xref: /dpdk/drivers/common/sfc_efx/base/efx_mcdi.c (revision bbbe38a6d59ccdda25917712701e629d0b10af6f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2008-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 
10 #if EFSYS_OPT_MCDI
11 
12 /*
13  * There are three versions of the MCDI interface:
14  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
15  *  - MCDIv1: Siena firmware and Huntington BootROM.
16  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
17  *            Transport uses MCDIv2 headers.
18  *
19  * MCDIv2 Header NOT_EPOCH flag
20  * ----------------------------
21  * A new epoch begins at initial startup or after an MC reboot, and defines when
22  * the MC should reject stale MCDI requests.
23  *
24  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
25  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
26  *
27  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
28  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
29  */
30 
31 
32 
33 #if EFSYS_OPT_SIENA
34 
35 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
36 	siena_mcdi_init,		/* emco_init */
37 	siena_mcdi_send_request,	/* emco_send_request */
38 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
39 	siena_mcdi_poll_response,	/* emco_poll_response */
40 	siena_mcdi_read_response,	/* emco_read_response */
41 	siena_mcdi_fini,		/* emco_fini */
42 	siena_mcdi_feature_supported,	/* emco_feature_supported */
43 	siena_mcdi_get_timeout,		/* emco_get_timeout */
44 };
45 
46 #endif	/* EFSYS_OPT_SIENA */
47 
48 #if EFX_OPTS_EF10()
49 
50 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
51 	ef10_mcdi_init,			/* emco_init */
52 	ef10_mcdi_send_request,		/* emco_send_request */
53 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
54 	ef10_mcdi_poll_response,	/* emco_poll_response */
55 	ef10_mcdi_read_response,	/* emco_read_response */
56 	ef10_mcdi_fini,			/* emco_fini */
57 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
58 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
59 };
60 
61 #endif	/* EFX_OPTS_EF10() */
62 
63 #if EFSYS_OPT_RIVERHEAD
64 
65 static const efx_mcdi_ops_t	__efx_mcdi_rhead_ops = {
66 	ef10_mcdi_init,			/* emco_init */
67 	ef10_mcdi_send_request,		/* emco_send_request */
68 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
69 	ef10_mcdi_poll_response,	/* emco_poll_response */
70 	ef10_mcdi_read_response,	/* emco_read_response */
71 	ef10_mcdi_fini,			/* emco_fini */
72 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
73 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
74 };
75 
76 #endif	/* EFSYS_OPT_RIVERHEAD */
77 
78 
79 
80 	__checkReturn	efx_rc_t
81 efx_mcdi_init(
82 	__in		efx_nic_t *enp,
83 	__in		const efx_mcdi_transport_t *emtp)
84 {
85 	const efx_mcdi_ops_t *emcop;
86 	efx_rc_t rc;
87 
88 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
89 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
90 
91 	switch (enp->en_family) {
92 #if EFSYS_OPT_SIENA
93 	case EFX_FAMILY_SIENA:
94 		emcop = &__efx_mcdi_siena_ops;
95 		break;
96 #endif	/* EFSYS_OPT_SIENA */
97 
98 #if EFSYS_OPT_HUNTINGTON
99 	case EFX_FAMILY_HUNTINGTON:
100 		emcop = &__efx_mcdi_ef10_ops;
101 		break;
102 #endif	/* EFSYS_OPT_HUNTINGTON */
103 
104 #if EFSYS_OPT_MEDFORD
105 	case EFX_FAMILY_MEDFORD:
106 		emcop = &__efx_mcdi_ef10_ops;
107 		break;
108 #endif	/* EFSYS_OPT_MEDFORD */
109 
110 #if EFSYS_OPT_MEDFORD2
111 	case EFX_FAMILY_MEDFORD2:
112 		emcop = &__efx_mcdi_ef10_ops;
113 		break;
114 #endif	/* EFSYS_OPT_MEDFORD2 */
115 
116 #if EFSYS_OPT_RIVERHEAD
117 	case EFX_FAMILY_RIVERHEAD:
118 		emcop = &__efx_mcdi_rhead_ops;
119 		break;
120 #endif	/* EFSYS_OPT_RIVERHEAD */
121 
122 	default:
123 		EFSYS_ASSERT(0);
124 		rc = ENOTSUP;
125 		goto fail1;
126 	}
127 
128 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
129 		/* MCDI requires a DMA buffer in host memory */
130 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
131 			rc = EINVAL;
132 			goto fail2;
133 		}
134 	}
135 	enp->en_mcdi.em_emtp = emtp;
136 
137 	if (emcop != NULL && emcop->emco_init != NULL) {
138 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
139 			goto fail3;
140 	}
141 
142 	enp->en_mcdi.em_emcop = emcop;
143 	enp->en_mod_flags |= EFX_MOD_MCDI;
144 
145 	return (0);
146 
147 fail3:
148 	EFSYS_PROBE(fail3);
149 fail2:
150 	EFSYS_PROBE(fail2);
151 fail1:
152 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
153 
154 	enp->en_mcdi.em_emcop = NULL;
155 	enp->en_mcdi.em_emtp = NULL;
156 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
157 
158 	return (rc);
159 }
160 
161 			void
162 efx_mcdi_fini(
163 	__in		efx_nic_t *enp)
164 {
165 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
166 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
167 
168 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
169 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
170 
171 	if (emcop != NULL && emcop->emco_fini != NULL)
172 		emcop->emco_fini(enp);
173 
174 	emip->emi_port = 0;
175 	emip->emi_aborted = 0;
176 
177 	enp->en_mcdi.em_emcop = NULL;
178 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
179 }
180 
181 			void
182 efx_mcdi_new_epoch(
183 	__in		efx_nic_t *enp)
184 {
185 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
186 	efsys_lock_state_t state;
187 
188 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
189 	EFSYS_LOCK(enp->en_eslp, state);
190 	emip->emi_new_epoch = B_TRUE;
191 	EFSYS_UNLOCK(enp->en_eslp, state);
192 }
193 
194 static			void
195 efx_mcdi_send_request(
196 	__in		efx_nic_t *enp,
197 	__in		void *hdrp,
198 	__in		size_t hdr_len,
199 	__in		void *sdup,
200 	__in		size_t sdu_len)
201 {
202 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
203 
204 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
205 }
206 
207 static			efx_rc_t
208 efx_mcdi_poll_reboot(
209 	__in		efx_nic_t *enp)
210 {
211 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
212 	efx_rc_t rc;
213 
214 	rc = emcop->emco_poll_reboot(enp);
215 	return (rc);
216 }
217 
218 static			boolean_t
219 efx_mcdi_poll_response(
220 	__in		efx_nic_t *enp)
221 {
222 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
223 	boolean_t available;
224 
225 	available = emcop->emco_poll_response(enp);
226 	return (available);
227 }
228 
229 static			void
230 efx_mcdi_read_response(
231 	__in		efx_nic_t *enp,
232 	__out		void *bufferp,
233 	__in		size_t offset,
234 	__in		size_t length)
235 {
236 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
237 
238 	emcop->emco_read_response(enp, bufferp, offset, length);
239 }
240 
241 			void
242 efx_mcdi_request_start(
243 	__in		efx_nic_t *enp,
244 	__in		efx_mcdi_req_t *emrp,
245 	__in		boolean_t ev_cpl)
246 {
247 #if EFSYS_OPT_MCDI_LOGGING
248 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
249 #endif
250 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
251 	efx_dword_t hdr[2];
252 	size_t hdr_len;
253 	unsigned int max_version;
254 	unsigned int seq;
255 	unsigned int xflags;
256 	boolean_t new_epoch;
257 	efsys_lock_state_t state;
258 
259 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
260 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
261 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
262 
263 	/*
264 	 * efx_mcdi_request_start() is naturally serialised against both
265 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
266 	 * by virtue of there only being one outstanding MCDI request.
267 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
268 	 * at any time, to timeout a pending mcdi request, That request may
269 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
270 	 * efx_mcdi_ev_death() may end up running in parallel with
271 	 * efx_mcdi_request_start(). This race is handled by ensuring that
272 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
273 	 * en_eslp lock.
274 	 */
275 	EFSYS_LOCK(enp->en_eslp, state);
276 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
277 	emip->emi_pending_req = emrp;
278 	emip->emi_ev_cpl = ev_cpl;
279 	emip->emi_poll_cnt = 0;
280 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
281 	new_epoch = emip->emi_new_epoch;
282 	max_version = emip->emi_max_version;
283 	EFSYS_UNLOCK(enp->en_eslp, state);
284 
285 	xflags = 0;
286 	if (ev_cpl)
287 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
288 
289 	/*
290 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
291 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
292 	 * possible to support this.
293 	 */
294 	if ((max_version >= 2) &&
295 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
296 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) ||
297 	    (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
298 		/* Construct MCDI v2 header */
299 		hdr_len = sizeof (hdr);
300 		EFX_POPULATE_DWORD_8(hdr[0],
301 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
302 		    MCDI_HEADER_RESYNC, 1,
303 		    MCDI_HEADER_DATALEN, 0,
304 		    MCDI_HEADER_SEQ, seq,
305 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
306 		    MCDI_HEADER_ERROR, 0,
307 		    MCDI_HEADER_RESPONSE, 0,
308 		    MCDI_HEADER_XFLAGS, xflags);
309 
310 		EFX_POPULATE_DWORD_2(hdr[1],
311 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
312 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
313 	} else {
314 		/* Construct MCDI v1 header */
315 		hdr_len = sizeof (hdr[0]);
316 		EFX_POPULATE_DWORD_8(hdr[0],
317 		    MCDI_HEADER_CODE, emrp->emr_cmd,
318 		    MCDI_HEADER_RESYNC, 1,
319 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
320 		    MCDI_HEADER_SEQ, seq,
321 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
322 		    MCDI_HEADER_ERROR, 0,
323 		    MCDI_HEADER_RESPONSE, 0,
324 		    MCDI_HEADER_XFLAGS, xflags);
325 	}
326 
327 #if EFSYS_OPT_MCDI_LOGGING
328 	if (emtp->emt_logger != NULL) {
329 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
330 		    &hdr[0], hdr_len,
331 		    emrp->emr_in_buf, emrp->emr_in_length);
332 	}
333 #endif /* EFSYS_OPT_MCDI_LOGGING */
334 
335 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
336 	    emrp->emr_in_buf, emrp->emr_in_length);
337 }
338 
339 
340 static			void
341 efx_mcdi_read_response_header(
342 	__in		efx_nic_t *enp,
343 	__inout		efx_mcdi_req_t *emrp)
344 {
345 #if EFSYS_OPT_MCDI_LOGGING
346 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
347 #endif /* EFSYS_OPT_MCDI_LOGGING */
348 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
349 	efx_dword_t hdr[2];
350 	unsigned int hdr_len;
351 	unsigned int data_len;
352 	unsigned int seq;
353 	unsigned int cmd;
354 	unsigned int error;
355 	efx_rc_t rc;
356 
357 	EFSYS_ASSERT(emrp != NULL);
358 
359 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
360 	hdr_len = sizeof (hdr[0]);
361 
362 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
363 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
364 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
365 
366 	if (cmd != MC_CMD_V2_EXTN) {
367 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
368 	} else {
369 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
370 		hdr_len += sizeof (hdr[1]);
371 
372 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
373 		data_len =
374 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
375 	}
376 
377 	if (error && (data_len == 0)) {
378 		/* The MC has rebooted since the request was sent. */
379 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
380 		efx_mcdi_poll_reboot(enp);
381 		rc = EIO;
382 		goto fail1;
383 	}
384 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
385 	if (((cmd != emrp->emr_cmd) && (emrp->emr_cmd != MC_CMD_PROXY_CMD)) ||
386 #else
387 	if ((cmd != emrp->emr_cmd) ||
388 #endif
389 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
390 		/* Response is for a different request */
391 		rc = EIO;
392 		goto fail2;
393 	}
394 	if (error) {
395 		efx_dword_t err[2];
396 		unsigned int err_len = MIN(data_len, sizeof (err));
397 		int err_code = MC_CMD_ERR_EPROTO;
398 		int err_arg = 0;
399 
400 		/* Read error code (and arg num for MCDI v2 commands) */
401 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
402 
403 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
404 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
405 #ifdef WITH_MCDI_V2
406 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
407 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
408 #endif
409 		emrp->emr_err_code = err_code;
410 		emrp->emr_err_arg = err_arg;
411 
412 #if EFSYS_OPT_MCDI_PROXY_AUTH
413 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
414 		    (err_len == sizeof (err))) {
415 			/*
416 			 * The MCDI request would normally fail with EPERM, but
417 			 * firmware has forwarded it to an authorization agent
418 			 * attached to a privileged PF.
