xref: /dpdk/drivers/common/sfc_efx/base/efx_mcdi.c (revision bc8e32473cc3978d763a1387eaa8244bcf75e77d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2008-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 
10 #if EFSYS_OPT_MCDI
11 
12 /*
13  * There are three versions of the MCDI interface:
14  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
15  *  - MCDIv1: Siena firmware and Huntington BootROM.
16  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
17  *            Transport uses MCDIv2 headers.
18  *
19  * MCDIv2 Header NOT_EPOCH flag
20  * ----------------------------
21  * A new epoch begins at initial startup or after an MC reboot, and defines when
22  * the MC should reject stale MCDI requests.
23  *
24  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
25  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
26  *
27  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
28  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
29  */
30 
31 
32 
33 #if EFSYS_OPT_SIENA
34 
35 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
36 	siena_mcdi_init,		/* emco_init */
37 	siena_mcdi_send_request,	/* emco_send_request */
38 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
39 	siena_mcdi_poll_response,	/* emco_poll_response */
40 	siena_mcdi_read_response,	/* emco_read_response */
41 	siena_mcdi_fini,		/* emco_fini */
42 	siena_mcdi_feature_supported,	/* emco_feature_supported */
43 	siena_mcdi_get_timeout,		/* emco_get_timeout */
44 };
45 
46 #endif	/* EFSYS_OPT_SIENA */
47 
48 #if EFX_OPTS_EF10()
49 
50 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
51 	ef10_mcdi_init,			/* emco_init */
52 	ef10_mcdi_send_request,		/* emco_send_request */
53 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
54 	ef10_mcdi_poll_response,	/* emco_poll_response */
55 	ef10_mcdi_read_response,	/* emco_read_response */
56 	ef10_mcdi_fini,			/* emco_fini */
57 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
58 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
59 };
60 
61 #endif	/* EFX_OPTS_EF10() */
62 
63 #if EFSYS_OPT_RIVERHEAD
64 
65 static const efx_mcdi_ops_t	__efx_mcdi_rhead_ops = {
66 	ef10_mcdi_init,			/* emco_init */
67 	ef10_mcdi_send_request,		/* emco_send_request */
68 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
69 	ef10_mcdi_poll_response,	/* emco_poll_response */
70 	ef10_mcdi_read_response,	/* emco_read_response */
71 	ef10_mcdi_fini,			/* emco_fini */
72 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
73 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
74 };
75 
76 #endif	/* EFSYS_OPT_RIVERHEAD */
77 
78 
79 
80 	__checkReturn	efx_rc_t
81 efx_mcdi_init(
82 	__in		efx_nic_t *enp,
83 	__in		const efx_mcdi_transport_t *emtp)
84 {
85 	const efx_mcdi_ops_t *emcop;
86 	efx_rc_t rc;
87 
88 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
89 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
90 
91 	switch (enp->en_family) {
92 #if EFSYS_OPT_SIENA
93 	case EFX_FAMILY_SIENA:
94 		emcop = &__efx_mcdi_siena_ops;
95 		break;
96 #endif	/* EFSYS_OPT_SIENA */
97 
98 #if EFSYS_OPT_HUNTINGTON
99 	case EFX_FAMILY_HUNTINGTON:
100 		emcop = &__efx_mcdi_ef10_ops;
101 		break;
102 #endif	/* EFSYS_OPT_HUNTINGTON */
103 
104 #if EFSYS_OPT_MEDFORD
105 	case EFX_FAMILY_MEDFORD:
106 		emcop = &__efx_mcdi_ef10_ops;
107 		break;
108 #endif	/* EFSYS_OPT_MEDFORD */
109 
110 #if EFSYS_OPT_MEDFORD2
111 	case EFX_FAMILY_MEDFORD2:
112 		emcop = &__efx_mcdi_ef10_ops;
113 		break;
114 #endif	/* EFSYS_OPT_MEDFORD2 */
115 
116 #if EFSYS_OPT_RIVERHEAD
117 	case EFX_FAMILY_RIVERHEAD:
118 		emcop = &__efx_mcdi_rhead_ops;
119 		break;
120 #endif	/* EFSYS_OPT_RIVERHEAD */
121 
122 	default:
123 		EFSYS_ASSERT(0);
124 		rc = ENOTSUP;
125 		goto fail1;
126 	}
127 
128 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
129 		/* MCDI requires a DMA buffer in host memory */
130 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
131 			rc = EINVAL;
132 			goto fail2;
133 		}
134 	}
135 	enp->en_mcdi.em_emtp = emtp;
136 
137 	if (emcop != NULL && emcop->emco_init != NULL) {
138 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
139 			goto fail3;
140 	}
141 
142 	enp->en_mcdi.em_emcop = emcop;
143 	enp->en_mod_flags |= EFX_MOD_MCDI;
144 
145 	return (0);
146 
147 fail3:
148 	EFSYS_PROBE(fail3);
149 fail2:
150 	EFSYS_PROBE(fail2);
151 fail1:
152 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
153 
154 	enp->en_mcdi.em_emcop = NULL;
155 	enp->en_mcdi.em_emtp = NULL;
156 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
157 
158 	return (rc);
159 }
160 
161 			void
162 efx_mcdi_fini(
163 	__in		efx_nic_t *enp)
164 {
165 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
166 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
167 
168 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
169 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
170 
171 	if (emcop != NULL && emcop->emco_fini != NULL)
172 		emcop->emco_fini(enp);
173 
174 	emip->emi_port = 0;
175 	emip->emi_aborted = 0;
176 
177 	enp->en_mcdi.em_emcop = NULL;
178 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
179 }
180 
181 			void
182 efx_mcdi_new_epoch(
183 	__in		efx_nic_t *enp)
184 {
185 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
186 	efsys_lock_state_t state;
187 
188 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
189 	EFSYS_LOCK(enp->en_eslp, state);
190 	emip->emi_new_epoch = B_TRUE;
191 	EFSYS_UNLOCK(enp->en_eslp, state);
192 }
193 
194 static			void
195 efx_mcdi_send_request(
196 	__in		efx_nic_t *enp,
197 	__in		void *hdrp,
198 	__in		size_t hdr_len,
199 	__in		void *sdup,
200 	__in		size_t sdu_len)
201 {
202 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
203 
204 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
205 }
206 
207 static			efx_rc_t
208 efx_mcdi_poll_reboot(
209 	__in		efx_nic_t *enp)
210 {
211 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
212 	efx_rc_t rc;
213 
214 	rc = emcop->emco_poll_reboot(enp);
215 	return (rc);
216 }
217 
218 static			boolean_t
219 efx_mcdi_poll_response(
220 	__in		efx_nic_t *enp)
221 {
222 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
223 	boolean_t available;
224 
225 	available = emcop->emco_poll_response(enp);
226 	return (available);
227 }
228 
229 static			void
230 efx_mcdi_read_response(
231 	__in		efx_nic_t *enp,
232 	__out		void *bufferp,
233 	__in		size_t offset,
234 	__in		size_t length)
235 {
236 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
237 
238 	emcop->emco_read_response(enp, bufferp, offset, length);
239 }
240 
241 			void
242 efx_mcdi_request_start(
243 	__in		efx_nic_t *enp,
244 	__in		efx_mcdi_req_t *emrp,
245 	__in		boolean_t ev_cpl)
246 {
247 #if EFSYS_OPT_MCDI_LOGGING
248 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
249 #endif
250 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
251 	efx_dword_t hdr[2];
252 	size_t hdr_len;
253 	unsigned int max_version;
254 	unsigned int seq;
255 	unsigned int xflags;
256 	boolean_t new_epoch;
257 	efsys_lock_state_t state;
258 
259 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
260 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
261 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
262 
263 	/*
264 	 * efx_mcdi_request_start() is naturally serialised against both
265 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
266 	 * by virtue of there only being one outstanding MCDI request.
267 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
268 	 * at any time, to timeout a pending mcdi request, That request may
269 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
270 	 * efx_mcdi_ev_death() may end up running in parallel with
271 	 * efx_mcdi_request_start(). This race is handled by ensuring that
272 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
273 	 * en_eslp lock.
274 	 */
275 	EFSYS_LOCK(enp->en_eslp, state);
276 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
277 	emip->emi_pending_req = emrp;
278 	emip->emi_ev_cpl = ev_cpl;
279 	emip->emi_poll_cnt = 0;
280 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
281 	new_epoch = emip->emi_new_epoch;
282 	max_version = emip->emi_max_version;
283 	EFSYS_UNLOCK(enp->en_eslp, state);
284 
285 	xflags = 0;
286 	if (ev_cpl)
287 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
288 
289 	/*
290 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
291 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
292 	 * possible to support this.
293 	 */
294 	if ((max_version >= 2) &&
295 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
296 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) ||
297 	    (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
298 		/* Construct MCDI v2 header */
299 		hdr_len = sizeof (hdr);
300 		EFX_POPULATE_DWORD_8(hdr[0],
301 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
302 		    MCDI_HEADER_RESYNC, 1,
303 		    MCDI_HEADER_DATALEN, 0,
304 		    MCDI_HEADER_SEQ, seq,
305 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
306 		    MCDI_HEADER_ERROR, 0,
307 		    MCDI_HEADER_RESPONSE, 0,
308 		    MCDI_HEADER_XFLAGS, xflags);
309 
310 		EFX_POPULATE_DWORD_2(hdr[1],
311 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
312 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
313 	} else {
314 		/* Construct MCDI v1 header */
315 		hdr_len = sizeof (hdr[0]);
316 		EFX_POPULATE_DWORD_8(hdr[0],
317 		    MCDI_HEADER_CODE, emrp->emr_cmd,
318 		    MCDI_HEADER_RESYNC, 1,
319 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
320 		    MCDI_HEADER_SEQ, seq,
321 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
322 		    MCDI_HEADER_ERROR, 0,
323 		    MCDI_HEADER_RESPONSE, 0,
324 		    MCDI_HEADER_XFLAGS, xflags);
325 	}
326 
327 #if EFSYS_OPT_MCDI_LOGGING
328 	if (emtp->emt_logger != NULL) {
329 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
330 		    &hdr[0], hdr_len,
331 		    emrp->emr_in_buf, emrp->emr_in_length);
332 	}
333 #endif /* EFSYS_OPT_MCDI_LOGGING */
334 
335 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
336 	    emrp->emr_in_buf, emrp->emr_in_length);
337 }
338 
339 
340 static			void
341 efx_mcdi_read_response_header(
342 	__in		efx_nic_t *enp,
343 	__inout		efx_mcdi_req_t *emrp)
344 {
345 #if EFSYS_OPT_MCDI_LOGGING
346 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
347 #endif /* EFSYS_OPT_MCDI_LOGGING */
348 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
349 	efx_dword_t hdr[2];
350 	unsigned int hdr_len;
351 	unsigned int data_len;
352 	unsigned int seq;
353 	unsigned int cmd;
354 	unsigned int error;
355 	efx_rc_t rc;
356 
357 	EFSYS_ASSERT(emrp != NULL);
358 
359 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
360 	hdr_len = sizeof (hdr[0]);
361 
362 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
363 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
364 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
365 
366 	if (cmd != MC_CMD_V2_EXTN) {
367 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
368 	} else {
369 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
370 		hdr_len += sizeof (hdr[1]);
371 
372 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
373 		data_len =
374 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
375 	}
376 
377 	if (error && (data_len == 0)) {
378 		/* The MC has rebooted since the request was sent. */
379 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
380 		efx_mcdi_poll_reboot(enp);
381 		rc = EIO;
382 		goto fail1;
383 	}
384 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
385 	if (((cmd != emrp->emr_cmd) && (emrp->emr_cmd != MC_CMD_PROXY_CMD)) ||
386 #else
387 	if ((cmd != emrp->emr_cmd) ||
388 #endif
389 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
390 		/* Response is for a different request */
391 		rc = EIO;
392 		goto fail2;
393 	}
394 	if (error) {
395 		efx_dword_t err[2];
396 		unsigned int err_len = MIN(data_len, sizeof (err));
397 		int err_code = MC_CMD_ERR_EPROTO;
398 		int err_arg = 0;
399 
400 		/* Read error code (and arg num for MCDI v2 commands) */
401 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
402 
403 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
404 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
405 #ifdef WITH_MCDI_V2
406 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
407 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
408 #endif
409 		emrp->emr_err_code = err_code;
410 		emrp->emr_err_arg = err_arg;
411 
412 #if EFSYS_OPT_MCDI_PROXY_AUTH
413 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
414 		    (err_len == sizeof (err))) {
415 			/*
416 			 * The MCDI request would normally fail with EPERM, but
417 			 * firmware has forwarded it to an authorization agent
418 			 * attached to a privileged PF.
