
1083 	__out_opt	uint16_t *rx_dpcpu_fw_idp,
1084 	__out_opt	uint16_t *tx_dpcpu_fw_idp,
1085 	__out_opt	uint32_t *flags2p,
1086 	__out_opt	uint32_t *tso2ncp)
1087 {
1088 	efx_mcdi_req_t req;
1089 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1090 		MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
1091 	boolean_t v2_capable;
1092 	efx_rc_t rc;
1093 
1094 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1095 	req.emr_in_buf = payload;
1096 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1097 	req.emr_out_buf = payload;
1098 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
1099 
1100 	efx_mcdi_execute_quiet(enp, &req);
1101 
1102 	if (req.emr_rc != 0) {
1103 		rc = req.emr_rc;
1104 		goto fail1;
1105 	}
1106 
1107 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1108 		rc = EMSGSIZE;
1109 		goto fail2;
1110 	}
1111 
1112 	if (flagsp != NULL)
1113 		*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
1114 
1115 	if (rx_dpcpu_fw_idp != NULL)
1116 		*rx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1117 					GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
1118 
1119 	if (tx_dpcpu_fw_idp != NULL)
1120 		*tx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1121 					GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
1122 
1123 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
1124 		v2_capable = B_FALSE;
1125 	else
1126 		v2_capable = B_TRUE;
1127 
1128 	if (flags2p != NULL) {
1129 		*flags2p = (v2_capable) ?
1130 			MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) :
1131 			0;
1132 	}
1133 
1134 	if (tso2ncp != NULL) {
1135 		*tso2ncp = (v2_capable) ?
1136 			MCDI_OUT_WORD(req,
1137 				GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) :
1138 			0;
1139 	}
1140 
1141 	return (0);
1142 
1143 fail2:
1144 	EFSYS_PROBE(fail2);
1145 fail1:
1146 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1147 
1148 	return (rc);
1149 }
1150 
1151 static	__checkReturn	efx_rc_t
1152 efx_mcdi_do_reboot(
1153 	__in		efx_nic_t *enp,
1154 	__in		boolean_t after_assertion)
1155 {
1156 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN,
1157 		MC_CMD_REBOOT_OUT_LEN);
1158 	efx_mcdi_req_t req;
1159 	efx_rc_t rc;
1160 
1161 	/*
1162 	 * We could require the caller to have caused en_mod_flags=0 to
1163 	 * call this function. This doesn't help the other port though,
1164 	 * who's about to get the MC ripped out from underneath them.
1165 	 * Since they have to cope with the subsequent fallout of MCDI
1166 	 * failures, we should as well.
1167 	 */
1168 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1169 
1170 	req.emr_cmd = MC_CMD_REBOOT;
1171 	req.emr_in_buf = payload;
1172 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1173 	req.emr_out_buf = payload;
1174 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1175 
1176 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1177 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1178 
1179 	efx_mcdi_execute_quiet(enp, &req);
1180 
1181 	if (req.emr_rc == EACCES) {
1182 		/* Unprivileged functions cannot reboot the MC. */
1183 		goto out;
1184 	}
1185 
1186 	/* A successful reboot request returns EIO. */
1187 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1188 		rc = req.emr_rc;
1189 		goto fail1;
1190 	}
1191 
1192 out:
1193 	return (0);
1194 
1195 fail1:
1196 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1197 
1198 	return (rc);
1199 }
1200 
1201 	__checkReturn	efx_rc_t
1202 efx_mcdi_reboot(
1203 	__in		efx_nic_t *enp)
1204 {
1205 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1206 }
1207 
1208 	__checkReturn	efx_rc_t
1209 efx_mcdi_exit_assertion_handler(
1210 	__in		efx_nic_t *enp)
1211 {
1212 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1213 }
1214 
1215 	__checkReturn	efx_rc_t
1216 efx_mcdi_read_assertion(
1217 	__in		efx_nic_t *enp)
1218 {
1219 	efx_mcdi_req_t req;
1220 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN,
1221 		MC_CMD_GET_ASSERTS_OUT_LEN);
1222 	const char *reason;
1223 	unsigned int flags;
1224 	unsigned int index;
1225 	unsigned int ofst;
1226 	int retry;
1227 	efx_rc_t rc;
1228 
1229 	/*
1230 	 * Before we attempt to chat to the MC, we should verify that the MC
1231 	 * isn't in it's assertion handler, either due to a previous reboot,
1232 	 * or because we're reinitializing due to an eec_exception().
1233 	 *
1234 	 * Use GET_ASSERTS to read any assertion state that may be present.
1235 	 * Retry this command twice. Once because a boot-time assertion failure
1236 	 * might cause the 1st MCDI request to fail. And once again because
1237 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1238 	 * partner port(s) on the same NIC.
1239 	 */
1240 	retry = 2;
1241 	do {
1242 		(void) memset(payload, 0, sizeof (payload));
1243 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1244 		req.emr_in_buf = payload;
1245 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1246 		req.emr_out_buf = payload;
1247 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1248 
1249 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1250 		efx_mcdi_execute_quiet(enp, &req);
1251 
1252 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1253 
1254 	if (req.emr_rc != 0) {
1255 		if (req.emr_rc == EACCES) {
1256 			/* Unprivileged functions cannot clear assertions. */
1257 			goto out;
1258 		}
1259 		rc = req.emr_rc;
1260 		goto fail1;
1261 	}
1262 
1263 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1264 		rc = EMSGSIZE;
1265 		goto fail2;
1266 	}
1267 
1268 	/* Print out any assertion state recorded */
1269 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1270 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1271 		return (0);
1272 
1273 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1274 		? "system-level assertion"
1275 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1276 		? "thread-level assertion"
1277 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1278 		? "watchdog reset"
1279 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1280 		? "illegal address trap"
1281 		: "unknown assertion";
1282 	EFSYS_PROBE3(mcpu_assertion,
1283 	    const char *, reason, unsigned int,
1284 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1285 	    unsigned int,
1286 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1287 
1288 	/* Print out the registers (r1 ... r31) */
1289 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1290 	for (index = 1;
1291 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1292 		index++) {
1293 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1294 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1295 					    EFX_DWORD_0));
1296 		ofst += sizeof (efx_dword_t);
1297 	}
1298 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1299 
1300 out:
1301 	return (0);
1302 
1303 fail2:
1304 	EFSYS_PROBE(fail2);
1305 fail1:
1306 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1307 
1308 	return (rc);
1309 }
1310 
1311 
1312 /*
1313  * Internal routines for for specific MCDI requests.
1314  */
1315 
1316 	__checkReturn	efx_rc_t
1317 efx_mcdi_drv_attach(
1318 	__in		efx_nic_t *enp,
1319 	__in		boolean_t attach)
1320 {
1321 	efx_mcdi_req_t req;
1322 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_V2_LEN,
1323 		MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1324 	efx_rc_t rc;
1325 
1326 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1327 	req.emr_in_buf = payload;
1328 	if (enp->en_drv_version[0] == '\0') {
1329 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1330 	} else {
1331 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_V2_LEN;
1332 	}
1333 	req.emr_out_buf = payload;
1334 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1335 
1336 	/*
1337 	 * Typically, client drivers use DONT_CARE for the datapath firmware
1338 	 * type to ensure that the driver can attach to an unprivileged
1339 	 * function. The datapath firmware type to use is controlled by the
1340 	 * 'sfboot' utility.
