xref: /dpdk/drivers/common/sfc_efx/base/efx_mcdi.c (revision b85f50487eed8f94c85952587890fffd4de9a0d9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2008-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 
10 #if EFSYS_OPT_MCDI
11 
12 /*
13  * There are three versions of the MCDI interface:
14  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
15  *  - MCDIv1: Siena firmware and Huntington BootROM.
16  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
17  *            Transport uses MCDIv2 headers.
18  *
19  * MCDIv2 Header NOT_EPOCH flag
20  * ----------------------------
21  * A new epoch begins at initial startup or after an MC reboot, and defines when
22  * the MC should reject stale MCDI requests.
23  *
24  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
25  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
26  *
27  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
28  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
29  */
30 
31 
32 
33 #if EFSYS_OPT_SIENA
34 
35 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
36 	siena_mcdi_init,		/* emco_init */
37 	siena_mcdi_send_request,	/* emco_send_request */
38 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
39 	siena_mcdi_poll_response,	/* emco_poll_response */
40 	siena_mcdi_read_response,	/* emco_read_response */
41 	siena_mcdi_fini,		/* emco_fini */
42 	siena_mcdi_feature_supported,	/* emco_feature_supported */
43 	siena_mcdi_get_timeout,		/* emco_get_timeout */
44 };
45 
46 #endif	/* EFSYS_OPT_SIENA */
47 
48 #if EFX_OPTS_EF10()
49 
50 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
51 	ef10_mcdi_init,			/* emco_init */
52 	ef10_mcdi_send_request,		/* emco_send_request */
53 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
54 	ef10_mcdi_poll_response,	/* emco_poll_response */
55 	ef10_mcdi_read_response,	/* emco_read_response */
56 	ef10_mcdi_fini,			/* emco_fini */
57 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
58 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
59 };
60 
61 #endif	/* EFX_OPTS_EF10() */
62 
63 #if EFSYS_OPT_RIVERHEAD
64 
65 static const efx_mcdi_ops_t	__efx_mcdi_rhead_ops = {
66 	ef10_mcdi_init,			/* emco_init */
67 	ef10_mcdi_send_request,		/* emco_send_request */
68 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
69 	ef10_mcdi_poll_response,	/* emco_poll_response */
70 	ef10_mcdi_read_response,	/* emco_read_response */
71 	ef10_mcdi_fini,			/* emco_fini */
72 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
73 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
74 };
75 
76 #endif	/* EFSYS_OPT_RIVERHEAD */
77 
78 
79 
80 	__checkReturn	efx_rc_t
81 efx_mcdi_init(
82 	__in		efx_nic_t *enp,
83 	__in		const efx_mcdi_transport_t *emtp)
84 {
85 	const efx_mcdi_ops_t *emcop;
86 	efx_rc_t rc;
87 
88 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
89 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
90 
91 	switch (enp->en_family) {
92 #if EFSYS_OPT_SIENA
93 	case EFX_FAMILY_SIENA:
94 		emcop = &__efx_mcdi_siena_ops;
95 		break;
96 #endif	/* EFSYS_OPT_SIENA */
97 
98 #if EFSYS_OPT_HUNTINGTON
99 	case EFX_FAMILY_HUNTINGTON:
100 		emcop = &__efx_mcdi_ef10_ops;
101 		break;
102 #endif	/* EFSYS_OPT_HUNTINGTON */
103 
104 #if EFSYS_OPT_MEDFORD
105 	case EFX_FAMILY_MEDFORD:
106 		emcop = &__efx_mcdi_ef10_ops;
107 		break;
108 #endif	/* EFSYS_OPT_MEDFORD */
109 
110 #if EFSYS_OPT_MEDFORD2
111 	case EFX_FAMILY_MEDFORD2:
112 		emcop = &__efx_mcdi_ef10_ops;
113 		break;
114 #endif	/* EFSYS_OPT_MEDFORD2 */
115 
116 #if EFSYS_OPT_RIVERHEAD
117 	case EFX_FAMILY_RIVERHEAD:
118 		emcop = &__efx_mcdi_rhead_ops;
119 		break;
120 #endif	/* EFSYS_OPT_RIVERHEAD */
121 
122 	default:
123 		EFSYS_ASSERT(0);
124 		rc = ENOTSUP;
125 		goto fail1;
126 	}
127 
128 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
129 		/* MCDI requires a DMA buffer in host memory */
130 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
131 			rc = EINVAL;
132 			goto fail2;
133 		}
134 	}
135 	enp->en_mcdi.em_emtp = emtp;
136 
137 	if (emcop != NULL && emcop->emco_init != NULL) {
138 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
139 			goto fail3;
140 	}
141 
142 	enp->en_mcdi.em_emcop = emcop;
143 	enp->en_mod_flags |= EFX_MOD_MCDI;