419 			 *
420 			 * Save the authorization request handle. The client
421 			 * must wait for a PROXY_RESPONSE event, or timeout.
422 			 */
423 			emrp->emr_proxy_handle = err_arg;
424 		}
425 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
426 
427 #if EFSYS_OPT_MCDI_LOGGING
428 		if (emtp->emt_logger != NULL) {
429 			emtp->emt_logger(emtp->emt_context,
430 			    EFX_LOG_MCDI_RESPONSE,
431 			    &hdr[0], hdr_len,
432 			    &err[0], err_len);
433 		}
434 #endif /* EFSYS_OPT_MCDI_LOGGING */
435 
436 		if (!emrp->emr_quiet) {
437 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
438 			    int, err_code, int, err_arg);
439 		}
440 
441 		rc = efx_mcdi_request_errcode(err_code);
442 		goto fail3;
443 	}
444 
445 	emrp->emr_rc = 0;
446 	emrp->emr_out_length_used = data_len;
447 #if EFSYS_OPT_MCDI_PROXY_AUTH
448 	emrp->emr_proxy_handle = 0;
449 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
450 	return;
451 
452 fail3:
453 fail2:
454 fail1:
455 	emrp->emr_rc = rc;
456 	emrp->emr_out_length_used = 0;
457 }
458 
459 static			void
460 efx_mcdi_finish_response(
461 	__in		efx_nic_t *enp,
462 	__in		efx_mcdi_req_t *emrp)
463 {
464 #if EFSYS_OPT_MCDI_LOGGING
465 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
466 #endif /* EFSYS_OPT_MCDI_LOGGING */
467 	efx_dword_t hdr[2];
468 	unsigned int hdr_len;
469 	size_t bytes;
470 	unsigned int resp_off;
471 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
472 	unsigned int resp_cmd;
473 	boolean_t proxied_cmd_resp = B_FALSE;
474 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
475 
476 	if (emrp->emr_out_buf == NULL)
477 		return;
478 
479 	/* Read the command header to detect MCDI response format */
480 	hdr_len = sizeof (hdr[0]);
481 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
482 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
483 		/*
484 		 * Read the actual payload length. The length given in the event
485 		 * is only correct for responses with the V1 format.
486 		 */
487 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
488 		hdr_len += sizeof (hdr[1]);
489 		resp_off = hdr_len;
490 
491 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
492 						MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
493 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
494 		/*
495 		 * A proxy MCDI command is executed by PF on behalf of
496 		 * one of its VFs. The command to be proxied follows
497 		 * immediately afterward in the host buffer.
498 		 * PROXY_CMD inner call complete response should be copied to
499 		 * output buffer so that it can be returned to the requesting
500 		 * function in MC_CMD_PROXY_COMPLETE payload.
501 		 */
502 		resp_cmd =
503 			EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
504 		proxied_cmd_resp = ((emrp->emr_cmd == MC_CMD_PROXY_CMD) &&
505 					(resp_cmd != MC_CMD_PROXY_CMD));
506 		if (proxied_cmd_resp) {
507 			resp_off = 0;
508 			emrp->emr_out_length_used += hdr_len;
509 		}
510 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
511 	} else {
512 		resp_off = hdr_len;
513 	}
514 
515 	/* Copy payload out into caller supplied buffer */
516 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
517 	efx_mcdi_read_response(enp, emrp->emr_out_buf, resp_off, bytes);
518 
519 #if EFSYS_OPT_MCDI_LOGGING
520 	if (emtp->emt_logger != NULL) {
521 		emtp->emt_logger(emtp->emt_context,
522 		    EFX_LOG_MCDI_RESPONSE,
523 		    &hdr[0], hdr_len,
524 		    emrp->emr_out_buf, bytes);
525 	}
526 #endif /* EFSYS_OPT_MCDI_LOGGING */
527 }
528 
529 
530 	__checkReturn	boolean_t
531 efx_mcdi_request_poll(
532 	__in		efx_nic_t *enp)
533 {
534 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
535 	efx_mcdi_req_t *emrp;
536 	efsys_lock_state_t state;
537 	efx_rc_t rc;
538 
539 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
540 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
541 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
542 
543 	/* Serialise against post-watchdog efx_mcdi_ev* */
544 	EFSYS_LOCK(enp->en_eslp, state);
545 
546 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
547 	EFSYS_ASSERT(!emip->emi_ev_cpl);
548 	emrp = emip->emi_pending_req;
549 
550 	/* Check if hardware is unavailable */
551 	if (efx_nic_hw_unavailable(enp)) {
552 		EFSYS_UNLOCK(enp->en_eslp, state);
553 		return (B_FALSE);
554 	}
555 
556 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
557 	if (emip->emi_poll_cnt++ == 0) {
558 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
559 			emip->emi_pending_req = NULL;
560 			EFSYS_UNLOCK(enp->en_eslp, state);
561 
562 			/* Reboot/Assertion */
563 			if (rc == EIO || rc == EINTR)
564 				efx_mcdi_raise_exception(enp, emrp, rc);
565 
566 			goto fail1;
567 		}
568 	}
569 
570 	/* Check if a response is available */
571 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
572 		EFSYS_UNLOCK(enp->en_eslp, state);
573 		return (B_FALSE);
574 	}
575 
576 	/* Read the response header */
577 	efx_mcdi_read_response_header(enp, emrp);
578 
579 	/* Request complete */
580 	emip->emi_pending_req = NULL;
581 
582 	/* Ensure stale MCDI requests fail after an MC reboot. */
583 	emip->emi_new_epoch = B_FALSE;
584 
585 	EFSYS_UNLOCK(enp->en_eslp, state);
586 
587 	if ((rc = emrp->emr_rc) != 0)
588 		goto fail2;
589 
590 	efx_mcdi_finish_response(enp, emrp);
591 	return (B_TRUE);
592 
593 fail2:
594 	if (!emrp->emr_quiet)
595 		EFSYS_PROBE(fail2);
596 fail1:
597 	if (!emrp->emr_quiet)
598 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
599 
600 	return (B_TRUE);
601 }
602 
603 	__checkReturn	boolean_t
604 efx_mcdi_request_abort(
605 	__in		efx_nic_t *enp)
606 {
607 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
608 	efx_mcdi_req_t *emrp;
609 	boolean_t aborted;
610 	efsys_lock_state_t state;
611 
612 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
613 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
614 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
615 
616 	/*
617 	 * efx_mcdi_ev_* may have already completed this event, and be
618 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
619 	 * to for emi_pending_req to be NULL. If there is a pending event
620 	 * completed request, then provide a "credit" to allow
621 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
622 	 */
623 	EFSYS_LOCK(enp->en_eslp, state);
624 	emrp = emip->emi_pending_req;
625 	aborted = (emrp != NULL);
626 	if (aborted) {
627 		emip->emi_pending_req = NULL;
628 
629 		/* Error the request */
630 		emrp->emr_out_length_used = 0;
631 		emrp->emr_rc = ETIMEDOUT;
632 
633 		/* Provide a credit for seqno/emr_pending_req mismatches */
634 		if (emip->emi_ev_cpl)
635 			++emip->emi_aborted;
636 
637 		/*
638 		 * The upper layer has called us, so we don't
639 		 * need to complete the request.
640 		 */
641 	}
642 	EFSYS_UNLOCK(enp->en_eslp, state);
643 
644 	return (aborted);
645 }
646 
647 			void
648 efx_mcdi_get_timeout(
649 	__in		efx_nic_t *enp,
650 	__in		efx_mcdi_req_t *emrp,
651 	__out		uint32_t *timeoutp)
652 {
653 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
654 
655 	emcop->emco_get_timeout(enp, emrp, timeoutp);
656 }
657 
658 	__checkReturn	efx_rc_t
659 efx_mcdi_request_errcode(
660 	__in		unsigned int err)
661 {
662 
663 	switch (err) {
664 		/* MCDI v1 */
665 	case MC_CMD_ERR_EPERM:
666 		return (EACCES);
667 	case MC_CMD_ERR_ENOENT:
668 		return (ENOENT);
669 	case MC_CMD_ERR_EINTR:
670 		return (EINTR);
671 	case MC_CMD_ERR_EACCES:
672 		return (EACCES);
673 	case MC_CMD_ERR_EBUSY:
674 		return (EBUSY);
675 	case MC_CMD_ERR_EINVAL:
676 		return (EINVAL);
677 	case MC_CMD_ERR_EDEADLK:
678 		return (EDEADLK);
679 	case MC_CMD_ERR_ENOSYS:
680 		return (ENOTSUP);
681 	case MC_CMD_ERR_ETIME:
682 		return (ETIMEDOUT);
683 	case MC_CMD_ERR_ENOTSUP:
684 		return (ENOTSUP);
685 	case MC_CMD_ERR_EALREADY:
686 		return (EALREADY);
687 
688 		/* MCDI v2 */
689 	case MC_CMD_ERR_EEXIST:
690 		return (EEXIST);
691 #ifdef MC_CMD_ERR_EAGAIN
692 	case MC_CMD_ERR_EAGAIN:
693 		return (EAGAIN);
694 #endif
695 #ifdef MC_CMD_ERR_ENOSPC
696 	case MC_CMD_ERR_ENOSPC:
697 		return (ENOSPC);
698 #endif
699 	case MC_CMD_ERR_ERANGE:
700 		return (ERANGE);
701 
702 	case MC_CMD_ERR_ALLOC_FAIL:
703 		return (ENOMEM);
704 	case MC_CMD_ERR_NO_VADAPTOR:
705 		return (ENOENT);
706 	case MC_CMD_ERR_NO_EVB_PORT:
707 		return (ENOENT);
708 	case MC_CMD_ERR_NO_VSWITCH:
709 		return (ENODEV);
710 	case MC_CMD_ERR_VLAN_LIMIT:
711 		return (EINVAL);
712 	case MC_CMD_ERR_BAD_PCI_FUNC:
713 		return (ENODEV);
714 	case MC_CMD_ERR_BAD_VLAN_MODE:
715 		return (EINVAL);
716 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
717 		return (EINVAL);
718 	case MC_CMD_ERR_BAD_VPORT_TYPE:
719 		return (EINVAL);
720 	case MC_CMD_ERR_MAC_EXIST:
721 		return (EEXIST);
722 
723 	case MC_CMD_ERR_PROXY_PENDING:
724 		return (EAGAIN);
725 
726 	default:
727 		EFSYS_PROBE1(mc_pcol_error, int, err);
728 		return (EIO);
729 	}
730 }
731 
732 			void
733 efx_mcdi_raise_exception(
734 	__in		efx_nic_t *enp,
735 	__in_opt	efx_mcdi_req_t *emrp,
736 	__in		int rc)
737 {
738 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
739 	efx_mcdi_exception_t exception;
740 
741 	/* Reboot or Assertion failure only */
742 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
743 
744 	/*
745 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
746 	 * then the EIO is not worthy of an exception.