1341 	 * If a client driver wishes to attach with a specific datapath firmware
1342 	 * type, that can be passed in second argument of efx_nic_probe API. One
1343 	 * such example is the ESXi native driver that attempts attaching with
1344 	 * FULL_FEATURED datapath firmware type first and fall backs to
1345 	 * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails.
1346 	 */
1347 	MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE,
1348 	    DRV_ATTACH_IN_ATTACH, attach ? 1 : 0,
1349 	    DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE);
1350 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1351 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv);
1352 
1353 	if (req.emr_in_length >= MC_CMD_DRV_ATTACH_IN_V2_LEN) {
1354 		EFX_STATIC_ASSERT(sizeof (enp->en_drv_version) ==
1355 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1356 		memcpy(MCDI_IN2(req, char, DRV_ATTACH_IN_V2_DRIVER_VERSION),
1357 		    enp->en_drv_version,
1358 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1359 	}
1360 
1361 	efx_mcdi_execute(enp, &req);
1362 
1363 	if (req.emr_rc != 0) {
1364 		rc = req.emr_rc;
1365 		goto fail1;
1366 	}
1367 
1368 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1369 		rc = EMSGSIZE;
1370 		goto fail2;
1371 	}
1372 
1373 	return (0);
1374 
1375 fail2:
1376 	EFSYS_PROBE(fail2);
1377 fail1:
1378 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1379 
1380 	return (rc);
1381 }
1382 
1383 	__checkReturn		efx_rc_t
1384 efx_mcdi_get_board_cfg(
1385 	__in			efx_nic_t *enp,
1386 	__out_opt		uint32_t *board_typep,
1387 	__out_opt		efx_dword_t *capabilitiesp,
1388 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1389 {
1390 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1391 	efx_mcdi_req_t req;
1392 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN,
1393 		MC_CMD_GET_BOARD_CFG_OUT_LENMIN);
1394 	efx_rc_t rc;
1395 
1396 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1397 	req.emr_in_buf = payload;
1398 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1399 	req.emr_out_buf = payload;
1400 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1401 
1402 	efx_mcdi_execute(enp, &req);
1403 
1404 	if (req.emr_rc != 0) {
1405 		rc = req.emr_rc;
1406 		goto fail1;
1407 	}
1408 
1409 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1410 		rc = EMSGSIZE;
1411 		goto fail2;
1412 	}
1413 
1414 	if (mac_addrp != NULL) {
1415 		uint8_t *addrp;
1416 
1417 		if (emip->emi_port == 1) {
1418 			addrp = MCDI_OUT2(req, uint8_t,
1419 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1420 		} else if (emip->emi_port == 2) {
1421 			addrp = MCDI_OUT2(req, uint8_t,
1422 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1423 		} else {
1424 			rc = EINVAL;
1425 			goto fail3;
1426 		}
1427 
1428 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1429 	}
1430 
1431 	if (capabilitiesp != NULL) {
1432 		if (emip->emi_port == 1) {
1433 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1434 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1435 		} else if (emip->emi_port == 2) {
1436 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1437 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1438 		} else {
1439 			rc = EINVAL;
1440 			goto fail4;
1441 		}
1442 	}
1443 
1444 	if (board_typep != NULL) {
1445 		*board_typep = MCDI_OUT_DWORD(req,
1446 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1447 	}
1448 
1449 	return (0);
1450 
1451 fail4:
1452 	EFSYS_PROBE(fail4);
1453 fail3:
1454 	EFSYS_PROBE(fail3);
1455 fail2:
1456 	EFSYS_PROBE(fail2);
1457 fail1:
1458 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1459 
1460 	return (rc);
1461 }
1462 
1463 	__checkReturn	efx_rc_t
1464 efx_mcdi_get_resource_limits(
1465 	__in		efx_nic_t *enp,
1466 	__out_opt	uint32_t *nevqp,
1467 	__out_opt	uint32_t *nrxqp,
1468 	__out_opt	uint32_t *ntxqp)
1469 {
1470 	efx_mcdi_req_t req;
1471 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1472 		MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN);
1473 	efx_rc_t rc;
1474 
1475 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1476 	req.emr_in_buf = payload;
1477 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1478 	req.emr_out_buf = payload;
1479 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1480 
1481 	efx_mcdi_execute(enp, &req);
1482 
1483 	if (req.emr_rc != 0) {
1484 		rc = req.emr_rc;
1485 		goto fail1;
1486 	}
1487 
1488 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1489 		rc = EMSGSIZE;
1490 		goto fail2;
1491 	}
1492 
1493 	if (nevqp != NULL)
1494 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1495 	if (nrxqp != NULL)
1496 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1497 	if (ntxqp != NULL)
1498 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1499 
1500 	return (0);
1501 
1502 fail2:
1503 	EFSYS_PROBE(fail2);
1504 fail1:
1505 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1506 
1507 	return (rc);
1508 }
1509 
1510 	__checkReturn	efx_rc_t
1511 efx_mcdi_get_phy_cfg(
1512 	__in		efx_nic_t *enp)
1513 {
1514 	efx_port_t *epp = &(enp->en_port);
1515 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1516 	efx_mcdi_req_t req;
1517 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN,
1518 		MC_CMD_GET_PHY_CFG_OUT_LEN);
1519 #if EFSYS_OPT_NAMES
1520 	const char *namep;
1521 	size_t namelen;
1522 #endif
1523 	uint32_t phy_media_type;
1524 	efx_rc_t rc;
1525 
1526 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1527 	req.emr_in_buf = payload;
1528 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1529 	req.emr_out_buf = payload;
1530 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1531 
1532 	efx_mcdi_execute(enp, &req);
1533 
1534 	if (req.emr_rc != 0) {
1535 		rc = req.emr_rc;
1536 		goto fail1;
1537 	}
1538 
1539 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1540 		rc = EMSGSIZE;
1541 		goto fail2;
1542 	}
1543 
1544 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1545 #if EFSYS_OPT_NAMES
1546 	namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME);
1547 	namelen = MIN(sizeof (encp->enc_phy_name) - 1,
1548 		    strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1549 	(void) memset(encp->enc_phy_name, 0,
1550 	    sizeof (encp->enc_phy_name));
1551 	memcpy(encp->enc_phy_name, namep, namelen);
1552 #endif	/* EFSYS_OPT_NAMES */
1553 	(void) memset(encp->enc_phy_revision, 0,
1554 	    sizeof (encp->enc_phy_revision));
1555 	memcpy(encp->enc_phy_revision,
1556 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1557 		MIN(sizeof (encp->enc_phy_revision) - 1,
1558 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1559 #if EFSYS_OPT_PHY_LED_CONTROL
1560 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1561 			    (1 << EFX_PHY_LED_OFF) |
1562 			    (1 << EFX_PHY_LED_ON));
1563 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1564 
1565 	/* Get the media type of the fixed port, if recognised. */
1566 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1567 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1568 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1569 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1570 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1571 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1572 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1573 	phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1574 	epp->ep_fixed_port_type = (efx_phy_media_type_t)phy_media_type;
1575 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1576 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1577 
1578 	epp->ep_phy_cap_mask =
1579 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1580 #if EFSYS_OPT_PHY_FLAGS
1581 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1582 #endif	/* EFSYS_OPT_PHY_FLAGS */
1583 
1584 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1585 
1586 	/* Populate internal state */
1587 	encp->enc_mcdi_mdio_channel =
1588 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1589 
1590 #if EFSYS_OPT_PHY_STATS
1591 	encp->enc_mcdi_phy_stat_mask =
1592 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1593 #endif	/* EFSYS_OPT_PHY_STATS */
1594 
1595 #if EFSYS_OPT_BIST
1596 	encp->enc_bist_mask = 0;
1597 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1598 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1599 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1600 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1601 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1602 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1603 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1604 	    GET_PHY_CFG_OUT_BIST))
1605 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1606 #endif  /* EFSYS_OPT_BIST */
1607 
1608 	return (0);
1609 
1610 fail2:
1611 	EFSYS_PROBE(fail2);
