xref: /dpdk/drivers/common/sfc_efx/base/efx_mcdi.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2008-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 
10 #if EFSYS_OPT_MCDI
11 
12 /*
13  * There are three versions of the MCDI interface:
14  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
15  *  - MCDIv1: Siena firmware and Huntington BootROM.
16  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
17  *            Transport uses MCDIv2 headers.
18  *
19  * MCDIv2 Header NOT_EPOCH flag
20  * ----------------------------
21  * A new epoch begins at initial startup or after an MC reboot, and defines when
22  * the MC should reject stale MCDI requests.
23  *
24  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
25  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
26  *
27  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
28  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
29  */
30 
31 
32 
33 #if EFSYS_OPT_SIENA
34 
35 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
36 	siena_mcdi_init,		/* emco_init */
37 	siena_mcdi_send_request,	/* emco_send_request */
38 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
39 	siena_mcdi_poll_response,	/* emco_poll_response */
40 	siena_mcdi_read_response,	/* emco_read_response */
41 	siena_mcdi_fini,		/* emco_fini */
42 	siena_mcdi_feature_supported,	/* emco_feature_supported */
43 	siena_mcdi_get_timeout,		/* emco_get_timeout */
44 };
45 
46 #endif	/* EFSYS_OPT_SIENA */
47 
48 #if EFX_OPTS_EF10()
49 
50 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
51 	ef10_mcdi_init,			/* emco_init */
52 	ef10_mcdi_send_request,		/* emco_send_request */
53 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
54 	ef10_mcdi_poll_response,	/* emco_poll_response */
55 	ef10_mcdi_read_response,	/* emco_read_response */
56 	ef10_mcdi_fini,			/* emco_fini */
57 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
58 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
59 };
60 
61 #endif	/* EFX_OPTS_EF10() */
62 
63 #if EFSYS_OPT_RIVERHEAD
64 
65 static const efx_mcdi_ops_t	__efx_mcdi_rhead_ops = {
66 	ef10_mcdi_init,			/* emco_init */
67 	ef10_mcdi_send_request,		/* emco_send_request */
68 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
69 	ef10_mcdi_poll_response,	/* emco_poll_response */
70 	ef10_mcdi_read_response,	/* emco_read_response */
71 	ef10_mcdi_fini,			/* emco_fini */
72 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
73 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
74 };
75 
76 #endif	/* EFSYS_OPT_RIVERHEAD */
77 
78 
79 
80 	__checkReturn	efx_rc_t
81 efx_mcdi_init(
82 	__in		efx_nic_t *enp,
83 	__in		const efx_mcdi_transport_t *emtp)
84 {
85 	const efx_mcdi_ops_t *emcop;
86 	efx_rc_t rc;
87 
88 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
89 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
90 
91 	switch (enp->en_family) {
92 #if EFSYS_OPT_SIENA
93 	case EFX_FAMILY_SIENA:
94 		emcop = &__efx_mcdi_siena_ops;
95 		break;
96 #endif	/* EFSYS_OPT_SIENA */
97 
98 #if EFSYS_OPT_HUNTINGTON
99 	case EFX_FAMILY_HUNTINGTON:
100 		emcop = &__efx_mcdi_ef10_ops;
101 		break;
102 #endif	/* EFSYS_OPT_HUNTINGTON */
103 
104 #if EFSYS_OPT_MEDFORD
105 	case EFX_FAMILY_MEDFORD:
106 		emcop = &__efx_mcdi_ef10_ops;
107 		break;
108 #endif	/* EFSYS_OPT_MEDFORD */
109 
110 #if EFSYS_OPT_MEDFORD2
111 	case EFX_FAMILY_MEDFORD2:
112 		emcop = &__efx_mcdi_ef10_ops;
113 		break;
114 #endif	/* EFSYS_OPT_MEDFORD2 */
115 
116 #if EFSYS_OPT_RIVERHEAD
117 	case EFX_FAMILY_RIVERHEAD:
118 		emcop = &__efx_mcdi_rhead_ops;
119 		break;
120 #endif	/* EFSYS_OPT_RIVERHEAD */
121 
122 	default:
123 		EFSYS_ASSERT(0);
124 		rc = ENOTSUP;
125 		goto fail1;
126 	}
127 
128 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
129 		/* MCDI requires a DMA buffer in host memory */
130 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
131 			rc = EINVAL;
132 			goto fail2;
133 		}
134 	}
135 	enp->en_mcdi.em_emtp = emtp;
136 
137 	if (emcop != NULL && emcop->emco_init != NULL) {
138 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
139 			goto fail3;
140 	}
141 
142 	enp->en_mcdi.em_emcop = emcop;
143 	enp->en_mod_flags |= EFX_MOD_MCDI;
144 
145 	return (0);
146 
147 fail3:
148 	EFSYS_PROBE(fail3);
149 fail2:
150 	EFSYS_PROBE(fail2);
151 fail1:
152 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
153 
154 	enp->en_mcdi.em_emcop = NULL;
155 	enp->en_mcdi.em_emtp = NULL;
156 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
157 
158 	return (rc);
159 }
160 
161 			void
162 efx_mcdi_fini(
163 	__in		efx_nic_t *enp)
164 {
165 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
166 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
167 
168 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
169 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
170 
171 	if (emcop != NULL && emcop->emco_fini != NULL)
172 		emcop->emco_fini(enp);
173 
174 	emip->emi_port = 0;
175 	emip->emi_aborted = 0;
176 
177 	enp->en_mcdi.em_emcop = NULL;
178 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
179 }
180 
181 			void
182 efx_mcdi_new_epoch(
183 	__in		efx_nic_t *enp)
184 {
185 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
186 	efsys_lock_state_t state;
187 
188 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
189 	EFSYS_LOCK(enp->en_eslp, state);
190 	emip->emi_new_epoch = B_TRUE;
191 	EFSYS_UNLOCK(enp->en_eslp, state);
192 }
193 
194 static			void
195 efx_mcdi_send_request(
196 	__in		efx_nic_t *enp,
197 	__in		void *hdrp,
198 	__in		size_t hdr_len,
199 	__in		void *sdup,
200 	__in		size_t sdu_len)
201 {
202 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
203 
204 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
205 }
206 
207 static			efx_rc_t
208 efx_mcdi_poll_reboot(
209 	__in		efx_nic_t *enp)
210 {
211 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
212 	efx_rc_t rc;
213 
214 	rc = emcop->emco_poll_reboot(enp);
215 	return (rc);
216 }
217 
218 static			boolean_t
219 efx_mcdi_poll_response(
220 	__in		efx_nic_t *enp)
221 {
222 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
223 	boolean_t available;
224 
225 	available = emcop->emco_poll_response(enp);
226 	return (available);
227 }
228 
229 static			void
230 efx_mcdi_read_response(
231 	__in		efx_nic_t *enp,
232 	__out		void *bufferp,
233 	__in		size_t offset,
234 	__in		size_t length)
235 {
236 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
237 
238 	emcop->emco_read_response(enp, bufferp, offset, length);
239 }
240 
241 			void
242 efx_mcdi_request_start(
243 	__in		efx_nic_t *enp,
244 	__in		efx_mcdi_req_t *emrp,
245 	__in		boolean_t ev_cpl)
246 {
247 #if EFSYS_OPT_MCDI_LOGGING
248 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
249 #endif
250 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
251 	efx_dword_t hdr[2];
252 	size_t hdr_len;
253 	unsigned int max_version;
254 	unsigned int seq;
255 	unsigned int xflags;
256 	boolean_t new_epoch;
257 	efsys_lock_state_t state;
258 
259 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
260 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
261 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
262 
263 	/*
264 	 * efx_mcdi_request_start() is naturally serialised against both
265 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
266 	 * by virtue of there only being one outstanding MCDI request.
267 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
268 	 * at any time, to timeout a pending mcdi request, That request may
269 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
270 	 * efx_mcdi_ev_death() may end up running in parallel with
271 	 * efx_mcdi_request_start(). This race is handled by ensuring that
272 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
273 	 * en_eslp lock.
274 	 */
275 	EFSYS_LOCK(enp->en_eslp, state);
276 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
277 	emip->emi_pending_req = emrp;
278 	emip->emi_ev_cpl = ev_cpl;
279 	emip->emi_poll_cnt = 0;
280 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
281 	new_epoch = emip->emi_new_epoch;
282 	max_version = emip->emi_max_version;
283 	EFSYS_UNLOCK(enp->en_eslp, state);
284 
285 	xflags = 0;
286 	if (ev_cpl)
287 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
288 
289 	/*
290 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
291 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
292 	 * possible to support this.
293 	 */
294 	if ((max_version >= 2) &&
295 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
296 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) ||
297 	    (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
298 		/* Construct MCDI v2 header */
299 		hdr_len = sizeof (hdr);
300 		EFX_POPULATE_DWORD_8(hdr[0],
301 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
302 		    MCDI_HEADER_RESYNC, 1,
303 		    MCDI_HEADER_DATALEN, 0,
304 		    MCDI_HEADER_SEQ, seq,
305 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
306 		    MCDI_HEADER_ERROR, 0,
307 		    MCDI_HEADER_RESPONSE, 0,
308 		    MCDI_HEADER_XFLAGS, xflags);
309 
310 		EFX_POPULATE_DWORD_2(hdr[1],
311 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
312 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
313 	} else {
314 		/* Construct MCDI v1 header */
315 		hdr_len = sizeof (hdr[0]);
316 		EFX_POPULATE_DWORD_8(hdr[0],
317 		    MCDI_HEADER_CODE, emrp->emr_cmd,
318 		    MCDI_HEADER_RESYNC, 1,
319 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
320 		    MCDI_HEADER_SEQ, seq,
321 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
322 		    MCDI_HEADER_ERROR, 0,
323 		    MCDI_HEADER_RESPONSE, 0,
324 		    MCDI_HEADER_XFLAGS, xflags);
325 	}
326 
327 #if EFSYS_OPT_MCDI_LOGGING
328 	if (emtp->emt_logger != NULL) {
329 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
330 		    &hdr[0], hdr_len,
331 		    emrp->emr_in_buf, emrp->emr_in_length);
332 	}
333 #endif /* EFSYS_OPT_MCDI_LOGGING */
334 
335 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
336 	    emrp->emr_in_buf, emrp->emr_in_length);
337 }
338 
339 
340 static			void
341 efx_mcdi_read_response_header(
342 	__in		efx_nic_t *enp,
343 	__inout		efx_mcdi_req_t *emrp)
344 {
345 #if EFSYS_OPT_MCDI_LOGGING
346 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
347 #endif /* EFSYS_OPT_MCDI_LOGGING */
348 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
349 	efx_dword_t hdr[2];
350 	unsigned int hdr_len;
351 	unsigned int data_len;
352 	unsigned int seq;
353 	unsigned int cmd;
354 	unsigned int error;
355 	efx_rc_t rc;
356 
357 	EFSYS_ASSERT(emrp != NULL);
358 
359 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
360 	hdr_len = sizeof (hdr[0]);
361 
362 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
363 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
364 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
365 
366 	if (cmd != MC_CMD_V2_EXTN) {
367 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
368 	} else {
369 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
370 		hdr_len += sizeof (hdr[1]);
371 
372 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
373 		data_len =
374 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
375 	}
376 
377 	if (error && (data_len == 0)) {
378 		/* The MC has rebooted since the request was sent. */
379 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
380 		efx_mcdi_poll_reboot(enp);
381 		rc = EIO;
382 		goto fail1;
383 	}
384 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
385 	if (((cmd != emrp->emr_cmd) && (emrp->emr_cmd != MC_CMD_PROXY_CMD)) ||
386 #else
387 	if ((cmd != emrp->emr_cmd) ||
388 #endif
389 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
390 		/* Response is for a different request */
391 		rc = EIO;
392 		goto fail2;
393 	}
394 	if (error) {
395 		efx_dword_t err[2];
396 		unsigned int err_len = MIN(data_len, sizeof (err));
397 		int err_code = MC_CMD_ERR_EPROTO;
398 		int err_arg = 0;
399 
400 		/* Read error code (and arg num for MCDI v2 commands) */
401 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
402 
403 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
404 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
405 #ifdef WITH_MCDI_V2
406 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
407 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
408 #endif
409 		emrp->emr_err_code = err_code;
410 		emrp->emr_err_arg = err_arg;
411 
412 #if EFSYS_OPT_MCDI_PROXY_AUTH
413 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
414 		    (err_len == sizeof (err))) {
415 			/*
416 			 * The MCDI request would normally fail with EPERM, but
417 			 * firmware has forwarded it to an authorization agent
418 			 * attached to a privileged PF.
419 			 *
420 			 * Save the authorization request handle. The client
421 			 * must wait for a PROXY_RESPONSE event, or timeout.