419 			 *
420 			 * Save the authorization request handle. The client
421 			 * must wait for a PROXY_RESPONSE event, or timeout.
422 			 */
423 			emrp->emr_proxy_handle = err_arg;
424 		}
425 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
426 
427 #if EFSYS_OPT_MCDI_LOGGING
428 		if (emtp->emt_logger != NULL) {
429 			emtp->emt_logger(emtp->emt_context,
430 			    EFX_LOG_MCDI_RESPONSE,
431 			    &hdr[0], hdr_len,
432 			    &err[0], err_len);
433 		}
434 #endif /* EFSYS_OPT_MCDI_LOGGING */
435 
436 		if (!emrp->emr_quiet) {
437 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
438 			    int, err_code, int, err_arg);
439 		}
440 
441 		rc = efx_mcdi_request_errcode(err_code);
442 		goto fail3;
443 	}
444 
445 	emrp->emr_rc = 0;
446 	emrp->emr_out_length_used = data_len;
447 #if EFSYS_OPT_MCDI_PROXY_AUTH
448 	emrp->emr_proxy_handle = 0;
449 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
450 	return;
451 
452 fail3:
453 fail2:
454 fail1:
455 	emrp->emr_rc = rc;
456 	emrp->emr_out_length_used = 0;
457 }
458 
459 static			void
460 efx_mcdi_finish_response(
461 	__in		efx_nic_t *enp,
462 	__in		efx_mcdi_req_t *emrp)
463 {
464 #if EFSYS_OPT_MCDI_LOGGING
465 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
466 #endif /* EFSYS_OPT_MCDI_LOGGING */
467 	efx_dword_t hdr[2];
468 	unsigned int hdr_len;
469 	size_t bytes;
470 	unsigned int resp_off;
471 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
472 	unsigned int resp_cmd;
473 	boolean_t proxied_cmd_resp = B_FALSE;
474 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
475 
476 	if (emrp->emr_out_buf == NULL)
477 		return;
478 
479 	/* Read the command header to detect MCDI response format */
480 	hdr_len = sizeof (hdr[0]);
481 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
482 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
483 		/*
484 		 * Read the actual payload length. The length given in the event
485 		 * is only correct for responses with the V1 format.
486 		 */
487 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
488 		hdr_len += sizeof (hdr[1]);
489 		resp_off = hdr_len;
490 
491 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
492 						MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
493 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
494 		/*
495 		 * A proxy MCDI command is executed by PF on behalf of
496 		 * one of its VFs. The command to be proxied follows
497 		 * immediately afterward in the host buffer.
498 		 * PROXY_CMD inner call complete response should be copied to
499 		 * output buffer so that it can be returned to the requesting
500 		 * function in MC_CMD_PROXY_COMPLETE payload.
501 		 */
502 		resp_cmd =
503 			EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
504 		proxied_cmd_resp = ((emrp->emr_cmd == MC_CMD_PROXY_CMD) &&
505 					(resp_cmd != MC_CMD_PROXY_CMD));
506 		if (proxied_cmd_resp) {
507 			resp_off = 0;
508 			emrp->emr_out_length_used += hdr_len;
509 		}
510 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
511 	} else {
512 		resp_off = hdr_len;
513 	}
514 
515 	/* Copy payload out into caller supplied buffer */
516 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
517 	efx_mcdi_read_response(enp, emrp->emr_out_buf, resp_off, bytes);
518 
519 	/* Report bytes copied to caller (response message may be larger) */
520 	emrp->emr_out_length_used = bytes;
521 
522 #if EFSYS_OPT_MCDI_LOGGING
523 	if (emtp->emt_logger != NULL) {
524 		emtp->emt_logger(emtp->emt_context,
525 		    EFX_LOG_MCDI_RESPONSE,
526 		    &hdr[0], hdr_len,
527 		    emrp->emr_out_buf, bytes);
528 	}
529 #endif /* EFSYS_OPT_MCDI_LOGGING */
530 }
531 
532 
533 	__checkReturn	boolean_t
534 efx_mcdi_request_poll(
535 	__in		efx_nic_t *enp)
536 {
537 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
538 	efx_mcdi_req_t *emrp;
539 	efsys_lock_state_t state;
540 	efx_rc_t rc;
541 
542 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
543 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
544 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
545 
546 	/* Serialise against post-watchdog efx_mcdi_ev* */
547 	EFSYS_LOCK(enp->en_eslp, state);
548 
549 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
550 	EFSYS_ASSERT(!emip->emi_ev_cpl);
551 	emrp = emip->emi_pending_req;
552 
553 	/* Check if hardware is unavailable */
554 	if (efx_nic_hw_unavailable(enp)) {
555 		EFSYS_UNLOCK(enp->en_eslp, state);
556 		return (B_FALSE);
557 	}
558 
559 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
560 	if (emip->emi_poll_cnt++ == 0) {
561 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
562 			emip->emi_pending_req = NULL;
563 			EFSYS_UNLOCK(enp->en_eslp, state);
564 
565 			/* Reboot/Assertion */
566 			if (rc == EIO || rc == EINTR)
567 				efx_mcdi_raise_exception(enp, emrp, rc);
568 
569 			goto fail1;
570 		}
571 	}
572 
573 	/* Check if a response is available */
574 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
575 		EFSYS_UNLOCK(enp->en_eslp, state);
576 		return (B_FALSE);
577 	}
578 
579 	/* Read the response header */
580 	efx_mcdi_read_response_header(enp, emrp);
581 
582 	/* Request complete */
583 	emip->emi_pending_req = NULL;
584 
585 	/* Ensure stale MCDI requests fail after an MC reboot. */
586 	emip->emi_new_epoch = B_FALSE;
587 
588 	EFSYS_UNLOCK(enp->en_eslp, state);
589 
590 	if ((rc = emrp->emr_rc) != 0)
591 		goto fail2;
592 
593 	efx_mcdi_finish_response(enp, emrp);
594 	return (B_TRUE);
595 
596 fail2:
597 	if (!emrp->emr_quiet)
598 		EFSYS_PROBE(fail2);
599 fail1:
600 	if (!emrp->emr_quiet)
601 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
602 
603 	return (B_TRUE);
604 }
605 
606 	__checkReturn	boolean_t
607 efx_mcdi_request_abort(
608 	__in		efx_nic_t *enp)
609 {
610 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
611 	efx_mcdi_req_t *emrp;
612 	boolean_t aborted;
613 	efsys_lock_state_t state;
614 
615 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
616 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
617 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
618 
619 	/*
620 	 * efx_mcdi_ev_* may have already completed this event, and be
621 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
622 	 * to for emi_pending_req to be NULL. If there is a pending event
623 	 * completed request, then provide a "credit" to allow
624 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
625 	 */
626 	EFSYS_LOCK(enp->en_eslp, state);
627 	emrp = emip->emi_pending_req;
628 	aborted = (emrp != NULL);
629 	if (aborted) {
630 		emip->emi_pending_req = NULL;
631 
632 		/* Error the request */
633 		emrp->emr_out_length_used = 0;
634 		emrp->emr_rc = ETIMEDOUT;
635 
636 		/* Provide a credit for seqno/emr_pending_req mismatches */
637 		if (emip->emi_ev_cpl)
638 			++emip->emi_aborted;
639 
640 		/*
641 		 * The upper layer has called us, so we don't
642 		 * need to complete the request.
643 		 */
644 	}
645 	EFSYS_UNLOCK(enp->en_eslp, state);
646 
647 	return (aborted);
648 }
649 
650 			void
651 efx_mcdi_get_timeout(
652 	__in		efx_nic_t *enp,
653 	__in		efx_mcdi_req_t *emrp,
654 	__out		uint32_t *timeoutp)
655 {
656 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
657 
658 	emcop->emco_get_timeout(enp, emrp, timeoutp);
659 }
660 
661 	__checkReturn	efx_rc_t
662 efx_mcdi_request_errcode(
663 	__in		unsigned int err)
664 {
665 
666 	switch (err) {
667 		/* MCDI v1 */
668 	case MC_CMD_ERR_EPERM:
669 		return (EACCES);
670 	case MC_CMD_ERR_ENOENT:
671 		return (ENOENT);
672 	case MC_CMD_ERR_EINTR:
673 		return (EINTR);
674 	case MC_CMD_ERR_EACCES:
675 		return (EACCES);
676 	case MC_CMD_ERR_EBUSY:
677 		return (EBUSY);
678 	case MC_CMD_ERR_EINVAL:
679 		return (EINVAL);
680 	case MC_CMD_ERR_EDEADLK:
681 		return (EDEADLK);
682 	case MC_CMD_ERR_ENOSYS:
683 		return (ENOTSUP);
684 	case MC_CMD_ERR_ETIME:
685 		return (ETIMEDOUT);
686 	case MC_CMD_ERR_ENOTSUP:
687 		return (ENOTSUP);
688 	case MC_CMD_ERR_EALREADY:
689 		return (EALREADY);
690 
691 		/* MCDI v2 */
692 	case MC_CMD_ERR_EEXIST:
693 		return (EEXIST);
694 #ifdef MC_CMD_ERR_EAGAIN
695 	case MC_CMD_ERR_EAGAIN:
696 		return (EAGAIN);
697 #endif
698 #ifdef MC_CMD_ERR_ENOSPC
699 	case MC_CMD_ERR_ENOSPC:
700 		return (ENOSPC);
701 #endif
702 	case MC_CMD_ERR_ERANGE:
703 		return (ERANGE);
704 
705 	case MC_CMD_ERR_ALLOC_FAIL:
706 		return (ENOMEM);
707 	case MC_CMD_ERR_NO_VADAPTOR:
708 		return (ENOENT);
709 	case MC_CMD_ERR_NO_EVB_PORT:
710 		return (ENOENT);
711 	case MC_CMD_ERR_NO_VSWITCH:
712 		return (ENODEV);
713 	case MC_CMD_ERR_VLAN_LIMIT:
714 		return (EINVAL);
715 	case MC_CMD_ERR_BAD_PCI_FUNC:
716 		return (ENODEV);
717 	case MC_CMD_ERR_BAD_VLAN_MODE:
718 		return (EINVAL);
719 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
720 		return (EINVAL);
721 	case MC_CMD_ERR_BAD_VPORT_TYPE:
722 		return (EINVAL);
723 	case MC_CMD_ERR_MAC_EXIST:
724 		return (EEXIST);
725 
726 	case MC_CMD_ERR_PROXY_PENDING:
727 		return (EAGAIN);
728 
729 	default:
730 		EFSYS_PROBE1(mc_pcol_error, int, err);
731 		return (EIO);
732 	}
733 }
734 
735 			void
736 efx_mcdi_raise_exception(
737 	__in		efx_nic_t *enp,
738 	__in_opt	efx_mcdi_req_t *emrp,
739 	__in		int rc)
740 {
741 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
742 	efx_mcdi_exception_t exception;
743 
744 	/* Reboot or Assertion failure only */
745 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
746 
747 	/*
748 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
749 	 * then the EIO is not worthy of an exception.