1612 fail1:
1613 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1614 
1615 	return (rc);
1616 }
1617 
1618 	__checkReturn		efx_rc_t
1619 efx_mcdi_firmware_update_supported(
1620 	__in			efx_nic_t *enp,
1621 	__out			boolean_t *supportedp)
1622 {
1623 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1624 	efx_rc_t rc;
1625 
1626 	if (emcop != NULL) {
1627 		if ((rc = emcop->emco_feature_supported(enp,
1628 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1629 			goto fail1;
1630 	} else {
1631 		/* Earlier devices always supported updates */
1632 		*supportedp = B_TRUE;
1633 	}
1634 
1635 	return (0);
1636 
1637 fail1:
1638 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1639 
1640 	return (rc);
1641 }
1642 
1643 	__checkReturn		efx_rc_t
1644 efx_mcdi_macaddr_change_supported(
1645 	__in			efx_nic_t *enp,
1646 	__out			boolean_t *supportedp)
1647 {
1648 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1649 	efx_rc_t rc;
1650 
1651 	if (emcop != NULL) {
1652 		if ((rc = emcop->emco_feature_supported(enp,
1653 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1654 			goto fail1;
1655 	} else {
1656 		/* Earlier devices always supported MAC changes */
1657 		*supportedp = B_TRUE;
1658 	}
1659 
1660 	return (0);
1661 
1662 fail1:
1663 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1664 
1665 	return (rc);
1666 }
1667 
1668 	__checkReturn		efx_rc_t
1669 efx_mcdi_link_control_supported(
1670 	__in			efx_nic_t *enp,
1671 	__out			boolean_t *supportedp)
1672 {
1673 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1674 	efx_rc_t rc;
1675 
1676 	if (emcop != NULL) {
1677 		if ((rc = emcop->emco_feature_supported(enp,
1678 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1679 			goto fail1;
1680 	} else {
1681 		/* Earlier devices always supported link control */
1682 		*supportedp = B_TRUE;
1683 	}
1684 
1685 	return (0);
1686 
1687 fail1:
1688 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1689 
1690 	return (rc);
1691 }
1692 
1693 	__checkReturn		efx_rc_t
1694 efx_mcdi_mac_spoofing_supported(
1695 	__in			efx_nic_t *enp,
1696 	__out			boolean_t *supportedp)
1697 {
1698 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1699 	efx_rc_t rc;
1700 
1701 	if (emcop != NULL) {
1702 		if ((rc = emcop->emco_feature_supported(enp,
1703 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1704 			goto fail1;
1705 	} else {
1706 		/* Earlier devices always supported MAC spoofing */
1707 		*supportedp = B_TRUE;
1708 	}
1709 
1710 	return (0);
1711 
1712 fail1:
1713 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1714 
1715 	return (rc);
1716 }
1717 
1718 #if EFSYS_OPT_BIST
1719 
1720 #if EFX_OPTS_EF10()
1721 /*
1722  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1723  * where memory BIST tests can be run and not much else can interfere or happen.
1724  * A reboot is required to exit this mode.
1725  */
1726 	__checkReturn		efx_rc_t
1727 efx_mcdi_bist_enable_offline(
1728 	__in			efx_nic_t *enp)
1729 {
1730 	efx_mcdi_req_t req;
1731 	efx_rc_t rc;
1732 
1733 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1734 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1735 
1736 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1737 	req.emr_in_buf = NULL;
1738 	req.emr_in_length = 0;
1739 	req.emr_out_buf = NULL;
1740 	req.emr_out_length = 0;
1741 
1742 	efx_mcdi_execute(enp, &req);
1743 
1744 	if (req.emr_rc != 0) {
1745 		rc = req.emr_rc;
1746 		goto fail1;
1747 	}
1748 
1749 	return (0);
1750 
1751 fail1:
1752 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1753 
1754 	return (rc);
1755 }
1756 #endif /* EFX_OPTS_EF10() */
1757 
1758 	__checkReturn		efx_rc_t
1759 efx_mcdi_bist_start(
1760 	__in			efx_nic_t *enp,
1761 	__in			efx_bist_type_t type)
1762 {
1763 	efx_mcdi_req_t req;
1764 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN,
1765 		MC_CMD_START_BIST_OUT_LEN);
1766 	efx_rc_t rc;
1767 
1768 	req.emr_cmd = MC_CMD_START_BIST;
1769 	req.emr_in_buf = payload;
1770 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1771 	req.emr_out_buf = payload;
1772 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1773 
1774 	switch (type) {
1775 	case EFX_BIST_TYPE_PHY_NORMAL:
1776 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1777 		break;
1778 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1779 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1780 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1781 		break;
1782 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1783 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1784 		    MC_CMD_PHY_BIST_CABLE_LONG);
1785 		break;
1786 	case EFX_BIST_TYPE_MC_MEM:
1787 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1788 		    MC_CMD_MC_MEM_BIST);
1789 		break;
1790 	case EFX_BIST_TYPE_SAT_MEM:
1791 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1792 		    MC_CMD_PORT_MEM_BIST);
1793 		break;
1794 	case EFX_BIST_TYPE_REG:
1795 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1796 		    MC_CMD_REG_BIST);
1797 		break;
1798 	default:
1799 		EFSYS_ASSERT(0);
1800 	}
1801 
1802 	efx_mcdi_execute(enp, &req);
1803 
1804 	if (req.emr_rc != 0) {
1805 		rc = req.emr_rc;
1806 		goto fail1;
1807 	}
1808 
1809 	return (0);
1810 
1811 fail1:
1812 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1813 
1814 	return (rc);
1815 }
1816 
1817 #endif /* EFSYS_OPT_BIST */
1818 
1819 
1820 /* Enable logging of some events (e.g. link state changes) */
1821 	__checkReturn	efx_rc_t
1822 efx_mcdi_log_ctrl(
1823 	__in		efx_nic_t *enp)
1824 {
1825 	efx_mcdi_req_t req;
1826 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN,
1827 		MC_CMD_LOG_CTRL_OUT_LEN);
1828 	efx_rc_t rc;
1829 
1830 	req.emr_cmd = MC_CMD_LOG_CTRL;
1831 	req.emr_in_buf = payload;
1832 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
1833 	req.emr_out_buf = payload;
1834 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
1835 
1836 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
1837 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
1838 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
1839 
1840 	efx_mcdi_execute(enp, &req);
1841 
1842 	if (req.emr_rc != 0) {
1843 		rc = req.emr_rc;
1844 		goto fail1;
1845 	}
1846 
1847 	return (0);
1848 
1849 fail1:
1850 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1851 
1852 	return (rc);
1853 }
1854 
1855 
1856 #if EFSYS_OPT_MAC_STATS
1857 
1858 	__checkReturn	efx_rc_t
1859 efx_mcdi_mac_stats(
1860 	__in		efx_nic_t *enp,
1861 	__in		uint32_t vport_id,
1862 	__in_opt	efsys_mem_t *esmp,
1863 	__in		efx_stats_action_t action,
1864 	__in		uint16_t period_ms)
1865 {
1866 	efx_mcdi_req_t req;
1867 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN,
1868 		MC_CMD_MAC_STATS_V2_OUT_DMA_LEN);
1869 	int clear = (action == EFX_STATS_CLEAR);
1870 	int upload = (action == EFX_STATS_UPLOAD);
1871 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
1872 	int events = (action == EFX_STATS_ENABLE_EVENTS);
1873 	int disable = (action == EFX_STATS_DISABLE);
1874 	efx_rc_t rc;
1875 
1876 	req.emr_cmd = MC_CMD_MAC_STATS;
1877 	req.emr_in_buf = payload;
1878 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
1879 	req.emr_out_buf = payload;
1880 	req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN;
1881 
1882 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
1883 	    MAC_STATS_IN_DMA, upload,
1884 	    MAC_STATS_IN_CLEAR, clear,
1885 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
1886 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
1887 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
1888 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0);
1889 
1890 	if (enable || events || upload) {
1891 		const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
1892 		uint32_t bytes;
1893 
1894 		/* Periodic stats or stats upload require a DMA buffer */
1895 		if (esmp == NULL) {
1896 			rc = EINVAL;
1897 			goto fail1;
1898 		}
1899 
1900 		if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) {
1901 			/* MAC stats count too small for legacy MAC stats */
1902 			rc = ENOSPC;
1903 			goto fail2;
1904 		}
1905 
1906 		bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t);
1907 
1908 		if (EFSYS_MEM_SIZE(esmp) < bytes) {
1909 			/* DMA buffer too small */
1910 			rc = ENOSPC;
1911 			goto fail3;
1912 		}
1913 
1914 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
1915 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
1916 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
1917 			    EFSYS_MEM_ADDR(esmp) >> 32);
1918 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
1919 	}
1920 
1921 	/*
1922 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
1923 	 *	 as this may fail (and leave periodic DMA enabled) if the
1924 	 *	 vadapter has already been deleted.