422 			 */
423 			emrp->emr_proxy_handle = err_arg;
424 		}
425 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
426 
427 #if EFSYS_OPT_MCDI_LOGGING
428 		if (emtp->emt_logger != NULL) {
429 			emtp->emt_logger(emtp->emt_context,
430 			    EFX_LOG_MCDI_RESPONSE,
431 			    &hdr[0], hdr_len,
432 			    &err[0], err_len);
433 		}
434 #endif /* EFSYS_OPT_MCDI_LOGGING */
435 
436 		if (!emrp->emr_quiet) {
437 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
438 			    int, err_code, int, err_arg);
439 		}
440 
441 		rc = efx_mcdi_request_errcode(err_code);
442 		goto fail3;
443 	}
444 
445 	emrp->emr_rc = 0;
446 	emrp->emr_out_length_used = data_len;
447 #if EFSYS_OPT_MCDI_PROXY_AUTH
448 	emrp->emr_proxy_handle = 0;
449 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
450 	return;
451 
452 fail3:
453 fail2:
454 fail1:
455 	emrp->emr_rc = rc;
456 	emrp->emr_out_length_used = 0;
457 }
458 
459 static			void
460 efx_mcdi_finish_response(
461 	__in		efx_nic_t *enp,
462 	__in		efx_mcdi_req_t *emrp)
463 {
464 #if EFSYS_OPT_MCDI_LOGGING
465 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
466 #endif /* EFSYS_OPT_MCDI_LOGGING */
467 	efx_dword_t hdr[2];
468 	unsigned int hdr_len;
469 	size_t bytes;
470 	unsigned int resp_off;
471 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
472 	unsigned int resp_cmd;
473 	boolean_t proxied_cmd_resp = B_FALSE;
474 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
475 
476 	if (emrp->emr_out_buf == NULL)
477 		return;
478 
479 	/* Read the command header to detect MCDI response format */
480 	hdr_len = sizeof (hdr[0]);
481 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
482 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
483 		/*
484 		 * Read the actual payload length. The length given in the event
485 		 * is only correct for responses with the V1 format.
486 		 */
487 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
488 		hdr_len += sizeof (hdr[1]);
489 		resp_off = hdr_len;
490 
491 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
492 						MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
493 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
494 		/*
495 		 * A proxy MCDI command is executed by PF on behalf of
496 		 * one of its VFs. The command to be proxied follows
497 		 * immediately afterward in the host buffer.
498 		 * PROXY_CMD inner call complete response should be copied to
499 		 * output buffer so that it can be returned to the requesting
500 		 * function in MC_CMD_PROXY_COMPLETE payload.
501 		 */
502 		resp_cmd =
503 			EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
504 		proxied_cmd_resp = ((emrp->emr_cmd == MC_CMD_PROXY_CMD) &&
505 					(resp_cmd != MC_CMD_PROXY_CMD));
506 		if (proxied_cmd_resp) {
507 			resp_off = 0;
508 			emrp->emr_out_length_used += hdr_len;
509 		}
510 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
511 	} else {
512 		resp_off = hdr_len;
513 	}
514 
515 	/* Copy payload out into caller supplied buffer */
516 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
517 	efx_mcdi_read_response(enp, emrp->emr_out_buf, resp_off, bytes);
518 
519 	/* Report bytes copied to caller (response message may be larger) */
520 	emrp->emr_out_length_used = bytes;
521 
522 #if EFSYS_OPT_MCDI_LOGGING
523 	if (emtp->emt_logger != NULL) {
524 		emtp->emt_logger(emtp->emt_context,
525 		    EFX_LOG_MCDI_RESPONSE,
526 		    &hdr[0], hdr_len,
527 		    emrp->emr_out_buf, bytes);
528 	}
529 #endif /* EFSYS_OPT_MCDI_LOGGING */
530 }
531 
532 
533 	__checkReturn	boolean_t
534 efx_mcdi_request_poll(
535 	__in		efx_nic_t *enp)
536 {
537 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
538 	efx_mcdi_req_t *emrp;
539 	efsys_lock_state_t state;
540 	efx_rc_t rc;
541 
542 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
543 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
544 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
545 
546 	/* Serialise against post-watchdog efx_mcdi_ev* */
547 	EFSYS_LOCK(enp->en_eslp, state);
548 
549 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
550 	EFSYS_ASSERT(!emip->emi_ev_cpl);
551 	emrp = emip->emi_pending_req;
552 
553 	/* Check if hardware is unavailable */
554 	if (efx_nic_hw_unavailable(enp)) {
555 		EFSYS_UNLOCK(enp->en_eslp, state);
556 		return (B_FALSE);
557 	}
558 
559 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
560 	if (emip->emi_poll_cnt++ == 0) {
561 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
562 			emip->emi_pending_req = NULL;
563 			EFSYS_UNLOCK(enp->en_eslp, state);
564 
565 			/* Reboot/Assertion */
566 			if (rc == EIO || rc == EINTR)
567 				efx_mcdi_raise_exception(enp, emrp, rc);
568 
569 			goto fail1;
570 		}
571 	}
572 
573 	/* Check if a response is available */
574 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
575 		EFSYS_UNLOCK(enp->en_eslp, state);
576 		return (B_FALSE);
577 	}
578 
579 	/* Read the response header */
580 	efx_mcdi_read_response_header(enp, emrp);
581 
582 	/* Request complete */
583 	emip->emi_pending_req = NULL;
584 
585 	/* Ensure stale MCDI requests fail after an MC reboot. */
586 	emip->emi_new_epoch = B_FALSE;
587 
588 	EFSYS_UNLOCK(enp->en_eslp, state);
589 
590 	if ((rc = emrp->emr_rc) != 0)
591 		goto fail2;
592 
593 	efx_mcdi_finish_response(enp, emrp);
594 	return (B_TRUE);
595 
596 fail2:
597 	if (!emrp->emr_quiet)
598 		EFSYS_PROBE(fail2);
599 fail1:
600 	if (!emrp->emr_quiet)
601 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
602 
603 	return (B_TRUE);
604 }
605 
606 	__checkReturn	boolean_t
607 efx_mcdi_request_abort(
608 	__in		efx_nic_t *enp)
609 {
610 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
611 	efx_mcdi_req_t *emrp;
612 	boolean_t aborted;
613 	efsys_lock_state_t state;
614 
615 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
616 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
617 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
618 
619 	/*
620 	 * efx_mcdi_ev_* may have already completed this event, and be
621 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
622 	 * to for emi_pending_req to be NULL. If there is a pending event
623 	 * completed request, then provide a "credit" to allow
624 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
625 	 */
626 	EFSYS_LOCK(enp->en_eslp, state);
627 	emrp = emip->emi_pending_req;
628 	aborted = (emrp != NULL);
629 	if (aborted) {
630 		emip->emi_pending_req = NULL;
631 
632 		/* Error the request */
633 		emrp->emr_out_length_used = 0;
634 		emrp->emr_rc = ETIMEDOUT;
635 
636 		/* Provide a credit for seqno/emr_pending_req mismatches */
637 		if (emip->emi_ev_cpl)
638 			++emip->emi_aborted;
639 
640 		/*
641 		 * The upper layer has called us, so we don't
642 		 * need to complete the request.
643 		 */
644 	}
645 	EFSYS_UNLOCK(enp->en_eslp, state);
646 
647 	return (aborted);
648 }
649 
650 	__checkReturn	efx_rc_t
651 efx_mcdi_get_client_handle(
652 	__in		efx_nic_t *enp,
653 	__in		efx_pcie_interface_t intf,
654 	__in		uint16_t pf,
655 	__in		uint16_t vf,
656 	__out		uint32_t *handle)
657 {
658 	efx_mcdi_req_t req;
659 	EFX_MCDI_DECLARE_BUF(payload,
660 	    MC_CMD_GET_CLIENT_HANDLE_IN_LEN,
661 	    MC_CMD_GET_CLIENT_HANDLE_OUT_LEN);
662 	efx_rc_t rc;
663 
664 	if (handle == NULL) {
665 		rc = EINVAL;
666 		goto fail1;
667 	}
668 
669 	req.emr_cmd = MC_CMD_GET_CLIENT_HANDLE;
670 	req.emr_in_buf = payload;
671 	req.emr_in_length = MC_CMD_GET_CLIENT_HANDLE_IN_LEN;
672 	req.emr_out_buf = payload;
673 	req.emr_out_length = MC_CMD_GET_CLIENT_HANDLE_OUT_LEN;
674 
675 	MCDI_IN_SET_DWORD(req, GET_CLIENT_HANDLE_IN_TYPE,
676 	    MC_CMD_GET_CLIENT_HANDLE_IN_TYPE_FUNC);
677 	MCDI_IN_SET_WORD(req, GET_CLIENT_HANDLE_IN_FUNC_PF, pf);
678 	MCDI_IN_SET_WORD(req, GET_CLIENT_HANDLE_IN_FUNC_VF, vf);
679 	MCDI_IN_SET_DWORD(req, GET_CLIENT_HANDLE_IN_FUNC_INTF, intf);
680 
681 	efx_mcdi_execute(enp, &req);
682 
683 	if (req.emr_rc != 0) {
684 		rc = req.emr_rc;
685 		goto fail2;
686 	}
687 
688 	if (req.emr_out_length_used < MC_CMD_GET_CLIENT_HANDLE_OUT_LEN) {
689 		rc = EMSGSIZE;
690 		goto fail3;
691 	}
692 
693 	*handle = MCDI_OUT_DWORD(req, GET_CLIENT_HANDLE_OUT_HANDLE);
694 
695 	return 0;
696 fail3:
697 	EFSYS_PROBE(fail3);
698 fail2:
699 	EFSYS_PROBE(fail2);
700 fail1:
701 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
702 	return (rc);
703 }
704 
705 	__checkReturn	efx_rc_t
706 efx_mcdi_get_own_client_handle(
707 	__in		efx_nic_t *enp,
708 	__out		uint32_t *handle)
709 {
710 	efx_rc_t rc;
711 
712 	rc = efx_mcdi_get_client_handle(enp, PCIE_INTERFACE_CALLER,
713 	    PCIE_FUNCTION_PF_NULL, PCIE_FUNCTION_VF_NULL, handle);
714 	if (rc != 0)
715 		goto fail1;
716 
717 	return (0);
718 fail1:
719 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
720 	return (rc);
721 }
722 
723 			void
724 efx_mcdi_get_timeout(
725 	__in		efx_nic_t *enp,
726 	__in		efx_mcdi_req_t *emrp,
727 	__out		uint32_t *timeoutp)
728 {
729 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
730 
731 	emcop->emco_get_timeout(enp, emrp, timeoutp);
732 }
733 
734 	__checkReturn	efx_rc_t
735 efx_mcdi_request_errcode(
736 	__in		unsigned int err)
737 {
738 
739 	switch (err) {
740 		/* MCDI v1 */
741 	case MC_CMD_ERR_EPERM:
742 		return (EACCES);
743 	case MC_CMD_ERR_ENOENT:
744 		return (ENOENT);
745 	case MC_CMD_ERR_EINTR:
746 		return (EINTR);
747 	case MC_CMD_ERR_EACCES:
748 		return (EACCES);
749 	case MC_CMD_ERR_EBUSY:
750 		return (EBUSY);
751 	case MC_CMD_ERR_EINVAL:
752 		return (EINVAL);
753 	case MC_CMD_ERR_EDEADLK:
754 		return (EDEADLK);
755 	case MC_CMD_ERR_ENOSYS:
756 		return (ENOTSUP);
757 	case MC_CMD_ERR_ETIME:
758 		return (ETIMEDOUT);
759 	case MC_CMD_ERR_ENOTSUP:
760 		return (ENOTSUP);
761 	case MC_CMD_ERR_EALREADY:
762 		return (EALREADY);
763 
764 		/* MCDI v2 */
765 	case MC_CMD_ERR_EEXIST:
766 		return (EEXIST);
767 #ifdef MC_CMD_ERR_EAGAIN
768 	case MC_CMD_ERR_EAGAIN:
769 		return (EAGAIN);
770 #endif
771 #ifdef MC_CMD_ERR_ENOSPC
772 	case MC_CMD_ERR_ENOSPC:
773 		return (ENOSPC);
774 #endif
775 	case MC_CMD_ERR_ERANGE:
776 		return (ERANGE);
777 
778 	case MC_CMD_ERR_ALLOC_FAIL:
779 		return (ENOMEM);
780 	case MC_CMD_ERR_NO_VADAPTOR:
781 		return (ENOENT);
782 	case MC_CMD_ERR_NO_EVB_PORT:
783 		return (ENOENT);
784 	case MC_CMD_ERR_NO_VSWITCH:
785 		return (ENODEV);
786 	case MC_CMD_ERR_VLAN_LIMIT:
787 		return (EINVAL);
788 	case MC_CMD_ERR_BAD_PCI_FUNC:
789 		return (ENODEV);
790 	case MC_CMD_ERR_BAD_VLAN_MODE:
791 		return (EINVAL);
792 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
793 		return (EINVAL);
794 	case MC_CMD_ERR_BAD_VPORT_TYPE:
795 		return (EINVAL);
796 	case MC_CMD_ERR_MAC_EXIST:
797 		return (EEXIST);
798 
799 	case MC_CMD_ERR_PROXY_PENDING:
800 		return (EAGAIN);
801 
802 	default:
803 		EFSYS_PROBE1(mc_pcol_error, int, err);
804 		return (EIO);
805 	}
806 }
807 
808 			void
809 efx_mcdi_raise_exception(
810 	__in		efx_nic_t *enp,
811 	__in_opt	efx_mcdi_req_t *emrp,
812 	__in		int rc)
813 {
814 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
815 	efx_mcdi_exception_t exception;
816 
817 	/* Reboot or Assertion failure only */
818 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
819 
820 	/*
821 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
822 	 * then the EIO is not worthy of an exception.