144 
145 	return (0);
146 
147 fail3:
148 	EFSYS_PROBE(fail3);
149 fail2:
150 	EFSYS_PROBE(fail2);
151 fail1:
152 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
153 
154 	enp->en_mcdi.em_emcop = NULL;
155 	enp->en_mcdi.em_emtp = NULL;
156 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
157 
158 	return (rc);
159 }
160 
161 			void
162 efx_mcdi_fini(
163 	__in		efx_nic_t *enp)
164 {
165 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
166 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
167 
168 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
169 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
170 
171 	if (emcop != NULL && emcop->emco_fini != NULL)
172 		emcop->emco_fini(enp);
173 
174 	emip->emi_port = 0;
175 	emip->emi_aborted = 0;
176 
177 	enp->en_mcdi.em_emcop = NULL;
178 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
179 }
180 
181 			void
182 efx_mcdi_new_epoch(
183 	__in		efx_nic_t *enp)
184 {
185 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
186 	efsys_lock_state_t state;
187 
188 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
189 	EFSYS_LOCK(enp->en_eslp, state);
190 	emip->emi_new_epoch = B_TRUE;
191 	EFSYS_UNLOCK(enp->en_eslp, state);
192 }
193 
194 static			void
195 efx_mcdi_send_request(
196 	__in		efx_nic_t *enp,
197 	__in		void *hdrp,
198 	__in		size_t hdr_len,
199 	__in		void *sdup,
200 	__in		size_t sdu_len)
201 {
202 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
203 
204 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
205 }
206 
207 static			efx_rc_t
208 efx_mcdi_poll_reboot(
209 	__in		efx_nic_t *enp)
210 {
211 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
212 	efx_rc_t rc;
213 
214 	rc = emcop->emco_poll_reboot(enp);
215 	return (rc);
216 }
217 
218 static			boolean_t
219 efx_mcdi_poll_response(
220 	__in		efx_nic_t *enp)
221 {
222 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
223 	boolean_t available;
224 
225 	available = emcop->emco_poll_response(enp);
226 	return (available);
227 }
228 
229 static			void
230 efx_mcdi_read_response(
231 	__in		efx_nic_t *enp,
232 	__out		void *bufferp,
233 	__in		size_t offset,
234 	__in		size_t length)
235 {
236 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
237 
238 	emcop->emco_read_response(enp, bufferp, offset, length);
239 }
240 
241 			void
242 efx_mcdi_request_start(
243 	__in		efx_nic_t *enp,
244 	__in		efx_mcdi_req_t *emrp,
245 	__in		boolean_t ev_cpl)
246 {
247 #if EFSYS_OPT_MCDI_LOGGING
248 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
249 #endif
250 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
251 	efx_dword_t hdr[2];
252 	size_t hdr_len;
253 	unsigned int max_version;
254 	unsigned int seq;
255 	unsigned int xflags;
256 	boolean_t new_epoch;
257 	efsys_lock_state_t state;
258 
259 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
260 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
261 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
262 
263 	/*
264 	 * efx_mcdi_request_start() is naturally serialised against both
265 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
266 	 * by virtue of there only being one outstanding MCDI request.
267 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
268 	 * at any time, to timeout a pending mcdi request, That request may
269 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
270 	 * efx_mcdi_ev_death() may end up running in parallel with
271 	 * efx_mcdi_request_start(). This race is handled by ensuring that
272 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
273 	 * en_eslp lock.
274 	 */
275 	EFSYS_LOCK(enp->en_eslp, state);
276 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
277 	emip->emi_pending_req = emrp;
278 	emip->emi_ev_cpl = ev_cpl;
279 	emip->emi_poll_cnt = 0;
280 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
281 	new_epoch = emip->emi_new_epoch;
282 	max_version = emip->emi_max_version;
283 	EFSYS_UNLOCK(enp->en_eslp, state);
284 
285 	xflags = 0;
286 	if (ev_cpl)
287 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
288 
289 	/*
290 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
291 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
292 	 * possible to support this.