1925 	 */
1926 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
1927 		(disable ? EVB_PORT_ID_NULL : vport_id));
1928 
1929 	efx_mcdi_execute(enp, &req);
1930 
1931 	if (req.emr_rc != 0) {
1932 		/* EF10: Expect ENOENT if no DMA queues are initialised */
1933 		if ((req.emr_rc != ENOENT) ||
1934 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
1935 			rc = req.emr_rc;
1936 			goto fail4;
1937 		}
1938 	}
1939 
1940 	return (0);
1941 
1942 fail4:
1943 	EFSYS_PROBE(fail4);
1944 fail3:
1945 	EFSYS_PROBE(fail3);
1946 fail2:
1947 	EFSYS_PROBE(fail2);
1948 fail1:
1949 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1950 
1951 	return (rc);
1952 }
1953 
1954 	__checkReturn	efx_rc_t
1955 efx_mcdi_mac_stats_clear(
1956 	__in		efx_nic_t *enp)
1957 {
1958 	efx_rc_t rc;
1959 
1960 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
1961 			EFX_STATS_CLEAR, 0)) != 0)
1962 		goto fail1;
1963 
1964 	return (0);
1965 
1966 fail1:
1967 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1968 
1969 	return (rc);
1970 }
1971 
1972 	__checkReturn	efx_rc_t
1973 efx_mcdi_mac_stats_upload(
1974 	__in		efx_nic_t *enp,
1975 	__in		efsys_mem_t *esmp)
1976 {
1977 	efx_rc_t rc;
1978 
1979 	/*
1980 	 * The MC DMAs aggregate statistics for our convenience, so we can
1981 	 * avoid having to pull the statistics buffer into the cache to
1982 	 * maintain cumulative statistics.
1983 	 */
1984 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
1985 			EFX_STATS_UPLOAD, 0)) != 0)
1986 		goto fail1;
1987 
1988 	return (0);
1989 
1990 fail1:
1991 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1992 
1993 	return (rc);
1994 }
1995 
1996 	__checkReturn	efx_rc_t
1997 efx_mcdi_mac_stats_periodic(
1998 	__in		efx_nic_t *enp,
1999 	__in		efsys_mem_t *esmp,
2000 	__in		uint16_t period_ms,
2001 	__in		boolean_t events)
2002 {
2003 	efx_rc_t rc;
2004 
2005 	/*
2006 	 * The MC DMAs aggregate statistics for our convenience, so we can
2007 	 * avoid having to pull the statistics buffer into the cache to
2008 	 * maintain cumulative statistics.
2009 	 * Huntington uses a fixed 1sec period.
2010 	 * Medford uses a fixed 1sec period before v6.2.1.1033 firmware.
2011 	 */
2012 	if (period_ms == 0)
2013 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2014 			EFX_STATS_DISABLE, 0);
2015 	else if (events)
2016 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2017 			EFX_STATS_ENABLE_EVENTS, period_ms);
2018 	else
2019 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2020 			EFX_STATS_ENABLE_NOEVENTS, period_ms);
2021 
2022 	if (rc != 0)
2023 		goto fail1;
2024 
2025 	return (0);
2026 
2027 fail1:
2028 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2029 
2030 	return (rc);
2031 }
2032 
2033 #endif	/* EFSYS_OPT_MAC_STATS */
2034 
2035 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2036 
2037 /*
2038  * This function returns the pf and vf number of a function.  If it is a pf the
2039  * vf number is 0xffff.  The vf number is the index of the vf on that
2040  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
2041  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
2042  */
2043 	__checkReturn		efx_rc_t
2044 efx_mcdi_get_function_info(
2045 	__in			efx_nic_t *enp,
2046 	__out			uint32_t *pfp,
2047 	__out_opt		uint32_t *vfp)
2048 {
2049 	efx_mcdi_req_t req;
2050 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN,
2051 		MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2052 	efx_rc_t rc;
2053 
2054 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
2055 	req.emr_in_buf = payload;
2056 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
2057 	req.emr_out_buf = payload;
2058 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN;
2059 
2060 	efx_mcdi_execute(enp, &req);
2061 
2062 	if (req.emr_rc != 0) {
2063 		rc = req.emr_rc;
2064 		goto fail1;
2065 	}
2066 
2067 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
2068 		rc = EMSGSIZE;
2069 		goto fail2;
2070 	}
2071 
2072 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
2073 	if (vfp != NULL)
2074 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
2075 
2076 	return (0);
2077 
2078 fail2:
2079 	EFSYS_PROBE(fail2);
2080 fail1:
2081 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2082 
2083 	return (rc);
2084 }
2085 
2086 	__checkReturn		efx_rc_t
2087 efx_mcdi_privilege_mask(
2088 	__in			efx_nic_t *enp,
2089 	__in			uint32_t pf,
2090 	__in			uint32_t vf,
2091 	__out			uint32_t *maskp)
2092 {
2093 	efx_mcdi_req_t req;
2094 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN,
2095 		MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2096 	efx_rc_t rc;
2097 
2098 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
2099 	req.emr_in_buf = payload;
2100 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
2101 	req.emr_out_buf = payload;
2102 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
2103 
2104 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
2105 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2106 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2107 
2108 	efx_mcdi_execute(enp, &req);
2109 
2110 	if (req.emr_rc != 0) {
2111 		rc = req.emr_rc;
2112 		goto fail1;
2113 	}
2114 
2115 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
2116 		rc = EMSGSIZE;
2117 		goto fail2;
2118 	}
2119 
2120 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
2121 
2122 	return (0);
2123 
2124 fail2:
2125 	EFSYS_PROBE(fail2);
2126 fail1:
2127 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2128 
2129 	return (rc);
2130 }
2131 
2132 #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2133 
2134 	__checkReturn		efx_rc_t
2135 efx_mcdi_set_workaround(
2136 	__in			efx_nic_t *enp,
2137 	__in			uint32_t type,
2138 	__in			boolean_t enabled,