823 	 */
824 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
825 		return;
826 
827 	exception = (rc == EIO)
828 		? EFX_MCDI_EXCEPTION_MC_REBOOT
829 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
830 
831 	emtp->emt_exception(emtp->emt_context, exception);
832 }
833 
834 			void
835 efx_mcdi_execute(
836 	__in		efx_nic_t *enp,
837 	__inout		efx_mcdi_req_t *emrp)
838 {
839 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
840 
841 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
842 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
843 
844 	emrp->emr_quiet = B_FALSE;
845 	emtp->emt_execute(emtp->emt_context, emrp);
846 }
847 
848 			void
849 efx_mcdi_execute_quiet(
850 	__in		efx_nic_t *enp,
851 	__inout		efx_mcdi_req_t *emrp)
852 {
853 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
854 
855 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
856 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
857 
858 	emrp->emr_quiet = B_TRUE;
859 	emtp->emt_execute(emtp->emt_context, emrp);
860 }
861 
862 			void
863 efx_mcdi_ev_cpl(
864 	__in		efx_nic_t *enp,
865 	__in		unsigned int seq,
866 	__in		unsigned int outlen,
867 	__in		int errcode)
868 {
869 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
870 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
871 	efx_mcdi_req_t *emrp;
872 	efsys_lock_state_t state;
873 
874 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
875 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
876 
877 	/*
878 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
879 	 * when we're completing an aborted request.
880 	 */
881 	EFSYS_LOCK(enp->en_eslp, state);
882 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
883 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
884 		EFSYS_ASSERT(emip->emi_aborted > 0);
885 		if (emip->emi_aborted > 0)
886 			--emip->emi_aborted;
887 		EFSYS_UNLOCK(enp->en_eslp, state);
888 		return;
889 	}
890 
891 	emrp = emip->emi_pending_req;
892 	emip->emi_pending_req = NULL;
893 	EFSYS_UNLOCK(enp->en_eslp, state);
894 
895 	if (emip->emi_max_version >= 2) {
896 		/* MCDIv2 response details do not fit into an event. */
897 		efx_mcdi_read_response_header(enp, emrp);
898 	} else {
899 		if (errcode != 0) {
900 			if (!emrp->emr_quiet) {
901 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
902 				    int, errcode);
903 			}
904 			emrp->emr_out_length_used = 0;
905 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
906 		} else {
907 			emrp->emr_out_length_used = outlen;
908 			emrp->emr_rc = 0;
909 		}
910 	}
911 	if (emrp->emr_rc == 0)
912 		efx_mcdi_finish_response(enp, emrp);
913 
914 	emtp->emt_ev_cpl(emtp->emt_context);
915 }
916 
917 #if EFSYS_OPT_MCDI_PROXY_AUTH
918 
919 	__checkReturn	efx_rc_t
920 efx_mcdi_get_proxy_handle(
921 	__in		efx_nic_t *enp,
922 	__in		efx_mcdi_req_t *emrp,
923 	__out		uint32_t *handlep)
924 {
925 	efx_rc_t rc;
926 
927 	_NOTE(ARGUNUSED(enp))
928 
929 	/*
930 	 * Return proxy handle from MCDI request that returned with error
931 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
932 	 * PROXY_RESPONSE event.
933 	 */
934 	if ((emrp == NULL) || (handlep == NULL)) {
935 		rc = EINVAL;
936 		goto fail1;
937 	}
938 	if ((emrp->emr_rc != 0) &&
939 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
940 		*handlep = emrp->emr_proxy_handle;
941 		rc = 0;
942 	} else {
943 		*handlep = 0;
944 		rc = ENOENT;
945 	}
946 	return (rc);
947 
948 fail1:
949 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
950 	return (rc);
951 }
952 
953 			void
954 efx_mcdi_ev_proxy_response(
955 	__in		efx_nic_t *enp,
956 	__in		unsigned int handle,
957 	__in		unsigned int status)
958 {
959 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
960 	efx_rc_t rc;
961 
962 	/*
963 	 * Handle results of an authorization request for a privileged MCDI
964 	 * command. If authorization was granted then we must re-issue the
965 	 * original MCDI request. If authorization failed or timed out,
966 	 * then the original MCDI request should be completed with the
967 	 * result code from this event.
968 	 */
969 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
970 
971 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
972 }
973 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
974 
975 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
976 			void
977 efx_mcdi_ev_proxy_request(
978 	__in		efx_nic_t *enp,
979 	__in		unsigned int index)
980 {
981 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
982 
983 	if (emtp->emt_ev_proxy_request != NULL)
984 		emtp->emt_ev_proxy_request(emtp->emt_context, index);
985 }
986 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
987 			void
988 efx_mcdi_ev_death(
989 	__in		efx_nic_t *enp,
990 	__in		int rc)
991 {
992 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
993 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
994 	efx_mcdi_req_t *emrp = NULL;
995 	boolean_t ev_cpl;
996 	efsys_lock_state_t state;
997 
998 	/*
999 	 * The MCDI request (if there is one) has been terminated, either
1000 	 * by a BADASSERT or REBOOT event.
1001 	 *
1002 	 * If there is an outstanding event-completed MCDI operation, then we
1003 	 * will never receive the completion event (because both MCDI
1004 	 * completions and BADASSERT events are sent to the same evq). So
1005 	 * complete this MCDI op.
1006 	 *
1007 	 * This function might run in parallel with efx_mcdi_request_poll()
1008 	 * for poll completed mcdi requests, and also with
1009 	 * efx_mcdi_request_start() for post-watchdog completions.
1010 	 */
1011 	EFSYS_LOCK(enp->en_eslp, state);
1012 	emrp = emip->emi_pending_req;
1013 	ev_cpl = emip->emi_ev_cpl;
1014 	if (emrp != NULL && emip->emi_ev_cpl) {
1015 		emip->emi_pending_req = NULL;
1016 
1017 		emrp->emr_out_length_used = 0;
1018 		emrp->emr_rc = rc;
1019 		++emip->emi_aborted;
1020 	}
1021 
1022 	/*
1023 	 * Since we're running in parallel with a request, consume the
1024 	 * status word before dropping the lock.
1025 	 */
1026 	if (rc == EIO || rc == EINTR) {
1027 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
1028 		(void) efx_mcdi_poll_reboot(enp);
1029 		emip->emi_new_epoch = B_TRUE;
1030 	}
1031 
1032 	EFSYS_UNLOCK(enp->en_eslp, state);
1033 
1034 	efx_mcdi_raise_exception(enp, emrp, rc);
1035 
1036 	if (emrp != NULL && ev_cpl)
1037 		emtp->emt_ev_cpl(emtp->emt_context);
1038 }
1039 
1040 	__checkReturn		efx_rc_t
1041 efx_mcdi_get_version(
1042 	__in			efx_nic_t *enp,
1043 	__in			uint32_t flags,
1044 	__out			efx_mcdi_version_t *verp)
1045 {
1046 	efx_nic_board_info_t *board_infop = &verp->emv_board_info;
1047 	EFX_MCDI_DECLARE_BUF(payload,
1048 	    MC_CMD_GET_VERSION_EXT_IN_LEN,
1049 	    MC_CMD_GET_VERSION_V2_OUT_LEN);
1050 	efx_word_t *ver_words;
1051 	uint16_t version[4];
1052 	efx_mcdi_req_t req;
1053 	uint32_t firmware;
1054 	efx_rc_t rc;
1055 
1056 	EFX_STATIC_ASSERT(sizeof (verp->emv_version) ==
1057 	    MC_CMD_GET_VERSION_OUT_VERSION_LEN);
1058 	EFX_STATIC_ASSERT(sizeof (verp->emv_firmware) ==
1059 	    MC_CMD_GET_VERSION_OUT_FIRMWARE_LEN);
1060 
1061 	EFX_STATIC_ASSERT(EFX_MCDI_VERSION_BOARD_INFO ==
1062 	    (1U << MC_CMD_GET_VERSION_V2_OUT_BOARD_EXT_INFO_PRESENT_LBN));
1063 
1064 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_serial) ==
1065 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_SERIAL_LEN);
1066 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_name) ==
1067 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_NAME_LEN);
1068 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_revision) ==
1069 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_REVISION_LEN);
1070 
1071 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
1072 
1073 	req.emr_cmd = MC_CMD_GET_VERSION;
1074 	req.emr_in_buf = payload;
1075 	req.emr_out_buf = payload;
1076 
1077 	if ((flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1078 		/* Request basic + extended version information. */
1079 		req.emr_in_length = MC_CMD_GET_VERSION_EXT_IN_LEN;
1080 		req.emr_out_length = MC_CMD_GET_VERSION_V2_OUT_LEN;
1081 	} else {
1082 		/* Request only basic version information. */
1083 		req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
1084 		req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
1085 	}
1086 
1087 	efx_mcdi_execute(enp, &req);
1088 
1089 	if (req.emr_rc != 0) {
1090 		rc = req.emr_rc;
1091 		goto fail1;
1092 	}
1093 
1094 	/* bootrom support */
1095 	if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
1096 		version[0] = version[1] = version[2] = version[3] = 0;
1097 		firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1098 		goto out;
1099 	}
1100 
1101 	if (req.emr_out_length_used < req.emr_out_length) {
1102 		rc = EMSGSIZE;
1103 		goto fail2;
1104 	}
1105 
1106 	ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
1107 	version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
1108 	version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
1109 	version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
1110 	version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
1111 	firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1112 
1113 out:
1114 	memset(verp, 0, sizeof (*verp));
1115 
1116 	verp->emv_version[0] = version[0];
1117 	verp->emv_version[1] = version[1];
1118 	verp->emv_version[2] = version[2];
1119 	verp->emv_version[3] = version[3];
1120 	verp->emv_firmware = firmware;
1121 
1122 	verp->emv_flags = MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_FLAGS);
1123 	verp->emv_flags &= flags;
1124 
1125 	if ((verp->emv_flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1126 		memcpy(board_infop->enbi_serial,
1127 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_SERIAL),
1128 		    sizeof (board_infop->enbi_serial));
1129 		memcpy(board_infop->enbi_name,
1130 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_NAME),
1131 		    sizeof (board_infop->enbi_name));
1132 		board_infop->enbi_revision =
1133 		    MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_BOARD_REVISION);
1134 	}
1135 
1136 	return (0);
1137 
1138 fail2:
1139 	EFSYS_PROBE(fail2);
1140 fail1:
1141 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1142 
1143 	return (rc);
1144 }
1145 
1146 static	__checkReturn		efx_rc_t
1147 efx_mcdi_get_boot_status(
1148 	__in			efx_nic_t *enp,
1149 	__out			efx_mcdi_boot_t *statusp)
1150 {
1151 	EFX_MCDI_DECLARE_BUF(payload,
1152 	    MC_CMD_GET_BOOT_STATUS_IN_LEN,
1153 	    MC_CMD_GET_BOOT_STATUS_OUT_LEN);
1154 	efx_mcdi_req_t req;
1155 	efx_rc_t rc;
1156 
1157 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
1158 
1159 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
1160 	req.emr_in_buf = payload;
1161 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
1162 	req.emr_out_buf = payload;
1163 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
1164 
1165 	efx_mcdi_execute_quiet(enp, &req);
1166 
1167 	/*
1168 	 * NOTE: Unprivileged functions cannot access boot status,
1169 	 *       so the MCDI request will return EACCES. This is
1170 	 *       also checked in efx_mcdi_version.