750 	 */
751 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
752 		return;
753 
754 	exception = (rc == EIO)
755 		? EFX_MCDI_EXCEPTION_MC_REBOOT
756 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
757 
758 	emtp->emt_exception(emtp->emt_context, exception);
759 }
760 
761 			void
762 efx_mcdi_execute(
763 	__in		efx_nic_t *enp,
764 	__inout		efx_mcdi_req_t *emrp)
765 {
766 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
767 
768 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
769 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
770 
771 	emrp->emr_quiet = B_FALSE;
772 	emtp->emt_execute(emtp->emt_context, emrp);
773 }
774 
775 			void
776 efx_mcdi_execute_quiet(
777 	__in		efx_nic_t *enp,
778 	__inout		efx_mcdi_req_t *emrp)
779 {
780 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
781 
782 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
783 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
784 
785 	emrp->emr_quiet = B_TRUE;
786 	emtp->emt_execute(emtp->emt_context, emrp);
787 }
788 
789 			void
790 efx_mcdi_ev_cpl(
791 	__in		efx_nic_t *enp,
792 	__in		unsigned int seq,
793 	__in		unsigned int outlen,
794 	__in		int errcode)
795 {
796 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
797 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
798 	efx_mcdi_req_t *emrp;
799 	efsys_lock_state_t state;
800 
801 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
802 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
803 
804 	/*
805 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
806 	 * when we're completing an aborted request.
807 	 */
808 	EFSYS_LOCK(enp->en_eslp, state);
809 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
810 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
811 		EFSYS_ASSERT(emip->emi_aborted > 0);
812 		if (emip->emi_aborted > 0)
813 			--emip->emi_aborted;
814 		EFSYS_UNLOCK(enp->en_eslp, state);
815 		return;
816 	}
817 
818 	emrp = emip->emi_pending_req;
819 	emip->emi_pending_req = NULL;
820 	EFSYS_UNLOCK(enp->en_eslp, state);
821 
822 	if (emip->emi_max_version >= 2) {
823 		/* MCDIv2 response details do not fit into an event. */
824 		efx_mcdi_read_response_header(enp, emrp);
825 	} else {
826 		if (errcode != 0) {
827 			if (!emrp->emr_quiet) {
828 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
829 				    int, errcode);
830 			}
831 			emrp->emr_out_length_used = 0;
832 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
833 		} else {
834 			emrp->emr_out_length_used = outlen;
835 			emrp->emr_rc = 0;
836 		}
837 	}
838 	if (emrp->emr_rc == 0)
839 		efx_mcdi_finish_response(enp, emrp);
840 
841 	emtp->emt_ev_cpl(emtp->emt_context);
842 }
843 
844 #if EFSYS_OPT_MCDI_PROXY_AUTH
845 
846 	__checkReturn	efx_rc_t
847 efx_mcdi_get_proxy_handle(
848 	__in		efx_nic_t *enp,
849 	__in		efx_mcdi_req_t *emrp,
850 	__out		uint32_t *handlep)
851 {
852 	efx_rc_t rc;
853 
854 	_NOTE(ARGUNUSED(enp))
855 
856 	/*
857 	 * Return proxy handle from MCDI request that returned with error
858 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
859 	 * PROXY_RESPONSE event.
860 	 */
861 	if ((emrp == NULL) || (handlep == NULL)) {
862 		rc = EINVAL;
863 		goto fail1;
864 	}
865 	if ((emrp->emr_rc != 0) &&
866 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
867 		*handlep = emrp->emr_proxy_handle;
868 		rc = 0;
869 	} else {
870 		*handlep = 0;
871 		rc = ENOENT;
872 	}
873 	return (rc);
874 
875 fail1:
876 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
877 	return (rc);
878 }
879 
880 			void
881 efx_mcdi_ev_proxy_response(
882 	__in		efx_nic_t *enp,
883 	__in		unsigned int handle,
884 	__in		unsigned int status)
885 {
886 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
887 	efx_rc_t rc;
888 
889 	/*
890 	 * Handle results of an authorization request for a privileged MCDI
891 	 * command. If authorization was granted then we must re-issue the
892 	 * original MCDI request. If authorization failed or timed out,
893 	 * then the original MCDI request should be completed with the
894 	 * result code from this event.
895 	 */
896 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
897 
898 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
899 }
900 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
901 
902 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
903 			void
904 efx_mcdi_ev_proxy_request(
905 	__in		efx_nic_t *enp,
906 	__in		unsigned int index)
907 {
908 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
909 
910 	if (emtp->emt_ev_proxy_request != NULL)
911 		emtp->emt_ev_proxy_request(emtp->emt_context, index);
912 }
913 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
914 			void
915 efx_mcdi_ev_death(
916 	__in		efx_nic_t *enp,
917 	__in		int rc)
918 {
919 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
920 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
921 	efx_mcdi_req_t *emrp = NULL;
922 	boolean_t ev_cpl;
923 	efsys_lock_state_t state;
924 
925 	/*
926 	 * The MCDI request (if there is one) has been terminated, either
927 	 * by a BADASSERT or REBOOT event.
928 	 *
929 	 * If there is an outstanding event-completed MCDI operation, then we
930 	 * will never receive the completion event (because both MCDI
931 	 * completions and BADASSERT events are sent to the same evq). So
932 	 * complete this MCDI op.
933 	 *
934 	 * This function might run in parallel with efx_mcdi_request_poll()
935 	 * for poll completed mcdi requests, and also with
936 	 * efx_mcdi_request_start() for post-watchdog completions.
937 	 */
938 	EFSYS_LOCK(enp->en_eslp, state);
939 	emrp = emip->emi_pending_req;
940 	ev_cpl = emip->emi_ev_cpl;
941 	if (emrp != NULL && emip->emi_ev_cpl) {
942 		emip->emi_pending_req = NULL;
943 
944 		emrp->emr_out_length_used = 0;
945 		emrp->emr_rc = rc;
946 		++emip->emi_aborted;
947 	}
948 
949 	/*
950 	 * Since we're running in parallel with a request, consume the
951 	 * status word before dropping the lock.
952 	 */
953 	if (rc == EIO || rc == EINTR) {
954 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
955 		(void) efx_mcdi_poll_reboot(enp);
956 		emip->emi_new_epoch = B_TRUE;
957 	}
958 
959 	EFSYS_UNLOCK(enp->en_eslp, state);
960 
961 	efx_mcdi_raise_exception(enp, emrp, rc);
962 
963 	if (emrp != NULL && ev_cpl)
964 		emtp->emt_ev_cpl(emtp->emt_context);
965 }
966 
967 	__checkReturn		efx_rc_t
968 efx_mcdi_get_version(
969 	__in			efx_nic_t *enp,
970 	__in			uint32_t flags,
971 	__out			efx_mcdi_version_t *verp)
972 {
973 	efx_nic_board_info_t *board_infop = &verp->emv_board_info;
974 	EFX_MCDI_DECLARE_BUF(payload,
975 	    MC_CMD_GET_VERSION_EXT_IN_LEN,
976 	    MC_CMD_GET_VERSION_V2_OUT_LEN);
977 	efx_word_t *ver_words;
978 	uint16_t version[4];
979 	efx_mcdi_req_t req;
980 	uint32_t firmware;
981 	efx_rc_t rc;
982 
983 	EFX_STATIC_ASSERT(sizeof (verp->emv_version) ==
984 	    MC_CMD_GET_VERSION_OUT_VERSION_LEN);
985 	EFX_STATIC_ASSERT(sizeof (verp->emv_firmware) ==
986 	    MC_CMD_GET_VERSION_OUT_FIRMWARE_LEN);
987 
988 	EFX_STATIC_ASSERT(EFX_MCDI_VERSION_BOARD_INFO ==
989 	    (1U << MC_CMD_GET_VERSION_V2_OUT_BOARD_EXT_INFO_PRESENT_LBN));
990 
991 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_serial) ==
992 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_SERIAL_LEN);
993 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_name) ==
994 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_NAME_LEN);
995 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_revision) ==
996 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_REVISION_LEN);
997 
998 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
999 
1000 	req.emr_cmd = MC_CMD_GET_VERSION;
1001 	req.emr_in_buf = payload;
1002 	req.emr_out_buf = payload;
1003 
1004 	if ((flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1005 		/* Request basic + extended version information. */
1006 		req.emr_in_length = MC_CMD_GET_VERSION_EXT_IN_LEN;
1007 		req.emr_out_length = MC_CMD_GET_VERSION_V2_OUT_LEN;
1008 	} else {
1009 		/* Request only basic version information. */
1010 		req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
1011 		req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
1012 	}
1013 
1014 	efx_mcdi_execute(enp, &req);
1015 
1016 	if (req.emr_rc != 0) {
1017 		rc = req.emr_rc;
1018 		goto fail1;
1019 	}
1020 
1021 	/* bootrom support */
1022 	if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
1023 		version[0] = version[1] = version[2] = version[3] = 0;
1024 		firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1025 		goto out;
1026 	}
1027 
1028 	if (req.emr_out_length_used < req.emr_out_length) {
1029 		rc = EMSGSIZE;
1030 		goto fail2;
1031 	}
1032 
1033 	ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
1034 	version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
1035 	version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
1036 	version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
1037 	version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
1038 	firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1039 
1040 out:
1041 	memset(verp, 0, sizeof (*verp));
1042 
1043 	verp->emv_version[0] = version[0];
1044 	verp->emv_version[1] = version[1];
1045 	verp->emv_version[2] = version[2];
1046 	verp->emv_version[3] = version[3];
1047 	verp->emv_firmware = firmware;
1048 
1049 	verp->emv_flags = MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_FLAGS);
1050 	verp->emv_flags &= flags;
1051 
1052 	if ((verp->emv_flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1053 		memcpy(board_infop->enbi_serial,
1054 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_SERIAL),
1055 		    sizeof (board_infop->enbi_serial));
1056 		memcpy(board_infop->enbi_name,
1057 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_NAME),
1058 		    sizeof (board_infop->enbi_name));
1059 		board_infop->enbi_revision =
1060 		    MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_BOARD_REVISION);
1061 	}
1062 
1063 	return (0);
1064 
1065 fail2:
1066 	EFSYS_PROBE(fail2);
1067 fail1:
1068 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1069 
1070 	return (rc);
1071 }
1072 
1073 static	__checkReturn		efx_rc_t
1074 efx_mcdi_get_boot_status(
1075 	__in			efx_nic_t *enp,
1076 	__out			efx_mcdi_boot_t *statusp)
1077 {
1078 	EFX_MCDI_DECLARE_BUF(payload,
1079 	    MC_CMD_GET_BOOT_STATUS_IN_LEN,
1080 	    MC_CMD_GET_BOOT_STATUS_OUT_LEN);
1081 	efx_mcdi_req_t req;
1082 	efx_rc_t rc;
1083 
1084 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
1085 
1086 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
1087 	req.emr_in_buf = payload;
1088 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
1089 	req.emr_out_buf = payload;
1090 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
1091 
1092 	efx_mcdi_execute_quiet(enp, &req);
1093 
1094 	/*
1095 	 * NOTE: Unprivileged functions cannot access boot status,
1096 	 *       so the MCDI request will return EACCES. This is
1097 	 *       also checked in efx_mcdi_version.