2139 	__out_opt		uint32_t *flagsp)
2140 {
2141 	efx_mcdi_req_t req;
2142 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN,
2143 		MC_CMD_WORKAROUND_EXT_OUT_LEN);
2144 	efx_rc_t rc;
2145 
2146 	req.emr_cmd = MC_CMD_WORKAROUND;
2147 	req.emr_in_buf = payload;
2148 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2149 	req.emr_out_buf = payload;
2150 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2151 
2152 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2153 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2154 
2155 	efx_mcdi_execute_quiet(enp, &req);
2156 
2157 	if (req.emr_rc != 0) {
2158 		rc = req.emr_rc;
2159 		goto fail1;
2160 	}
2161 
2162 	if (flagsp != NULL) {
2163 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2164 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2165 		else
2166 			*flagsp = 0;
2167 	}
2168 
2169 	return (0);
2170 
2171 fail1:
2172 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2173 
2174 	return (rc);
2175 }
2176 
2177 
2178 	__checkReturn		efx_rc_t
2179 efx_mcdi_get_workarounds(
2180 	__in			efx_nic_t *enp,
2181 	__out_opt		uint32_t *implementedp,
2182 	__out_opt		uint32_t *enabledp)
2183 {
2184 	efx_mcdi_req_t req;
2185 	EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2186 	efx_rc_t rc;
2187 
2188 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2189 	req.emr_in_buf = NULL;
2190 	req.emr_in_length = 0;
2191 	req.emr_out_buf = payload;
2192 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2193 
2194 	efx_mcdi_execute(enp, &req);
2195 
2196 	if (req.emr_rc != 0) {
2197 		rc = req.emr_rc;
2198 		goto fail1;
2199 	}
2200 
2201 	if (implementedp != NULL) {
2202 		*implementedp =
2203 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2204 	}
2205 
2206 	if (enabledp != NULL) {
2207 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2208 	}
2209 
2210 	return (0);
2211 
2212 fail1:
2213 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2214 
2215 	return (rc);
2216 }
2217 
2218 /*
2219  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2220  * It is used in MCDI interface as well.
2221  */
2222 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2223 
2224 /*
2225  * Transceiver identifiers from SFF-8024 Table 4-1.
2226  */
2227 #define	EFX_SFF_TRANSCEIVER_ID_SFP		0x03 /* SFP/SFP+/SFP28 */
2228 #define	EFX_SFF_TRANSCEIVER_ID_QSFP		0x0c /* QSFP */
2229 #define	EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS	0x0d /* QSFP+ or later */
2230 #define	EFX_SFF_TRANSCEIVER_ID_QSFP28		0x11 /* QSFP28 or later */
2231 
2232 static	__checkReturn		efx_rc_t
2233 efx_mcdi_get_phy_media_info(
2234 	__in			efx_nic_t *enp,
2235 	__in			uint32_t mcdi_page,
2236 	__in			uint8_t offset,
2237 	__in			uint8_t len,
2238 	__out_bcount(len)	uint8_t *data)
2239 {
2240 	efx_mcdi_req_t req;
2241 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2242 		MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2243 			EFX_PHY_MEDIA_INFO_PAGE_SIZE));
2244 	efx_rc_t rc;
2245 
2246 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2247 
2248 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2249 	req.emr_in_buf = payload;
2250 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2251 	req.emr_out_buf = payload;
2252 	req.emr_out_length =
2253 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2254 
2255 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2256 
2257 	efx_mcdi_execute(enp, &req);
2258 
2259 	if (req.emr_rc != 0) {
2260 		rc = req.emr_rc;
2261 		goto fail1;
2262 	}
2263 
2264 	if (req.emr_out_length_used !=
2265 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2266 		rc = EMSGSIZE;
2267 		goto fail2;
2268 	}
2269 
2270 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2271 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2272 		rc = EIO;
2273 		goto fail3;
2274 	}
2275 
2276 	memcpy(data,
2277 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2278 	    len);
2279 
2280 	return (0);
2281 
2282 fail3:
2283 	EFSYS_PROBE(fail3);
2284 fail2:
2285 	EFSYS_PROBE(fail2);
2286 fail1:
2287 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2288 
2289 	return (rc);
2290 }
2291 
2292 	__checkReturn		efx_rc_t
2293 efx_mcdi_phy_module_get_info(
2294 	__in			efx_nic_t *enp,
2295 	__in			uint8_t dev_addr,
2296 	__in			size_t offset,
2297 	__in			size_t len,
2298 	__out_bcount(len)	uint8_t *data)
2299 {
2300 	efx_port_t *epp = &(enp->en_port);
2301 	efx_rc_t rc;
2302 	uint32_t mcdi_lower_page;
2303 	uint32_t mcdi_upper_page;
2304 	uint8_t id;
2305 
2306 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2307 
2308 	/*
2309 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2310 	 * Offset plus length interface allows to access page 0 only.
2311 	 * I.e. non-zero upper pages are not accessible.
2312 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2313 	 * QSFP+ Memory Map for details on how information is structured
2314 	 * and accessible.
2315 	 */
2316 	switch (epp->ep_fixed_port_type) {
2317 	case EFX_PHY_MEDIA_SFP_PLUS:
2318 	case EFX_PHY_MEDIA_QSFP_PLUS:
2319 		/* Port type supports modules */
2320 		break;
2321 	default:
2322 		rc = ENOTSUP;
2323 		goto fail1;
2324 	}
2325 
2326 	/*
2327 	 * For all supported port types, MCDI page 0 offset 0 holds the
2328 	 * transceiver identifier. Probe to determine the data layout.
2329 	 * Definitions from SFF-8024 Table 4-1.
2330 	 */
2331 	rc = efx_mcdi_get_phy_media_info(enp,
2332 		    0, 0, sizeof(id), &id);
2333 	if (rc != 0)
2334 		goto fail2;
2335 
2336 	switch (id) {
2337 	case EFX_SFF_TRANSCEIVER_ID_SFP:
2338 		/*
2339 		 * In accordance with SFF-8472 Diagnostic Monitoring
2340 		 * Interface for Optical Transceivers section 4 Memory
2341 		 * Organization two 2-wire addresses are defined.