1171 	 */
1172 
1173 	if (req.emr_rc != 0) {
1174 		rc = req.emr_rc;
1175 		goto fail1;
1176 	}
1177 
1178 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
1179 		rc = EMSGSIZE;
1180 		goto fail2;
1181 	}
1182 
1183 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
1184 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
1185 		*statusp = EFX_MCDI_BOOT_PRIMARY;
1186 	else
1187 		*statusp = EFX_MCDI_BOOT_SECONDARY;
1188 
1189 	return (0);
1190 
1191 fail2:
1192 	EFSYS_PROBE(fail2);
1193 fail1:
1194 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1195 
1196 	return (rc);
1197 }
1198 
1199 	__checkReturn		efx_rc_t
1200 efx_mcdi_version(
1201 	__in			efx_nic_t *enp,
1202 	__out_ecount_opt(4)	uint16_t versionp[4],
1203 	__out_opt		uint32_t *buildp,
1204 	__out_opt		efx_mcdi_boot_t *statusp)
1205 {
1206 	efx_mcdi_version_t ver;
1207 	efx_mcdi_boot_t status;
1208 	efx_rc_t rc;
1209 
1210 	rc = efx_mcdi_get_version(enp, 0, &ver);
1211 	if (rc != 0)
1212 		goto fail1;
1213 
1214 	/* The bootrom doesn't understand BOOT_STATUS */
1215 	if (MC_FW_VERSION_IS_BOOTLOADER(ver.emv_firmware)) {
1216 		status = EFX_MCDI_BOOT_ROM;
1217 		goto out;
1218 	}
1219 
1220 	rc = efx_mcdi_get_boot_status(enp, &status);
1221 	if (rc == EACCES) {
1222 		/* Unprivileged functions cannot access BOOT_STATUS */
1223 		status = EFX_MCDI_BOOT_PRIMARY;
1224 		memset(ver.emv_version, 0, sizeof (ver.emv_version));
1225 		ver.emv_firmware = 0;
1226 	} else if (rc != 0) {
1227 		goto fail2;
1228 	}
1229 
1230 out:
1231 	if (versionp != NULL)
1232 		memcpy(versionp, ver.emv_version, sizeof (ver.emv_version));
1233 	if (buildp != NULL)
1234 		*buildp = ver.emv_firmware;
1235 	if (statusp != NULL)
1236 		*statusp = status;
1237 
1238 	return (0);
1239 
1240 fail2:
1241 	EFSYS_PROBE(fail2);
1242 fail1:
1243 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1244 
1245 	return (rc);
1246 }
1247 
1248 	__checkReturn	efx_rc_t
1249 efx_mcdi_get_capabilities(
1250 	__in		efx_nic_t *enp,
1251 	__out_opt	uint32_t *flagsp,
1252 	__out_opt	uint16_t *rx_dpcpu_fw_idp,
1253 	__out_opt	uint16_t *tx_dpcpu_fw_idp,
1254 	__out_opt	uint32_t *flags2p,
1255 	__out_opt	uint32_t *tso2ncp)
1256 {
1257 	efx_mcdi_req_t req;
1258 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1259 		MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
1260 	boolean_t v2_capable;
1261 	efx_rc_t rc;
1262 
1263 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1264 	req.emr_in_buf = payload;
1265 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1266 	req.emr_out_buf = payload;
1267 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
1268 
1269 	efx_mcdi_execute_quiet(enp, &req);
1270 
1271 	if (req.emr_rc != 0) {
1272 		rc = req.emr_rc;
1273 		goto fail1;
1274 	}
1275 
1276 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1277 		rc = EMSGSIZE;
1278 		goto fail2;
1279 	}
1280 
1281 	if (flagsp != NULL)
1282 		*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
1283 
1284 	if (rx_dpcpu_fw_idp != NULL)
1285 		*rx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1286 					GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
1287 
1288 	if (tx_dpcpu_fw_idp != NULL)
1289 		*tx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1290 					GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
1291 
1292 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
1293 		v2_capable = B_FALSE;
1294 	else
1295 		v2_capable = B_TRUE;
1296 
1297 	if (flags2p != NULL) {
1298 		*flags2p = (v2_capable) ?
1299 			MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) :
1300 			0;
1301 	}
1302 
1303 	if (tso2ncp != NULL) {
1304 		*tso2ncp = (v2_capable) ?
1305 			MCDI_OUT_WORD(req,
1306 				GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) :
1307 			0;
1308 	}
1309 
1310 	return (0);
1311 
1312 fail2:
1313 	EFSYS_PROBE(fail2);
1314 fail1:
1315 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1316 
1317 	return (rc);
1318 }
1319 
1320 static	__checkReturn	efx_rc_t
1321 efx_mcdi_do_reboot(
1322 	__in		efx_nic_t *enp,
1323 	__in		boolean_t after_assertion)
1324 {
1325 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN,
1326 		MC_CMD_REBOOT_OUT_LEN);
1327 	efx_mcdi_req_t req;
1328 	efx_rc_t rc;
1329 
1330 	/*
1331 	 * We could require the caller to have caused en_mod_flags=0 to
1332 	 * call this function. This doesn't help the other port though,
1333 	 * who's about to get the MC ripped out from underneath them.
1334 	 * Since they have to cope with the subsequent fallout of MCDI
1335 	 * failures, we should as well.
1336 	 */
1337 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1338 
1339 	req.emr_cmd = MC_CMD_REBOOT;
1340 	req.emr_in_buf = payload;
1341 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1342 	req.emr_out_buf = payload;
1343 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1344 
1345 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1346 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1347 
1348 	efx_mcdi_execute_quiet(enp, &req);
1349 
1350 	if (req.emr_rc == EACCES) {
1351 		/* Unprivileged functions cannot reboot the MC. */
1352 		goto out;
1353 	}
1354 
1355 	/* A successful reboot request returns EIO. */
1356 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1357 		rc = req.emr_rc;
1358 		goto fail1;
1359 	}
1360 
1361 out:
1362 	return (0);
1363 
1364 fail1:
1365 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1366 
1367 	return (rc);
1368 }
1369 
1370 	__checkReturn	efx_rc_t
1371 efx_mcdi_reboot(
1372 	__in		efx_nic_t *enp)
1373 {
1374 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1375 }
1376 
1377 	__checkReturn	efx_rc_t
1378 efx_mcdi_exit_assertion_handler(
1379 	__in		efx_nic_t *enp)
1380 {
1381 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1382 }
1383 
1384 	__checkReturn	efx_rc_t
1385 efx_mcdi_read_assertion(
1386 	__in		efx_nic_t *enp)
1387 {
1388 	efx_mcdi_req_t req;
1389 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN,
1390 		MC_CMD_GET_ASSERTS_OUT_LEN);
1391 	const char *reason;
1392 	unsigned int flags;
1393 	unsigned int index;
1394 	unsigned int ofst;
1395 	int retry;
1396 	efx_rc_t rc;
1397 
1398 	/*
1399 	 * Before we attempt to chat to the MC, we should verify that the MC
1400 	 * isn't in it's assertion handler, either due to a previous reboot,
1401 	 * or because we're reinitializing due to an eec_exception().
1402 	 *
1403 	 * Use GET_ASSERTS to read any assertion state that may be present.
1404 	 * Retry this command twice. Once because a boot-time assertion failure
1405 	 * might cause the 1st MCDI request to fail. And once again because
1406 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1407 	 * partner port(s) on the same NIC.
1408 	 */
1409 	retry = 2;
1410 	do {
1411 		(void) memset(payload, 0, sizeof (payload));
1412 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1413 		req.emr_in_buf = payload;
1414 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1415 		req.emr_out_buf = payload;
1416 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1417 
1418 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1419 		efx_mcdi_execute_quiet(enp, &req);
1420 
1421 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1422 
1423 	if (req.emr_rc != 0) {
1424 		if (req.emr_rc == EACCES) {
1425 			/* Unprivileged functions cannot clear assertions. */
1426 			goto out;
1427 		}
1428 		rc = req.emr_rc;
1429 		goto fail1;
1430 	}
1431 
1432 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1433 		rc = EMSGSIZE;
1434 		goto fail2;
1435 	}
1436 
1437 	/* Print out any assertion state recorded */
1438 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1439 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1440 		return (0);
1441 
1442 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1443 		? "system-level assertion"
1444 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1445 		? "thread-level assertion"
1446 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1447 		? "watchdog reset"
1448 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1449 		? "illegal address trap"
1450 		: "unknown assertion";
1451 	EFSYS_PROBE3(mcpu_assertion,
1452 	    const char *, reason, unsigned int,
1453 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1454 	    unsigned int,
1455 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1456 
1457 	/* Print out the registers (r1 ... r31) */
1458 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1459 	for (index = 1;
1460 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1461 		index++) {
1462 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1463 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1464 					    EFX_DWORD_0));
1465 		ofst += sizeof (efx_dword_t);
1466 	}
1467 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1468 
1469 out:
1470 	return (0);
1471 
1472 fail2:
1473 	EFSYS_PROBE(fail2);
1474 fail1:
1475 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1476 
1477 	return (rc);
1478 }
1479 
1480 
1481 /*
1482  * Internal routines for for specific MCDI requests.
1483  */
1484 
1485 	__checkReturn	efx_rc_t
1486 efx_mcdi_drv_attach(
1487 	__in		efx_nic_t *enp,
1488 	__in		boolean_t attach)
1489 {
1490 	efx_mcdi_req_t req;
1491 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_V2_LEN,
1492 		MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1493 	efx_rc_t rc;
1494 
1495 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1496 	req.emr_in_buf = payload;
1497 	if (enp->en_drv_version[0] == '\0') {
1498 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1499 	} else {
1500 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_V2_LEN;
1501 	}
1502 	req.emr_out_buf = payload;
1503 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1504 
1505 	/*
1506 	 * Typically, client drivers use DONT_CARE for the datapath firmware
1507 	 * type to ensure that the driver can attach to an unprivileged
1508 	 * function. The datapath firmware type to use is controlled by the
1509 	 * 'sfboot' utility.
1510 	 * If a client driver wishes to attach with a specific datapath firmware
1511 	 * type, that can be passed in second argument of efx_nic_probe API. One
1512 	 * such example is the ESXi native driver that attempts attaching with
1513 	 * FULL_FEATURED datapath firmware type first and fall backs to
1514 	 * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails.