747 	 */
748 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
749 		return;
750 
751 	exception = (rc == EIO)
752 		? EFX_MCDI_EXCEPTION_MC_REBOOT
753 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
754 
755 	emtp->emt_exception(emtp->emt_context, exception);
756 }
757 
758 			void
759 efx_mcdi_execute(
760 	__in		efx_nic_t *enp,
761 	__inout		efx_mcdi_req_t *emrp)
762 {
763 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
764 
765 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
766 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
767 
768 	emrp->emr_quiet = B_FALSE;
769 	emtp->emt_execute(emtp->emt_context, emrp);
770 }
771 
772 			void
773 efx_mcdi_execute_quiet(
774 	__in		efx_nic_t *enp,
775 	__inout		efx_mcdi_req_t *emrp)
776 {
777 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
778 
779 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
780 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
781 
782 	emrp->emr_quiet = B_TRUE;
783 	emtp->emt_execute(emtp->emt_context, emrp);
784 }
785 
786 			void
787 efx_mcdi_ev_cpl(
788 	__in		efx_nic_t *enp,
789 	__in		unsigned int seq,
790 	__in		unsigned int outlen,
791 	__in		int errcode)
792 {
793 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
794 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
795 	efx_mcdi_req_t *emrp;
796 	efsys_lock_state_t state;
797 
798 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
799 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
800 
801 	/*
802 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
803 	 * when we're completing an aborted request.
804 	 */
805 	EFSYS_LOCK(enp->en_eslp, state);
806 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
807 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
808 		EFSYS_ASSERT(emip->emi_aborted > 0);
809 		if (emip->emi_aborted > 0)
810 			--emip->emi_aborted;
811 		EFSYS_UNLOCK(enp->en_eslp, state);
812 		return;
813 	}
814 
815 	emrp = emip->emi_pending_req;
816 	emip->emi_pending_req = NULL;
817 	EFSYS_UNLOCK(enp->en_eslp, state);
818 
819 	if (emip->emi_max_version >= 2) {
820 		/* MCDIv2 response details do not fit into an event. */
821 		efx_mcdi_read_response_header(enp, emrp);
822 	} else {
823 		if (errcode != 0) {
824 			if (!emrp->emr_quiet) {
825 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
826 				    int, errcode);
827 			}
828 			emrp->emr_out_length_used = 0;
829 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
830 		} else {
831 			emrp->emr_out_length_used = outlen;
832 			emrp->emr_rc = 0;
833 		}
834 	}
835 	if (emrp->emr_rc == 0)
836 		efx_mcdi_finish_response(enp, emrp);
837 
838 	emtp->emt_ev_cpl(emtp->emt_context);
839 }
840 
841 #if EFSYS_OPT_MCDI_PROXY_AUTH
842 
843 	__checkReturn	efx_rc_t
844 efx_mcdi_get_proxy_handle(
845 	__in		efx_nic_t *enp,
846 	__in		efx_mcdi_req_t *emrp,
847 	__out		uint32_t *handlep)
848 {
849 	efx_rc_t rc;
850 
851 	_NOTE(ARGUNUSED(enp))
852 
853 	/*
854 	 * Return proxy handle from MCDI request that returned with error
855 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
856 	 * PROXY_RESPONSE event.
857 	 */
858 	if ((emrp == NULL) || (handlep == NULL)) {
859 		rc = EINVAL;
860 		goto fail1;
861 	}
862 	if ((emrp->emr_rc != 0) &&
863 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
864 		*handlep = emrp->emr_proxy_handle;
865 		rc = 0;
866 	} else {
867 		*handlep = 0;
868 		rc = ENOENT;
869 	}
870 	return (rc);
871 
872 fail1:
873 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
874 	return (rc);
875 }
876 
877 			void
878 efx_mcdi_ev_proxy_response(
879 	__in		efx_nic_t *enp,
880 	__in		unsigned int handle,
881 	__in		unsigned int status)
882 {
883 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
884 	efx_rc_t rc;
885 
886 	/*
887 	 * Handle results of an authorization request for a privileged MCDI
888 	 * command. If authorization was granted then we must re-issue the
889 	 * original MCDI request. If authorization failed or timed out,
890 	 * then the original MCDI request should be completed with the
891 	 * result code from this event.
892 	 */
893 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
894 
895 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
896 }
897 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
898 
899 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
900 			void
901 efx_mcdi_ev_proxy_request(
902 	__in		efx_nic_t *enp,
903 	__in		unsigned int index)
904 {
905 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
906 
907 	if (emtp->emt_ev_proxy_request != NULL)
908 		emtp->emt_ev_proxy_request(emtp->emt_context, index);
909 }
910 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
911 			void
912 efx_mcdi_ev_death(
913 	__in		efx_nic_t *enp,
914 	__in		int rc)
915 {
916 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
917 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
918 	efx_mcdi_req_t *emrp = NULL;
919 	boolean_t ev_cpl;
920 	efsys_lock_state_t state;
921 
922 	/*
923 	 * The MCDI request (if there is one) has been terminated, either
924 	 * by a BADASSERT or REBOOT event.
925 	 *
926 	 * If there is an outstanding event-completed MCDI operation, then we
927 	 * will never receive the completion event (because both MCDI
928 	 * completions and BADASSERT events are sent to the same evq). So
929 	 * complete this MCDI op.
930 	 *
931 	 * This function might run in parallel with efx_mcdi_request_poll()
932 	 * for poll completed mcdi requests, and also with
933 	 * efx_mcdi_request_start() for post-watchdog completions.
934 	 */
935 	EFSYS_LOCK(enp->en_eslp, state);
936 	emrp = emip->emi_pending_req;
937 	ev_cpl = emip->emi_ev_cpl;
938 	if (emrp != NULL && emip->emi_ev_cpl) {
939 		emip->emi_pending_req = NULL;
940 
941 		emrp->emr_out_length_used = 0;
942 		emrp->emr_rc = rc;
943 		++emip->emi_aborted;
944 	}
945 
946 	/*
947 	 * Since we're running in parallel with a request, consume the
948 	 * status word before dropping the lock.
949 	 */
950 	if (rc == EIO || rc == EINTR) {
951 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
952 		(void) efx_mcdi_poll_reboot(enp);
953 		emip->emi_new_epoch = B_TRUE;
954 	}
955 
956 	EFSYS_UNLOCK(enp->en_eslp, state);
957 
958 	efx_mcdi_raise_exception(enp, emrp, rc);
959 
960 	if (emrp != NULL && ev_cpl)
961 		emtp->emt_ev_cpl(emtp->emt_context);
962 }
963 
964 	__checkReturn		efx_rc_t
965 efx_mcdi_get_version(
966 	__in			efx_nic_t *enp,
967 	__in			uint32_t flags,
968 	__out			efx_mcdi_version_t *verp)
969 {
970 	efx_nic_board_info_t *board_infop = &verp->emv_board_info;
971 	EFX_MCDI_DECLARE_BUF(payload,
972 	    MC_CMD_GET_VERSION_EXT_IN_LEN,
973 	    MC_CMD_GET_VERSION_V2_OUT_LEN);
974 	efx_word_t *ver_words;
975 	uint16_t version[4];
976 	efx_mcdi_req_t req;
977 	uint32_t firmware;
978 	efx_rc_t rc;
979 
980 	EFX_STATIC_ASSERT(sizeof (verp->emv_version) ==
981 	    MC_CMD_GET_VERSION_OUT_VERSION_LEN);
982 	EFX_STATIC_ASSERT(sizeof (verp->emv_firmware) ==
983 	    MC_CMD_GET_VERSION_OUT_FIRMWARE_LEN);
984 
985 	EFX_STATIC_ASSERT(EFX_MCDI_VERSION_BOARD_INFO ==
986 	    (1U << MC_CMD_GET_VERSION_V2_OUT_BOARD_EXT_INFO_PRESENT_LBN));
987 
988 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_serial) ==
989 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_SERIAL_LEN);
990 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_name) ==
991 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_NAME_LEN);
992 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_revision) ==
993 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_REVISION_LEN);
994 
995 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
996 
997 	req.emr_cmd = MC_CMD_GET_VERSION;
998 	req.emr_in_buf = payload;
999 	req.emr_out_buf = payload;
1000 
1001 	if ((flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1002 		/* Request basic + extended version information. */
1003 		req.emr_in_length = MC_CMD_GET_VERSION_EXT_IN_LEN;
1004 		req.emr_out_length = MC_CMD_GET_VERSION_V2_OUT_LEN;
1005 	} else {
1006 		/* Request only basic version information. */
1007 		req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
1008 		req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
1009 	}
1010 
1011 	efx_mcdi_execute(enp, &req);
1012 
1013 	if (req.emr_rc != 0) {
1014 		rc = req.emr_rc;
1015 		goto fail1;
1016 	}
1017 
1018 	/* bootrom support */
1019 	if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
1020 		version[0] = version[1] = version[2] = version[3] = 0;
1021 		firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1022 		goto out;
1023 	}
1024 
1025 	if (req.emr_out_length_used < req.emr_out_length) {
1026 		rc = EMSGSIZE;
1027 		goto fail2;
1028 	}
1029 
1030 	ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
1031 	version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
1032 	version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
1033 	version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
1034 	version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
1035 	firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1036 
1037 out:
1038 	memset(verp, 0, sizeof (*verp));
1039 
1040 	verp->emv_version[0] = version[0];
1041 	verp->emv_version[1] = version[1];
1042 	verp->emv_version[2] = version[2];
1043 	verp->emv_version[3] = version[3];
1044 	verp->emv_firmware = firmware;
1045 
1046 	verp->emv_flags = MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_FLAGS);
1047 	verp->emv_flags &= flags;
1048 
1049 	if ((verp->emv_flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1050 		memcpy(board_infop->enbi_serial,
1051 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_SERIAL),
1052 		    sizeof (board_infop->enbi_serial));
1053 		memcpy(board_infop->enbi_name,
1054 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_NAME),
1055 		    sizeof (board_infop->enbi_name));
1056 		board_infop->enbi_revision =
1057 		    MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_BOARD_REVISION);
1058 	}
1059 
1060 	return (0);
1061 
1062 fail2:
1063 	EFSYS_PROBE(fail2);
1064 fail1:
1065 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1066 
1067 	return (rc);
1068 }
1069 
1070 static	__checkReturn		efx_rc_t
1071 efx_mcdi_get_boot_status(
1072 	__in			efx_nic_t *enp,
1073 	__out			efx_mcdi_boot_t *statusp)
1074 {
1075 	EFX_MCDI_DECLARE_BUF(payload,
1076 	    MC_CMD_GET_BOOT_STATUS_IN_LEN,
1077 	    MC_CMD_GET_BOOT_STATUS_OUT_LEN);
1078 	efx_mcdi_req_t req;
1079 	efx_rc_t rc;
1080 
1081 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
1082 
1083 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
1084 	req.emr_in_buf = payload;
1085 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
1086 	req.emr_out_buf = payload;
1087 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
1088 
1089 	efx_mcdi_execute_quiet(enp, &req);
1090 
1091 	/*
1092 	 * NOTE: Unprivileged functions cannot access boot status,
1093 	 *       so the MCDI request will return EACCES. This is
1094 	 *       also checked in efx_mcdi_version.