2342 		 */
2343 		switch (dev_addr) {
2344 		/* Base information */
2345 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2346 			/*
2347 			 * MCDI page 0 should be used to access lower
2348 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2349 			 */
2350 			mcdi_lower_page = 0;
2351 			/*
2352 			 * MCDI page 1 should be used to access  upper
2353 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2354 			 */
2355 			mcdi_upper_page = 1;
2356 			break;
2357 		/* Diagnostics */
2358 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2359 			/*
2360 			 * MCDI page 2 should be used to access lower
2361 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2362 			 */
2363 			mcdi_lower_page = 2;
2364 			/*
2365 			 * MCDI page 3 should be used to access upper
2366 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2367 			 */
2368 			mcdi_upper_page = 3;
2369 			break;
2370 		default:
2371 			rc = ENOTSUP;
2372 			goto fail3;
2373 		}
2374 		break;
2375 	case EFX_SFF_TRANSCEIVER_ID_QSFP:
2376 	case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS:
2377 	case EFX_SFF_TRANSCEIVER_ID_QSFP28:
2378 		switch (dev_addr) {
2379 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2380 			/*
2381 			 * MCDI page -1 should be used to access lower page 0
2382 			 * (0x00 - 0x7f).
2383 			 */
2384 			mcdi_lower_page = (uint32_t)-1;
2385 			/*
2386 			 * MCDI page 0 should be used to access upper page 0
2387 			 * (0x80h - 0xff).
2388 			 */
2389 			mcdi_upper_page = 0;
2390 			break;
2391 		default:
2392 			rc = ENOTSUP;
2393 			goto fail3;
2394 		}
2395 		break;
2396 	default:
2397 		rc = ENOTSUP;
2398 		goto fail3;
2399 	}
2400 
2401 	EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF);
2402 
2403 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2404 		size_t read_len =
2405 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2406 
2407 		rc = efx_mcdi_get_phy_media_info(enp,
2408 		    mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data);
2409 		if (rc != 0)
2410 			goto fail4;
2411 
2412 		data += read_len;
2413 		len -= read_len;
2414 
2415 		offset = 0;
2416 	} else {
2417 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2418 	}
2419 
2420 	if (len > 0) {
2421 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2422 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2423 
2424 		rc = efx_mcdi_get_phy_media_info(enp,
2425 		    mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data);
2426 		if (rc != 0)
2427 			goto fail5;
2428 	}
2429 
2430 	return (0);
2431 
2432 fail5:
2433 	EFSYS_PROBE(fail5);
2434 fail4:
2435 	EFSYS_PROBE(fail4);
2436 fail3:
2437 	EFSYS_PROBE(fail3);
2438 fail2:
2439 	EFSYS_PROBE(fail2);
2440 fail1:
2441 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2442 
2443 	return (rc);
2444 }
2445 
2446 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2447 
2448 #define	INIT_EVQ_MAXNBUFS	MC_CMD_INIT_EVQ_V2_IN_DMA_ADDR_MAXNUM
2449 
2450 #if EFX_OPTS_EF10()
2451 # if (INIT_EVQ_MAXNBUFS < EF10_EVQ_MAXNBUFS)
2452 #  error "INIT_EVQ_MAXNBUFS too small"
2453 # endif
2454 #endif /* EFX_OPTS_EF10 */
2455 #if EFSYS_OPT_RIVERHEAD
2456 # if (INIT_EVQ_MAXNBUFS < RHEAD_EVQ_MAXNBUFS)
2457 #  error "INIT_EVQ_MAXNBUFS too small"
2458 # endif
2459 #endif /* EFSYS_OPT_RIVERHEAD */
2460 
2461 	__checkReturn	efx_rc_t
2462 efx_mcdi_init_evq(
2463 	__in		efx_nic_t *enp,
2464 	__in		unsigned int instance,
2465 	__in		efsys_mem_t *esmp,
2466 	__in		size_t nevs,
2467 	__in		uint32_t irq,
2468 	__in		uint32_t us,
2469 	__in		uint32_t flags,
2470 	__in		boolean_t low_latency)
2471 {
2472 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(enp);
2473 	efx_mcdi_req_t req;
2474 	EFX_MCDI_DECLARE_BUF(payload,
2475 		MC_CMD_INIT_EVQ_V2_IN_LEN(INIT_EVQ_MAXNBUFS),
2476 		MC_CMD_INIT_EVQ_V2_OUT_LEN);
2477 	boolean_t interrupting;
2478 	int ev_extended_width;
2479 	int ev_cut_through;
2480 	int ev_merge;
2481 	unsigned int evq_type;
2482 	efx_qword_t *dma_addr;
2483 	uint64_t addr;
2484 	int npages;
2485 	int i;
2486 	efx_rc_t rc;
2487 
2488 	npages = efx_evq_nbufs(enp, nevs, flags);
2489 	if (npages > INIT_EVQ_MAXNBUFS) {
2490 		rc = EINVAL;
2491 		goto fail1;
2492 	}
2493 
2494 	req.emr_cmd = MC_CMD_INIT_EVQ;
2495 	req.emr_in_buf = payload;
2496 	req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages);
2497 	req.emr_out_buf = payload;
2498 	req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN;
2499 
2500 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs);
2501 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance);
2502 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq);
2503 
2504 	interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
2505 	    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
2506 
2507 	if (encp->enc_init_evq_v2_supported) {
2508 		/*
2509 		 * On Medford the low latency license is required to enable RX
2510 		 * and event cut through and to disable RX batching.  If event
2511 		 * queue type in flags is auto, we let the firmware decide the
2512 		 * settings to use. If the adapter has a low latency license,
2513 		 * it will choose the best settings for low latency, otherwise
2514 		 * it will choose the best settings for throughput.
2515 		 */
2516 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2517 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2518 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO;
2519 			break;
2520 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2521 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT;
2522 			break;
2523 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2524 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY;
2525 			break;
2526 		default:
2527 			rc = EINVAL;
2528 			goto fail2;
2529 		}
2530 		/* EvQ type controls merging, no manual settings */
2531 		ev_merge = 0;
2532 		ev_cut_through = 0;
2533 	} else {
2534 		/* EvQ types other than manual are not supported */
2535 		evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_MANUAL;
2536 		/*
2537 		 * On Huntington RX and TX event batching can only be requested
2538 		 * together (even if the datapath firmware doesn't actually
2539 		 * support RX batching). If event cut through is enabled no RX
2540 		 * batching will occur.
2541 		 *
2542 		 * So always enable RX and TX event batching, and enable event
2543 		 * cut through if we want low latency operation.
2544 		 */
2545 		ev_merge = 1;
2546 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2547 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2548 			ev_cut_through = low_latency ? 1 : 0;
2549 			break;
2550 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2551 			ev_cut_through = 0;
2552 			break;
2553 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2554 			ev_cut_through = 1;
2555 			break;
2556 		default:
2557 			rc = EINVAL;
2558 			goto fail2;
2559 		}
2560 	}
2561 
2562 	/*
2563 	 * On EF100, extended width event queues have a different event
2564 	 * descriptor layout and are used to support descriptor proxy queues.