293 	 */
294 	if ((max_version >= 2) &&
295 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
296 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) ||
297 	    (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
298 		/* Construct MCDI v2 header */
299 		hdr_len = sizeof (hdr);
300 		EFX_POPULATE_DWORD_8(hdr[0],
301 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
302 		    MCDI_HEADER_RESYNC, 1,
303 		    MCDI_HEADER_DATALEN, 0,
304 		    MCDI_HEADER_SEQ, seq,
305 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
306 		    MCDI_HEADER_ERROR, 0,
307 		    MCDI_HEADER_RESPONSE, 0,
308 		    MCDI_HEADER_XFLAGS, xflags);
309 
310 		EFX_POPULATE_DWORD_2(hdr[1],
311 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
312 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
313 	} else {
314 		/* Construct MCDI v1 header */
315 		hdr_len = sizeof (hdr[0]);
316 		EFX_POPULATE_DWORD_8(hdr[0],
317 		    MCDI_HEADER_CODE, emrp->emr_cmd,
318 		    MCDI_HEADER_RESYNC, 1,
319 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
320 		    MCDI_HEADER_SEQ, seq,
321 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
322 		    MCDI_HEADER_ERROR, 0,
323 		    MCDI_HEADER_RESPONSE, 0,
324 		    MCDI_HEADER_XFLAGS, xflags);
325 	}
326 
327 #if EFSYS_OPT_MCDI_LOGGING
328 	if (emtp->emt_logger != NULL) {
329 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
330 		    &hdr[0], hdr_len,
331 		    emrp->emr_in_buf, emrp->emr_in_length);
332 	}
333 #endif /* EFSYS_OPT_MCDI_LOGGING */
334 
335 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
336 	    emrp->emr_in_buf, emrp->emr_in_length);
337 }
338 
339 
340 static			void
341 efx_mcdi_read_response_header(
342 	__in		efx_nic_t *enp,
343 	__inout		efx_mcdi_req_t *emrp)
344 {
345 #if EFSYS_OPT_MCDI_LOGGING
346 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
347 #endif /* EFSYS_OPT_MCDI_LOGGING */
348 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
349 	efx_dword_t hdr[2];
350 	unsigned int hdr_len;
351 	unsigned int data_len;
352 	unsigned int seq;
353 	unsigned int cmd;
354 	unsigned int error;
355 	efx_rc_t rc;
356 
357 	EFSYS_ASSERT(emrp != NULL);
358 
359 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
360 	hdr_len = sizeof (hdr[0]);
361 
362 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
363 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
364 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
365 
366 	if (cmd != MC_CMD_V2_EXTN) {
367 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
368 	} else {
369 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
370 		hdr_len += sizeof (hdr[1]);
371 
372 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
373 		data_len =
374 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
375 	}
376 
377 	if (error && (data_len == 0)) {
378 		/* The MC has rebooted since the request was sent. */
379 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
380 		efx_mcdi_poll_reboot(enp);
381 		rc = EIO;
382 		goto fail1;
383 	}
384 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
385 	if (((cmd != emrp->emr_cmd) && (emrp->emr_cmd != MC_CMD_PROXY_CMD)) ||
386 #else
387 	if ((cmd != emrp->emr_cmd) ||
388 #endif
389 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
390 		/* Response is for a different request */
391 		rc = EIO;
392 		goto fail2;
393 	}
394 	if (error) {
395 		efx_dword_t err[2];
396 		unsigned int err_len = MIN(data_len, sizeof (err));
397 		int err_code = MC_CMD_ERR_EPROTO;
398 		int err_arg = 0;
399 
400 		/* Read error code (and arg num for MCDI v2 commands) */
401 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
402 
403 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
404 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
405 #ifdef WITH_MCDI_V2
406 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
407 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
408 #endif
409 		emrp->emr_err_code = err_code;
410 		emrp->emr_err_arg = err_arg;
411 
412 #if EFSYS_OPT_MCDI_PROXY_AUTH
413 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
414 		    (err_len == sizeof (err))) {
415 			/*
416 			 * The MCDI request would normally fail with EPERM, but
417 			 * firmware has forwarded it to an authorization agent
418 			 * attached to a privileged PF.
419 			 *
420 			 * Save the authorization request handle. The client
421 			 * must wait for a PROXY_RESPONSE event, or timeout.
422 			 */
423 			emrp->emr_proxy_handle = err_arg;
424 		}
425 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
426 
427 #if EFSYS_OPT_MCDI_LOGGING
428 		if (emtp->emt_logger != NULL) {
429 			emtp->emt_logger(emtp->emt_context,
430 			    EFX_LOG_MCDI_RESPONSE,
431 			    &hdr[0], hdr_len,
432 			    &err[0], err_len);
433 		}
434 #endif /* EFSYS_OPT_MCDI_LOGGING */
435 
436 		if (!emrp->emr_quiet) {
437 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
438 			    int, err_code, int, err_arg);
439 		}
440 
441 		rc = efx_mcdi_request_errcode(err_code);
442 		goto fail3;
443 	}
444 
445 	emrp->emr_rc = 0;
446 	emrp->emr_out_length_used = data_len;
447 #if EFSYS_OPT_MCDI_PROXY_AUTH
448 	emrp->emr_proxy_handle = 0;
449 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
450 	return;
451 
452 fail3:
453 fail2:
454 fail1:
455 	emrp->emr_rc = rc;
456 	emrp->emr_out_length_used = 0;
457 }
458 
459 static			void
460 efx_mcdi_finish_response(
461 	__in		efx_nic_t *enp,
462 	__in		efx_mcdi_req_t *emrp)
463 {
464 #if EFSYS_OPT_MCDI_LOGGING
465 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
466 #endif /* EFSYS_OPT_MCDI_LOGGING */
467 	efx_dword_t hdr[2];
468 	unsigned int hdr_len;
469 	size_t bytes;
470 	unsigned int resp_off;
471 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
472 	unsigned int resp_cmd;
473 	boolean_t proxied_cmd_resp = B_FALSE;
474 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
475 
476 	if (emrp->emr_out_buf == NULL)
477 		return;
478 
479 	/* Read the command header to detect MCDI response format */
480 	hdr_len = sizeof (hdr[0]);
481 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
482 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
483 		/*
484 		 * Read the actual payload length. The length given in the event
485 		 * is only correct for responses with the V1 format.