1515 	 */
1516 	MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE,
1517 	    DRV_ATTACH_IN_ATTACH, attach ? 1 : 0,
1518 	    DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE);
1519 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1520 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv);
1521 
1522 	if (req.emr_in_length >= MC_CMD_DRV_ATTACH_IN_V2_LEN) {
1523 		EFX_STATIC_ASSERT(sizeof (enp->en_drv_version) ==
1524 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1525 		memcpy(MCDI_IN2(req, char, DRV_ATTACH_IN_V2_DRIVER_VERSION),
1526 		    enp->en_drv_version,
1527 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1528 	}
1529 
1530 	efx_mcdi_execute(enp, &req);
1531 
1532 	if (req.emr_rc != 0) {
1533 		rc = req.emr_rc;
1534 		goto fail1;
1535 	}
1536 
1537 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1538 		rc = EMSGSIZE;
1539 		goto fail2;
1540 	}
1541 
1542 	return (0);
1543 
1544 fail2:
1545 	EFSYS_PROBE(fail2);
1546 fail1:
1547 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1548 
1549 	return (rc);
1550 }
1551 
1552 	__checkReturn		efx_rc_t
1553 efx_mcdi_get_board_cfg(
1554 	__in			efx_nic_t *enp,
1555 	__out_opt		uint32_t *board_typep,
1556 	__out_opt		efx_dword_t *capabilitiesp,
1557 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1558 {
1559 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1560 	efx_mcdi_req_t req;
1561 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN,
1562 		MC_CMD_GET_BOARD_CFG_OUT_LENMIN);
1563 	efx_rc_t rc;
1564 
1565 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1566 	req.emr_in_buf = payload;
1567 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1568 	req.emr_out_buf = payload;
1569 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1570 
1571 	efx_mcdi_execute(enp, &req);
1572 
1573 	if (req.emr_rc != 0) {
1574 		rc = req.emr_rc;
1575 		goto fail1;
1576 	}
1577 
1578 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1579 		rc = EMSGSIZE;
1580 		goto fail2;
1581 	}
1582 
1583 	if (mac_addrp != NULL) {
1584 		uint8_t *addrp;
1585 
1586 		if (emip->emi_port == 1) {
1587 			addrp = MCDI_OUT2(req, uint8_t,
1588 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1589 		} else if (emip->emi_port == 2) {
1590 			addrp = MCDI_OUT2(req, uint8_t,
1591 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1592 		} else {
1593 			rc = EINVAL;
1594 			goto fail3;
1595 		}
1596 
1597 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1598 	}
1599 
1600 	if (capabilitiesp != NULL) {
1601 		if (emip->emi_port == 1) {
1602 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1603 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1604 		} else if (emip->emi_port == 2) {
1605 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1606 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1607 		} else {
1608 			rc = EINVAL;
1609 			goto fail4;
1610 		}
1611 	}
1612 
1613 	if (board_typep != NULL) {
1614 		*board_typep = MCDI_OUT_DWORD(req,
1615 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1616 	}
1617 
1618 	return (0);
1619 
1620 fail4:
1621 	EFSYS_PROBE(fail4);
1622 fail3:
1623 	EFSYS_PROBE(fail3);
1624 fail2:
1625 	EFSYS_PROBE(fail2);
1626 fail1:
1627 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1628 
1629 	return (rc);
1630 }
1631 
1632 	__checkReturn	efx_rc_t
1633 efx_mcdi_get_resource_limits(
1634 	__in		efx_nic_t *enp,
1635 	__out_opt	uint32_t *nevqp,
1636 	__out_opt	uint32_t *nrxqp,
1637 	__out_opt	uint32_t *ntxqp)
1638 {
1639 	efx_mcdi_req_t req;
1640 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1641 		MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN);
1642 	efx_rc_t rc;
1643 
1644 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1645 	req.emr_in_buf = payload;
1646 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1647 	req.emr_out_buf = payload;
1648 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1649 
1650 	efx_mcdi_execute(enp, &req);
1651 
1652 	if (req.emr_rc != 0) {
1653 		rc = req.emr_rc;
1654 		goto fail1;
1655 	}
1656 
1657 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1658 		rc = EMSGSIZE;
1659 		goto fail2;
1660 	}
1661 
1662 	if (nevqp != NULL)
1663 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1664 	if (nrxqp != NULL)
1665 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1666 	if (ntxqp != NULL)
1667 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1668 
1669 	return (0);
1670 
1671 fail2:
1672 	EFSYS_PROBE(fail2);
1673 fail1:
1674 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1675 
1676 	return (rc);
1677 }
1678 
1679 	__checkReturn	efx_rc_t
1680 efx_mcdi_get_phy_cfg(
1681 	__in		efx_nic_t *enp)
1682 {
1683 	efx_port_t *epp = &(enp->en_port);
1684 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1685 	efx_mcdi_req_t req;
1686 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN,
1687 		MC_CMD_GET_PHY_CFG_OUT_LEN);
1688 #if EFSYS_OPT_NAMES
1689 	const char *namep;
1690 	size_t namelen;
1691 #endif
1692 	uint32_t phy_media_type;
1693 	efx_rc_t rc;
1694 
1695 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1696 	req.emr_in_buf = payload;
1697 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1698 	req.emr_out_buf = payload;
1699 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1700 
1701 	efx_mcdi_execute(enp, &req);
1702 
1703 	if (req.emr_rc != 0) {
1704 		rc = req.emr_rc;
1705 		goto fail1;
1706 	}
1707 
1708 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1709 		rc = EMSGSIZE;
1710 		goto fail2;
1711 	}
1712 
1713 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1714 #if EFSYS_OPT_NAMES
1715 	namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME);
1716 	namelen = MIN(sizeof (encp->enc_phy_name) - 1,
1717 		    strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1718 	(void) memset(encp->enc_phy_name, 0,
1719 	    sizeof (encp->enc_phy_name));
1720 	memcpy(encp->enc_phy_name, namep, namelen);
1721 #endif	/* EFSYS_OPT_NAMES */
1722 	(void) memset(encp->enc_phy_revision, 0,
1723 	    sizeof (encp->enc_phy_revision));
1724 	memcpy(encp->enc_phy_revision,
1725 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1726 		MIN(sizeof (encp->enc_phy_revision) - 1,
1727 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1728 #if EFSYS_OPT_PHY_LED_CONTROL
1729 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1730 			    (1 << EFX_PHY_LED_OFF) |
1731 			    (1 << EFX_PHY_LED_ON));
1732 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1733 
1734 	/* Get the media type of the fixed port, if recognised. */
1735 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1736 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1737 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1738 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1739 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1740 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1741 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1742 	phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1743 	epp->ep_fixed_port_type = (efx_phy_media_type_t)phy_media_type;
1744 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1745 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1746 
1747 	epp->ep_phy_cap_mask =
1748 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1749 #if EFSYS_OPT_PHY_FLAGS
1750 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1751 #endif	/* EFSYS_OPT_PHY_FLAGS */
1752 
1753 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1754 
1755 	/* Populate internal state */
1756 	encp->enc_mcdi_mdio_channel =
1757 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1758 
1759 #if EFSYS_OPT_PHY_STATS
1760 	encp->enc_mcdi_phy_stat_mask =
1761 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1762 #endif	/* EFSYS_OPT_PHY_STATS */
1763 
1764 #if EFSYS_OPT_BIST
1765 	encp->enc_bist_mask = 0;
1766 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1767 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1768 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1769 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1770 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1771 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1772 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1773 	    GET_PHY_CFG_OUT_BIST))
1774 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1775 #endif  /* EFSYS_OPT_BIST */
1776 
1777 	return (0);
1778 
1779 fail2:
1780 	EFSYS_PROBE(fail2);
1781 fail1:
1782 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1783 
1784 	return (rc);
1785 }
1786 
1787 	__checkReturn		efx_rc_t
1788 efx_mcdi_firmware_update_supported(
1789 	__in			efx_nic_t *enp,
1790 	__out			boolean_t *supportedp)
1791 {
1792 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1793 	efx_rc_t rc;
1794 
1795 	if (emcop != NULL) {
1796 		if ((rc = emcop->emco_feature_supported(enp,
1797 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1798 			goto fail1;
1799 	} else {
1800 		/* Earlier devices always supported updates */
1801 		*supportedp = B_TRUE;
1802 	}
1803 
1804 	return (0);
1805 
1806 fail1:
1807 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1808 
1809 	return (rc);
1810 }
1811 
1812 	__checkReturn		efx_rc_t
1813 efx_mcdi_macaddr_change_supported(
1814 	__in			efx_nic_t *enp,
1815 	__out			boolean_t *supportedp)
1816 {
1817 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1818 	efx_rc_t rc;
1819 
1820 	if (emcop != NULL) {
1821 		if ((rc = emcop->emco_feature_supported(enp,
1822 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1823 			goto fail1;
1824 	} else {
1825 		/* Earlier devices always supported MAC changes */
1826 		*supportedp = B_TRUE;
1827 	}
1828 
1829 	return (0);
1830 
1831 fail1:
1832 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1833 
1834 	return (rc);
1835 }
1836 
1837 	__checkReturn		efx_rc_t
1838 efx_mcdi_link_control_supported(
1839 	__in			efx_nic_t *enp,
1840 	__out			boolean_t *supportedp)
1841 {
1842 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1843 	efx_rc_t rc;
1844 
1845 	if (emcop != NULL) {
1846 		if ((rc = emcop->emco_feature_supported(enp,
1847 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1848 			goto fail1;
1849 	} else {
1850 		/* Earlier devices always supported link control */
1851 		*supportedp = B_TRUE;
1852 	}
1853 
1854 	return (0);
1855 
1856 fail1:
1857 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1858 
1859 	return (rc);
1860 }
1861 
1862 	__checkReturn		efx_rc_t
1863 efx_mcdi_mac_spoofing_supported(
1864 	__in			efx_nic_t *enp,
1865 	__out			boolean_t *supportedp)
1866 {
1867 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1868 	efx_rc_t rc;
1869 
1870 	if (emcop != NULL) {
1871 		if ((rc = emcop->emco_feature_supported(enp,
1872 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1873 			goto fail1;
1874 	} else {
1875 		/* Earlier devices always supported MAC spoofing */
1876 		*supportedp = B_TRUE;
1877 	}
1878 
1879 	return (0);
1880 
1881 fail1:
1882 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1883 
1884 	return (rc);
1885 }
1886 
1887 #if EFSYS_OPT_BIST
1888 
1889 #if EFX_OPTS_EF10()
1890 /*
1891  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1892  * where memory BIST tests can be run and not much else can interfere or happen.
1893  * A reboot is required to exit this mode.
1894  */
1895 	__checkReturn		efx_rc_t
1896 efx_mcdi_bist_enable_offline(
1897 	__in			efx_nic_t *enp)
1898 {
1899 	efx_mcdi_req_t req;
1900 	efx_rc_t rc;
1901 
1902 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1903 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1904 
1905 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1906 	req.emr_in_buf = NULL;
1907 	req.emr_in_length = 0;
1908 	req.emr_out_buf = NULL;
1909 	req.emr_out_length = 0;
1910 
1911 	efx_mcdi_execute(enp, &req);
1912 
1913 	if (req.emr_rc != 0) {
1914 		rc = req.emr_rc;
1915 		goto fail1;
1916 	}
1917 
1918 	return (0);
1919 
1920 fail1:
1921 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1922 
1923 	return (rc);
1924 }
1925 #endif /* EFX_OPTS_EF10() */
1926 
1927 	__checkReturn		efx_rc_t
1928 efx_mcdi_bist_start(
1929 	__in			efx_nic_t *enp,
1930 	__in			efx_bist_type_t type)
1931 {
1932 	efx_mcdi_req_t req;
1933 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN,
1934 		MC_CMD_START_BIST_OUT_LEN);
1935 	efx_rc_t rc;
1936 
1937 	req.emr_cmd = MC_CMD_START_BIST;
1938 	req.emr_in_buf = payload;
1939 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1940 	req.emr_out_buf = payload;
1941 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1942 
1943 	switch (type) {
1944 	case EFX_BIST_TYPE_PHY_NORMAL:
1945 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1946 		break;
1947 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1948 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1949 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1950 		break;
1951 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1952 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1953 		    MC_CMD_PHY_BIST_CABLE_LONG);
1954 		break;
1955 	case EFX_BIST_TYPE_MC_MEM:
1956 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1957 		    MC_CMD_MC_MEM_BIST);
1958 		break;
1959 	case EFX_BIST_TYPE_SAT_MEM:
1960 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1961 		    MC_CMD_PORT_MEM_BIST);
1962 		break;
1963 	case EFX_BIST_TYPE_REG:
1964 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1965 		    MC_CMD_REG_BIST);
1966 		break;
1967 	default:
1968 		EFSYS_ASSERT(0);
1969 	}
1970 
1971 	efx_mcdi_execute(enp, &req);
1972 
1973 	if (req.emr_rc != 0) {
1974 		rc = req.emr_rc;
1975 		goto fail1;
1976 	}
1977 
1978 	return (0);
1979 
1980 fail1:
1981 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1982 
1983 	return (rc);
1984 }
1985 
1986 #endif /* EFSYS_OPT_BIST */
1987 
1988 
1989 /* Enable logging of some events (e.g. link state changes) */
1990 	__checkReturn	efx_rc_t
1991 efx_mcdi_log_ctrl(
1992 	__in		efx_nic_t *enp)
1993 {
1994 	efx_mcdi_req_t req;
1995 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN,
1996 		MC_CMD_LOG_CTRL_OUT_LEN);
1997 	efx_rc_t rc;
1998 
1999 	req.emr_cmd = MC_CMD_LOG_CTRL;
2000 	req.emr_in_buf = payload;
2001 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
2002 	req.emr_out_buf = payload;
2003 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
2004 
2005 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
2006 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
2007 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
2008 
2009 	efx_mcdi_execute(enp, &req);
2010 
2011 	if (req.emr_rc != 0) {
2012 		rc = req.emr_rc;
2013 		goto fail1;
2014 	}
2015 
2016 	return (0);
2017 
2018 fail1:
2019 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2020 
2021 	return (rc);
2022 }
2023 
2024 
2025 #if EFSYS_OPT_MAC_STATS
2026 
2027 	__checkReturn	efx_rc_t
2028 efx_mcdi_mac_stats(
2029 	__in		efx_nic_t *enp,
2030 	__in		uint32_t vport_id,
2031 	__in_opt	efsys_mem_t *esmp,
2032 	__in		efx_stats_action_t action,
2033 	__in		uint16_t period_ms)
2034 {
2035 	efx_mcdi_req_t req;
2036 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN,
2037 		MC_CMD_MAC_STATS_V2_OUT_DMA_LEN);
2038 	int clear = (action == EFX_STATS_CLEAR);
2039 	int upload = (action == EFX_STATS_UPLOAD);
2040 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
2041 	int events = (action == EFX_STATS_ENABLE_EVENTS);
2042 	int disable = (action == EFX_STATS_DISABLE);
2043 	efx_rc_t rc;
2044 
2045 	req.emr_cmd = MC_CMD_MAC_STATS;
2046 	req.emr_in_buf = payload;
2047 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
2048 	req.emr_out_buf = payload;
2049 	req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN;
2050 
2051 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
2052 	    MAC_STATS_IN_DMA, upload,
2053 	    MAC_STATS_IN_CLEAR, clear,
2054 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
2055 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
2056 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
2057 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0);
2058 
2059 	if (enable || events || upload) {
2060 		const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
2061 		uint32_t bytes;
2062 
2063 		/* Periodic stats or stats upload require a DMA buffer */
2064 		if (esmp == NULL) {
2065 			rc = EINVAL;
2066 			goto fail1;
2067 		}
2068 
2069 		if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) {
2070 			/* MAC stats count too small for legacy MAC stats */
2071 			rc = ENOSPC;
2072 			goto fail2;
2073 		}
2074 
2075 		bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t);
2076 
2077 		if (EFSYS_MEM_SIZE(esmp) < bytes) {
2078 			/* DMA buffer too small */
2079 			rc = ENOSPC;
2080 			goto fail3;
2081 		}
2082 
2083 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
2084 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
2085 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
2086 			    EFSYS_MEM_ADDR(esmp) >> 32);
2087 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
2088 	}
2089 
2090 	/*
2091 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
2092 	 *	 as this may fail (and leave periodic DMA enabled) if the
2093 	 *	 vadapter has already been deleted.