2565 	 */
2566 	ev_extended_width = 0;
2567 #if EFSYS_OPT_EV_EXTENDED_WIDTH
2568 	if (encp->enc_init_evq_extended_width_supported) {
2569 		if (flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH)
2570 			ev_extended_width = 1;
2571 	}
2572 #endif
2573 
2574 	MCDI_IN_POPULATE_DWORD_8(req, INIT_EVQ_V2_IN_FLAGS,
2575 	    INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting,
2576 	    INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0,
2577 	    INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0,
2578 	    INIT_EVQ_V2_IN_FLAG_CUT_THRU, ev_cut_through,
2579 	    INIT_EVQ_V2_IN_FLAG_RX_MERGE, ev_merge,
2580 	    INIT_EVQ_V2_IN_FLAG_TX_MERGE, ev_merge,
2581 	    INIT_EVQ_V2_IN_FLAG_TYPE, evq_type,
2582 	    INIT_EVQ_V2_IN_FLAG_EXT_WIDTH, ev_extended_width);
2583 
2584 	/* If the value is zero then disable the timer */
2585 	if (us == 0) {
2586 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2587 		    MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS);
2588 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0);
2589 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0);
2590 	} else {
2591 		unsigned int ticks;
2592 
2593 		if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
2594 			goto fail3;
2595 
2596 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2597 		    MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF);
2598 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks);
2599 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks);
2600 	}
2601 
2602 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE,
2603 	    MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS);
2604 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0);
2605 
2606 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR);
2607 	addr = EFSYS_MEM_ADDR(esmp);
2608 
2609 	for (i = 0; i < npages; i++) {
2610 		EFX_POPULATE_QWORD_2(*dma_addr,
2611 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2612 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2613 
2614 		dma_addr++;
2615 		addr += EFX_BUF_SIZE;
2616 	}
2617 
2618 	efx_mcdi_execute(enp, &req);
2619 
2620 	if (req.emr_rc != 0) {
2621 		rc = req.emr_rc;
2622 		goto fail4;
2623 	}
2624 
2625 	if (encp->enc_init_evq_v2_supported) {
2626 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) {
2627 			rc = EMSGSIZE;
2628 			goto fail5;
2629 		}
2630 		EFSYS_PROBE1(mcdi_evq_flags, uint32_t,
2631 			    MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS));
2632 	} else {
2633 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) {
2634 			rc = EMSGSIZE;
2635 			goto fail6;
2636 		}
2637 	}
2638 
2639 	/* NOTE: ignore the returned IRQ param as firmware does not set it. */
2640 
2641 	return (0);
2642 
2643 fail6:
2644 	EFSYS_PROBE(fail6);
2645 fail5:
2646 	EFSYS_PROBE(fail5);
2647 fail4:
2648 	EFSYS_PROBE(fail4);
2649 fail3:
2650 	EFSYS_PROBE(fail3);
2651 fail2:
2652 	EFSYS_PROBE(fail2);
2653 fail1:
2654 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2655 
2656 	return (rc);
2657 }
2658 
2659 	__checkReturn	efx_rc_t
2660 efx_mcdi_fini_evq(
2661 	__in		efx_nic_t *enp,
2662 	__in		uint32_t instance)
2663 {
2664 	efx_mcdi_req_t req;
2665 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_EVQ_IN_LEN,
2666 		MC_CMD_FINI_EVQ_OUT_LEN);
2667 	efx_rc_t rc;
2668 
2669 	req.emr_cmd = MC_CMD_FINI_EVQ;
2670 	req.emr_in_buf = payload;
2671 	req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN;
2672 	req.emr_out_buf = payload;
2673 	req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN;
2674 
2675 	MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance);
2676 
2677 	efx_mcdi_execute_quiet(enp, &req);
2678 
2679 	if (req.emr_rc != 0) {
2680 		rc = req.emr_rc;
2681 		goto fail1;
2682 	}
2683 
2684 	return (0);
2685 
2686 fail1:
2687 	/*
2688 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2689 	 * that the EVQ has already been destroyed.
2690 	 */
2691 	if (rc != EALREADY)
2692 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2693 
2694 	return (rc);
2695 }
2696 
2697 	__checkReturn	efx_rc_t
2698 efx_mcdi_init_rxq(
2699 	__in		efx_nic_t *enp,
2700 	__in		uint32_t ndescs,
2701 	__in		efx_evq_t *eep,
2702 	__in		uint32_t label,
2703 	__in		uint32_t instance,
2704 	__in		efsys_mem_t *esmp,
2705 	__in		const efx_mcdi_init_rxq_params_t *params)
2706 {
2707 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2708 	efx_mcdi_req_t req;
2709 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_RXQ_V5_IN_LEN,
2710 		MC_CMD_INIT_RXQ_V5_OUT_LEN);
2711 	int npages = efx_rxq_nbufs(enp, ndescs);
2712 	int i;
2713 	efx_qword_t *dma_addr;
2714 	uint64_t addr;
2715 	efx_rc_t rc;
2716 	uint32_t dma_mode;
2717 	boolean_t want_outer_classes;
2718 	boolean_t no_cont_ev;
2719 
2720 	EFSYS_ASSERT3U(ndescs, <=, encp->enc_rxq_max_ndescs);
2721 
2722 	if ((esmp == NULL) ||
2723 	    (EFSYS_MEM_SIZE(esmp) < efx_rxq_size(enp, ndescs))) {
2724 		rc = EINVAL;
2725 		goto fail1;
2726 	}
2727 
2728 	no_cont_ev = (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV);
2729 	if ((no_cont_ev == B_TRUE) && (params->disable_scatter == B_FALSE)) {
2730 		/* TODO: Support scatter in NO_CONT_EV mode */
2731 		rc = EINVAL;
2732 		goto fail2;
2733 	}
2734 
2735 	if (params->ps_buf_size > 0)
2736 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM;
2737 	else if (params->es_bufs_per_desc > 0)
2738 		dma_mode = MC_CMD_INIT_RXQ_V3_IN_EQUAL_STRIDE_SUPER_BUFFER;
2739 	else
2740 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_SINGLE_PACKET;
2741 
2742 	if (encp->enc_tunnel_encapsulations_supported != 0 &&
2743 	    !params->want_inner_classes) {
2744 		/*
2745 		 * WANT_OUTER_CLASSES can only be specified on hardware which
2746 		 * supports tunnel encapsulation offloads, even though it is
2747 		 * effectively the behaviour the hardware gives.
2748 		 *
2749 		 * Also, on hardware which does support such offloads, older
2750 		 * firmware rejects the flag if the offloads are not supported
2751 		 * by the current firmware variant, which means this may fail if
2752 		 * the capabilities are not updated when the firmware variant
2753 		 * changes. This is not an issue on newer firmware, as it was
2754 		 * changed in bug 69842 (v6.4.2.1007) to permit this flag to be
2755 		 * specified on all firmware variants.