486 		 */
487 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
488 		hdr_len += sizeof (hdr[1]);
489 		resp_off = hdr_len;
490 
491 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
492 						MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
493 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
494 		/*
495 		 * A proxy MCDI command is executed by PF on behalf of
496 		 * one of its VFs. The command to be proxied follows
497 		 * immediately afterward in the host buffer.
498 		 * PROXY_CMD inner call complete response should be copied to
499 		 * output buffer so that it can be returned to the requesting
500 		 * function in MC_CMD_PROXY_COMPLETE payload.
501 		 */
502 		resp_cmd =
503 			EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
504 		proxied_cmd_resp = ((emrp->emr_cmd == MC_CMD_PROXY_CMD) &&
505 					(resp_cmd != MC_CMD_PROXY_CMD));
506 		if (proxied_cmd_resp) {
507 			resp_off = 0;
508 			emrp->emr_out_length_used += hdr_len;
509 		}
510 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
511 	} else {
512 		resp_off = hdr_len;
513 	}
514 
515 	/* Copy payload out into caller supplied buffer */
516 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
517 	efx_mcdi_read_response(enp, emrp->emr_out_buf, resp_off, bytes);
518 
519 	/* Report bytes copied to caller (response message may be larger) */
520 	emrp->emr_out_length_used = bytes;
521 
522 #if EFSYS_OPT_MCDI_LOGGING
523 	if (emtp->emt_logger != NULL) {
524 		emtp->emt_logger(emtp->emt_context,
525 		    EFX_LOG_MCDI_RESPONSE,
526 		    &hdr[0], hdr_len,
527 		    emrp->emr_out_buf, bytes);
528 	}
529 #endif /* EFSYS_OPT_MCDI_LOGGING */
530 }
531 
532 
533 	__checkReturn	boolean_t
534 efx_mcdi_request_poll(
535 	__in		efx_nic_t *enp)
536 {
537 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
538 	efx_mcdi_req_t *emrp;
539 	efsys_lock_state_t state;
540 	efx_rc_t rc;
541 
542 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
543 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
544 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
545 
546 	/* Serialise against post-watchdog efx_mcdi_ev* */
547 	EFSYS_LOCK(enp->en_eslp, state);
548 
549 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
550 	EFSYS_ASSERT(!emip->emi_ev_cpl);
551 	emrp = emip->emi_pending_req;
552 
553 	/* Check if hardware is unavailable */
554 	if (efx_nic_hw_unavailable(enp)) {
555 		EFSYS_UNLOCK(enp->en_eslp, state);
556 		return (B_FALSE);
557 	}
558 
559 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
560 	if (emip->emi_poll_cnt++ == 0) {
561 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
562 			emip->emi_pending_req = NULL;
563 			EFSYS_UNLOCK(enp->en_eslp, state);
564 
565 			/* Reboot/Assertion */
566 			if (rc == EIO || rc == EINTR)
567 				efx_mcdi_raise_exception(enp, emrp, rc);
568 
569 			goto fail1;
570 		}
571 	}
572 
573 	/* Check if a response is available */
574 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
575 		EFSYS_UNLOCK(enp->en_eslp, state);
576 		return (B_FALSE);
577 	}
578 
579 	/* Read the response header */
580 	efx_mcdi_read_response_header(enp, emrp);
581 
582 	/* Request complete */
583 	emip->emi_pending_req = NULL;
584 
585 	/* Ensure stale MCDI requests fail after an MC reboot. */
586 	emip->emi_new_epoch = B_FALSE;
587 
588 	EFSYS_UNLOCK(enp->en_eslp, state);
589 
590 	if ((rc = emrp->emr_rc) != 0)
591 		goto fail2;
592 
593 	efx_mcdi_finish_response(enp, emrp);
594 	return (B_TRUE);
595 
596 fail2:
597 	if (!emrp->emr_quiet)
598 		EFSYS_PROBE(fail2);
599 fail1:
600 	if (!emrp->emr_quiet)
601 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
602 
603 	return (B_TRUE);
604 }
605 
606 	__checkReturn	boolean_t
607 efx_mcdi_request_abort(
608 	__in		efx_nic_t *enp)
609 {
610 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
611 	efx_mcdi_req_t *emrp;
612 	boolean_t aborted;
613 	efsys_lock_state_t state;
614 
615 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
616 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
617 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
618 
619 	/*
620 	 * efx_mcdi_ev_* may have already completed this event, and be
621 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
622 	 * to for emi_pending_req to be NULL. If there is a pending event
623 	 * completed request, then provide a "credit" to allow
624 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
625 	 */
626 	EFSYS_LOCK(enp->en_eslp, state);
627 	emrp = emip->emi_pending_req;
628 	aborted = (emrp != NULL);
629 	if (aborted) {
630 		emip->emi_pending_req = NULL;
631 
632 		/* Error the request */
633 		emrp->emr_out_length_used = 0;
634 		emrp->emr_rc = ETIMEDOUT;
635 
636 		/* Provide a credit for seqno/emr_pending_req mismatches */
637 		if (emip->emi_ev_cpl)
638 			++emip->emi_aborted;
639 
640 		/*
641 		 * The upper layer has called us, so we don't
642 		 * need to complete the request.