1095 	 */
1096 
1097 	if (req.emr_rc != 0) {
1098 		rc = req.emr_rc;
1099 		goto fail1;
1100 	}
1101 
1102 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
1103 		rc = EMSGSIZE;
1104 		goto fail2;
1105 	}
1106 
1107 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
1108 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
1109 		*statusp = EFX_MCDI_BOOT_PRIMARY;
1110 	else
1111 		*statusp = EFX_MCDI_BOOT_SECONDARY;
1112 
1113 	return (0);
1114 
1115 fail2:
1116 	EFSYS_PROBE(fail2);
1117 fail1:
1118 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1119 
1120 	return (rc);
1121 }
1122 
1123 	__checkReturn		efx_rc_t
1124 efx_mcdi_version(
1125 	__in			efx_nic_t *enp,
1126 	__out_ecount_opt(4)	uint16_t versionp[4],
1127 	__out_opt		uint32_t *buildp,
1128 	__out_opt		efx_mcdi_boot_t *statusp)
1129 {
1130 	efx_mcdi_version_t ver;
1131 	efx_mcdi_boot_t status;
1132 	efx_rc_t rc;
1133 
1134 	rc = efx_mcdi_get_version(enp, 0, &ver);
1135 	if (rc != 0)
1136 		goto fail1;
1137 
1138 	/* The bootrom doesn't understand BOOT_STATUS */
1139 	if (MC_FW_VERSION_IS_BOOTLOADER(ver.emv_firmware)) {
1140 		status = EFX_MCDI_BOOT_ROM;
1141 		goto out;
1142 	}
1143 
1144 	rc = efx_mcdi_get_boot_status(enp, &status);
1145 	if (rc == EACCES) {
1146 		/* Unprivileged functions cannot access BOOT_STATUS */
1147 		status = EFX_MCDI_BOOT_PRIMARY;
1148 		memset(ver.emv_version, 0, sizeof (ver.emv_version));
1149 		ver.emv_firmware = 0;
1150 	} else if (rc != 0) {
1151 		goto fail2;
1152 	}
1153 
1154 out:
1155 	if (versionp != NULL)
1156 		memcpy(versionp, ver.emv_version, sizeof (ver.emv_version));
1157 	if (buildp != NULL)
1158 		*buildp = ver.emv_firmware;
1159 	if (statusp != NULL)
1160 		*statusp = status;
1161 
1162 	return (0);
1163 
1164 fail2:
1165 	EFSYS_PROBE(fail2);
1166 fail1:
1167 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1168 
1169 	return (rc);
1170 }
1171 
1172 	__checkReturn	efx_rc_t
1173 efx_mcdi_get_capabilities(
1174 	__in		efx_nic_t *enp,
1175 	__out_opt	uint32_t *flagsp,
1176 	__out_opt	uint16_t *rx_dpcpu_fw_idp,
1177 	__out_opt	uint16_t *tx_dpcpu_fw_idp,
1178 	__out_opt	uint32_t *flags2p,
1179 	__out_opt	uint32_t *tso2ncp)
1180 {
1181 	efx_mcdi_req_t req;
1182 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1183 		MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
1184 	boolean_t v2_capable;
1185 	efx_rc_t rc;
1186 
1187 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1188 	req.emr_in_buf = payload;
1189 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1190 	req.emr_out_buf = payload;
1191 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
1192 
1193 	efx_mcdi_execute_quiet(enp, &req);
1194 
1195 	if (req.emr_rc != 0) {
1196 		rc = req.emr_rc;
1197 		goto fail1;
1198 	}
1199 
1200 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1201 		rc = EMSGSIZE;
1202 		goto fail2;
1203 	}
1204 
1205 	if (flagsp != NULL)
1206 		*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
1207 
1208 	if (rx_dpcpu_fw_idp != NULL)
1209 		*rx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1210 					GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
1211 
1212 	if (tx_dpcpu_fw_idp != NULL)
1213 		*tx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1214 					GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
1215 
1216 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
1217 		v2_capable = B_FALSE;
1218 	else
1219 		v2_capable = B_TRUE;
1220 
1221 	if (flags2p != NULL) {
1222 		*flags2p = (v2_capable) ?
1223 			MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) :
1224 			0;
1225 	}
1226 
1227 	if (tso2ncp != NULL) {
1228 		*tso2ncp = (v2_capable) ?
1229 			MCDI_OUT_WORD(req,
1230 				GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) :
1231 			0;
1232 	}
1233 
1234 	return (0);
1235 
1236 fail2:
1237 	EFSYS_PROBE(fail2);
1238 fail1:
1239 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1240 
1241 	return (rc);
1242 }
1243 
1244 static	__checkReturn	efx_rc_t
1245 efx_mcdi_do_reboot(
1246 	__in		efx_nic_t *enp,
1247 	__in		boolean_t after_assertion)
1248 {
1249 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN,
1250 		MC_CMD_REBOOT_OUT_LEN);
1251 	efx_mcdi_req_t req;
1252 	efx_rc_t rc;
1253 
1254 	/*
1255 	 * We could require the caller to have caused en_mod_flags=0 to
1256 	 * call this function. This doesn't help the other port though,
1257 	 * who's about to get the MC ripped out from underneath them.
1258 	 * Since they have to cope with the subsequent fallout of MCDI
1259 	 * failures, we should as well.
1260 	 */
1261 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1262 
1263 	req.emr_cmd = MC_CMD_REBOOT;
1264 	req.emr_in_buf = payload;
1265 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1266 	req.emr_out_buf = payload;
1267 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1268 
1269 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1270 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1271 
1272 	efx_mcdi_execute_quiet(enp, &req);
1273 
1274 	if (req.emr_rc == EACCES) {
1275 		/* Unprivileged functions cannot reboot the MC. */
1276 		goto out;
1277 	}
1278 
1279 	/* A successful reboot request returns EIO. */
1280 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1281 		rc = req.emr_rc;
1282 		goto fail1;
1283 	}
1284 
1285 out:
1286 	return (0);
1287 
1288 fail1:
1289 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1290 
1291 	return (rc);
1292 }
1293 
1294 	__checkReturn	efx_rc_t
1295 efx_mcdi_reboot(
1296 	__in		efx_nic_t *enp)
1297 {
1298 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1299 }
1300 
1301 	__checkReturn	efx_rc_t
1302 efx_mcdi_exit_assertion_handler(
1303 	__in		efx_nic_t *enp)
1304 {
1305 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1306 }
1307 
1308 	__checkReturn	efx_rc_t
1309 efx_mcdi_read_assertion(
1310 	__in		efx_nic_t *enp)
1311 {
1312 	efx_mcdi_req_t req;
1313 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN,
1314 		MC_CMD_GET_ASSERTS_OUT_LEN);
1315 	const char *reason;
1316 	unsigned int flags;
1317 	unsigned int index;
1318 	unsigned int ofst;
1319 	int retry;
1320 	efx_rc_t rc;
1321 
1322 	/*
1323 	 * Before we attempt to chat to the MC, we should verify that the MC
1324 	 * isn't in it's assertion handler, either due to a previous reboot,
1325 	 * or because we're reinitializing due to an eec_exception().
1326 	 *
1327 	 * Use GET_ASSERTS to read any assertion state that may be present.
1328 	 * Retry this command twice. Once because a boot-time assertion failure
1329 	 * might cause the 1st MCDI request to fail. And once again because
1330 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1331 	 * partner port(s) on the same NIC.
1332 	 */
1333 	retry = 2;
1334 	do {
1335 		(void) memset(payload, 0, sizeof (payload));
1336 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1337 		req.emr_in_buf = payload;
1338 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1339 		req.emr_out_buf = payload;
1340 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1341 
1342 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1343 		efx_mcdi_execute_quiet(enp, &req);
1344 
1345 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1346 
1347 	if (req.emr_rc != 0) {
1348 		if (req.emr_rc == EACCES) {
1349 			/* Unprivileged functions cannot clear assertions. */
1350 			goto out;
1351 		}
1352 		rc = req.emr_rc;
1353 		goto fail1;
1354 	}
1355 
1356 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1357 		rc = EMSGSIZE;
1358 		goto fail2;
1359 	}
1360 
1361 	/* Print out any assertion state recorded */
1362 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1363 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1364 		return (0);
1365 
1366 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1367 		? "system-level assertion"
1368 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1369 		? "thread-level assertion"
1370 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1371 		? "watchdog reset"
1372 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1373 		? "illegal address trap"
1374 		: "unknown assertion";
1375 	EFSYS_PROBE3(mcpu_assertion,
1376 	    const char *, reason, unsigned int,
1377 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1378 	    unsigned int,
1379 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1380 
1381 	/* Print out the registers (r1 ... r31) */
1382 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1383 	for (index = 1;
1384 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1385 		index++) {
1386 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1387 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1388 					    EFX_DWORD_0));
1389 		ofst += sizeof (efx_dword_t);
1390 	}
1391 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1392 
1393 out:
1394 	return (0);
1395 
1396 fail2:
1397 	EFSYS_PROBE(fail2);
1398 fail1:
1399 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1400 
1401 	return (rc);
1402 }
1403 
1404 
1405 /*
1406  * Internal routines for for specific MCDI requests.
1407  */
1408 
1409 	__checkReturn	efx_rc_t
1410 efx_mcdi_drv_attach(
1411 	__in		efx_nic_t *enp,
1412 	__in		boolean_t attach)
1413 {
1414 	efx_mcdi_req_t req;
1415 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_V2_LEN,
1416 		MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1417 	efx_rc_t rc;
1418 
1419 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1420 	req.emr_in_buf = payload;
1421 	if (enp->en_drv_version[0] == '\0') {
1422 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1423 	} else {
1424 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_V2_LEN;
1425 	}
1426 	req.emr_out_buf = payload;
1427 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1428 
1429 	/*
1430 	 * Typically, client drivers use DONT_CARE for the datapath firmware
1431 	 * type to ensure that the driver can attach to an unprivileged
1432 	 * function. The datapath firmware type to use is controlled by the
1433 	 * 'sfboot' utility.
1434 	 * If a client driver wishes to attach with a specific datapath firmware
1435 	 * type, that can be passed in second argument of efx_nic_probe API. One
1436 	 * such example is the ESXi native driver that attempts attaching with
1437 	 * FULL_FEATURED datapath firmware type first and fall backs to
1438 	 * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails.