2756 		 */
2757 		want_outer_classes = B_TRUE;
2758 	} else {
2759 		want_outer_classes = B_FALSE;
2760 	}
2761 
2762 	req.emr_cmd = MC_CMD_INIT_RXQ;
2763 	req.emr_in_buf = payload;
2764 	req.emr_in_length = MC_CMD_INIT_RXQ_V5_IN_LEN;
2765 	req.emr_out_buf = payload;
2766 	req.emr_out_length = MC_CMD_INIT_RXQ_V5_OUT_LEN;
2767 
2768 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_SIZE, ndescs);
2769 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_TARGET_EVQ, eep->ee_index);
2770 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_LABEL, label);
2771 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_INSTANCE, instance);
2772 	MCDI_IN_POPULATE_DWORD_10(req, INIT_RXQ_EXT_IN_FLAGS,
2773 	    INIT_RXQ_EXT_IN_FLAG_BUFF_MODE, 0,
2774 	    INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT, 0,
2775 	    INIT_RXQ_EXT_IN_FLAG_TIMESTAMP, 0,
2776 	    INIT_RXQ_EXT_IN_CRC_MODE, 0,
2777 	    INIT_RXQ_EXT_IN_FLAG_PREFIX, 1,
2778 	    INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER, params->disable_scatter,
2779 	    INIT_RXQ_EXT_IN_DMA_MODE,
2780 	    dma_mode,
2781 	    INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE, params->ps_buf_size,
2782 	    INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES, want_outer_classes,
2783 	    INIT_RXQ_EXT_IN_FLAG_NO_CONT_EV, no_cont_ev);
2784 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_OWNER_ID, 0);
2785 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_PORT_ID, enp->en_vport_id);
2786 
2787 	if (params->es_bufs_per_desc > 0) {
2788 		MCDI_IN_SET_DWORD(req,
2789 		    INIT_RXQ_V3_IN_ES_PACKET_BUFFERS_PER_BUCKET,
2790 		    params->es_bufs_per_desc);
2791 		MCDI_IN_SET_DWORD(req,
2792 		    INIT_RXQ_V3_IN_ES_MAX_DMA_LEN, params->es_max_dma_len);
2793 		MCDI_IN_SET_DWORD(req,
2794 		    INIT_RXQ_V3_IN_ES_PACKET_STRIDE, params->es_buf_stride);
2795 		MCDI_IN_SET_DWORD(req,
2796 		    INIT_RXQ_V3_IN_ES_HEAD_OF_LINE_BLOCK_TIMEOUT,
2797 		    params->hol_block_timeout);
2798 	}
2799 
2800 	if (encp->enc_init_rxq_with_buffer_size)
2801 		MCDI_IN_SET_DWORD(req, INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES,
2802 		    params->buf_size);
2803 
2804 	MCDI_IN_SET_DWORD(req, INIT_RXQ_V5_IN_RX_PREFIX_ID, params->prefix_id);
2805 
2806 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR);
2807 	addr = EFSYS_MEM_ADDR(esmp);
2808 
2809 	for (i = 0; i < npages; i++) {
2810 		EFX_POPULATE_QWORD_2(*dma_addr,
2811 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2812 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2813 
2814 		dma_addr++;
2815 		addr += EFX_BUF_SIZE;
2816 	}
2817 
2818 	efx_mcdi_execute(enp, &req);
2819 
2820 	if (req.emr_rc != 0) {
2821 		rc = req.emr_rc;
2822 		goto fail3;
2823 	}
2824 
2825 	return (0);
2826 
2827 fail3:
2828 	EFSYS_PROBE(fail3);
2829 fail2:
2830 	EFSYS_PROBE(fail2);
2831 fail1:
2832 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2833 
2834 	return (rc);
2835 }
2836 
2837 	__checkReturn	efx_rc_t
2838 efx_mcdi_fini_rxq(
2839 	__in		efx_nic_t *enp,
2840 	__in		uint32_t instance)
2841 {
2842 	efx_mcdi_req_t req;
2843 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_RXQ_IN_LEN,
2844 		MC_CMD_FINI_RXQ_OUT_LEN);
2845 	efx_rc_t rc;
2846 
2847 	req.emr_cmd = MC_CMD_FINI_RXQ;
2848 	req.emr_in_buf = payload;
2849 	req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN;
2850 	req.emr_out_buf = payload;
2851 	req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN;
2852 
2853 	MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance);
2854 
2855 	efx_mcdi_execute_quiet(enp, &req);
2856 
2857 	if (req.emr_rc != 0) {
2858 		rc = req.emr_rc;
2859 		goto fail1;
2860 	}
2861 
2862 	return (0);
2863 
2864 fail1:
2865 	/*
2866 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2867 	 * that the RXQ has already been destroyed.
2868 	 */
2869 	if (rc != EALREADY)
2870 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2871 
2872 	return (rc);
2873 }
2874 
2875 	__checkReturn	efx_rc_t
2876 efx_mcdi_init_txq(
2877 	__in		efx_nic_t *enp,
2878 	__in		uint32_t ndescs,
2879 	__in		uint32_t target_evq,
2880 	__in		uint32_t label,
2881 	__in		uint32_t instance,
2882 	__in		uint16_t flags,
2883 	__in		efsys_mem_t *esmp)
2884 {
2885 	efx_mcdi_req_t req;
2886 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_EXT_IN_LEN,
2887 		MC_CMD_INIT_TXQ_OUT_LEN);
2888 	efx_qword_t *dma_addr;
2889 	uint64_t addr;
2890 	int npages;
2891 	int i;
2892 	efx_rc_t rc;
2893 
2894 	EFSYS_ASSERT(MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MAXNUM >=
2895 	    efx_txq_nbufs(enp, enp->en_nic_cfg.enc_txq_max_ndescs));
2896 
2897 	if ((esmp == NULL) ||
2898 	    (EFSYS_MEM_SIZE(esmp) < efx_txq_size(enp, ndescs))) {
2899 		rc = EINVAL;
2900 		goto fail1;
2901 	}
2902 
2903 	npages = efx_txq_nbufs(enp, ndescs);
2904 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
2905 		rc = EINVAL;
2906 		goto fail2;
2907 	}
2908 
2909 	req.emr_cmd = MC_CMD_INIT_TXQ;
2910 	req.emr_in_buf = payload;
2911 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
2912 	req.emr_out_buf = payload;
2913 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
2914 
2915 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
2916 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
2917 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
2918 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
2919 
2920 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
2921 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
2922 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
2923 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
2924 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
2925 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
2926 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
2927 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
2928 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
2929 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
2930 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
2931 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
2932 	    INIT_TXQ_IN_CRC_MODE, 0,
2933 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
2934 
2935 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
2936 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, enp->en_vport_id);
2937 
2938 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
2939 	addr = EFSYS_MEM_ADDR(esmp);
2940 
2941 	for (i = 0; i < npages; i++) {
2942 		EFX_POPULATE_QWORD_2(*dma_addr,
2943 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2944 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2945 
2946 		dma_addr++;
2947 		addr += EFX_BUF_SIZE;
2948 	}
2949 
2950 	efx_mcdi_execute(enp, &req);
2951 
2952 	if (req.emr_rc != 0) {
2953 		rc = req.emr_rc;
2954 		goto fail3;
2955 	}
2956 
2957 	return (0);
2958 
2959 fail3:
2960 	EFSYS_PROBE(fail3);
2961 fail2:
2962 	EFSYS_PROBE(fail2);
2963 fail1:
2964 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2965 
2966 	return (rc);
2967 }
2968 
2969 	__checkReturn	efx_rc_t
2970 efx_mcdi_fini_txq(
2971 	__in		efx_nic_t *enp,
2972 	__in		uint32_t instance)
2973 {
2974 	efx_mcdi_req_t req;
2975 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
2976 		MC_CMD_FINI_TXQ_OUT_LEN);
2977 	efx_rc_t rc;
2978 
2979 	req.emr_cmd = MC_CMD_FINI_TXQ;
2980 	req.emr_in_buf = payload;
2981 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
2982 	req.emr_out_buf = payload;
2983 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
2984 
2985 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
2986 
2987 	efx_mcdi_execute_quiet(enp, &req);
2988 
2989 	if (req.emr_rc != 0) {
2990 		rc = req.emr_rc;
2991 		goto fail1;
2992 	}
2993 
2994 	return (0);
2995 
2996 fail1:
2997 	/*
2998 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2999 	 * that the TXQ has already been destroyed.
3000 	 */
3001 	if (rc != EALREADY)
3002 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3003 
3004 	return (rc);
3005 }
3006 
3007 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
3008 
3009 #endif	/* EFSYS_OPT_MCDI */
3010