643 		 */
644 	}
645 	EFSYS_UNLOCK(enp->en_eslp, state);
646 
647 	return (aborted);
648 }
649 
650 	__checkReturn	efx_rc_t
651 efx_mcdi_get_client_handle(
652 	__in		efx_nic_t *enp,
653 	__in		efx_pcie_interface_t intf,
654 	__in		uint16_t pf,
655 	__in		uint16_t vf,
656 	__out		uint32_t *handle)
657 {
658 	efx_mcdi_req_t req;
659 	EFX_MCDI_DECLARE_BUF(payload,
660 	    MC_CMD_GET_CLIENT_HANDLE_IN_LEN,
661 	    MC_CMD_GET_CLIENT_HANDLE_OUT_LEN);
662 	uint32_t pcie_intf;
663 	efx_rc_t rc;
664 
665 	if (handle == NULL) {
666 		rc = EINVAL;
667 		goto fail1;
668 	}
669 
670 	rc = efx_mcdi_intf_to_pcie(intf, &pcie_intf);
671 	if (rc != 0)
672 		goto fail2;
673 
674 	req.emr_cmd = MC_CMD_GET_CLIENT_HANDLE;
675 	req.emr_in_buf = payload;
676 	req.emr_in_length = MC_CMD_GET_CLIENT_HANDLE_IN_LEN;
677 	req.emr_out_buf = payload;
678 	req.emr_out_length = MC_CMD_GET_CLIENT_HANDLE_OUT_LEN;
679 
680 	MCDI_IN_SET_DWORD(req, GET_CLIENT_HANDLE_IN_TYPE,
681 	    MC_CMD_GET_CLIENT_HANDLE_IN_TYPE_FUNC);
682 	MCDI_IN_SET_WORD(req, GET_CLIENT_HANDLE_IN_FUNC_PF, pf);
683 	MCDI_IN_SET_WORD(req, GET_CLIENT_HANDLE_IN_FUNC_VF, vf);
684 	MCDI_IN_SET_DWORD(req, GET_CLIENT_HANDLE_IN_FUNC_INTF, pcie_intf);
685 
686 	efx_mcdi_execute(enp, &req);
687 
688 	if (req.emr_rc != 0) {
689 		rc = req.emr_rc;
690 		goto fail3;
691 	}
692 
693 	if (req.emr_out_length_used < MC_CMD_GET_CLIENT_HANDLE_OUT_LEN) {
694 		rc = EMSGSIZE;
695 		goto fail4;
696 	}
697 
698 	*handle = MCDI_OUT_DWORD(req, GET_CLIENT_HANDLE_OUT_HANDLE);
699 
700 	return 0;
701 fail4:
702 	EFSYS_PROBE(fail4);
703 fail3:
704 	EFSYS_PROBE(fail3);
705 fail2:
706 	EFSYS_PROBE(fail2);
707 fail1:
708 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
709 	return (rc);
710 }
711 
712 	__checkReturn	efx_rc_t
713 efx_mcdi_get_own_client_handle(
714 	__in		efx_nic_t *enp,
715 	__out		uint32_t *handle)
716 {
717 	efx_rc_t rc;
718 
719 	rc = efx_mcdi_get_client_handle(enp, EFX_PCIE_INTERFACE_CALLER,
720 	    PCIE_FUNCTION_PF_NULL, PCIE_FUNCTION_VF_NULL, handle);
721 	if (rc != 0)
722 		goto fail1;
723 
724 	return (0);
725 fail1:
726 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
727 	return (rc);
728 }
729 
730 			void
731 efx_mcdi_get_timeout(
732 	__in		efx_nic_t *enp,
733 	__in		efx_mcdi_req_t *emrp,
734 	__out		uint32_t *timeoutp)
735 {
736 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
737 
738 	emcop->emco_get_timeout(enp, emrp, timeoutp);
739 }
740 
741 	__checkReturn	efx_rc_t
742 efx_mcdi_request_errcode(
743 	__in		unsigned int err)
744 {
745 
746 	switch (err) {
747 		/* MCDI v1 */
748 	case MC_CMD_ERR_EPERM:
749 		return (EACCES);
750 	case MC_CMD_ERR_ENOENT:
751 		return (ENOENT);
752 	case MC_CMD_ERR_EINTR:
753 		return (EINTR);
754 	case MC_CMD_ERR_EACCES:
755 		return (EACCES);
756 	case MC_CMD_ERR_EBUSY:
757 		return (EBUSY);
758 	case MC_CMD_ERR_EINVAL:
759 		return (EINVAL);
760 	case MC_CMD_ERR_EDEADLK:
761 		return (EDEADLK);
762 	case MC_CMD_ERR_ENOSYS:
763 		return (ENOTSUP);
764 	case MC_CMD_ERR_ETIME:
765 		return (ETIMEDOUT);
766 	case MC_CMD_ERR_ENOTSUP:
767 		return (ENOTSUP);
768 	case MC_CMD_ERR_EALREADY:
769 		return (EALREADY);