1439 	 */
1440 	MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE,
1441 	    DRV_ATTACH_IN_ATTACH, attach ? 1 : 0,
1442 	    DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE);
1443 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1444 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv);
1445 
1446 	if (req.emr_in_length >= MC_CMD_DRV_ATTACH_IN_V2_LEN) {
1447 		EFX_STATIC_ASSERT(sizeof (enp->en_drv_version) ==
1448 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1449 		memcpy(MCDI_IN2(req, char, DRV_ATTACH_IN_V2_DRIVER_VERSION),
1450 		    enp->en_drv_version,
1451 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1452 	}
1453 
1454 	efx_mcdi_execute(enp, &req);
1455 
1456 	if (req.emr_rc != 0) {
1457 		rc = req.emr_rc;
1458 		goto fail1;
1459 	}
1460 
1461 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1462 		rc = EMSGSIZE;
1463 		goto fail2;
1464 	}
1465 
1466 	return (0);
1467 
1468 fail2:
1469 	EFSYS_PROBE(fail2);
1470 fail1:
1471 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1472 
1473 	return (rc);
1474 }
1475 
1476 	__checkReturn		efx_rc_t
1477 efx_mcdi_get_board_cfg(
1478 	__in			efx_nic_t *enp,
1479 	__out_opt		uint32_t *board_typep,
1480 	__out_opt		efx_dword_t *capabilitiesp,
1481 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1482 {
1483 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1484 	efx_mcdi_req_t req;
1485 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN,
1486 		MC_CMD_GET_BOARD_CFG_OUT_LENMIN);
1487 	efx_rc_t rc;
1488 
1489 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1490 	req.emr_in_buf = payload;
1491 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1492 	req.emr_out_buf = payload;
1493 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1494 
1495 	efx_mcdi_execute(enp, &req);
1496 
1497 	if (req.emr_rc != 0) {
1498 		rc = req.emr_rc;
1499 		goto fail1;
1500 	}
1501 
1502 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1503 		rc = EMSGSIZE;
1504 		goto fail2;
1505 	}
1506 
1507 	if (mac_addrp != NULL) {
1508 		uint8_t *addrp;
1509 
1510 		if (emip->emi_port == 1) {
1511 			addrp = MCDI_OUT2(req, uint8_t,
1512 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1513 		} else if (emip->emi_port == 2) {
1514 			addrp = MCDI_OUT2(req, uint8_t,
1515 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1516 		} else {
1517 			rc = EINVAL;
1518 			goto fail3;
1519 		}
1520 
1521 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1522 	}
1523 
1524 	if (capabilitiesp != NULL) {
1525 		if (emip->emi_port == 1) {
1526 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1527 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1528 		} else if (emip->emi_port == 2) {
1529 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1530 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1531 		} else {
1532 			rc = EINVAL;
1533 			goto fail4;
1534 		}
1535 	}
1536 
1537 	if (board_typep != NULL) {
1538 		*board_typep = MCDI_OUT_DWORD(req,
1539 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1540 	}
1541 
1542 	return (0);
1543 
1544 fail4:
1545 	EFSYS_PROBE(fail4);
1546 fail3:
1547 	EFSYS_PROBE(fail3);
1548 fail2:
1549 	EFSYS_PROBE(fail2);
1550 fail1:
1551 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1552 
1553 	return (rc);
1554 }
1555 
1556 	__checkReturn	efx_rc_t
1557 efx_mcdi_get_resource_limits(
1558 	__in		efx_nic_t *enp,
1559 	__out_opt	uint32_t *nevqp,
1560 	__out_opt	uint32_t *nrxqp,
1561 	__out_opt	uint32_t *ntxqp)
1562 {
1563 	efx_mcdi_req_t req;
1564 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1565 		MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN);
1566 	efx_rc_t rc;
1567 
1568 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1569 	req.emr_in_buf = payload;
1570 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1571 	req.emr_out_buf = payload;
1572 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1573 
1574 	efx_mcdi_execute(enp, &req);
1575 
1576 	if (req.emr_rc != 0) {
1577 		rc = req.emr_rc;
1578 		goto fail1;
1579 	}
1580 
1581 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1582 		rc = EMSGSIZE;
1583 		goto fail2;
1584 	}
1585 
1586 	if (nevqp != NULL)
1587 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1588 	if (nrxqp != NULL)
1589 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1590 	if (ntxqp != NULL)
1591 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1592 
1593 	return (0);
1594 
1595 fail2:
1596 	EFSYS_PROBE(fail2);
1597 fail1:
1598 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1599 
1600 	return (rc);
1601 }
1602 
1603 	__checkReturn	efx_rc_t
1604 efx_mcdi_get_phy_cfg(
1605 	__in		efx_nic_t *enp)
1606 {
1607 	efx_port_t *epp = &(enp->en_port);
1608 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1609 	efx_mcdi_req_t req;
1610 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN,
1611 		MC_CMD_GET_PHY_CFG_OUT_LEN);
1612 #if EFSYS_OPT_NAMES
1613 	const char *namep;
1614 	size_t namelen;
1615 #endif
1616 	uint32_t phy_media_type;
1617 	efx_rc_t rc;
1618 
1619 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1620 	req.emr_in_buf = payload;
1621 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1622 	req.emr_out_buf = payload;
1623 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1624 
1625 	efx_mcdi_execute(enp, &req);
1626 
1627 	if (req.emr_rc != 0) {
1628 		rc = req.emr_rc;
1629 		goto fail1;
1630 	}
1631 
1632 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1633 		rc = EMSGSIZE;
1634 		goto fail2;
1635 	}
1636 
1637 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1638 #if EFSYS_OPT_NAMES
1639 	namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME);
1640 	namelen = MIN(sizeof (encp->enc_phy_name) - 1,
1641 		    strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1642 	(void) memset(encp->enc_phy_name, 0,
1643 	    sizeof (encp->enc_phy_name));
1644 	memcpy(encp->enc_phy_name, namep, namelen);
1645 #endif	/* EFSYS_OPT_NAMES */
1646 	(void) memset(encp->enc_phy_revision, 0,
1647 	    sizeof (encp->enc_phy_revision));
1648 	memcpy(encp->enc_phy_revision,
1649 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1650 		MIN(sizeof (encp->enc_phy_revision) - 1,
1651 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1652 #if EFSYS_OPT_PHY_LED_CONTROL
1653 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1654 			    (1 << EFX_PHY_LED_OFF) |
1655 			    (1 << EFX_PHY_LED_ON));
1656 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1657 
1658 	/* Get the media type of the fixed port, if recognised. */
1659 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1660 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1661 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1662 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1663 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1664 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1665 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1666 	phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1667 	epp->ep_fixed_port_type = (efx_phy_media_type_t)phy_media_type;
1668 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1669 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1670 
1671 	epp->ep_phy_cap_mask =
1672 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1673 #if EFSYS_OPT_PHY_FLAGS
1674 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1675 #endif	/* EFSYS_OPT_PHY_FLAGS */
1676 
1677 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1678 
1679 	/* Populate internal state */
1680 	encp->enc_mcdi_mdio_channel =
1681 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1682 
1683 #if EFSYS_OPT_PHY_STATS
1684 	encp->enc_mcdi_phy_stat_mask =
1685 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1686 #endif	/* EFSYS_OPT_PHY_STATS */
1687 
1688 #if EFSYS_OPT_BIST
1689 	encp->enc_bist_mask = 0;
1690 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1691 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1692 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1693 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1694 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1695 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1696 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1697 	    GET_PHY_CFG_OUT_BIST))
1698 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1699 #endif  /* EFSYS_OPT_BIST */
1700 
1701 	return (0);
1702 
1703 fail2:
1704 	EFSYS_PROBE(fail2);
1705 fail1:
1706 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1707 
1708 	return (rc);
1709 }
1710 
1711 	__checkReturn		efx_rc_t
1712 efx_mcdi_firmware_update_supported(
1713 	__in			efx_nic_t *enp,
1714 	__out			boolean_t *supportedp)
1715 {
1716 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1717 	efx_rc_t rc;
1718 
1719 	if (emcop != NULL) {
1720 		if ((rc = emcop->emco_feature_supported(enp,
1721 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1722 			goto fail1;
1723 	} else {
1724 		/* Earlier devices always supported updates */
1725 		*supportedp = B_TRUE;
1726 	}
1727 
1728 	return (0);
1729 
1730 fail1:
1731 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1732 
1733 	return (rc);
1734 }
1735 
1736 	__checkReturn		efx_rc_t
1737 efx_mcdi_macaddr_change_supported(
1738 	__in			efx_nic_t *enp,
1739 	__out			boolean_t *supportedp)
1740 {
1741 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1742 	efx_rc_t rc;
1743 
1744 	if (emcop != NULL) {
1745 		if ((rc = emcop->emco_feature_supported(enp,
1746 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1747 			goto fail1;
1748 	} else {
1749 		/* Earlier devices always supported MAC changes */
1750 		*supportedp = B_TRUE;
1751 	}
1752 
1753 	return (0);
1754 
1755 fail1:
1756 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1757 
1758 	return (rc);
1759 }
1760 
1761 	__checkReturn		efx_rc_t
1762 efx_mcdi_link_control_supported(
1763 	__in			efx_nic_t *enp,
1764 	__out			boolean_t *supportedp)
1765 {
1766 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1767 	efx_rc_t rc;
1768 
1769 	if (emcop != NULL) {
1770 		if ((rc = emcop->emco_feature_supported(enp,
1771 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1772 			goto fail1;
1773 	} else {
1774 		/* Earlier devices always supported link control */
1775 		*supportedp = B_TRUE;
1776 	}
1777 
1778 	return (0);
1779 
1780 fail1:
1781 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1782 
1783 	return (rc);
1784 }
1785 
1786 	__checkReturn		efx_rc_t
1787 efx_mcdi_mac_spoofing_supported(
1788 	__in			efx_nic_t *enp,
1789 	__out			boolean_t *supportedp)
1790 {
1791 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1792 	efx_rc_t rc;
1793 
1794 	if (emcop != NULL) {
1795 		if ((rc = emcop->emco_feature_supported(enp,
1796 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1797 			goto fail1;
1798 	} else {
1799 		/* Earlier devices always supported MAC spoofing */
1800 		*supportedp = B_TRUE;
1801 	}
1802 
1803 	return (0);
1804 
1805 fail1:
1806 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1807 
1808 	return (rc);
1809 }
1810 
1811 #if EFSYS_OPT_BIST
1812 
1813 #if EFX_OPTS_EF10()
1814 /*
1815  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1816  * where memory BIST tests can be run and not much else can interfere or happen.
1817  * A reboot is required to exit this mode.
1818  */
1819 	__checkReturn		efx_rc_t
1820 efx_mcdi_bist_enable_offline(
1821 	__in			efx_nic_t *enp)
1822 {
1823 	efx_mcdi_req_t req;
1824 	efx_rc_t rc;
1825 
1826 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1827 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1828 
1829 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1830 	req.emr_in_buf = NULL;
1831 	req.emr_in_length = 0;
1832 	req.emr_out_buf = NULL;
1833 	req.emr_out_length = 0;
1834 
1835 	efx_mcdi_execute(enp, &req);
1836 
1837 	if (req.emr_rc != 0) {
1838 		rc = req.emr_rc;
1839 		goto fail1;
1840 	}
1841 
1842 	return (0);
1843 
1844 fail1:
1845 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1846 
1847 	return (rc);
1848 }
1849 #endif /* EFX_OPTS_EF10() */
1850 
1851 	__checkReturn		efx_rc_t
1852 efx_mcdi_bist_start(
1853 	__in			efx_nic_t *enp,
1854 	__in			efx_bist_type_t type)
1855 {
1856 	efx_mcdi_req_t req;
1857 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN,
1858 		MC_CMD_START_BIST_OUT_LEN);
1859 	efx_rc_t rc;
1860 
1861 	req.emr_cmd = MC_CMD_START_BIST;
1862 	req.emr_in_buf = payload;
1863 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1864 	req.emr_out_buf = payload;
1865 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1866 
1867 	switch (type) {
1868 	case EFX_BIST_TYPE_PHY_NORMAL:
1869 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1870 		break;
1871 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1872 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1873 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1874 		break;
1875 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1876 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1877 		    MC_CMD_PHY_BIST_CABLE_LONG);
1878 		break;
1879 	case EFX_BIST_TYPE_MC_MEM:
1880 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1881 		    MC_CMD_MC_MEM_BIST);
1882 		break;
1883 	case EFX_BIST_TYPE_SAT_MEM:
1884 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1885 		    MC_CMD_PORT_MEM_BIST);
1886 		break;
1887 	case EFX_BIST_TYPE_REG:
1888 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1889 		    MC_CMD_REG_BIST);
1890 		break;
1891 	default:
1892 		EFSYS_ASSERT(0);
1893 	}
1894 
1895 	efx_mcdi_execute(enp, &req);
1896 
1897 	if (req.emr_rc != 0) {
1898 		rc = req.emr_rc;
1899 		goto fail1;
1900 	}
1901 
1902 	return (0);
1903 
1904 fail1:
1905 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1906 
1907 	return (rc);
1908 }
1909 
1910 #endif /* EFSYS_OPT_BIST */
1911 
1912 
1913 /* Enable logging of some events (e.g. link state changes) */
1914 	__checkReturn	efx_rc_t
1915 efx_mcdi_log_ctrl(
1916 	__in		efx_nic_t *enp)
1917 {
1918 	efx_mcdi_req_t req;
1919 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN,
1920 		MC_CMD_LOG_CTRL_OUT_LEN);
1921 	efx_rc_t rc;
1922 
1923 	req.emr_cmd = MC_CMD_LOG_CTRL;
1924 	req.emr_in_buf = payload;
1925 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
1926 	req.emr_out_buf = payload;
1927 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
1928 
1929 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
1930 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
1931 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
1932 
1933 	efx_mcdi_execute(enp, &req);
1934 
1935 	if (req.emr_rc != 0) {
1936 		rc = req.emr_rc;
1937 		goto fail1;
1938 	}
1939 
1940 	return (0);
1941 
1942 fail1:
1943 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1944 
1945 	return (rc);
1946 }
1947 
1948 
1949 #if EFSYS_OPT_MAC_STATS
1950 
1951 	__checkReturn	efx_rc_t
1952 efx_mcdi_mac_stats(
1953 	__in		efx_nic_t *enp,
1954 	__in		uint32_t vport_id,
1955 	__in_opt	efsys_mem_t *esmp,
1956 	__in		efx_stats_action_t action,
1957 	__in		uint16_t period_ms)
1958 {
1959 	efx_mcdi_req_t req;
1960 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN,
1961 		MC_CMD_MAC_STATS_V2_OUT_DMA_LEN);
1962 	int clear = (action == EFX_STATS_CLEAR);
1963 	int upload = (action == EFX_STATS_UPLOAD);
1964 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
1965 	int events = (action == EFX_STATS_ENABLE_EVENTS);
1966 	int disable = (action == EFX_STATS_DISABLE);
1967 	efx_rc_t rc;
1968 
1969 	req.emr_cmd = MC_CMD_MAC_STATS;
1970 	req.emr_in_buf = payload;
1971 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
1972 	req.emr_out_buf = payload;
1973 	req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN;
1974 
1975 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
1976 	    MAC_STATS_IN_DMA, upload,
1977 	    MAC_STATS_IN_CLEAR, clear,
1978 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
1979 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
1980 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
1981 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0);
1982 
1983 	if (enable || events || upload) {
1984 		const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
1985 		uint32_t bytes;
1986 
1987 		/* Periodic stats or stats upload require a DMA buffer */
1988 		if (esmp == NULL) {
1989 			rc = EINVAL;
1990 			goto fail1;
1991 		}
1992 
1993 		if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) {
1994 			/* MAC stats count too small for legacy MAC stats */
1995 			rc = ENOSPC;
1996 			goto fail2;
1997 		}
1998 
1999 		bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t);
2000 
2001 		if (EFSYS_MEM_SIZE(esmp) < bytes) {
2002 			/* DMA buffer too small */
2003 			rc = ENOSPC;
2004 			goto fail3;
2005 		}
2006 
2007 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
2008 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
2009 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
2010 			    EFSYS_MEM_ADDR(esmp) >> 32);
2011 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
2012 	}
2013 
2014 	/*
2015 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
2016 	 *	 as this may fail (and leave periodic DMA enabled) if the
2017 	 *	 vadapter has already been deleted.