1098 	 */
1099 
1100 	if (req.emr_rc != 0) {
1101 		rc = req.emr_rc;
1102 		goto fail1;
1103 	}
1104 
1105 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
1106 		rc = EMSGSIZE;
1107 		goto fail2;
1108 	}
1109 
1110 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
1111 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
1112 		*statusp = EFX_MCDI_BOOT_PRIMARY;
1113 	else
1114 		*statusp = EFX_MCDI_BOOT_SECONDARY;
1115 
1116 	return (0);
1117 
1118 fail2:
1119 	EFSYS_PROBE(fail2);
1120 fail1:
1121 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1122 
1123 	return (rc);
1124 }
1125 
1126 	__checkReturn		efx_rc_t
1127 efx_mcdi_version(
1128 	__in			efx_nic_t *enp,
1129 	__out_ecount_opt(4)	uint16_t versionp[4],
1130 	__out_opt		uint32_t *buildp,
1131 	__out_opt		efx_mcdi_boot_t *statusp)
1132 {
1133 	efx_mcdi_version_t ver;
1134 	efx_mcdi_boot_t status;
1135 	efx_rc_t rc;
1136 
1137 	rc = efx_mcdi_get_version(enp, 0, &ver);
1138 	if (rc != 0)
1139 		goto fail1;
1140 
1141 	/* The bootrom doesn't understand BOOT_STATUS */
1142 	if (MC_FW_VERSION_IS_BOOTLOADER(ver.emv_firmware)) {
1143 		status = EFX_MCDI_BOOT_ROM;
1144 		goto out;
1145 	}
1146 
1147 	rc = efx_mcdi_get_boot_status(enp, &status);
1148 	if (rc == EACCES) {
1149 		/* Unprivileged functions cannot access BOOT_STATUS */
1150 		status = EFX_MCDI_BOOT_PRIMARY;
1151 		memset(ver.emv_version, 0, sizeof (ver.emv_version));
1152 		ver.emv_firmware = 0;
1153 	} else if (rc != 0) {
1154 		goto fail2;
1155 	}
1156 
1157 out:
1158 	if (versionp != NULL)
1159 		memcpy(versionp, ver.emv_version, sizeof (ver.emv_version));
1160 	if (buildp != NULL)
1161 		*buildp = ver.emv_firmware;
1162 	if (statusp != NULL)
1163 		*statusp = status;
1164 
1165 	return (0);
1166 
1167 fail2:
1168 	EFSYS_PROBE(fail2);
1169 fail1:
1170 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1171 
1172 	return (rc);
1173 }
1174 
1175 	__checkReturn	efx_rc_t
1176 efx_mcdi_get_capabilities(
1177 	__in		efx_nic_t *enp,
1178 	__out_opt	uint32_t *flagsp,
1179 	__out_opt	uint16_t *rx_dpcpu_fw_idp,
1180 	__out_opt	uint16_t *tx_dpcpu_fw_idp,
1181 	__out_opt	uint32_t *flags2p,
1182 	__out_opt	uint32_t *tso2ncp)
1183 {
1184 	efx_mcdi_req_t req;
1185 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1186 		MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
1187 	boolean_t v2_capable;
1188 	efx_rc_t rc;
1189 
1190 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1191 	req.emr_in_buf = payload;
1192 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1193 	req.emr_out_buf = payload;
1194 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
1195 
1196 	efx_mcdi_execute_quiet(enp, &req);
1197 
1198 	if (req.emr_rc != 0) {
1199 		rc = req.emr_rc;
1200 		goto fail1;
1201 	}
1202 
1203 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1204 		rc = EMSGSIZE;
1205 		goto fail2;
1206 	}
1207 
1208 	if (flagsp != NULL)
1209 		*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
1210 
1211 	if (rx_dpcpu_fw_idp != NULL)
1212 		*rx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1213 					GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
1214 
1215 	if (tx_dpcpu_fw_idp != NULL)
1216 		*tx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1217 					GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
1218 
1219 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
1220 		v2_capable = B_FALSE;
1221 	else
1222 		v2_capable = B_TRUE;
1223 
1224 	if (flags2p != NULL) {
1225 		*flags2p = (v2_capable) ?
1226 			MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) :
1227 			0;
1228 	}
1229 
1230 	if (tso2ncp != NULL) {
1231 		*tso2ncp = (v2_capable) ?
1232 			MCDI_OUT_WORD(req,
1233 				GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) :
1234 			0;
1235 	}
1236 
1237 	return (0);
1238 
1239 fail2:
1240 	EFSYS_PROBE(fail2);
1241 fail1:
1242 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1243 
1244 	return (rc);
1245 }
1246 
1247 static	__checkReturn	efx_rc_t
1248 efx_mcdi_do_reboot(
1249 	__in		efx_nic_t *enp,
1250 	__in		boolean_t after_assertion)
1251 {
1252 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN,
1253 		MC_CMD_REBOOT_OUT_LEN);
1254 	efx_mcdi_req_t req;
1255 	efx_rc_t rc;
1256 
1257 	/*
1258 	 * We could require the caller to have caused en_mod_flags=0 to
1259 	 * call this function. This doesn't help the other port though,
1260 	 * who's about to get the MC ripped out from underneath them.
1261 	 * Since they have to cope with the subsequent fallout of MCDI
1262 	 * failures, we should as well.
1263 	 */
1264 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1265 
1266 	req.emr_cmd = MC_CMD_REBOOT;
1267 	req.emr_in_buf = payload;
1268 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1269 	req.emr_out_buf = payload;
1270 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1271 
1272 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1273 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1274 
1275 	efx_mcdi_execute_quiet(enp, &req);
1276 
1277 	if (req.emr_rc == EACCES) {
1278 		/* Unprivileged functions cannot reboot the MC. */
1279 		goto out;
1280 	}
1281 
1282 	/* A successful reboot request returns EIO. */
1283 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1284 		rc = req.emr_rc;
1285 		goto fail1;
1286 	}
1287 
1288 out:
1289 	return (0);
1290 
1291 fail1:
1292 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1293 
1294 	return (rc);
1295 }
1296 
1297 	__checkReturn	efx_rc_t
1298 efx_mcdi_reboot(
1299 	__in		efx_nic_t *enp)
1300 {
1301 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1302 }
1303 
1304 	__checkReturn	efx_rc_t
1305 efx_mcdi_exit_assertion_handler(
1306 	__in		efx_nic_t *enp)
1307 {
1308 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1309 }
1310 
1311 	__checkReturn	efx_rc_t
1312 efx_mcdi_read_assertion(
1313 	__in		efx_nic_t *enp)
1314 {
1315 	efx_mcdi_req_t req;
1316 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN,
1317 		MC_CMD_GET_ASSERTS_OUT_LEN);
1318 	const char *reason;
1319 	unsigned int flags;
1320 	unsigned int index;
1321 	unsigned int ofst;
1322 	int retry;
1323 	efx_rc_t rc;
1324 
1325 	/*
1326 	 * Before we attempt to chat to the MC, we should verify that the MC
1327 	 * isn't in it's assertion handler, either due to a previous reboot,
1328 	 * or because we're reinitializing due to an eec_exception().
1329 	 *
1330 	 * Use GET_ASSERTS to read any assertion state that may be present.
1331 	 * Retry this command twice. Once because a boot-time assertion failure
1332 	 * might cause the 1st MCDI request to fail. And once again because
1333 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1334 	 * partner port(s) on the same NIC.
1335 	 */
1336 	retry = 2;
1337 	do {
1338 		(void) memset(payload, 0, sizeof (payload));
1339 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1340 		req.emr_in_buf = payload;
1341 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1342 		req.emr_out_buf = payload;
1343 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1344 
1345 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1346 		efx_mcdi_execute_quiet(enp, &req);
1347 
1348 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1349 
1350 	if (req.emr_rc != 0) {
1351 		if (req.emr_rc == EACCES) {
1352 			/* Unprivileged functions cannot clear assertions. */
1353 			goto out;
1354 		}
1355 		rc = req.emr_rc;
1356 		goto fail1;
1357 	}
1358 
1359 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1360 		rc = EMSGSIZE;
1361 		goto fail2;
1362 	}
1363 
1364 	/* Print out any assertion state recorded */
1365 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1366 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1367 		return (0);
1368 
1369 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1370 		? "system-level assertion"
1371 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1372 		? "thread-level assertion"
1373 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1374 		? "watchdog reset"
1375 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1376 		? "illegal address trap"
1377 		: "unknown assertion";
1378 	EFSYS_PROBE3(mcpu_assertion,
1379 	    const char *, reason, unsigned int,
1380 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1381 	    unsigned int,
1382 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1383 
1384 	/* Print out the registers (r1 ... r31) */
1385 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1386 	for (index = 1;
1387 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1388 		index++) {
1389 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1390 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1391 					    EFX_DWORD_0));
1392 		ofst += sizeof (efx_dword_t);
1393 	}
1394 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1395 
1396 out:
1397 	return (0);
1398 
1399 fail2:
1400 	EFSYS_PROBE(fail2);
1401 fail1:
1402 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1403 
1404 	return (rc);
1405 }
1406 
1407 
1408 /*
1409  * Internal routines for for specific MCDI requests.
1410  */
1411 
1412 	__checkReturn	efx_rc_t
1413 efx_mcdi_drv_attach(
1414 	__in		efx_nic_t *enp,
1415 	__in		boolean_t attach)
1416 {
1417 	efx_mcdi_req_t req;
1418 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_V2_LEN,
1419 		MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1420 	efx_rc_t rc;
1421 
1422 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1423 	req.emr_in_buf = payload;
1424 	if (enp->en_drv_version[0] == '\0') {
1425 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1426 	} else {
1427 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_V2_LEN;
1428 	}
1429 	req.emr_out_buf = payload;
1430 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1431 
1432 	/*
1433 	 * Typically, client drivers use DONT_CARE for the datapath firmware
1434 	 * type to ensure that the driver can attach to an unprivileged
1435 	 * function. The datapath firmware type to use is controlled by the
1436 	 * 'sfboot' utility.
1437 	 * If a client driver wishes to attach with a specific datapath firmware
1438 	 * type, that can be passed in second argument of efx_nic_probe API. One
1439 	 * such example is the ESXi native driver that attempts attaching with
1440 	 * FULL_FEATURED datapath firmware type first and fall backs to
1441 	 * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails.