2094 	 */
2095 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
2096 		(disable ? EVB_PORT_ID_NULL : vport_id));
2097 
2098 	efx_mcdi_execute(enp, &req);
2099 
2100 	if (req.emr_rc != 0) {
2101 		/* EF10: Expect ENOENT if no DMA queues are initialised */
2102 		if ((req.emr_rc != ENOENT) ||
2103 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
2104 			rc = req.emr_rc;
2105 			goto fail4;
2106 		}
2107 	}
2108 
2109 	return (0);
2110 
2111 fail4:
2112 	EFSYS_PROBE(fail4);
2113 fail3:
2114 	EFSYS_PROBE(fail3);
2115 fail2:
2116 	EFSYS_PROBE(fail2);
2117 fail1:
2118 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2119 
2120 	return (rc);
2121 }
2122 
2123 	__checkReturn	efx_rc_t
2124 efx_mcdi_mac_stats_clear(
2125 	__in		efx_nic_t *enp)
2126 {
2127 	efx_rc_t rc;
2128 
2129 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2130 			EFX_STATS_CLEAR, 0)) != 0)
2131 		goto fail1;
2132 
2133 	return (0);
2134 
2135 fail1:
2136 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2137 
2138 	return (rc);
2139 }
2140 
2141 	__checkReturn	efx_rc_t
2142 efx_mcdi_mac_stats_upload(
2143 	__in		efx_nic_t *enp,
2144 	__in		efsys_mem_t *esmp)
2145 {
2146 	efx_rc_t rc;
2147 
2148 	/*
2149 	 * The MC DMAs aggregate statistics for our convenience, so we can
2150 	 * avoid having to pull the statistics buffer into the cache to
2151 	 * maintain cumulative statistics.
2152 	 */
2153 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2154 			EFX_STATS_UPLOAD, 0)) != 0)
2155 		goto fail1;
2156 
2157 	return (0);
2158 
2159 fail1:
2160 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2161 
2162 	return (rc);
2163 }
2164 
2165 	__checkReturn	efx_rc_t
2166 efx_mcdi_mac_stats_periodic(
2167 	__in		efx_nic_t *enp,
2168 	__in		efsys_mem_t *esmp,
2169 	__in		uint16_t period_ms,
2170 	__in		boolean_t events)
2171 {
2172 	efx_rc_t rc;
2173 
2174 	/*
2175 	 * The MC DMAs aggregate statistics for our convenience, so we can
2176 	 * avoid having to pull the statistics buffer into the cache to
2177 	 * maintain cumulative statistics.
2178 	 * Huntington uses a fixed 1sec period.
2179 	 * Medford uses a fixed 1sec period before v6.2.1.1033 firmware.
2180 	 */
2181 	if (period_ms == 0)
2182 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2183 			EFX_STATS_DISABLE, 0);
2184 	else if (events)
2185 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2186 			EFX_STATS_ENABLE_EVENTS, period_ms);
2187 	else
2188 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2189 			EFX_STATS_ENABLE_NOEVENTS, period_ms);
2190 
2191 	if (rc != 0)
2192 		goto fail1;
2193 
2194 	return (0);
2195 
2196 fail1:
2197 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2198 
2199 	return (rc);
2200 }
2201 
2202 #endif	/* EFSYS_OPT_MAC_STATS */
2203 
2204 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2205 
2206 	__checkReturn		efx_rc_t
2207 efx_mcdi_intf_from_pcie(
2208 	__in			uint32_t pcie_intf,
2209 	__out			efx_pcie_interface_t *efx_intf)
2210 {
2211 	efx_rc_t rc;
2212 
2213 	switch (pcie_intf) {
2214 	case PCIE_INTERFACE_CALLER:
2215 		*efx_intf = EFX_PCIE_INTERFACE_CALLER;
2216 		break;
2217 	case PCIE_INTERFACE_HOST_PRIMARY:
2218 		*efx_intf = EFX_PCIE_INTERFACE_HOST_PRIMARY;
2219 		break;
2220 	case PCIE_INTERFACE_NIC_EMBEDDED:
2221 		*efx_intf = EFX_PCIE_INTERFACE_NIC_EMBEDDED;
2222 		break;
2223 	default:
2224 		rc = EINVAL;
2225 		goto fail1;
2226 	}
2227 
2228 	return (0);
2229 
2230 fail1:
2231 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2232 
2233 	return (rc);
2234 }
2235 
2236 /*
2237  * This function returns the pf and vf number of a function.  If it is a pf the
2238  * vf number is 0xffff.  The vf number is the index of the vf on that
2239  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
2240  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
2241  */
2242 	__checkReturn		efx_rc_t
2243 efx_mcdi_get_function_info(
2244 	__in			efx_nic_t *enp,
2245 	__out			uint32_t *pfp,
2246 	__out_opt		uint32_t *vfp,
2247 	__out_opt		efx_pcie_interface_t *intfp)
2248 {
2249 	efx_pcie_interface_t intf;
2250 	efx_mcdi_req_t req;
2251 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN,
2252 		MC_CMD_GET_FUNCTION_INFO_OUT_V2_LEN);
2253 	uint32_t pcie_intf;
2254 	efx_rc_t rc;
2255 
2256 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
2257 	req.emr_in_buf = payload;
2258 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
2259 	req.emr_out_buf = payload;
2260 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_V2_LEN;
2261 
2262 	efx_mcdi_execute(enp, &req);
2263 
2264 	if (req.emr_rc != 0) {
2265 		rc = req.emr_rc;
2266 		goto fail1;
2267 	}
2268 
2269 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
2270 		rc = EMSGSIZE;
2271 		goto fail2;
2272 	}
2273 
2274 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
2275 	if (vfp != NULL)
2276 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
2277 
2278 	if (req.emr_out_length < MC_CMD_GET_FUNCTION_INFO_OUT_V2_LEN) {
2279 		intf = EFX_PCIE_INTERFACE_HOST_PRIMARY;
2280 	} else {
2281 		pcie_intf = MCDI_OUT_DWORD(req,
2282 		    GET_FUNCTION_INFO_OUT_V2_INTF);
2283 
2284 		rc = efx_mcdi_intf_from_pcie(pcie_intf, &intf);
2285 		if (rc != 0)
2286 			goto fail3;
2287 	}
2288 
2289 	if (intfp != NULL)
2290 		*intfp = intf;
2291 
2292 	return (0);
2293 
2294 fail3:
2295 	EFSYS_PROBE(fail3);
2296 fail2:
2297 	EFSYS_PROBE(fail2);
2298 fail1:
2299 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2300 
2301 	return (rc);
2302 }
2303 
2304 	__checkReturn		efx_rc_t
2305 efx_mcdi_privilege_mask(
2306 	__in			efx_nic_t *enp,
2307 	__in			uint32_t pf,
2308 	__in			uint32_t vf,
2309 	__out			uint32_t *maskp)
2310 {
2311 	efx_mcdi_req_t req;
2312 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN,
2313 		MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2314 	efx_rc_t rc;
2315 
2316 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
2317 	req.emr_in_buf = payload;
2318 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
2319 	req.emr_out_buf = payload;
2320 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
2321 
2322 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
2323 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2324 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2325 
2326 	efx_mcdi_execute(enp, &req);
2327 
2328 	if (req.emr_rc != 0) {
2329 		rc = req.emr_rc;
2330 		goto fail1;
2331 	}
2332 
2333 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
2334 		rc = EMSGSIZE;
2335 		goto fail2;
2336 	}
2337 
2338 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
2339 
2340 	return (0);
2341 
2342 fail2:
2343 	EFSYS_PROBE(fail2);
2344 fail1:
2345 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2346 
2347 	return (rc);
2348 }
2349 
2350 #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2351 
2352 	__checkReturn		efx_rc_t
2353 efx_mcdi_set_workaround(
2354 	__in			efx_nic_t *enp,
2355 	__in			uint32_t type,
2356 	__in			boolean_t enabled,
2357 	__out_opt		uint32_t *flagsp)
2358 {
2359 	efx_mcdi_req_t req;
2360 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN,
2361 		MC_CMD_WORKAROUND_EXT_OUT_LEN);
2362 	efx_rc_t rc;
2363 
2364 	req.emr_cmd = MC_CMD_WORKAROUND;
2365 	req.emr_in_buf = payload;
2366 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2367 	req.emr_out_buf = payload;
2368 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2369 
2370 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2371 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2372 
2373 	efx_mcdi_execute_quiet(enp, &req);
2374 
2375 	if (req.emr_rc != 0) {
2376 		rc = req.emr_rc;
2377 		goto fail1;
2378 	}
2379 
2380 	if (flagsp != NULL) {
2381 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2382 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2383 		else
2384 			*flagsp = 0;
2385 	}
2386 
2387 	return (0);
2388 
2389 fail1:
2390 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2391 
2392 	return (rc);
2393 }
2394 
2395 
2396 	__checkReturn		efx_rc_t
2397 efx_mcdi_get_workarounds(
2398 	__in			efx_nic_t *enp,
2399 	__out_opt		uint32_t *implementedp,
2400 	__out_opt		uint32_t *enabledp)
2401 {
2402 	efx_mcdi_req_t req;
2403 	EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2404 	efx_rc_t rc;
2405 
2406 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2407 	req.emr_in_buf = NULL;
2408 	req.emr_in_length = 0;
2409 	req.emr_out_buf = payload;
2410 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2411 
2412 	efx_mcdi_execute(enp, &req);
2413 
2414 	if (req.emr_rc != 0) {
2415 		rc = req.emr_rc;
2416 		goto fail1;
2417 	}
2418 
2419 	if (req.emr_out_length_used < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2420 		rc = EMSGSIZE;
2421 		goto fail2;
2422 	}
2423 
2424 	if (implementedp != NULL) {
2425 		*implementedp =
2426 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2427 	}
2428 
2429 	if (enabledp != NULL) {
2430 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2431 	}
2432 
2433 	return (0);
2434 
2435 fail2:
2436 	EFSYS_PROBE(fail2);
2437 fail1:
2438 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2439 
2440 	return (rc);
2441 }
2442 
2443 /*
2444  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2445  * It is used in MCDI interface as well.
2446  */
2447 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2448 
2449 /*
2450  * Transceiver identifiers from SFF-8024 Table 4-1.