2018 	 */
2019 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
2020 		(disable ? EVB_PORT_ID_NULL : vport_id));
2021 
2022 	efx_mcdi_execute(enp, &req);
2023 
2024 	if (req.emr_rc != 0) {
2025 		/* EF10: Expect ENOENT if no DMA queues are initialised */
2026 		if ((req.emr_rc != ENOENT) ||
2027 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
2028 			rc = req.emr_rc;
2029 			goto fail4;
2030 		}
2031 	}
2032 
2033 	return (0);
2034 
2035 fail4:
2036 	EFSYS_PROBE(fail4);
2037 fail3:
2038 	EFSYS_PROBE(fail3);
2039 fail2:
2040 	EFSYS_PROBE(fail2);
2041 fail1:
2042 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2043 
2044 	return (rc);
2045 }
2046 
2047 	__checkReturn	efx_rc_t
2048 efx_mcdi_mac_stats_clear(
2049 	__in		efx_nic_t *enp)
2050 {
2051 	efx_rc_t rc;
2052 
2053 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2054 			EFX_STATS_CLEAR, 0)) != 0)
2055 		goto fail1;
2056 
2057 	return (0);
2058 
2059 fail1:
2060 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2061 
2062 	return (rc);
2063 }
2064 
2065 	__checkReturn	efx_rc_t
2066 efx_mcdi_mac_stats_upload(
2067 	__in		efx_nic_t *enp,
2068 	__in		efsys_mem_t *esmp)
2069 {
2070 	efx_rc_t rc;
2071 
2072 	/*
2073 	 * The MC DMAs aggregate statistics for our convenience, so we can
2074 	 * avoid having to pull the statistics buffer into the cache to
2075 	 * maintain cumulative statistics.
2076 	 */
2077 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2078 			EFX_STATS_UPLOAD, 0)) != 0)
2079 		goto fail1;
2080 
2081 	return (0);
2082 
2083 fail1:
2084 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2085 
2086 	return (rc);
2087 }
2088 
2089 	__checkReturn	efx_rc_t
2090 efx_mcdi_mac_stats_periodic(
2091 	__in		efx_nic_t *enp,
2092 	__in		efsys_mem_t *esmp,
2093 	__in		uint16_t period_ms,
2094 	__in		boolean_t events)
2095 {
2096 	efx_rc_t rc;
2097 
2098 	/*
2099 	 * The MC DMAs aggregate statistics for our convenience, so we can
2100 	 * avoid having to pull the statistics buffer into the cache to
2101 	 * maintain cumulative statistics.
2102 	 * Huntington uses a fixed 1sec period.
2103 	 * Medford uses a fixed 1sec period before v6.2.1.1033 firmware.
2104 	 */
2105 	if (period_ms == 0)
2106 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2107 			EFX_STATS_DISABLE, 0);
2108 	else if (events)
2109 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2110 			EFX_STATS_ENABLE_EVENTS, period_ms);
2111 	else
2112 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2113 			EFX_STATS_ENABLE_NOEVENTS, period_ms);
2114 
2115 	if (rc != 0)
2116 		goto fail1;
2117 
2118 	return (0);
2119 
2120 fail1:
2121 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2122 
2123 	return (rc);
2124 }
2125 
2126 #endif	/* EFSYS_OPT_MAC_STATS */
2127 
2128 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2129 
2130 /*
2131  * This function returns the pf and vf number of a function.  If it is a pf the
2132  * vf number is 0xffff.  The vf number is the index of the vf on that
2133  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
2134  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
2135  */
2136 	__checkReturn		efx_rc_t
2137 efx_mcdi_get_function_info(
2138 	__in			efx_nic_t *enp,
2139 	__out			uint32_t *pfp,
2140 	__out_opt		uint32_t *vfp)
2141 {
2142 	efx_mcdi_req_t req;
2143 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN,
2144 		MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2145 	efx_rc_t rc;
2146 
2147 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
2148 	req.emr_in_buf = payload;
2149 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
2150 	req.emr_out_buf = payload;
2151 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN;
2152 
2153 	efx_mcdi_execute(enp, &req);
2154 
2155 	if (req.emr_rc != 0) {
2156 		rc = req.emr_rc;
2157 		goto fail1;
2158 	}
2159 
2160 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
2161 		rc = EMSGSIZE;
2162 		goto fail2;
2163 	}
2164 
2165 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
2166 	if (vfp != NULL)
2167 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
2168 
2169 	return (0);
2170 
2171 fail2:
2172 	EFSYS_PROBE(fail2);
2173 fail1:
2174 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2175 
2176 	return (rc);
2177 }
2178 
2179 	__checkReturn		efx_rc_t
2180 efx_mcdi_privilege_mask(
2181 	__in			efx_nic_t *enp,
2182 	__in			uint32_t pf,
2183 	__in			uint32_t vf,
2184 	__out			uint32_t *maskp)
2185 {
2186 	efx_mcdi_req_t req;
2187 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN,
2188 		MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2189 	efx_rc_t rc;
2190 
2191 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
2192 	req.emr_in_buf = payload;
2193 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
2194 	req.emr_out_buf = payload;
2195 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
2196 
2197 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
2198 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2199 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2200 
2201 	efx_mcdi_execute(enp, &req);
2202 
2203 	if (req.emr_rc != 0) {
2204 		rc = req.emr_rc;
2205 		goto fail1;
2206 	}
2207 
2208 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
2209 		rc = EMSGSIZE;
2210 		goto fail2;
2211 	}
2212 
2213 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
2214 
2215 	return (0);
2216 
2217 fail2:
2218 	EFSYS_PROBE(fail2);
2219 fail1:
2220 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2221 
2222 	return (rc);
2223 }
2224 
2225 #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2226 
2227 	__checkReturn		efx_rc_t
2228 efx_mcdi_set_workaround(
2229 	__in			efx_nic_t *enp,
2230 	__in			uint32_t type,
2231 	__in			boolean_t enabled,
2232 	__out_opt		uint32_t *flagsp)
2233 {
2234 	efx_mcdi_req_t req;
2235 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN,
2236 		MC_CMD_WORKAROUND_EXT_OUT_LEN);
2237 	efx_rc_t rc;
2238 
2239 	req.emr_cmd = MC_CMD_WORKAROUND;
2240 	req.emr_in_buf = payload;
2241 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2242 	req.emr_out_buf = payload;
2243 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2244 
2245 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2246 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2247 
2248 	efx_mcdi_execute_quiet(enp, &req);
2249 
2250 	if (req.emr_rc != 0) {
2251 		rc = req.emr_rc;
2252 		goto fail1;
2253 	}
2254 
2255 	if (flagsp != NULL) {
2256 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2257 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2258 		else
2259 			*flagsp = 0;
2260 	}
2261 
2262 	return (0);
2263 
2264 fail1:
2265 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2266 
2267 	return (rc);
2268 }
2269 
2270 
2271 	__checkReturn		efx_rc_t
2272 efx_mcdi_get_workarounds(
2273 	__in			efx_nic_t *enp,
2274 	__out_opt		uint32_t *implementedp,
2275 	__out_opt		uint32_t *enabledp)
2276 {
2277 	efx_mcdi_req_t req;
2278 	EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2279 	efx_rc_t rc;
2280 
2281 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2282 	req.emr_in_buf = NULL;
2283 	req.emr_in_length = 0;
2284 	req.emr_out_buf = payload;
2285 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2286 
2287 	efx_mcdi_execute(enp, &req);
2288 
2289 	if (req.emr_rc != 0) {
2290 		rc = req.emr_rc;
2291 		goto fail1;
2292 	}
2293 
2294 	if (implementedp != NULL) {
2295 		*implementedp =
2296 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2297 	}
2298 
2299 	if (enabledp != NULL) {
2300 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2301 	}
2302 
2303 	return (0);
2304 
2305 fail1:
2306 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2307 
2308 	return (rc);
2309 }
2310 
2311 /*
2312  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2313  * It is used in MCDI interface as well.
2314  */
2315 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2316 
2317 /*
2318  * Transceiver identifiers from SFF-8024 Table 4-1.
2319  */
2320 #define	EFX_SFF_TRANSCEIVER_ID_SFP		0x03 /* SFP/SFP+/SFP28 */
2321 #define	EFX_SFF_TRANSCEIVER_ID_QSFP		0x0c /* QSFP */
2322 #define	EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS	0x0d /* QSFP+ or later */
2323 #define	EFX_SFF_TRANSCEIVER_ID_QSFP28		0x11 /* QSFP28 or later */
2324 
2325 static	__checkReturn		efx_rc_t
2326 efx_mcdi_get_phy_media_info(
2327 	__in			efx_nic_t *enp,
2328 	__in			uint32_t mcdi_page,
2329 	__in			uint8_t offset,
2330 	__in			uint8_t len,
2331 	__out_bcount(len)	uint8_t *data)
2332 {
2333 	efx_mcdi_req_t req;
2334 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2335 		MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2336 			EFX_PHY_MEDIA_INFO_PAGE_SIZE));
2337 	efx_rc_t rc;
2338 
2339 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2340 
2341 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2342 	req.emr_in_buf = payload;
2343 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2344 	req.emr_out_buf = payload;
2345 	req.emr_out_length =
2346 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2347 
2348 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2349 
2350 	efx_mcdi_execute(enp, &req);
2351 
2352 	if (req.emr_rc != 0) {
2353 		rc = req.emr_rc;
2354 		goto fail1;
2355 	}
2356 
2357 	if (req.emr_out_length_used !=
2358 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2359 		rc = EMSGSIZE;
2360 		goto fail2;
2361 	}
2362 
2363 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2364 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2365 		rc = EIO;
2366 		goto fail3;
2367 	}
2368 
2369 	memcpy(data,
2370 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2371 	    len);
2372 
2373 	return (0);
2374 
2375 fail3:
2376 	EFSYS_PROBE(fail3);
2377 fail2:
2378 	EFSYS_PROBE(fail2);
2379 fail1:
2380 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2381 
2382 	return (rc);
2383 }
2384 
2385 	__checkReturn		efx_rc_t
2386 efx_mcdi_phy_module_get_info(
2387 	__in			efx_nic_t *enp,
2388 	__in			uint8_t dev_addr,
2389 	__in			size_t offset,
2390 	__in			size_t len,
2391 	__out_bcount(len)	uint8_t *data)
2392 {
2393 	efx_port_t *epp = &(enp->en_port);
2394 	efx_rc_t rc;
2395 	uint32_t mcdi_lower_page;
2396 	uint32_t mcdi_upper_page;
2397 	uint8_t id;
2398 
2399 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2400 
2401 	/*
2402 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2403 	 * Offset plus length interface allows to access page 0 only.