770 
771 		/* MCDI v2 */
772 	case MC_CMD_ERR_EEXIST:
773 		return (EEXIST);
774 #ifdef MC_CMD_ERR_EAGAIN
775 	case MC_CMD_ERR_EAGAIN:
776 		return (EAGAIN);
777 #endif
778 #ifdef MC_CMD_ERR_ENOSPC
779 	case MC_CMD_ERR_ENOSPC:
780 		return (ENOSPC);
781 #endif
782 	case MC_CMD_ERR_ERANGE:
783 		return (ERANGE);
784 
785 	case MC_CMD_ERR_ALLOC_FAIL:
786 		return (ENOMEM);
787 	case MC_CMD_ERR_NO_VADAPTOR:
788 		return (ENOENT);
789 	case MC_CMD_ERR_NO_EVB_PORT:
790 		return (ENOENT);
791 	case MC_CMD_ERR_NO_VSWITCH:
792 		return (ENODEV);
793 	case MC_CMD_ERR_VLAN_LIMIT:
794 		return (EINVAL);
795 	case MC_CMD_ERR_BAD_PCI_FUNC:
796 		return (ENODEV);
797 	case MC_CMD_ERR_BAD_VLAN_MODE:
798 		return (EINVAL);
799 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
800 		return (EINVAL);
801 	case MC_CMD_ERR_BAD_VPORT_TYPE:
802 		return (EINVAL);
803 	case MC_CMD_ERR_MAC_EXIST:
804 		return (EEXIST);
805 
806 	case MC_CMD_ERR_PROXY_PENDING:
807 		return (EAGAIN);
808 
809 	default:
810 		EFSYS_PROBE1(mc_pcol_error, int, err);
811 		return (EIO);
812 	}
813 }
814 
815 			void
816 efx_mcdi_raise_exception(
817 	__in		efx_nic_t *enp,
818 	__in_opt	efx_mcdi_req_t *emrp,
819 	__in		int rc)
820 {
821 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
822 	efx_mcdi_exception_t exception;
823 
824 	/* Reboot or Assertion failure only */
825 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
826 
827 	/*
828 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
829 	 * then the EIO is not worthy of an exception.
830 	 */
831 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
832 		return;
833 
834 	exception = (rc == EIO)
835 		? EFX_MCDI_EXCEPTION_MC_REBOOT
836 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
837 
838 	emtp->emt_exception(emtp->emt_context, exception);
839 }
840 
841 			void
842 efx_mcdi_execute(
843 	__in		efx_nic_t *enp,
844 	__inout		efx_mcdi_req_t *emrp)
845 {
846 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
847 
848 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
849 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
850 
851 	emrp->emr_quiet = B_FALSE;
852 	emtp->emt_execute(emtp->emt_context, emrp);
853 }
854 
855 			void
856 efx_mcdi_execute_quiet(
857 	__in		efx_nic_t *enp,
858 	__inout		efx_mcdi_req_t *emrp)
859 {
860 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
861 
862 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
863 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
864 
865 	emrp->emr_quiet = B_TRUE;
866 	emtp->emt_execute(emtp->emt_context, emrp);
867 }
868 
869 			void
870 efx_mcdi_ev_cpl(
871 	__in		efx_nic_t *enp,
872 	__in		unsigned int seq,
873 	__in		unsigned int outlen,
874 	__in		int errcode)
875 {
876 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
877 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
878 	efx_mcdi_req_t *emrp;
879 	efsys_lock_state_t state;
880 
881 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
882 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
883 
884 	/*
885 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
886 	 * when we're completing an aborted request.