1442 	 */
1443 	MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE,
1444 	    DRV_ATTACH_IN_ATTACH, attach ? 1 : 0,
1445 	    DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE);
1446 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1447 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv);
1448 
1449 	if (req.emr_in_length >= MC_CMD_DRV_ATTACH_IN_V2_LEN) {
1450 		EFX_STATIC_ASSERT(sizeof (enp->en_drv_version) ==
1451 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1452 		memcpy(MCDI_IN2(req, char, DRV_ATTACH_IN_V2_DRIVER_VERSION),
1453 		    enp->en_drv_version,
1454 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1455 	}
1456 
1457 	efx_mcdi_execute(enp, &req);
1458 
1459 	if (req.emr_rc != 0) {
1460 		rc = req.emr_rc;
1461 		goto fail1;
1462 	}
1463 
1464 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1465 		rc = EMSGSIZE;
1466 		goto fail2;
1467 	}
1468 
1469 	return (0);
1470 
1471 fail2:
1472 	EFSYS_PROBE(fail2);
1473 fail1:
1474 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1475 
1476 	return (rc);
1477 }
1478 
1479 	__checkReturn		efx_rc_t
1480 efx_mcdi_get_board_cfg(
1481 	__in			efx_nic_t *enp,
1482 	__out_opt		uint32_t *board_typep,
1483 	__out_opt		efx_dword_t *capabilitiesp,
1484 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1485 {
1486 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1487 	efx_mcdi_req_t req;
1488 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN,
1489 		MC_CMD_GET_BOARD_CFG_OUT_LENMIN);
1490 	efx_rc_t rc;
1491 
1492 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1493 	req.emr_in_buf = payload;
1494 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1495 	req.emr_out_buf = payload;
1496 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1497 
1498 	efx_mcdi_execute(enp, &req);
1499 
1500 	if (req.emr_rc != 0) {
1501 		rc = req.emr_rc;
1502 		goto fail1;
1503 	}
1504 
1505 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1506 		rc = EMSGSIZE;
1507 		goto fail2;
1508 	}
1509 
1510 	if (mac_addrp != NULL) {
1511 		uint8_t *addrp;
1512 
1513 		if (emip->emi_port == 1) {
1514 			addrp = MCDI_OUT2(req, uint8_t,
1515 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1516 		} else if (emip->emi_port == 2) {
1517 			addrp = MCDI_OUT2(req, uint8_t,
1518 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1519 		} else {
1520 			rc = EINVAL;
1521 			goto fail3;
1522 		}
1523 
1524 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1525 	}
1526 
1527 	if (capabilitiesp != NULL) {
1528 		if (emip->emi_port == 1) {
1529 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1530 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1531 		} else if (emip->emi_port == 2) {
1532 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1533 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1534 		} else {
1535 			rc = EINVAL;
1536 			goto fail4;
1537 		}
1538 	}
1539 
1540 	if (board_typep != NULL) {
1541 		*board_typep = MCDI_OUT_DWORD(req,
1542 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1543 	}
1544 
1545 	return (0);
1546 
1547 fail4:
1548 	EFSYS_PROBE(fail4);
1549 fail3:
1550 	EFSYS_PROBE(fail3);
1551 fail2:
1552 	EFSYS_PROBE(fail2);
1553 fail1:
1554 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1555 
1556 	return (rc);
1557 }
1558 
1559 	__checkReturn	efx_rc_t
1560 efx_mcdi_get_resource_limits(
1561 	__in		efx_nic_t *enp,
1562 	__out_opt	uint32_t *nevqp,
1563 	__out_opt	uint32_t *nrxqp,
1564 	__out_opt	uint32_t *ntxqp)
1565 {
1566 	efx_mcdi_req_t req;
1567 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1568 		MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN);
1569 	efx_rc_t rc;
1570 
1571 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1572 	req.emr_in_buf = payload;
1573 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1574 	req.emr_out_buf = payload;
1575 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1576 
1577 	efx_mcdi_execute(enp, &req);
1578 
1579 	if (req.emr_rc != 0) {
1580 		rc = req.emr_rc;
1581 		goto fail1;
1582 	}
1583 
1584 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1585 		rc = EMSGSIZE;
1586 		goto fail2;
1587 	}
1588 
1589 	if (nevqp != NULL)
1590 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1591 	if (nrxqp != NULL)
1592 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1593 	if (ntxqp != NULL)
1594 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1595 
1596 	return (0);
1597 
1598 fail2:
1599 	EFSYS_PROBE(fail2);
1600 fail1:
1601 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1602 
1603 	return (rc);
1604 }
1605 
1606 	__checkReturn	efx_rc_t
1607 efx_mcdi_get_phy_cfg(
1608 	__in		efx_nic_t *enp)
1609 {
1610 	efx_port_t *epp = &(enp->en_port);
1611 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1612 	efx_mcdi_req_t req;
1613 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN,
1614 		MC_CMD_GET_PHY_CFG_OUT_LEN);
1615 #if EFSYS_OPT_NAMES
1616 	const char *namep;
1617 	size_t namelen;
1618 #endif
1619 	uint32_t phy_media_type;
1620 	efx_rc_t rc;
1621 
1622 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1623 	req.emr_in_buf = payload;
1624 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1625 	req.emr_out_buf = payload;
1626 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1627 
1628 	efx_mcdi_execute(enp, &req);
1629 
1630 	if (req.emr_rc != 0) {
1631 		rc = req.emr_rc;
1632 		goto fail1;
1633 	}
1634 
1635 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1636 		rc = EMSGSIZE;
1637 		goto fail2;
1638 	}
1639 
1640 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1641 #if EFSYS_OPT_NAMES
1642 	namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME);
1643 	namelen = MIN(sizeof (encp->enc_phy_name) - 1,
1644 		    strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1645 	(void) memset(encp->enc_phy_name, 0,
1646 	    sizeof (encp->enc_phy_name));
1647 	memcpy(encp->enc_phy_name, namep, namelen);
1648 #endif	/* EFSYS_OPT_NAMES */
1649 	(void) memset(encp->enc_phy_revision, 0,
1650 	    sizeof (encp->enc_phy_revision));
1651 	memcpy(encp->enc_phy_revision,
1652 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1653 		MIN(sizeof (encp->enc_phy_revision) - 1,
1654 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1655 #if EFSYS_OPT_PHY_LED_CONTROL
1656 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1657 			    (1 << EFX_PHY_LED_OFF) |
1658 			    (1 << EFX_PHY_LED_ON));
1659 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1660 
1661 	/* Get the media type of the fixed port, if recognised. */
1662 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1663 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1664 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1665 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1666 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1667 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1668 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1669 	phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1670 	epp->ep_fixed_port_type = (efx_phy_media_type_t)phy_media_type;
1671 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1672 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1673 
1674 	epp->ep_phy_cap_mask =
1675 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1676 #if EFSYS_OPT_PHY_FLAGS
1677 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1678 #endif	/* EFSYS_OPT_PHY_FLAGS */
1679 
1680 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1681 
1682 	/* Populate internal state */
1683 	encp->enc_mcdi_mdio_channel =
1684 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1685 
1686 #if EFSYS_OPT_PHY_STATS
1687 	encp->enc_mcdi_phy_stat_mask =
1688 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1689 #endif	/* EFSYS_OPT_PHY_STATS */
1690 
1691 #if EFSYS_OPT_BIST
1692 	encp->enc_bist_mask = 0;
1693 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1694 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1695 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1696 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1697 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1698 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1699 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1700 	    GET_PHY_CFG_OUT_BIST))
1701 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1702 #endif  /* EFSYS_OPT_BIST */
1703 
1704 	return (0);
1705 
1706 fail2:
1707 	EFSYS_PROBE(fail2);
1708 fail1:
1709 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1710 
1711 	return (rc);
1712 }
1713 
1714 	__checkReturn		efx_rc_t
1715 efx_mcdi_firmware_update_supported(
1716 	__in			efx_nic_t *enp,
1717 	__out			boolean_t *supportedp)
1718 {
1719 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1720 	efx_rc_t rc;
1721 
1722 	if (emcop != NULL) {
1723 		if ((rc = emcop->emco_feature_supported(enp,
1724 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1725 			goto fail1;
1726 	} else {
1727 		/* Earlier devices always supported updates */
1728 		*supportedp = B_TRUE;
1729 	}
1730 
1731 	return (0);
1732 
1733 fail1:
1734 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1735 
1736 	return (rc);
1737 }
1738 
1739 	__checkReturn		efx_rc_t
1740 efx_mcdi_macaddr_change_supported(
1741 	__in			efx_nic_t *enp,
1742 	__out			boolean_t *supportedp)
1743 {
1744 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1745 	efx_rc_t rc;
1746 
1747 	if (emcop != NULL) {
1748 		if ((rc = emcop->emco_feature_supported(enp,
1749 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1750 			goto fail1;
1751 	} else {
1752 		/* Earlier devices always supported MAC changes */
1753 		*supportedp = B_TRUE;
1754 	}
1755 
1756 	return (0);
1757 
1758 fail1:
1759 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1760 
1761 	return (rc);
1762 }
1763 
1764 	__checkReturn		efx_rc_t
1765 efx_mcdi_link_control_supported(
1766 	__in			efx_nic_t *enp,
1767 	__out			boolean_t *supportedp)
1768 {
1769 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1770 	efx_rc_t rc;
1771 
1772 	if (emcop != NULL) {
1773 		if ((rc = emcop->emco_feature_supported(enp,
1774 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1775 			goto fail1;
1776 	} else {
1777 		/* Earlier devices always supported link control */
1778 		*supportedp = B_TRUE;
1779 	}
1780 
1781 	return (0);
1782 
1783 fail1:
1784 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1785 
1786 	return (rc);
1787 }
1788 
1789 	__checkReturn		efx_rc_t
1790 efx_mcdi_mac_spoofing_supported(
1791 	__in			efx_nic_t *enp,
1792 	__out			boolean_t *supportedp)
1793 {
1794 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1795 	efx_rc_t rc;
1796 
1797 	if (emcop != NULL) {
1798 		if ((rc = emcop->emco_feature_supported(enp,
1799 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1800 			goto fail1;
1801 	} else {
1802 		/* Earlier devices always supported MAC spoofing */
1803 		*supportedp = B_TRUE;
1804 	}
1805 
1806 	return (0);
1807 
1808 fail1:
1809 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1810 
1811 	return (rc);
1812 }
1813 
1814 #if EFSYS_OPT_BIST
1815 
1816 #if EFX_OPTS_EF10()
1817 /*
1818  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1819  * where memory BIST tests can be run and not much else can interfere or happen.
1820  * A reboot is required to exit this mode.
1821  */
1822 	__checkReturn		efx_rc_t
1823 efx_mcdi_bist_enable_offline(
1824 	__in			efx_nic_t *enp)
1825 {
1826 	efx_mcdi_req_t req;
1827 	efx_rc_t rc;
1828 
1829 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1830 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1831 
1832 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1833 	req.emr_in_buf = NULL;
1834 	req.emr_in_length = 0;
1835 	req.emr_out_buf = NULL;
1836 	req.emr_out_length = 0;
1837 
1838 	efx_mcdi_execute(enp, &req);
1839 
1840 	if (req.emr_rc != 0) {
1841 		rc = req.emr_rc;
1842 		goto fail1;
1843 	}
1844 
1845 	return (0);
1846 
1847 fail1:
1848 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1849 
1850 	return (rc);
1851 }
1852 #endif /* EFX_OPTS_EF10() */
1853 
1854 	__checkReturn		efx_rc_t
1855 efx_mcdi_bist_start(
1856 	__in			efx_nic_t *enp,
1857 	__in			efx_bist_type_t type)
1858 {
1859 	efx_mcdi_req_t req;
1860 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN,
1861 		MC_CMD_START_BIST_OUT_LEN);
1862 	efx_rc_t rc;
1863 
1864 	req.emr_cmd = MC_CMD_START_BIST;
1865 	req.emr_in_buf = payload;
1866 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1867 	req.emr_out_buf = payload;
1868 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1869 
1870 	switch (type) {
1871 	case EFX_BIST_TYPE_PHY_NORMAL:
1872 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1873 		break;
1874 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1875 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1876 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1877 		break;
1878 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1879 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1880 		    MC_CMD_PHY_BIST_CABLE_LONG);
1881 		break;
1882 	case EFX_BIST_TYPE_MC_MEM:
1883 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1884 		    MC_CMD_MC_MEM_BIST);
1885 		break;
1886 	case EFX_BIST_TYPE_SAT_MEM:
1887 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1888 		    MC_CMD_PORT_MEM_BIST);
1889 		break;
1890 	case EFX_BIST_TYPE_REG:
1891 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1892 		    MC_CMD_REG_BIST);
1893 		break;
1894 	default:
1895 		EFSYS_ASSERT(0);
1896 	}
1897 
1898 	efx_mcdi_execute(enp, &req);
1899 
1900 	if (req.emr_rc != 0) {
1901 		rc = req.emr_rc;
1902 		goto fail1;
1903 	}
1904 
1905 	return (0);
1906 
1907 fail1:
1908 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1909 
1910 	return (rc);
1911 }
1912 
1913 #endif /* EFSYS_OPT_BIST */
1914 
1915 
1916 /* Enable logging of some events (e.g. link state changes) */
1917 	__checkReturn	efx_rc_t
1918 efx_mcdi_log_ctrl(
1919 	__in		efx_nic_t *enp)
1920 {
1921 	efx_mcdi_req_t req;
1922 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN,
1923 		MC_CMD_LOG_CTRL_OUT_LEN);
1924 	efx_rc_t rc;
1925 
1926 	req.emr_cmd = MC_CMD_LOG_CTRL;
1927 	req.emr_in_buf = payload;
1928 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
1929 	req.emr_out_buf = payload;
1930 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
1931 
1932 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
1933 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
1934 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
1935 
1936 	efx_mcdi_execute(enp, &req);
1937 
1938 	if (req.emr_rc != 0) {
1939 		rc = req.emr_rc;
1940 		goto fail1;
1941 	}
1942 
1943 	return (0);
1944 
1945 fail1:
1946 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1947 
1948 	return (rc);
1949 }
1950 
1951 
1952 #if EFSYS_OPT_MAC_STATS
1953 
1954 	__checkReturn	efx_rc_t
1955 efx_mcdi_mac_stats(
1956 	__in		efx_nic_t *enp,
1957 	__in		uint32_t vport_id,
1958 	__in_opt	efsys_mem_t *esmp,
1959 	__in		efx_stats_action_t action,
1960 	__in		uint16_t period_ms)
1961 {
1962 	efx_mcdi_req_t req;
1963 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN,
1964 		MC_CMD_MAC_STATS_V2_OUT_DMA_LEN);
1965 	int clear = (action == EFX_STATS_CLEAR);
1966 	int upload = (action == EFX_STATS_UPLOAD);
1967 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
1968 	int events = (action == EFX_STATS_ENABLE_EVENTS);
1969 	int disable = (action == EFX_STATS_DISABLE);
1970 	efx_rc_t rc;
1971 
1972 	req.emr_cmd = MC_CMD_MAC_STATS;
1973 	req.emr_in_buf = payload;
1974 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
1975 	req.emr_out_buf = payload;
1976 	req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN;
1977 
1978 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
1979 	    MAC_STATS_IN_DMA, upload,
1980 	    MAC_STATS_IN_CLEAR, clear,
1981 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
1982 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
1983 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
1984 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0);
1985 
1986 	if (enable || events || upload) {
1987 		const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
1988 		uint32_t bytes;
1989 
1990 		/* Periodic stats or stats upload require a DMA buffer */
1991 		if (esmp == NULL) {
1992 			rc = EINVAL;
1993 			goto fail1;
1994 		}
1995 
1996 		if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) {
1997 			/* MAC stats count too small for legacy MAC stats */
1998 			rc = ENOSPC;
1999 			goto fail2;
2000 		}
2001 
2002 		bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t);
2003 
2004 		if (EFSYS_MEM_SIZE(esmp) < bytes) {
2005 			/* DMA buffer too small */
2006 			rc = ENOSPC;
2007 			goto fail3;
2008 		}
2009 
2010 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
2011 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
2012 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
2013 			    EFSYS_MEM_ADDR(esmp) >> 32);
2014 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
2015 	}
2016 
2017 	/*
2018 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
2019 	 *	 as this may fail (and leave periodic DMA enabled) if the
2020 	 *	 vadapter has already been deleted.