2404 	 * I.e. non-zero upper pages are not accessible.
2405 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2406 	 * QSFP+ Memory Map for details on how information is structured
2407 	 * and accessible.
2408 	 */
2409 	switch (epp->ep_fixed_port_type) {
2410 	case EFX_PHY_MEDIA_SFP_PLUS:
2411 	case EFX_PHY_MEDIA_QSFP_PLUS:
2412 		/* Port type supports modules */
2413 		break;
2414 	default:
2415 		rc = ENOTSUP;
2416 		goto fail1;
2417 	}
2418 
2419 	/*
2420 	 * For all supported port types, MCDI page 0 offset 0 holds the
2421 	 * transceiver identifier. Probe to determine the data layout.
2422 	 * Definitions from SFF-8024 Table 4-1.
2423 	 */
2424 	rc = efx_mcdi_get_phy_media_info(enp,
2425 		    0, 0, sizeof(id), &id);
2426 	if (rc != 0)
2427 		goto fail2;
2428 
2429 	switch (id) {
2430 	case EFX_SFF_TRANSCEIVER_ID_SFP:
2431 		/*
2432 		 * In accordance with SFF-8472 Diagnostic Monitoring
2433 		 * Interface for Optical Transceivers section 4 Memory
2434 		 * Organization two 2-wire addresses are defined.
2435 		 */
2436 		switch (dev_addr) {
2437 		/* Base information */
2438 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2439 			/*
2440 			 * MCDI page 0 should be used to access lower
2441 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2442 			 */
2443 			mcdi_lower_page = 0;
2444 			/*
2445 			 * MCDI page 1 should be used to access  upper
2446 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2447 			 */
2448 			mcdi_upper_page = 1;
2449 			break;
2450 		/* Diagnostics */
2451 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2452 			/*
2453 			 * MCDI page 2 should be used to access lower
2454 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2455 			 */
2456 			mcdi_lower_page = 2;
2457 			/*
2458 			 * MCDI page 3 should be used to access upper
2459 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2460 			 */
2461 			mcdi_upper_page = 3;
2462 			break;
2463 		default:
2464 			rc = ENOTSUP;
2465 			goto fail3;
2466 		}
2467 		break;
2468 	case EFX_SFF_TRANSCEIVER_ID_QSFP:
2469 	case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS:
2470 	case EFX_SFF_TRANSCEIVER_ID_QSFP28:
2471 		switch (dev_addr) {
2472 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2473 			/*
2474 			 * MCDI page -1 should be used to access lower page 0
2475 			 * (0x00 - 0x7f).
2476 			 */
2477 			mcdi_lower_page = (uint32_t)-1;
2478 			/*
2479 			 * MCDI page 0 should be used to access upper page 0
2480 			 * (0x80h - 0xff).
2481 			 */
2482 			mcdi_upper_page = 0;
2483 			break;
2484 		default:
2485 			rc = ENOTSUP;
2486 			goto fail3;
2487 		}
2488 		break;
2489 	default:
2490 		rc = ENOTSUP;
2491 		goto fail3;
2492 	}
2493 
2494 	EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF);
2495 
2496 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2497 		size_t read_len =
2498 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2499 
2500 		rc = efx_mcdi_get_phy_media_info(enp,
2501 		    mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data);
2502 		if (rc != 0)
2503 			goto fail4;
2504 
2505 		data += read_len;
2506 		len -= read_len;
2507 
2508 		offset = 0;
2509 	} else {
2510 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2511 	}
2512 
2513 	if (len > 0) {
2514 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2515 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2516 
2517 		rc = efx_mcdi_get_phy_media_info(enp,
2518 		    mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data);
2519 		if (rc != 0)
2520 			goto fail5;
2521 	}
2522 
2523 	return (0);
2524 
2525 fail5:
2526 	EFSYS_PROBE(fail5);
2527 fail4:
2528 	EFSYS_PROBE(fail4);
2529 fail3:
2530 	EFSYS_PROBE(fail3);
2531 fail2:
2532 	EFSYS_PROBE(fail2);
2533 fail1:
2534 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2535 
2536 	return (rc);
2537 }
2538 
2539 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2540 
2541 #define	INIT_EVQ_MAXNBUFS	MC_CMD_INIT_EVQ_V2_IN_DMA_ADDR_MAXNUM
2542 
2543 #if EFX_OPTS_EF10()
2544 # if (INIT_EVQ_MAXNBUFS < EF10_EVQ_MAXNBUFS)
2545 #  error "INIT_EVQ_MAXNBUFS too small"
2546 # endif
2547 #endif /* EFX_OPTS_EF10 */
2548 #if EFSYS_OPT_RIVERHEAD
2549 # if (INIT_EVQ_MAXNBUFS < RHEAD_EVQ_MAXNBUFS)
2550 #  error "INIT_EVQ_MAXNBUFS too small"
2551 # endif
2552 #endif /* EFSYS_OPT_RIVERHEAD */
2553 
2554 	__checkReturn	efx_rc_t
2555 efx_mcdi_init_evq(
2556 	__in		efx_nic_t *enp,
2557 	__in		unsigned int instance,
2558 	__in		efsys_mem_t *esmp,
2559 	__in		size_t nevs,
2560 	__in		uint32_t irq,
2561 	__in		uint32_t us,
2562 	__in		uint32_t flags,
2563 	__in		boolean_t low_latency)
2564 {
2565 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(enp);
2566 	efx_mcdi_req_t req;
2567 	EFX_MCDI_DECLARE_BUF(payload,
2568 		MC_CMD_INIT_EVQ_V2_IN_LEN(INIT_EVQ_MAXNBUFS),
2569 		MC_CMD_INIT_EVQ_V2_OUT_LEN);
2570 	boolean_t interrupting;
2571 	int ev_extended_width;
2572 	int ev_cut_through;
2573 	int ev_merge;
2574 	unsigned int evq_type;
2575 	efx_qword_t *dma_addr;
2576 	uint64_t addr;
2577 	int npages;
2578 	int i;
2579 	efx_rc_t rc;
2580 
2581 	npages = efx_evq_nbufs(enp, nevs, flags);
2582 	if (npages > INIT_EVQ_MAXNBUFS) {
2583 		rc = EINVAL;
2584 		goto fail1;
2585 	}
2586 
2587 	req.emr_cmd = MC_CMD_INIT_EVQ;
2588 	req.emr_in_buf = payload;
2589 	req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages);
2590 	req.emr_out_buf = payload;
2591 	req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN;
2592 
2593 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs);
2594 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance);
2595 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq);
2596 
2597 	interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
2598 	    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
2599 
2600 	if (encp->enc_init_evq_v2_supported) {
2601 		/*
2602 		 * On Medford the low latency license is required to enable RX
2603 		 * and event cut through and to disable RX batching.  If event
2604 		 * queue type in flags is auto, we let the firmware decide the
2605 		 * settings to use. If the adapter has a low latency license,
2606 		 * it will choose the best settings for low latency, otherwise
2607 		 * it will choose the best settings for throughput.
2608 		 */
2609 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2610 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2611 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO;
2612 			break;
2613 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2614 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT;
2615 			break;
2616 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2617 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY;
2618 			break;
2619 		default:
2620 			rc = EINVAL;
2621 			goto fail2;
2622 		}
2623 		/* EvQ type controls merging, no manual settings */
2624 		ev_merge = 0;
2625 		ev_cut_through = 0;
2626 	} else {
2627 		/* EvQ types other than manual are not supported */
2628 		evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_MANUAL;
2629 		/*
2630 		 * On Huntington RX and TX event batching can only be requested
2631 		 * together (even if the datapath firmware doesn't actually
2632 		 * support RX batching). If event cut through is enabled no RX
2633 		 * batching will occur.
2634 		 *
2635 		 * So always enable RX and TX event batching, and enable event
2636 		 * cut through if we want low latency operation.
2637 		 */
2638 		ev_merge = 1;
2639 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2640 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2641 			ev_cut_through = low_latency ? 1 : 0;
2642 			break;
2643 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2644 			ev_cut_through = 0;
2645 			break;
2646 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2647 			ev_cut_through = 1;
2648 			break;
2649 		default:
2650 			rc = EINVAL;
2651 			goto fail2;
2652 		}
2653 	}
2654 
2655 	/*
2656 	 * On EF100, extended width event queues have a different event
2657 	 * descriptor layout and are used to support descriptor proxy queues.
2658 	 */
2659 	ev_extended_width = 0;
2660 #if EFSYS_OPT_EV_EXTENDED_WIDTH
2661 	if (encp->enc_init_evq_extended_width_supported) {
2662 		if (flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH)
2663 			ev_extended_width = 1;
2664 	}
2665 #endif
2666 
2667 	MCDI_IN_POPULATE_DWORD_8(req, INIT_EVQ_V2_IN_FLAGS,
2668 	    INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting,
2669 	    INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0,
2670 	    INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0,
2671 	    INIT_EVQ_V2_IN_FLAG_CUT_THRU, ev_cut_through,
2672 	    INIT_EVQ_V2_IN_FLAG_RX_MERGE, ev_merge,
2673 	    INIT_EVQ_V2_IN_FLAG_TX_MERGE, ev_merge,
2674 	    INIT_EVQ_V2_IN_FLAG_TYPE, evq_type,
2675 	    INIT_EVQ_V2_IN_FLAG_EXT_WIDTH, ev_extended_width);
2676 
2677 	/* If the value is zero then disable the timer */
2678 	if (us == 0) {
2679 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2680 		    MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS);
2681 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0);
2682 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0);
2683 	} else {
2684 		unsigned int ticks;
2685 
2686 		if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
2687 			goto fail3;
2688 
2689 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2690 		    MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF);
2691 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks);
2692 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks);
2693 	}
2694 
2695 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE,
2696 	    MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS);
2697 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0);
2698 
2699 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR);
2700 	addr = EFSYS_MEM_ADDR(esmp);
2701 
2702 	for (i = 0; i < npages; i++) {
2703 		EFX_POPULATE_QWORD_2(*dma_addr,
2704 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2705 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2706 
2707 		dma_addr++;
2708 		addr += EFX_BUF_SIZE;
2709 	}
2710 
2711 	efx_mcdi_execute(enp, &req);
2712 
2713 	if (req.emr_rc != 0) {
2714 		rc = req.emr_rc;
2715 		goto fail4;
2716 	}
2717 
2718 	if (encp->enc_init_evq_v2_supported) {
2719 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) {
2720 			rc = EMSGSIZE;
2721 			goto fail5;
2722 		}
2723 		EFSYS_PROBE1(mcdi_evq_flags, uint32_t,
2724 			    MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS));
2725 	} else {
2726 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) {
2727 			rc = EMSGSIZE;
2728 			goto fail6;
2729 		}
2730 	}
2731 
2732 	/* NOTE: ignore the returned IRQ param as firmware does not set it. */
2733 
2734 	return (0);
2735 
2736 fail6:
2737 	EFSYS_PROBE(fail6);
2738 fail5:
2739 	EFSYS_PROBE(fail5);
2740 fail4:
2741 	EFSYS_PROBE(fail4);
2742 fail3:
2743 	EFSYS_PROBE(fail3);
2744 fail2:
2745 	EFSYS_PROBE(fail2);
2746 fail1:
2747 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2748 
2749 	return (rc);
2750 }
2751 
2752 	__checkReturn	efx_rc_t
2753 efx_mcdi_fini_evq(
2754 	__in		efx_nic_t *enp,
2755 	__in		uint32_t instance)
2756 {
2757 	efx_mcdi_req_t req;
2758 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_EVQ_IN_LEN,
2759 		MC_CMD_FINI_EVQ_OUT_LEN);
2760 	efx_rc_t rc;
2761 
2762 	req.emr_cmd = MC_CMD_FINI_EVQ;
2763 	req.emr_in_buf = payload;
2764 	req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN;
2765 	req.emr_out_buf = payload;
2766 	req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN;
2767 
2768 	MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance);
2769 
2770 	efx_mcdi_execute_quiet(enp, &req);
2771 
2772 	if (req.emr_rc != 0) {
2773 		rc = req.emr_rc;
2774 		goto fail1;
2775 	}
2776 
2777 	return (0);
2778 
2779 fail1:
2780 	/*
2781 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2782 	 * that the EVQ has already been destroyed.