2451  */
2452 #define	EFX_SFF_TRANSCEIVER_ID_SFP		0x03 /* SFP/SFP+/SFP28 */
2453 #define	EFX_SFF_TRANSCEIVER_ID_QSFP		0x0c /* QSFP */
2454 #define	EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS	0x0d /* QSFP+ or later */
2455 #define	EFX_SFF_TRANSCEIVER_ID_QSFP28		0x11 /* QSFP28 or later */
2456 
2457 static	__checkReturn		efx_rc_t
2458 efx_mcdi_get_phy_media_info(
2459 	__in			efx_nic_t *enp,
2460 	__in			uint32_t mcdi_page,
2461 	__in			uint8_t offset,
2462 	__in			uint8_t len,
2463 	__out_bcount(len)	uint8_t *data)
2464 {
2465 	efx_mcdi_req_t req;
2466 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2467 		MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2468 			EFX_PHY_MEDIA_INFO_PAGE_SIZE));
2469 	efx_rc_t rc;
2470 
2471 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2472 
2473 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2474 	req.emr_in_buf = payload;
2475 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2476 	req.emr_out_buf = payload;
2477 	req.emr_out_length =
2478 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2479 
2480 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2481 
2482 	efx_mcdi_execute(enp, &req);
2483 
2484 	if (req.emr_rc != 0) {
2485 		rc = req.emr_rc;
2486 		goto fail1;
2487 	}
2488 
2489 	if (req.emr_out_length_used !=
2490 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2491 		rc = EMSGSIZE;
2492 		goto fail2;
2493 	}
2494 
2495 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2496 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2497 		rc = EIO;
2498 		goto fail3;
2499 	}
2500 
2501 	memcpy(data,
2502 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2503 	    len);
2504 
2505 	return (0);
2506 
2507 fail3:
2508 	EFSYS_PROBE(fail3);
2509 fail2:
2510 	EFSYS_PROBE(fail2);
2511 fail1:
2512 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2513 
2514 	return (rc);
2515 }
2516 
2517 	__checkReturn		efx_rc_t
2518 efx_mcdi_phy_module_get_info(
2519 	__in			efx_nic_t *enp,
2520 	__in			uint8_t dev_addr,
2521 	__in			size_t offset,
2522 	__in			size_t len,
2523 	__out_bcount(len)	uint8_t *data)
2524 {
2525 	efx_port_t *epp = &(enp->en_port);
2526 	efx_rc_t rc;
2527 	uint32_t mcdi_lower_page;
2528 	uint32_t mcdi_upper_page;
2529 	uint8_t id;
2530 
2531 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2532 
2533 	/*
2534 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2535 	 * Offset plus length interface allows to access page 0 only.
2536 	 * I.e. non-zero upper pages are not accessible.
2537 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2538 	 * QSFP+ Memory Map for details on how information is structured
2539 	 * and accessible.
2540 	 */
2541 	switch (epp->ep_fixed_port_type) {
2542 	case EFX_PHY_MEDIA_SFP_PLUS:
2543 	case EFX_PHY_MEDIA_QSFP_PLUS:
2544 		/* Port type supports modules */
2545 		break;
2546 	default:
2547 		rc = ENOTSUP;
2548 		goto fail1;
2549 	}
2550 
2551 	/*
2552 	 * For all supported port types, MCDI page 0 offset 0 holds the
2553 	 * transceiver identifier. Probe to determine the data layout.
2554 	 * Definitions from SFF-8024 Table 4-1.
2555 	 */
2556 	rc = efx_mcdi_get_phy_media_info(enp,
2557 		    0, 0, sizeof(id), &id);
2558 	if (rc != 0)
2559 		goto fail2;
2560 
2561 	switch (id) {
2562 	case EFX_SFF_TRANSCEIVER_ID_SFP:
2563 		/*
2564 		 * In accordance with SFF-8472 Diagnostic Monitoring
2565 		 * Interface for Optical Transceivers section 4 Memory
2566 		 * Organization two 2-wire addresses are defined.
2567 		 */
2568 		switch (dev_addr) {
2569 		/* Base information */
2570 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2571 			/*
2572 			 * MCDI page 0 should be used to access lower
2573 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2574 			 */
2575 			mcdi_lower_page = 0;
2576 			/*
2577 			 * MCDI page 1 should be used to access  upper
2578 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2579 			 */
2580 			mcdi_upper_page = 1;
2581 			break;
2582 		/* Diagnostics */
2583 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2584 			/*
2585 			 * MCDI page 2 should be used to access lower
2586 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2587 			 */
2588 			mcdi_lower_page = 2;
2589 			/*
2590 			 * MCDI page 3 should be used to access upper
2591 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2592 			 */
2593 			mcdi_upper_page = 3;
2594 			break;
2595 		default:
2596 			rc = ENOTSUP;
2597 			goto fail3;
2598 		}
2599 		break;
2600 	case EFX_SFF_TRANSCEIVER_ID_QSFP:
2601 	case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS:
2602 	case EFX_SFF_TRANSCEIVER_ID_QSFP28:
2603 		switch (dev_addr) {
2604 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2605 			/*
2606 			 * MCDI page -1 should be used to access lower page 0
2607 			 * (0x00 - 0x7f).
2608 			 */
2609 			mcdi_lower_page = (uint32_t)-1;
2610 			/*
2611 			 * MCDI page 0 should be used to access upper page 0
2612 			 * (0x80h - 0xff).
2613 			 */
2614 			mcdi_upper_page = 0;
2615 			break;
2616 		default:
2617 			rc = ENOTSUP;
2618 			goto fail3;
2619 		}
2620 		break;
2621 	default:
2622 		rc = ENOTSUP;
2623 		goto fail3;
2624 	}
2625 
2626 	EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF);
2627 
2628 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2629 		size_t read_len =
2630 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2631 
2632 		rc = efx_mcdi_get_phy_media_info(enp,
2633 		    mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data);
2634 		if (rc != 0)
2635 			goto fail4;
2636 
2637 		data += read_len;
2638 		len -= read_len;
2639 
2640 		offset = 0;
2641 	} else {
2642 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2643 	}
2644 
2645 	if (len > 0) {
2646 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2647 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2648 
2649 		rc = efx_mcdi_get_phy_media_info(enp,
2650 		    mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data);
2651 		if (rc != 0)
2652 			goto fail5;
2653 	}
2654 
2655 	return (0);
2656 
2657 fail5:
2658 	EFSYS_PROBE(fail5);
2659 fail4:
2660 	EFSYS_PROBE(fail4);
2661 fail3:
2662 	EFSYS_PROBE(fail3);
2663 fail2:
2664 	EFSYS_PROBE(fail2);
2665 fail1:
2666 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2667 
2668 	return (rc);
2669 }
2670 
2671 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2672 
2673 #define	INIT_EVQ_MAXNBUFS	MC_CMD_INIT_EVQ_V2_IN_DMA_ADDR_MAXNUM
2674 
2675 #if EFX_OPTS_EF10()
2676 # if (INIT_EVQ_MAXNBUFS < EF10_EVQ_MAXNBUFS)
2677 #  error "INIT_EVQ_MAXNBUFS too small"
2678 # endif
2679 #endif /* EFX_OPTS_EF10 */
2680 #if EFSYS_OPT_RIVERHEAD
2681 # if (INIT_EVQ_MAXNBUFS < RHEAD_EVQ_MAXNBUFS)
2682 #  error "INIT_EVQ_MAXNBUFS too small"
2683 # endif
2684 #endif /* EFSYS_OPT_RIVERHEAD */
2685 
2686 	__checkReturn	efx_rc_t
2687 efx_mcdi_init_evq(
2688 	__in		efx_nic_t *enp,
2689 	__in		unsigned int instance,
2690 	__in		efsys_mem_t *esmp,
2691 	__in		size_t nevs,
2692 	__in		uint32_t irq,
2693 	__in		uint32_t target_evq,
2694 	__in		uint32_t us,
2695 	__in		uint32_t flags,
2696 	__in		boolean_t low_latency)
2697 {
2698 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(enp);
2699 	efx_mcdi_req_t req;
2700 	EFX_MCDI_DECLARE_BUF(payload,
2701 		MC_CMD_INIT_EVQ_V2_IN_LEN(INIT_EVQ_MAXNBUFS),
2702 		MC_CMD_INIT_EVQ_V2_OUT_LEN);
2703 	boolean_t interrupting;
2704 	int ev_extended_width;
2705 	int ev_cut_through;
2706 	int ev_merge;
2707 	unsigned int evq_type;
2708 	efx_qword_t *dma_addr;
2709 	uint64_t addr;
2710 	int npages;
2711 	int i;
2712 	efx_rc_t rc;
2713 
2714 	npages = efx_evq_nbufs(enp, nevs, flags);
2715 	if (npages > INIT_EVQ_MAXNBUFS) {
2716 		rc = EINVAL;
2717 		goto fail1;
2718 	}
2719 
2720 	req.emr_cmd = MC_CMD_INIT_EVQ;
2721 	req.emr_in_buf = payload;
2722 	req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages);
2723 	req.emr_out_buf = payload;
2724 	req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN;
2725 
2726 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs);
2727 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance);
2728 
2729 	interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
2730 	    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
2731 
2732 	if (interrupting)
2733 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq);
2734 	else
2735 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TARGET_EVQ, target_evq);
2736 
2737 	if (encp->enc_init_evq_v2_supported) {
2738 		/*
2739 		 * On Medford the low latency license is required to enable RX
2740 		 * and event cut through and to disable RX batching.  If event
2741 		 * queue type in flags is auto, we let the firmware decide the
2742 		 * settings to use. If the adapter has a low latency license,
2743 		 * it will choose the best settings for low latency, otherwise
2744 		 * it will choose the best settings for throughput.
2745 		 */
2746 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2747 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2748 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO;
2749 			break;
2750 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2751 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT;
2752 			break;
2753 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2754 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY;
2755 			break;
2756 		default:
2757 			rc = EINVAL;
2758 			goto fail2;
2759 		}
2760 		/* EvQ type controls merging, no manual settings */
2761 		ev_merge = 0;
2762 		ev_cut_through = 0;
2763 	} else {
2764 		/* EvQ types other than manual are not supported */
2765 		evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_MANUAL;
2766 		/*
2767 		 * On Huntington RX and TX event batching can only be requested
2768 		 * together (even if the datapath firmware doesn't actually
2769 		 * support RX batching). If event cut through is enabled no RX
2770 		 * batching will occur.
2771 		 *
2772 		 * So always enable RX and TX event batching, and enable event
2773 		 * cut through if we want low latency operation.
2774 		 */
2775 		ev_merge = 1;
2776 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2777 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2778 			ev_cut_through = low_latency ? 1 : 0;
2779 			break;
2780 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2781 			ev_cut_through = 0;
2782 			break;
2783 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2784 			ev_cut_through = 1;
2785 			break;
2786 		default:
2787 			rc = EINVAL;
2788 			goto fail2;
2789 		}
2790 	}
2791 
2792 	/*
2793 	 * On EF100, extended width event queues have a different event
2794 	 * descriptor layout and are used to support descriptor proxy queues.
2795 	 */
2796 	ev_extended_width = 0;
2797 #if EFSYS_OPT_EV_EXTENDED_WIDTH
2798 	if (encp->enc_init_evq_extended_width_supported) {
2799 		if (flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH)
2800 			ev_extended_width = 1;
2801 	}
2802 #endif
2803 
2804 	MCDI_IN_POPULATE_DWORD_8(req, INIT_EVQ_V2_IN_FLAGS,
2805 	    INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting,
2806 	    INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0,
2807 	    INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0,
2808 	    INIT_EVQ_V2_IN_FLAG_CUT_THRU, ev_cut_through,
2809 	    INIT_EVQ_V2_IN_FLAG_RX_MERGE, ev_merge,
2810 	    INIT_EVQ_V2_IN_FLAG_TX_MERGE, ev_merge,
2811 	    INIT_EVQ_V2_IN_FLAG_TYPE, evq_type,
2812 	    INIT_EVQ_V2_IN_FLAG_EXT_WIDTH, ev_extended_width);
2813 
2814 	/* If the value is zero then disable the timer */
2815 	if (us == 0) {
2816 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2817 		    MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS);
2818 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0);
2819 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0);
2820 	} else {
2821 		unsigned int ticks;
2822 
2823 		if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
2824 			goto fail3;
2825 
2826 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2827 		    MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF);
2828 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks);
2829 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks);
2830 	}
2831 
2832 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE,
2833 	    MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS);
2834 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0);
2835 
2836 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR);
2837 	addr = EFSYS_MEM_ADDR(esmp);
2838 
2839 	for (i = 0; i < npages; i++) {
2840 		EFX_POPULATE_QWORD_2(*dma_addr,
2841 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2842 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2843 
2844 		dma_addr++;
2845 		addr += EFX_BUF_SIZE;
2846 	}
2847 
2848 	efx_mcdi_execute(enp, &req);
2849 
2850 	if (req.emr_rc != 0) {
2851 		rc = req.emr_rc;
2852 		goto fail4;
2853 	}
2854 
2855 	if (encp->enc_init_evq_v2_supported) {
2856 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) {
2857 			rc = EMSGSIZE;
2858 			goto fail5;
2859 		}
2860 		EFSYS_PROBE1(mcdi_evq_flags, uint32_t,
2861 			    MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS));
2862 	} else {
2863 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) {
2864 			rc = EMSGSIZE;
2865 			goto fail6;
2866 		}
2867 	}
2868 
2869 	/* NOTE: ignore the returned IRQ param as firmware does not set it. */
2870 
2871 	return (0);
2872 
2873 fail6:
2874 	EFSYS_PROBE(fail6);
2875 fail5:
2876 	EFSYS_PROBE(fail5);
2877 fail4:
2878 	EFSYS_PROBE(fail4);
2879 fail3:
2880 	EFSYS_PROBE(fail3);
2881 fail2:
2882 	EFSYS_PROBE(fail2);
2883 fail1:
2884 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2885 
2886 	return (rc);
2887 }
2888 
2889 	__checkReturn	efx_rc_t
2890 efx_mcdi_fini_evq(
2891 	__in		efx_nic_t *enp,
2892 	__in		uint32_t instance)
2893 {
2894 	efx_mcdi_req_t req;
2895 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_EVQ_IN_LEN,
2896 		MC_CMD_FINI_EVQ_OUT_LEN);
2897 	efx_rc_t rc;
2898 
2899 	req.emr_cmd = MC_CMD_FINI_EVQ;
2900 	req.emr_in_buf = payload;
2901 	req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN;
2902 	req.emr_out_buf = payload;
2903 	req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN;
2904 
2905 	MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance);
2906 
2907 	efx_mcdi_execute_quiet(enp, &req);
2908 
2909 	if (req.emr_rc != 0) {
2910 		rc = req.emr_rc;
2911 		goto fail1;
2912 	}
2913 
2914 	return (0);
2915 
2916 fail1:
2917 	/*
2918 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2919 	 * that the EVQ has already been destroyed.