2021 	 */
2022 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
2023 		(disable ? EVB_PORT_ID_NULL : vport_id));
2024 
2025 	efx_mcdi_execute(enp, &req);
2026 
2027 	if (req.emr_rc != 0) {
2028 		/* EF10: Expect ENOENT if no DMA queues are initialised */
2029 		if ((req.emr_rc != ENOENT) ||
2030 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
2031 			rc = req.emr_rc;
2032 			goto fail4;
2033 		}
2034 	}
2035 
2036 	return (0);
2037 
2038 fail4:
2039 	EFSYS_PROBE(fail4);
2040 fail3:
2041 	EFSYS_PROBE(fail3);
2042 fail2:
2043 	EFSYS_PROBE(fail2);
2044 fail1:
2045 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2046 
2047 	return (rc);
2048 }
2049 
2050 	__checkReturn	efx_rc_t
2051 efx_mcdi_mac_stats_clear(
2052 	__in		efx_nic_t *enp)
2053 {
2054 	efx_rc_t rc;
2055 
2056 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2057 			EFX_STATS_CLEAR, 0)) != 0)
2058 		goto fail1;
2059 
2060 	return (0);
2061 
2062 fail1:
2063 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2064 
2065 	return (rc);
2066 }
2067 
2068 	__checkReturn	efx_rc_t
2069 efx_mcdi_mac_stats_upload(
2070 	__in		efx_nic_t *enp,
2071 	__in		efsys_mem_t *esmp)
2072 {
2073 	efx_rc_t rc;
2074 
2075 	/*
2076 	 * The MC DMAs aggregate statistics for our convenience, so we can
2077 	 * avoid having to pull the statistics buffer into the cache to
2078 	 * maintain cumulative statistics.
2079 	 */
2080 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2081 			EFX_STATS_UPLOAD, 0)) != 0)
2082 		goto fail1;
2083 
2084 	return (0);
2085 
2086 fail1:
2087 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2088 
2089 	return (rc);
2090 }
2091 
2092 	__checkReturn	efx_rc_t
2093 efx_mcdi_mac_stats_periodic(
2094 	__in		efx_nic_t *enp,
2095 	__in		efsys_mem_t *esmp,
2096 	__in		uint16_t period_ms,
2097 	__in		boolean_t events)
2098 {
2099 	efx_rc_t rc;
2100 
2101 	/*
2102 	 * The MC DMAs aggregate statistics for our convenience, so we can
2103 	 * avoid having to pull the statistics buffer into the cache to
2104 	 * maintain cumulative statistics.
2105 	 * Huntington uses a fixed 1sec period.
2106 	 * Medford uses a fixed 1sec period before v6.2.1.1033 firmware.
2107 	 */
2108 	if (period_ms == 0)
2109 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2110 			EFX_STATS_DISABLE, 0);
2111 	else if (events)
2112 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2113 			EFX_STATS_ENABLE_EVENTS, period_ms);
2114 	else
2115 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2116 			EFX_STATS_ENABLE_NOEVENTS, period_ms);
2117 
2118 	if (rc != 0)
2119 		goto fail1;
2120 
2121 	return (0);
2122 
2123 fail1:
2124 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2125 
2126 	return (rc);
2127 }
2128 
2129 #endif	/* EFSYS_OPT_MAC_STATS */
2130 
2131 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2132 
2133 /*
2134  * This function returns the pf and vf number of a function.  If it is a pf the
2135  * vf number is 0xffff.  The vf number is the index of the vf on that
2136  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
2137  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
2138  */
2139 	__checkReturn		efx_rc_t
2140 efx_mcdi_get_function_info(
2141 	__in			efx_nic_t *enp,
2142 	__out			uint32_t *pfp,
2143 	__out_opt		uint32_t *vfp)
2144 {
2145 	efx_mcdi_req_t req;
2146 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN,
2147 		MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2148 	efx_rc_t rc;
2149 
2150 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
2151 	req.emr_in_buf = payload;
2152 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
2153 	req.emr_out_buf = payload;
2154 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN;
2155 
2156 	efx_mcdi_execute(enp, &req);
2157 
2158 	if (req.emr_rc != 0) {
2159 		rc = req.emr_rc;
2160 		goto fail1;
2161 	}
2162 
2163 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
2164 		rc = EMSGSIZE;
2165 		goto fail2;
2166 	}
2167 
2168 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
2169 	if (vfp != NULL)
2170 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
2171 
2172 	return (0);
2173 
2174 fail2:
2175 	EFSYS_PROBE(fail2);
2176 fail1:
2177 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2178 
2179 	return (rc);
2180 }
2181 
2182 	__checkReturn		efx_rc_t
2183 efx_mcdi_privilege_mask(
2184 	__in			efx_nic_t *enp,
2185 	__in			uint32_t pf,
2186 	__in			uint32_t vf,
2187 	__out			uint32_t *maskp)
2188 {
2189 	efx_mcdi_req_t req;
2190 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN,
2191 		MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2192 	efx_rc_t rc;
2193 
2194 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
2195 	req.emr_in_buf = payload;
2196 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
2197 	req.emr_out_buf = payload;
2198 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
2199 
2200 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
2201 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2202 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2203 
2204 	efx_mcdi_execute(enp, &req);
2205 
2206 	if (req.emr_rc != 0) {
2207 		rc = req.emr_rc;
2208 		goto fail1;
2209 	}
2210 
2211 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
2212 		rc = EMSGSIZE;
2213 		goto fail2;
2214 	}
2215 
2216 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
2217 
2218 	return (0);
2219 
2220 fail2:
2221 	EFSYS_PROBE(fail2);
2222 fail1:
2223 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2224 
2225 	return (rc);
2226 }
2227 
2228 #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2229 
2230 	__checkReturn		efx_rc_t
2231 efx_mcdi_set_workaround(
2232 	__in			efx_nic_t *enp,
2233 	__in			uint32_t type,
2234 	__in			boolean_t enabled,
2235 	__out_opt		uint32_t *flagsp)
2236 {
2237 	efx_mcdi_req_t req;
2238 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN,
2239 		MC_CMD_WORKAROUND_EXT_OUT_LEN);
2240 	efx_rc_t rc;
2241 
2242 	req.emr_cmd = MC_CMD_WORKAROUND;
2243 	req.emr_in_buf = payload;
2244 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2245 	req.emr_out_buf = payload;
2246 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2247 
2248 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2249 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2250 
2251 	efx_mcdi_execute_quiet(enp, &req);
2252 
2253 	if (req.emr_rc != 0) {
2254 		rc = req.emr_rc;
2255 		goto fail1;
2256 	}
2257 
2258 	if (flagsp != NULL) {
2259 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2260 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2261 		else
2262 			*flagsp = 0;
2263 	}
2264 
2265 	return (0);
2266 
2267 fail1:
2268 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2269 
2270 	return (rc);
2271 }
2272 
2273 
2274 	__checkReturn		efx_rc_t
2275 efx_mcdi_get_workarounds(
2276 	__in			efx_nic_t *enp,
2277 	__out_opt		uint32_t *implementedp,
2278 	__out_opt		uint32_t *enabledp)
2279 {
2280 	efx_mcdi_req_t req;
2281 	EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2282 	efx_rc_t rc;
2283 
2284 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2285 	req.emr_in_buf = NULL;
2286 	req.emr_in_length = 0;
2287 	req.emr_out_buf = payload;
2288 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2289 
2290 	efx_mcdi_execute(enp, &req);
2291 
2292 	if (req.emr_rc != 0) {
2293 		rc = req.emr_rc;
2294 		goto fail1;
2295 	}
2296 
2297 	if (req.emr_out_length_used < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2298 		rc = EMSGSIZE;
2299 		goto fail2;
2300 	}
2301 
2302 	if (implementedp != NULL) {
2303 		*implementedp =
2304 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2305 	}
2306 
2307 	if (enabledp != NULL) {
2308 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2309 	}
2310 
2311 	return (0);
2312 
2313 fail2:
2314 	EFSYS_PROBE(fail2);
2315 fail1:
2316 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2317 
2318 	return (rc);
2319 }
2320 
2321 /*
2322  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2323  * It is used in MCDI interface as well.
2324  */
2325 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2326 
2327 /*
2328  * Transceiver identifiers from SFF-8024 Table 4-1.
2329  */
2330 #define	EFX_SFF_TRANSCEIVER_ID_SFP		0x03 /* SFP/SFP+/SFP28 */
2331 #define	EFX_SFF_TRANSCEIVER_ID_QSFP		0x0c /* QSFP */
2332 #define	EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS	0x0d /* QSFP+ or later */
2333 #define	EFX_SFF_TRANSCEIVER_ID_QSFP28		0x11 /* QSFP28 or later */
2334 
2335 static	__checkReturn		efx_rc_t
2336 efx_mcdi_get_phy_media_info(
2337 	__in			efx_nic_t *enp,
2338 	__in			uint32_t mcdi_page,
2339 	__in			uint8_t offset,
2340 	__in			uint8_t len,
2341 	__out_bcount(len)	uint8_t *data)
2342 {
2343 	efx_mcdi_req_t req;
2344 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2345 		MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2346 			EFX_PHY_MEDIA_INFO_PAGE_SIZE));
2347 	efx_rc_t rc;
2348 
2349 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2350 
2351 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2352 	req.emr_in_buf = payload;
2353 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2354 	req.emr_out_buf = payload;
2355 	req.emr_out_length =
2356 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2357 
2358 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2359 
2360 	efx_mcdi_execute(enp, &req);
2361 
2362 	if (req.emr_rc != 0) {
2363 		rc = req.emr_rc;
2364 		goto fail1;
2365 	}
2366 
2367 	if (req.emr_out_length_used !=
2368 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2369 		rc = EMSGSIZE;
2370 		goto fail2;
2371 	}
2372 
2373 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2374 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2375 		rc = EIO;
2376 		goto fail3;
2377 	}
2378 
2379 	memcpy(data,
2380 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2381 	    len);
2382 
2383 	return (0);
2384 
2385 fail3:
2386 	EFSYS_PROBE(fail3);
2387 fail2:
2388 	EFSYS_PROBE(fail2);
2389 fail1:
2390 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2391 
2392 	return (rc);
2393 }
2394 
2395 	__checkReturn		efx_rc_t
2396 efx_mcdi_phy_module_get_info(
2397 	__in			efx_nic_t *enp,
2398 	__in			uint8_t dev_addr,
2399 	__in			size_t offset,
2400 	__in			size_t len,
2401 	__out_bcount(len)	uint8_t *data)
2402 {
2403 	efx_port_t *epp = &(enp->en_port);
2404 	efx_rc_t rc;
2405 	uint32_t mcdi_lower_page;
2406 	uint32_t mcdi_upper_page;
2407 	uint8_t id;
2408 
2409 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2410 
2411 	/*
2412 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2413 	 * Offset plus length interface allows to access page 0 only.