2783 	 */
2784 	if (rc != EALREADY)
2785 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2786 
2787 	return (rc);
2788 }
2789 
2790 	__checkReturn	efx_rc_t
2791 efx_mcdi_init_rxq(
2792 	__in		efx_nic_t *enp,
2793 	__in		uint32_t ndescs,
2794 	__in		efx_evq_t *eep,
2795 	__in		uint32_t label,
2796 	__in		uint32_t instance,
2797 	__in		efsys_mem_t *esmp,
2798 	__in		const efx_mcdi_init_rxq_params_t *params)
2799 {
2800 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2801 	efx_mcdi_req_t req;
2802 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_RXQ_V5_IN_LEN,
2803 		MC_CMD_INIT_RXQ_V5_OUT_LEN);
2804 	int npages = efx_rxq_nbufs(enp, ndescs);
2805 	int i;
2806 	efx_qword_t *dma_addr;
2807 	uint64_t addr;
2808 	efx_rc_t rc;
2809 	uint32_t dma_mode;
2810 	boolean_t want_outer_classes;
2811 	boolean_t no_cont_ev;
2812 
2813 	EFSYS_ASSERT3U(ndescs, <=, encp->enc_rxq_max_ndescs);
2814 
2815 	if ((esmp == NULL) ||
2816 	    (EFSYS_MEM_SIZE(esmp) < efx_rxq_size(enp, ndescs))) {
2817 		rc = EINVAL;
2818 		goto fail1;
2819 	}
2820 
2821 	no_cont_ev = (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV);
2822 	if ((no_cont_ev == B_TRUE) && (params->disable_scatter == B_FALSE)) {
2823 		/* TODO: Support scatter in NO_CONT_EV mode */
2824 		rc = EINVAL;
2825 		goto fail2;
2826 	}
2827 
2828 	if (params->ps_buf_size > 0)
2829 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM;
2830 	else if (params->es_bufs_per_desc > 0)
2831 		dma_mode = MC_CMD_INIT_RXQ_V3_IN_EQUAL_STRIDE_SUPER_BUFFER;
2832 	else
2833 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_SINGLE_PACKET;
2834 
2835 	if (encp->enc_tunnel_encapsulations_supported != 0 &&
2836 	    !params->want_inner_classes) {
2837 		/*
2838 		 * WANT_OUTER_CLASSES can only be specified on hardware which
2839 		 * supports tunnel encapsulation offloads, even though it is
2840 		 * effectively the behaviour the hardware gives.
2841 		 *
2842 		 * Also, on hardware which does support such offloads, older
2843 		 * firmware rejects the flag if the offloads are not supported
2844 		 * by the current firmware variant, which means this may fail if
2845 		 * the capabilities are not updated when the firmware variant
2846 		 * changes. This is not an issue on newer firmware, as it was
2847 		 * changed in bug 69842 (v6.4.2.1007) to permit this flag to be
2848 		 * specified on all firmware variants.
2849 		 */
2850 		want_outer_classes = B_TRUE;
2851 	} else {
2852 		want_outer_classes = B_FALSE;
2853 	}
2854 
2855 	req.emr_cmd = MC_CMD_INIT_RXQ;
2856 	req.emr_in_buf = payload;
2857 	req.emr_in_length = MC_CMD_INIT_RXQ_V5_IN_LEN;
2858 	req.emr_out_buf = payload;
2859 	req.emr_out_length = MC_CMD_INIT_RXQ_V5_OUT_LEN;
2860 
2861 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_SIZE, ndescs);
2862 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_TARGET_EVQ, eep->ee_index);
2863 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_LABEL, label);
2864 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_INSTANCE, instance);
2865 	MCDI_IN_POPULATE_DWORD_10(req, INIT_RXQ_EXT_IN_FLAGS,
2866 	    INIT_RXQ_EXT_IN_FLAG_BUFF_MODE, 0,
2867 	    INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT, 0,
2868 	    INIT_RXQ_EXT_IN_FLAG_TIMESTAMP, 0,
2869 	    INIT_RXQ_EXT_IN_CRC_MODE, 0,
2870 	    INIT_RXQ_EXT_IN_FLAG_PREFIX, 1,
2871 	    INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER, params->disable_scatter,
2872 	    INIT_RXQ_EXT_IN_DMA_MODE,
2873 	    dma_mode,
2874 	    INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE, params->ps_buf_size,
2875 	    INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES, want_outer_classes,
2876 	    INIT_RXQ_EXT_IN_FLAG_NO_CONT_EV, no_cont_ev);
2877 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_OWNER_ID, 0);
2878 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_PORT_ID, enp->en_vport_id);
2879 
2880 	if (params->es_bufs_per_desc > 0) {
2881 		MCDI_IN_SET_DWORD(req,
2882 		    INIT_RXQ_V3_IN_ES_PACKET_BUFFERS_PER_BUCKET,
2883 		    params->es_bufs_per_desc);
2884 		MCDI_IN_SET_DWORD(req,
2885 		    INIT_RXQ_V3_IN_ES_MAX_DMA_LEN, params->es_max_dma_len);
2886 		MCDI_IN_SET_DWORD(req,
2887 		    INIT_RXQ_V3_IN_ES_PACKET_STRIDE, params->es_buf_stride);
2888 		MCDI_IN_SET_DWORD(req,
2889 		    INIT_RXQ_V3_IN_ES_HEAD_OF_LINE_BLOCK_TIMEOUT,
2890 		    params->hol_block_timeout);
2891 	}
2892 
2893 	if (encp->enc_init_rxq_with_buffer_size)
2894 		MCDI_IN_SET_DWORD(req, INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES,
2895 		    params->buf_size);
2896 
2897 	MCDI_IN_SET_DWORD(req, INIT_RXQ_V5_IN_RX_PREFIX_ID, params->prefix_id);
2898 
2899 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR);
2900 	addr = EFSYS_MEM_ADDR(esmp);
2901 
2902 	for (i = 0; i < npages; i++) {
2903 		EFX_POPULATE_QWORD_2(*dma_addr,
2904 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2905 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2906 
2907 		dma_addr++;
2908 		addr += EFX_BUF_SIZE;
2909 	}
2910 
2911 	efx_mcdi_execute(enp, &req);
2912 
2913 	if (req.emr_rc != 0) {
2914 		rc = req.emr_rc;
2915 		goto fail3;
2916 	}
2917 
2918 	return (0);
2919 
2920 fail3:
2921 	EFSYS_PROBE(fail3);
2922 fail2:
2923 	EFSYS_PROBE(fail2);
2924 fail1:
2925 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2926 
2927 	return (rc);
2928 }
2929 
2930 	__checkReturn	efx_rc_t
2931 efx_mcdi_fini_rxq(
2932 	__in		efx_nic_t *enp,
2933 	__in		uint32_t instance)
2934 {
2935 	efx_mcdi_req_t req;
2936 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_RXQ_IN_LEN,
2937 		MC_CMD_FINI_RXQ_OUT_LEN);
2938 	efx_rc_t rc;
2939 
2940 	req.emr_cmd = MC_CMD_FINI_RXQ;
2941 	req.emr_in_buf = payload;
2942 	req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN;
2943 	req.emr_out_buf = payload;
2944 	req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN;
2945 
2946 	MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance);
2947 
2948 	efx_mcdi_execute_quiet(enp, &req);
2949 
2950 	if (req.emr_rc != 0) {
2951 		rc = req.emr_rc;
2952 		goto fail1;
2953 	}
2954 
2955 	return (0);
2956 
2957 fail1:
2958 	/*
2959 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2960 	 * that the RXQ has already been destroyed.
2961 	 */
2962 	if (rc != EALREADY)
2963 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2964 
2965 	return (rc);
2966 }
2967 
2968 	__checkReturn	efx_rc_t
2969 efx_mcdi_init_txq(
2970 	__in		efx_nic_t *enp,
2971 	__in		uint32_t ndescs,
2972 	__in		uint32_t target_evq,
2973 	__in		uint32_t label,
2974 	__in		uint32_t instance,
2975 	__in		uint16_t flags,
2976 	__in		efsys_mem_t *esmp)
2977 {
2978 	efx_mcdi_req_t req;
2979 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_EXT_IN_LEN,
2980 		MC_CMD_INIT_TXQ_OUT_LEN);
2981 	efx_qword_t *dma_addr;
2982 	uint64_t addr;
2983 	int npages;
2984 	int i;
2985 	efx_rc_t rc;
2986 
2987 	EFSYS_ASSERT(MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MAXNUM >=
2988 	    efx_txq_nbufs(enp, enp->en_nic_cfg.enc_txq_max_ndescs));
2989 
2990 	if ((esmp == NULL) ||
2991 	    (EFSYS_MEM_SIZE(esmp) < efx_txq_size(enp, ndescs))) {
2992 		rc = EINVAL;
2993 		goto fail1;
2994 	}
2995 
2996 	npages = efx_txq_nbufs(enp, ndescs);
2997 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
2998 		rc = EINVAL;
2999 		goto fail2;
3000 	}
3001 
3002 	req.emr_cmd = MC_CMD_INIT_TXQ;
3003 	req.emr_in_buf = payload;
3004 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
3005 	req.emr_out_buf = payload;
3006 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
3007 
3008 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
3009 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
3010 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
3011 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
3012 
3013 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
3014 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
3015 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
3016 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
3017 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
3018 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
3019 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
3020 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
3021 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
3022 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
3023 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
3024 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
3025 	    INIT_TXQ_IN_CRC_MODE, 0,
3026 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
3027 
3028 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
3029 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, enp->en_vport_id);
3030 
3031 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
3032 	addr = EFSYS_MEM_ADDR(esmp);
3033 
3034 	for (i = 0; i < npages; i++) {
3035 		EFX_POPULATE_QWORD_2(*dma_addr,
3036 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
3037 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
3038 
3039 		dma_addr++;
3040 		addr += EFX_BUF_SIZE;
3041 	}
3042 
3043 	efx_mcdi_execute(enp, &req);
3044 
3045 	if (req.emr_rc != 0) {
3046 		rc = req.emr_rc;
3047 		goto fail3;
3048 	}
3049 
3050 	return (0);
3051 
3052 fail3:
3053 	EFSYS_PROBE(fail3);
3054 fail2:
3055 	EFSYS_PROBE(fail2);
3056 fail1:
3057 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3058 
3059 	return (rc);
3060 }
3061 
3062 	__checkReturn	efx_rc_t
3063 efx_mcdi_fini_txq(
3064 	__in		efx_nic_t *enp,
3065 	__in		uint32_t instance)
3066 {
3067 	efx_mcdi_req_t req;
3068 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
3069 		MC_CMD_FINI_TXQ_OUT_LEN);
3070 	efx_rc_t rc;
3071 
3072 	req.emr_cmd = MC_CMD_FINI_TXQ;
3073 	req.emr_in_buf = payload;
3074 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
3075 	req.emr_out_buf = payload;
3076 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
3077 
3078 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
3079 
3080 	efx_mcdi_execute_quiet(enp, &req);
3081 
3082 	if (req.emr_rc != 0) {
3083 		rc = req.emr_rc;
3084 		goto fail1;
3085 	}
3086 
3087 	return (0);
3088 
3089 fail1:
3090 	/*
3091 	 * EALREADY is not an error, but indicates that the MC has rebooted and
3092 	 * that the TXQ has already been destroyed.
3093 	 */
3094 	if (rc != EALREADY)
3095 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3096 
3097 	return (rc);
3098 }
3099 
3100 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
3101 
3102 #endif	/* EFSYS_OPT_MCDI */
3103