887 	 */
888 	EFSYS_LOCK(enp->en_eslp, state);
889 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
890 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
891 		EFSYS_ASSERT(emip->emi_aborted > 0);
892 		if (emip->emi_aborted > 0)
893 			--emip->emi_aborted;
894 		EFSYS_UNLOCK(enp->en_eslp, state);
895 		return;
896 	}
897 
898 	emrp = emip->emi_pending_req;
899 	emip->emi_pending_req = NULL;
900 	EFSYS_UNLOCK(enp->en_eslp, state);
901 
902 	if (emip->emi_max_version >= 2) {
903 		/* MCDIv2 response details do not fit into an event. */
904 		efx_mcdi_read_response_header(enp, emrp);
905 	} else {
906 		if (errcode != 0) {
907 			if (!emrp->emr_quiet) {
908 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
909 				    int, errcode);
910 			}
911 			emrp->emr_out_length_used = 0;
912 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
913 		} else {
914 			emrp->emr_out_length_used = outlen;
915 			emrp->emr_rc = 0;
916 		}
917 	}
918 	if (emrp->emr_rc == 0)
919 		efx_mcdi_finish_response(enp, emrp);
920 
921 	emtp->emt_ev_cpl(emtp->emt_context);
922 }
923 
924 #if EFSYS_OPT_MCDI_PROXY_AUTH
925 
926 	__checkReturn	efx_rc_t
927 efx_mcdi_get_proxy_handle(
928 	__in		efx_nic_t *enp,
929 	__in		efx_mcdi_req_t *emrp,
930 	__out		uint32_t *handlep)
931 {
932 	efx_rc_t rc;
933 
934 	_NOTE(ARGUNUSED(enp))
935 
936 	/*
937 	 * Return proxy handle from MCDI request that returned with error
938 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
939 	 * PROXY_RESPONSE event.
940 	 */
941 	if ((emrp == NULL) || (handlep == NULL)) {
942 		rc = EINVAL;
943 		goto fail1;
944 	}
945 	if ((emrp->emr_rc != 0) &&
946 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
947 		*handlep = emrp->emr_proxy_handle;
948 		rc = 0;
949 	} else {
950 		*handlep = 0;
951 		rc = ENOENT;
952 	}
953 	return (rc);
954 
955 fail1:
956 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
957 	return (rc);
958 }
959 
960 			void
961 efx_mcdi_ev_proxy_response(
962 	__in		efx_nic_t *enp,
963 	__in		unsigned int handle,
964 	__in		unsigned int status)
965 {
966 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
967 	efx_rc_t rc;
968 
969 	/*
970 	 * Handle results of an authorization request for a privileged MCDI
971 	 * command. If authorization was granted then we must re-issue the
972 	 * original MCDI request. If authorization failed or timed out,
973 	 * then the original MCDI request should be completed with the
974 	 * result code from this event.
975 	 */
976 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
977 
978 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
979 }
980 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
981 
982 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
983 			void
984 efx_mcdi_ev_proxy_request(
985 	__in		efx_nic_t *enp,
986 	__in		unsigned int index)
987 {
988 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
989 
990 	if (emtp->emt_ev_proxy_request != NULL)
991 		emtp->emt_ev_proxy_request(emtp->emt_context, index);
992 }
993 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
994 			void
995 efx_mcdi_ev_death(
996 	__in		efx_nic_t *enp,
997 	__in		int rc)
998 {
999 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1000 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
1001 	efx_mcdi_req_t *emrp = NULL;
1002 	boolean_t ev_cpl;
1003 	efsys_lock_state_t state;
1004 
1005 	/*
1006 	 * The MCDI request (if there is one) has been terminated, either
1007 	 * by a BADASSERT or REBOOT event.
1008 	 *
1009 	 * If there is an outstanding event-completed MCDI operation, then we
1010 	 * will never receive the completion event (because both MCDI
1011 	 * completions and BADASSERT events are sent to the same evq). So
1012 	 * complete this MCDI op.
1013 	 *
1014 	 * This function might run in parallel with efx_mcdi_request_poll()
1015 	 * for poll completed mcdi requests, and also with
1016 	 * efx_mcdi_request_start() for post-watchdog completions.
1017 	 */
1018 	EFSYS_LOCK(enp->en_eslp, state);
1019 	emrp = emip->emi_pending_req;
1020 	ev_cpl = emip->emi_ev_cpl;
1021 	if (emrp != NULL && emip->emi_ev_cpl) {
1022 		emip->emi_pending_req = NULL;
1023 
1024 		emrp->emr_out_length_used = 0;
1025 		emrp->emr_rc = rc;
1026 		++emip->emi_aborted;
1027 	}
1028 
1029 	/*
1030 	 * Since we're running in parallel with a request, consume the
1031 	 * status word before dropping the lock.