2414 	 * I.e. non-zero upper pages are not accessible.
2415 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2416 	 * QSFP+ Memory Map for details on how information is structured
2417 	 * and accessible.
2418 	 */
2419 	switch (epp->ep_fixed_port_type) {
2420 	case EFX_PHY_MEDIA_SFP_PLUS:
2421 	case EFX_PHY_MEDIA_QSFP_PLUS:
2422 		/* Port type supports modules */
2423 		break;
2424 	default:
2425 		rc = ENOTSUP;
2426 		goto fail1;
2427 	}
2428 
2429 	/*
2430 	 * For all supported port types, MCDI page 0 offset 0 holds the
2431 	 * transceiver identifier. Probe to determine the data layout.
2432 	 * Definitions from SFF-8024 Table 4-1.
2433 	 */
2434 	rc = efx_mcdi_get_phy_media_info(enp,
2435 		    0, 0, sizeof(id), &id);
2436 	if (rc != 0)
2437 		goto fail2;
2438 
2439 	switch (id) {
2440 	case EFX_SFF_TRANSCEIVER_ID_SFP:
2441 		/*
2442 		 * In accordance with SFF-8472 Diagnostic Monitoring
2443 		 * Interface for Optical Transceivers section 4 Memory
2444 		 * Organization two 2-wire addresses are defined.
2445 		 */
2446 		switch (dev_addr) {
2447 		/* Base information */
2448 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2449 			/*
2450 			 * MCDI page 0 should be used to access lower
2451 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2452 			 */
2453 			mcdi_lower_page = 0;
2454 			/*
2455 			 * MCDI page 1 should be used to access  upper
2456 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2457 			 */
2458 			mcdi_upper_page = 1;
2459 			break;
2460 		/* Diagnostics */
2461 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2462 			/*
2463 			 * MCDI page 2 should be used to access lower
2464 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2465 			 */
2466 			mcdi_lower_page = 2;
2467 			/*
2468 			 * MCDI page 3 should be used to access upper
2469 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2470 			 */
2471 			mcdi_upper_page = 3;
2472 			break;
2473 		default:
2474 			rc = ENOTSUP;
2475 			goto fail3;
2476 		}
2477 		break;
2478 	case EFX_SFF_TRANSCEIVER_ID_QSFP:
2479 	case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS:
2480 	case EFX_SFF_TRANSCEIVER_ID_QSFP28:
2481 		switch (dev_addr) {
2482 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2483 			/*
2484 			 * MCDI page -1 should be used to access lower page 0
2485 			 * (0x00 - 0x7f).
2486 			 */
2487 			mcdi_lower_page = (uint32_t)-1;
2488 			/*
2489 			 * MCDI page 0 should be used to access upper page 0
2490 			 * (0x80h - 0xff).
2491 			 */
2492 			mcdi_upper_page = 0;
2493 			break;
2494 		default:
2495 			rc = ENOTSUP;
2496 			goto fail3;
2497 		}
2498 		break;
2499 	default:
2500 		rc = ENOTSUP;
2501 		goto fail3;
2502 	}
2503 
2504 	EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF);
2505 
2506 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2507 		size_t read_len =
2508 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2509 
2510 		rc = efx_mcdi_get_phy_media_info(enp,
2511 		    mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data);
2512 		if (rc != 0)
2513 			goto fail4;
2514 
2515 		data += read_len;
2516 		len -= read_len;
2517 
2518 		offset = 0;
2519 	} else {
2520 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2521 	}
2522 
2523 	if (len > 0) {
2524 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2525 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2526 
2527 		rc = efx_mcdi_get_phy_media_info(enp,
2528 		    mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data);
2529 		if (rc != 0)
2530 			goto fail5;
2531 	}
2532 
2533 	return (0);
2534 
2535 fail5:
2536 	EFSYS_PROBE(fail5);
2537 fail4:
2538 	EFSYS_PROBE(fail4);
2539 fail3:
2540 	EFSYS_PROBE(fail3);
2541 fail2:
2542 	EFSYS_PROBE(fail2);
2543 fail1:
2544 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2545 
2546 	return (rc);
2547 }
2548 
2549 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2550 
2551 #define	INIT_EVQ_MAXNBUFS	MC_CMD_INIT_EVQ_V2_IN_DMA_ADDR_MAXNUM
2552 
2553 #if EFX_OPTS_EF10()
2554 # if (INIT_EVQ_MAXNBUFS < EF10_EVQ_MAXNBUFS)
2555 #  error "INIT_EVQ_MAXNBUFS too small"
2556 # endif
2557 #endif /* EFX_OPTS_EF10 */
2558 #if EFSYS_OPT_RIVERHEAD
2559 # if (INIT_EVQ_MAXNBUFS < RHEAD_EVQ_MAXNBUFS)
2560 #  error "INIT_EVQ_MAXNBUFS too small"
2561 # endif
2562 #endif /* EFSYS_OPT_RIVERHEAD */
2563 
2564 	__checkReturn	efx_rc_t
2565 efx_mcdi_init_evq(
2566 	__in		efx_nic_t *enp,
2567 	__in		unsigned int instance,
2568 	__in		efsys_mem_t *esmp,
2569 	__in		size_t nevs,
2570 	__in		uint32_t irq,
2571 	__in		uint32_t us,
2572 	__in		uint32_t flags,
2573 	__in		boolean_t low_latency)
2574 {
2575 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(enp);
2576 	efx_mcdi_req_t req;
2577 	EFX_MCDI_DECLARE_BUF(payload,
2578 		MC_CMD_INIT_EVQ_V2_IN_LEN(INIT_EVQ_MAXNBUFS),
2579 		MC_CMD_INIT_EVQ_V2_OUT_LEN);
2580 	boolean_t interrupting;
2581 	int ev_extended_width;
2582 	int ev_cut_through;
2583 	int ev_merge;
2584 	unsigned int evq_type;
2585 	efx_qword_t *dma_addr;
2586 	uint64_t addr;
2587 	int npages;
2588 	int i;
2589 	efx_rc_t rc;
2590 
2591 	npages = efx_evq_nbufs(enp, nevs, flags);
2592 	if (npages > INIT_EVQ_MAXNBUFS) {
2593 		rc = EINVAL;
2594 		goto fail1;
2595 	}
2596 
2597 	req.emr_cmd = MC_CMD_INIT_EVQ;
2598 	req.emr_in_buf = payload;
2599 	req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages);
2600 	req.emr_out_buf = payload;
2601 	req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN;
2602 
2603 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs);
2604 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance);
2605 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq);
2606 
2607 	interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
2608 	    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
2609 
2610 	if (encp->enc_init_evq_v2_supported) {
2611 		/*
2612 		 * On Medford the low latency license is required to enable RX
2613 		 * and event cut through and to disable RX batching.  If event
2614 		 * queue type in flags is auto, we let the firmware decide the
2615 		 * settings to use. If the adapter has a low latency license,
2616 		 * it will choose the best settings for low latency, otherwise
2617 		 * it will choose the best settings for throughput.
2618 		 */
2619 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2620 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2621 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO;
2622 			break;
2623 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2624 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT;
2625 			break;
2626 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2627 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY;
2628 			break;
2629 		default:
2630 			rc = EINVAL;
2631 			goto fail2;
2632 		}
2633 		/* EvQ type controls merging, no manual settings */
2634 		ev_merge = 0;
2635 		ev_cut_through = 0;
2636 	} else {
2637 		/* EvQ types other than manual are not supported */
2638 		evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_MANUAL;
2639 		/*
2640 		 * On Huntington RX and TX event batching can only be requested
2641 		 * together (even if the datapath firmware doesn't actually
2642 		 * support RX batching). If event cut through is enabled no RX
2643 		 * batching will occur.
2644 		 *
2645 		 * So always enable RX and TX event batching, and enable event
2646 		 * cut through if we want low latency operation.
2647 		 */
2648 		ev_merge = 1;
2649 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2650 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2651 			ev_cut_through = low_latency ? 1 : 0;
2652 			break;
2653 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2654 			ev_cut_through = 0;
2655 			break;
2656 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2657 			ev_cut_through = 1;
2658 			break;
2659 		default:
2660 			rc = EINVAL;
2661 			goto fail2;
2662 		}
2663 	}
2664 
2665 	/*
2666 	 * On EF100, extended width event queues have a different event
2667 	 * descriptor layout and are used to support descriptor proxy queues.
2668 	 */
2669 	ev_extended_width = 0;
2670 #if EFSYS_OPT_EV_EXTENDED_WIDTH
2671 	if (encp->enc_init_evq_extended_width_supported) {
2672 		if (flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH)
2673 			ev_extended_width = 1;
2674 	}
2675 #endif
2676 
2677 	MCDI_IN_POPULATE_DWORD_8(req, INIT_EVQ_V2_IN_FLAGS,
2678 	    INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting,
2679 	    INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0,
2680 	    INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0,
2681 	    INIT_EVQ_V2_IN_FLAG_CUT_THRU, ev_cut_through,
2682 	    INIT_EVQ_V2_IN_FLAG_RX_MERGE, ev_merge,
2683 	    INIT_EVQ_V2_IN_FLAG_TX_MERGE, ev_merge,
2684 	    INIT_EVQ_V2_IN_FLAG_TYPE, evq_type,
2685 	    INIT_EVQ_V2_IN_FLAG_EXT_WIDTH, ev_extended_width);
2686 
2687 	/* If the value is zero then disable the timer */
2688 	if (us == 0) {
2689 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2690 		    MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS);
2691 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0);
2692 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0);
2693 	} else {
2694 		unsigned int ticks;
2695 
2696 		if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
2697 			goto fail3;
2698 
2699 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2700 		    MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF);
2701 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks);
2702 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks);
2703 	}
2704 
2705 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE,
2706 	    MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS);
2707 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0);
2708 
2709 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR);
2710 	addr = EFSYS_MEM_ADDR(esmp);
2711 
2712 	for (i = 0; i < npages; i++) {
2713 		EFX_POPULATE_QWORD_2(*dma_addr,
2714 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2715 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2716 
2717 		dma_addr++;
2718 		addr += EFX_BUF_SIZE;
2719 	}
2720 
2721 	efx_mcdi_execute(enp, &req);
2722 
2723 	if (req.emr_rc != 0) {
2724 		rc = req.emr_rc;
2725 		goto fail4;
2726 	}
2727 
2728 	if (encp->enc_init_evq_v2_supported) {
2729 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) {
2730 			rc = EMSGSIZE;
2731 			goto fail5;
2732 		}
2733 		EFSYS_PROBE1(mcdi_evq_flags, uint32_t,
2734 			    MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS));
2735 	} else {
2736 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) {
2737 			rc = EMSGSIZE;
2738 			goto fail6;
2739 		}
2740 	}
2741 
2742 	/* NOTE: ignore the returned IRQ param as firmware does not set it. */
2743 
2744 	return (0);
2745 
2746 fail6:
2747 	EFSYS_PROBE(fail6);
2748 fail5:
2749 	EFSYS_PROBE(fail5);
2750 fail4:
2751 	EFSYS_PROBE(fail4);
2752 fail3:
2753 	EFSYS_PROBE(fail3);
2754 fail2:
2755 	EFSYS_PROBE(fail2);
2756 fail1:
2757 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2758 
2759 	return (rc);
2760 }
2761 
2762 	__checkReturn	efx_rc_t
2763 efx_mcdi_fini_evq(
2764 	__in		efx_nic_t *enp,
2765 	__in		uint32_t instance)
2766 {
2767 	efx_mcdi_req_t req;
2768 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_EVQ_IN_LEN,
2769 		MC_CMD_FINI_EVQ_OUT_LEN);
2770 	efx_rc_t rc;
2771 
2772 	req.emr_cmd = MC_CMD_FINI_EVQ;
2773 	req.emr_in_buf = payload;
2774 	req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN;
2775 	req.emr_out_buf = payload;
2776 	req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN;
2777 
2778 	MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance);
2779 
2780 	efx_mcdi_execute_quiet(enp, &req);
2781 
2782 	if (req.emr_rc != 0) {
2783 		rc = req.emr_rc;
2784 		goto fail1;
2785 	}
2786 
2787 	return (0);
2788 
2789 fail1:
2790 	/*
2791 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2792 	 * that the EVQ has already been destroyed.