2920 	 */
2921 	if (rc != EALREADY)
2922 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2923 
2924 	return (rc);
2925 }
2926 
2927 	__checkReturn	efx_rc_t
2928 efx_mcdi_init_rxq(
2929 	__in		efx_nic_t *enp,
2930 	__in		uint32_t ndescs,
2931 	__in		efx_evq_t *eep,
2932 	__in		uint32_t label,
2933 	__in		uint32_t instance,
2934 	__in		efsys_mem_t *esmp,
2935 	__in		const efx_mcdi_init_rxq_params_t *params)
2936 {
2937 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2938 	efx_mcdi_req_t req;
2939 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_RXQ_V5_IN_LEN,
2940 		MC_CMD_INIT_RXQ_V5_OUT_LEN);
2941 	int npages = efx_rxq_nbufs(enp, ndescs);
2942 	int i;
2943 	efx_qword_t *dma_addr;
2944 	uint64_t addr;
2945 	efx_rc_t rc;
2946 	uint32_t dma_mode;
2947 	boolean_t want_outer_classes;
2948 	boolean_t no_cont_ev;
2949 
2950 	EFSYS_ASSERT3U(ndescs, <=, encp->enc_rxq_max_ndescs);
2951 
2952 	if ((esmp == NULL) ||
2953 	    (EFSYS_MEM_SIZE(esmp) < efx_rxq_size(enp, ndescs))) {
2954 		rc = EINVAL;
2955 		goto fail1;
2956 	}
2957 
2958 	no_cont_ev = (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV);
2959 	if ((no_cont_ev == B_TRUE) && (params->disable_scatter == B_FALSE)) {
2960 		/* TODO: Support scatter in NO_CONT_EV mode */
2961 		rc = EINVAL;
2962 		goto fail2;
2963 	}
2964 
2965 	if (params->ps_buf_size > 0)
2966 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM;
2967 	else if (params->es_bufs_per_desc > 0)
2968 		dma_mode = MC_CMD_INIT_RXQ_V3_IN_EQUAL_STRIDE_SUPER_BUFFER;
2969 	else
2970 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_SINGLE_PACKET;
2971 
2972 	if (encp->enc_tunnel_encapsulations_supported != 0 &&
2973 	    !params->want_inner_classes) {
2974 		/*
2975 		 * WANT_OUTER_CLASSES can only be specified on hardware which
2976 		 * supports tunnel encapsulation offloads, even though it is
2977 		 * effectively the behaviour the hardware gives.
2978 		 *
2979 		 * Also, on hardware which does support such offloads, older
2980 		 * firmware rejects the flag if the offloads are not supported
2981 		 * by the current firmware variant, which means this may fail if
2982 		 * the capabilities are not updated when the firmware variant
2983 		 * changes. This is not an issue on newer firmware, as it was
2984 		 * changed in bug 69842 (v6.4.2.1007) to permit this flag to be
2985 		 * specified on all firmware variants.
2986 		 */
2987 		want_outer_classes = B_TRUE;
2988 	} else {
2989 		want_outer_classes = B_FALSE;
2990 	}
2991 
2992 	req.emr_cmd = MC_CMD_INIT_RXQ;
2993 	req.emr_in_buf = payload;
2994 	req.emr_in_length = MC_CMD_INIT_RXQ_V5_IN_LEN;
2995 	req.emr_out_buf = payload;
2996 	req.emr_out_length = MC_CMD_INIT_RXQ_V5_OUT_LEN;
2997 
2998 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_SIZE, ndescs);
2999 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_TARGET_EVQ, eep->ee_index);
3000 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_LABEL, label);
3001 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_INSTANCE, instance);
3002 	MCDI_IN_POPULATE_DWORD_10(req, INIT_RXQ_EXT_IN_FLAGS,
3003 	    INIT_RXQ_EXT_IN_FLAG_BUFF_MODE, 0,
3004 	    INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT, 0,
3005 	    INIT_RXQ_EXT_IN_FLAG_TIMESTAMP, 0,
3006 	    INIT_RXQ_EXT_IN_CRC_MODE, 0,
3007 	    INIT_RXQ_EXT_IN_FLAG_PREFIX, 1,
3008 	    INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER, params->disable_scatter,
3009 	    INIT_RXQ_EXT_IN_DMA_MODE,
3010 	    dma_mode,
3011 	    INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE, params->ps_buf_size,
3012 	    INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES, want_outer_classes,
3013 	    INIT_RXQ_EXT_IN_FLAG_NO_CONT_EV, no_cont_ev);
3014 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_OWNER_ID, 0);
3015 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_PORT_ID, enp->en_vport_id);
3016 
3017 	if (params->es_bufs_per_desc > 0) {
3018 		MCDI_IN_SET_DWORD(req,
3019 		    INIT_RXQ_V3_IN_ES_PACKET_BUFFERS_PER_BUCKET,
3020 		    params->es_bufs_per_desc);
3021 		MCDI_IN_SET_DWORD(req,
3022 		    INIT_RXQ_V3_IN_ES_MAX_DMA_LEN, params->es_max_dma_len);
3023 		MCDI_IN_SET_DWORD(req,
3024 		    INIT_RXQ_V3_IN_ES_PACKET_STRIDE, params->es_buf_stride);
3025 		MCDI_IN_SET_DWORD(req,
3026 		    INIT_RXQ_V3_IN_ES_HEAD_OF_LINE_BLOCK_TIMEOUT,
3027 		    params->hol_block_timeout);
3028 	}
3029 
3030 	if (encp->enc_init_rxq_with_buffer_size)
3031 		MCDI_IN_SET_DWORD(req, INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES,
3032 		    params->buf_size);
3033 
3034 	MCDI_IN_SET_DWORD(req, INIT_RXQ_V5_IN_RX_PREFIX_ID, params->prefix_id);
3035 
3036 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR);
3037 	addr = EFSYS_MEM_ADDR(esmp);
3038 
3039 	for (i = 0; i < npages; i++) {
3040 		EFX_POPULATE_QWORD_2(*dma_addr,
3041 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
3042 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
3043 
3044 		dma_addr++;
3045 		addr += EFX_BUF_SIZE;
3046 	}
3047 
3048 	efx_mcdi_execute(enp, &req);
3049 
3050 	if (req.emr_rc != 0) {
3051 		rc = req.emr_rc;
3052 		goto fail3;
3053 	}
3054 
3055 	return (0);
3056 
3057 fail3:
3058 	EFSYS_PROBE(fail3);
3059 fail2:
3060 	EFSYS_PROBE(fail2);
3061 fail1:
3062 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3063 
3064 	return (rc);
3065 }
3066 
3067 	__checkReturn	efx_rc_t
3068 efx_mcdi_fini_rxq(
3069 	__in		efx_nic_t *enp,
3070 	__in		uint32_t instance)
3071 {
3072 	efx_mcdi_req_t req;
3073 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_RXQ_IN_LEN,
3074 		MC_CMD_FINI_RXQ_OUT_LEN);
3075 	efx_rc_t rc;
3076 
3077 	req.emr_cmd = MC_CMD_FINI_RXQ;
3078 	req.emr_in_buf = payload;
3079 	req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN;
3080 	req.emr_out_buf = payload;
3081 	req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN;
3082 
3083 	MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance);
3084 
3085 	efx_mcdi_execute_quiet(enp, &req);
3086 
3087 	if (req.emr_rc != 0) {
3088 		rc = req.emr_rc;
3089 		goto fail1;
3090 	}
3091 
3092 	return (0);
3093 
3094 fail1:
3095 	/*
3096 	 * EALREADY is not an error, but indicates that the MC has rebooted and
3097 	 * that the RXQ has already been destroyed.
3098 	 */
3099 	if (rc != EALREADY)
3100 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3101 
3102 	return (rc);
3103 }
3104 
3105 	__checkReturn	efx_rc_t
3106 efx_mcdi_init_txq(
3107 	__in		efx_nic_t *enp,
3108 	__in		uint32_t ndescs,
3109 	__in		uint32_t target_evq,
3110 	__in		uint32_t label,
3111 	__in		uint32_t instance,
3112 	__in		uint16_t flags,
3113 	__in		efsys_mem_t *esmp)
3114 {
3115 	efx_mcdi_req_t req;
3116 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_EXT_IN_LEN,
3117 		MC_CMD_INIT_TXQ_OUT_LEN);
3118 	efx_qword_t *dma_addr;
3119 	uint64_t addr;
3120 	int npages;
3121 	int i;
3122 	efx_rc_t rc;
3123 
3124 	EFSYS_ASSERT(MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MAXNUM >=
3125 	    efx_txq_nbufs(enp, enp->en_nic_cfg.enc_txq_max_ndescs));
3126 
3127 	if ((esmp == NULL) ||
3128 	    (EFSYS_MEM_SIZE(esmp) < efx_txq_size(enp, ndescs))) {
3129 		rc = EINVAL;
3130 		goto fail1;
3131 	}
3132 
3133 	npages = efx_txq_nbufs(enp, ndescs);
3134 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
3135 		rc = EINVAL;
3136 		goto fail2;
3137 	}
3138 
3139 	req.emr_cmd = MC_CMD_INIT_TXQ;
3140 	req.emr_in_buf = payload;
3141 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
3142 	req.emr_out_buf = payload;
3143 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
3144 
3145 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
3146 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
3147 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
3148 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
3149 
3150 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
3151 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
3152 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
3153 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
3154 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
3155 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
3156 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
3157 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
3158 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
3159 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
3160 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
3161 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
3162 	    INIT_TXQ_IN_CRC_MODE, 0,
3163 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
3164 
3165 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
3166 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, enp->en_vport_id);
3167 
3168 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
3169 	addr = EFSYS_MEM_ADDR(esmp);
3170 
3171 	for (i = 0; i < npages; i++) {
3172 		EFX_POPULATE_QWORD_2(*dma_addr,
3173 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
3174 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
3175 
3176 		dma_addr++;
3177 		addr += EFX_BUF_SIZE;
3178 	}
3179 
3180 	efx_mcdi_execute(enp, &req);
3181 
3182 	if (req.emr_rc != 0) {
3183 		rc = req.emr_rc;
3184 		goto fail3;
3185 	}
3186 
3187 	return (0);
3188 
3189 fail3:
3190 	EFSYS_PROBE(fail3);
3191 fail2:
3192 	EFSYS_PROBE(fail2);
3193 fail1:
3194 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3195 
3196 	return (rc);
3197 }
3198 
3199 	__checkReturn	efx_rc_t
3200 efx_mcdi_fini_txq(
3201 	__in		efx_nic_t *enp,
3202 	__in		uint32_t instance)
3203 {
3204 	efx_mcdi_req_t req;
3205 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
3206 		MC_CMD_FINI_TXQ_OUT_LEN);
3207 	efx_rc_t rc;
3208 
3209 	req.emr_cmd = MC_CMD_FINI_TXQ;
3210 	req.emr_in_buf = payload;
3211 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
3212 	req.emr_out_buf = payload;
3213 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
3214 
3215 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
3216 
3217 	efx_mcdi_execute_quiet(enp, &req);
3218 
3219 	if (req.emr_rc != 0) {
3220 		rc = req.emr_rc;
3221 		goto fail1;
3222 	}
3223 
3224 	return (0);
3225 
3226 fail1:
3227 	/*
3228 	 * EALREADY is not an error, but indicates that the MC has rebooted and
3229 	 * that the TXQ has already been destroyed.
3230 	 */
3231 	if (rc != EALREADY)
3232 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3233 
3234 	return (rc);
3235 }
3236 
3237 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
3238 
3239 #endif	/* EFSYS_OPT_MCDI */
3240