2793 	 */
2794 	if (rc != EALREADY)
2795 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2796 
2797 	return (rc);
2798 }
2799 
2800 	__checkReturn	efx_rc_t
2801 efx_mcdi_init_rxq(
2802 	__in		efx_nic_t *enp,
2803 	__in		uint32_t ndescs,
2804 	__in		efx_evq_t *eep,
2805 	__in		uint32_t label,
2806 	__in		uint32_t instance,
2807 	__in		efsys_mem_t *esmp,
2808 	__in		const efx_mcdi_init_rxq_params_t *params)
2809 {
2810 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2811 	efx_mcdi_req_t req;
2812 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_RXQ_V5_IN_LEN,
2813 		MC_CMD_INIT_RXQ_V5_OUT_LEN);
2814 	int npages = efx_rxq_nbufs(enp, ndescs);
2815 	int i;
2816 	efx_qword_t *dma_addr;
2817 	uint64_t addr;
2818 	efx_rc_t rc;
2819 	uint32_t dma_mode;
2820 	boolean_t want_outer_classes;
2821 	boolean_t no_cont_ev;
2822 
2823 	EFSYS_ASSERT3U(ndescs, <=, encp->enc_rxq_max_ndescs);
2824 
2825 	if ((esmp == NULL) ||
2826 	    (EFSYS_MEM_SIZE(esmp) < efx_rxq_size(enp, ndescs))) {
2827 		rc = EINVAL;
2828 		goto fail1;
2829 	}
2830 
2831 	no_cont_ev = (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV);
2832 	if ((no_cont_ev == B_TRUE) && (params->disable_scatter == B_FALSE)) {
2833 		/* TODO: Support scatter in NO_CONT_EV mode */
2834 		rc = EINVAL;
2835 		goto fail2;
2836 	}
2837 
2838 	if (params->ps_buf_size > 0)
2839 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM;
2840 	else if (params->es_bufs_per_desc > 0)
2841 		dma_mode = MC_CMD_INIT_RXQ_V3_IN_EQUAL_STRIDE_SUPER_BUFFER;
2842 	else
2843 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_SINGLE_PACKET;
2844 
2845 	if (encp->enc_tunnel_encapsulations_supported != 0 &&
2846 	    !params->want_inner_classes) {
2847 		/*
2848 		 * WANT_OUTER_CLASSES can only be specified on hardware which
2849 		 * supports tunnel encapsulation offloads, even though it is
2850 		 * effectively the behaviour the hardware gives.
2851 		 *
2852 		 * Also, on hardware which does support such offloads, older
2853 		 * firmware rejects the flag if the offloads are not supported
2854 		 * by the current firmware variant, which means this may fail if
2855 		 * the capabilities are not updated when the firmware variant
2856 		 * changes. This is not an issue on newer firmware, as it was
2857 		 * changed in bug 69842 (v6.4.2.1007) to permit this flag to be
2858 		 * specified on all firmware variants.
2859 		 */
2860 		want_outer_classes = B_TRUE;
2861 	} else {
2862 		want_outer_classes = B_FALSE;
2863 	}
2864 
2865 	req.emr_cmd = MC_CMD_INIT_RXQ;
2866 	req.emr_in_buf = payload;
2867 	req.emr_in_length = MC_CMD_INIT_RXQ_V5_IN_LEN;
2868 	req.emr_out_buf = payload;
2869 	req.emr_out_length = MC_CMD_INIT_RXQ_V5_OUT_LEN;
2870 
2871 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_SIZE, ndescs);
2872 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_TARGET_EVQ, eep->ee_index);
2873 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_LABEL, label);
2874 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_INSTANCE, instance);
2875 	MCDI_IN_POPULATE_DWORD_10(req, INIT_RXQ_EXT_IN_FLAGS,
2876 	    INIT_RXQ_EXT_IN_FLAG_BUFF_MODE, 0,
2877 	    INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT, 0,
2878 	    INIT_RXQ_EXT_IN_FLAG_TIMESTAMP, 0,
2879 	    INIT_RXQ_EXT_IN_CRC_MODE, 0,
2880 	    INIT_RXQ_EXT_IN_FLAG_PREFIX, 1,
2881 	    INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER, params->disable_scatter,
2882 	    INIT_RXQ_EXT_IN_DMA_MODE,
2883 	    dma_mode,
2884 	    INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE, params->ps_buf_size,
2885 	    INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES, want_outer_classes,
2886 	    INIT_RXQ_EXT_IN_FLAG_NO_CONT_EV, no_cont_ev);
2887 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_OWNER_ID, 0);
2888 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_PORT_ID, enp->en_vport_id);
2889 
2890 	if (params->es_bufs_per_desc > 0) {
2891 		MCDI_IN_SET_DWORD(req,
2892 		    INIT_RXQ_V3_IN_ES_PACKET_BUFFERS_PER_BUCKET,
2893 		    params->es_bufs_per_desc);
2894 		MCDI_IN_SET_DWORD(req,
2895 		    INIT_RXQ_V3_IN_ES_MAX_DMA_LEN, params->es_max_dma_len);
2896 		MCDI_IN_SET_DWORD(req,
2897 		    INIT_RXQ_V3_IN_ES_PACKET_STRIDE, params->es_buf_stride);
2898 		MCDI_IN_SET_DWORD(req,
2899 		    INIT_RXQ_V3_IN_ES_HEAD_OF_LINE_BLOCK_TIMEOUT,
2900 		    params->hol_block_timeout);
2901 	}
2902 
2903 	if (encp->enc_init_rxq_with_buffer_size)
2904 		MCDI_IN_SET_DWORD(req, INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES,
2905 		    params->buf_size);
2906 
2907 	MCDI_IN_SET_DWORD(req, INIT_RXQ_V5_IN_RX_PREFIX_ID, params->prefix_id);
2908 
2909 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR);
2910 	addr = EFSYS_MEM_ADDR(esmp);
2911 
2912 	for (i = 0; i < npages; i++) {
2913 		EFX_POPULATE_QWORD_2(*dma_addr,
2914 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2915 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2916 
2917 		dma_addr++;
2918 		addr += EFX_BUF_SIZE;
2919 	}
2920 
2921 	efx_mcdi_execute(enp, &req);
2922 
2923 	if (req.emr_rc != 0) {
2924 		rc = req.emr_rc;
2925 		goto fail3;
2926 	}
2927 
2928 	return (0);
2929 
2930 fail3:
2931 	EFSYS_PROBE(fail3);
2932 fail2:
2933 	EFSYS_PROBE(fail2);
2934 fail1:
2935 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2936 
2937 	return (rc);
2938 }
2939 
2940 	__checkReturn	efx_rc_t
2941 efx_mcdi_fini_rxq(
2942 	__in		efx_nic_t *enp,
2943 	__in		uint32_t instance)
2944 {
2945 	efx_mcdi_req_t req;
2946 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_RXQ_IN_LEN,
2947 		MC_CMD_FINI_RXQ_OUT_LEN);
2948 	efx_rc_t rc;
2949 
2950 	req.emr_cmd = MC_CMD_FINI_RXQ;
2951 	req.emr_in_buf = payload;
2952 	req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN;
2953 	req.emr_out_buf = payload;
2954 	req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN;
2955 
2956 	MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance);
2957 
2958 	efx_mcdi_execute_quiet(enp, &req);
2959 
2960 	if (req.emr_rc != 0) {
2961 		rc = req.emr_rc;
2962 		goto fail1;
2963 	}
2964 
2965 	return (0);
2966 
2967 fail1:
2968 	/*
2969 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2970 	 * that the RXQ has already been destroyed.
2971 	 */
2972 	if (rc != EALREADY)
2973 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2974 
2975 	return (rc);
2976 }
2977 
2978 	__checkReturn	efx_rc_t
2979 efx_mcdi_init_txq(
2980 	__in		efx_nic_t *enp,
2981 	__in		uint32_t ndescs,
2982 	__in		uint32_t target_evq,
2983 	__in		uint32_t label,
2984 	__in		uint32_t instance,
2985 	__in		uint16_t flags,
2986 	__in		efsys_mem_t *esmp)
2987 {
2988 	efx_mcdi_req_t req;
2989 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_EXT_IN_LEN,
2990 		MC_CMD_INIT_TXQ_OUT_LEN);
2991 	efx_qword_t *dma_addr;
2992 	uint64_t addr;
2993 	int npages;
2994 	int i;
2995 	efx_rc_t rc;
2996 
2997 	EFSYS_ASSERT(MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MAXNUM >=
2998 	    efx_txq_nbufs(enp, enp->en_nic_cfg.enc_txq_max_ndescs));
2999 
3000 	if ((esmp == NULL) ||
3001 	    (EFSYS_MEM_SIZE(esmp) < efx_txq_size(enp, ndescs))) {
3002 		rc = EINVAL;
3003 		goto fail1;
3004 	}
3005 
3006 	npages = efx_txq_nbufs(enp, ndescs);
3007 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
3008 		rc = EINVAL;
3009 		goto fail2;
3010 	}
3011 
3012 	req.emr_cmd = MC_CMD_INIT_TXQ;
3013 	req.emr_in_buf = payload;
3014 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
3015 	req.emr_out_buf = payload;
3016 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
3017 
3018 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
3019 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
3020 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
3021 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
3022 
3023 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
3024 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
3025 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
3026 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
3027 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
3028 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
3029 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
3030 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
3031 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
3032 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
3033 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
3034 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
3035 	    INIT_TXQ_IN_CRC_MODE, 0,
3036 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
3037 
3038 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
3039 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, enp->en_vport_id);
3040 
3041 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
3042 	addr = EFSYS_MEM_ADDR(esmp);
3043 
3044 	for (i = 0; i < npages; i++) {
3045 		EFX_POPULATE_QWORD_2(*dma_addr,
3046 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
3047 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
3048 
3049 		dma_addr++;
3050 		addr += EFX_BUF_SIZE;
3051 	}
3052 
3053 	efx_mcdi_execute(enp, &req);
3054 
3055 	if (req.emr_rc != 0) {
3056 		rc = req.emr_rc;
3057 		goto fail3;
3058 	}
3059 
3060 	return (0);
3061 
3062 fail3:
3063 	EFSYS_PROBE(fail3);
3064 fail2:
3065 	EFSYS_PROBE(fail2);
3066 fail1:
3067 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3068 
3069 	return (rc);
3070 }
3071 
3072 	__checkReturn	efx_rc_t
3073 efx_mcdi_fini_txq(
3074 	__in		efx_nic_t *enp,
3075 	__in		uint32_t instance)
3076 {
3077 	efx_mcdi_req_t req;
3078 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
3079 		MC_CMD_FINI_TXQ_OUT_LEN);
3080 	efx_rc_t rc;
3081 
3082 	req.emr_cmd = MC_CMD_FINI_TXQ;
3083 	req.emr_in_buf = payload;
3084 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
3085 	req.emr_out_buf = payload;
3086 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
3087 
3088 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
3089 
3090 	efx_mcdi_execute_quiet(enp, &req);
3091 
3092 	if (req.emr_rc != 0) {
3093 		rc = req.emr_rc;
3094 		goto fail1;
3095 	}
3096 
3097 	return (0);
3098 
3099 fail1:
3100 	/*
3101 	 * EALREADY is not an error, but indicates that the MC has rebooted and
3102 	 * that the TXQ has already been destroyed.
3103 	 */
3104 	if (rc != EALREADY)
3105 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3106 
3107 	return (rc);
3108 }
3109 
3110 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
3111 
3112 #endif	/* EFSYS_OPT_MCDI */
3113