1032 	 */
1033 	if (rc == EIO || rc == EINTR) {
1034 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
1035 		(void) efx_mcdi_poll_reboot(enp);
1036 		emip->emi_new_epoch = B_TRUE;
1037 	}
1038 
1039 	EFSYS_UNLOCK(enp->en_eslp, state);
1040 
1041 	efx_mcdi_raise_exception(enp, emrp, rc);
1042 
1043 	if (emrp != NULL && ev_cpl)
1044 		emtp->emt_ev_cpl(emtp->emt_context);
1045 }
1046 
1047 	__checkReturn		efx_rc_t
1048 efx_mcdi_get_version(
1049 	__in			efx_nic_t *enp,
1050 	__in			uint32_t flags,
1051 	__out			efx_mcdi_version_t *verp)
1052 {
1053 	efx_nic_board_info_t *board_infop = &verp->emv_board_info;
1054 	EFX_MCDI_DECLARE_BUF(payload,
1055 	    MC_CMD_GET_VERSION_EXT_IN_LEN,
1056 	    MC_CMD_GET_VERSION_V2_OUT_LEN);
1057 	efx_word_t *ver_words;
1058 	uint16_t version[4];
1059 	efx_mcdi_req_t req;
1060 	uint32_t firmware;
1061 	efx_rc_t rc;
1062 
1063 	EFX_STATIC_ASSERT(sizeof (verp->emv_version) ==
1064 	    MC_CMD_GET_VERSION_OUT_VERSION_LEN);
1065 	EFX_STATIC_ASSERT(sizeof (verp->emv_firmware) ==
1066 	    MC_CMD_GET_VERSION_OUT_FIRMWARE_LEN);
1067 
1068 	EFX_STATIC_ASSERT(EFX_MCDI_VERSION_BOARD_INFO ==
1069 	    (1U << MC_CMD_GET_VERSION_V2_OUT_BOARD_EXT_INFO_PRESENT_LBN));
1070 
1071 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_serial) ==
1072 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_SERIAL_LEN);
1073 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_name) ==
1074 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_NAME_LEN);
1075 	EFX_STATIC_ASSERT(sizeof (board_infop->enbi_revision) ==
1076 	    MC_CMD_GET_VERSION_V2_OUT_BOARD_REVISION_LEN);
1077 
1078 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
1079 
1080 	req.emr_cmd = MC_CMD_GET_VERSION;
1081 	req.emr_in_buf = payload;
1082 	req.emr_out_buf = payload;
1083 
1084 	if ((flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1085 		/* Request basic + extended version information. */
1086 		req.emr_in_length = MC_CMD_GET_VERSION_EXT_IN_LEN;
1087 		req.emr_out_length = MC_CMD_GET_VERSION_V2_OUT_LEN;
1088 	} else {
1089 		/* Request only basic version information. */
1090 		req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
1091 		req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
1092 	}
1093 
1094 	efx_mcdi_execute(enp, &req);
1095 
1096 	if (req.emr_rc != 0) {
1097 		rc = req.emr_rc;
1098 		goto fail1;
1099 	}
1100 
1101 	/* bootrom support */
1102 	if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) {
1103 		version[0] = version[1] = version[2] = version[3] = 0;
1104 		firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1105 		goto out;
1106 	}
1107 
1108 	if (req.emr_out_length_used < req.emr_out_length) {
1109 		rc = EMSGSIZE;
1110 		goto fail2;
1111 	}
1112 
1113 	ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
1114 	version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
1115 	version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
1116 	version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
1117 	version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
1118 	firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1119 
1120 out:
1121 	memset(verp, 0, sizeof (*verp));
1122 
1123 	verp->emv_version[0] = version[0];
1124 	verp->emv_version[1] = version[1];
1125 	verp->emv_version[2] = version[2];
1126 	verp->emv_version[3] = version[3];
1127 	verp->emv_firmware = firmware;
1128 
1129 	verp->emv_flags = MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_FLAGS);
1130 	verp->emv_flags &= flags;
1131 
1132 	if ((verp->emv_flags & EFX_MCDI_VERSION_BOARD_INFO) != 0) {
1133 		memcpy(board_infop->enbi_serial,
1134 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_SERIAL),
1135 		    sizeof (board_infop->enbi_serial));
1136 		memcpy(board_infop->enbi_name,
1137 		    MCDI_OUT2(req, char, GET_VERSION_V2_OUT_BOARD_NAME),
1138 		    sizeof (board_infop->enbi_name));
1139 		board_infop->enbi_revision =
1140 		    MCDI_OUT_DWORD(req, GET_VERSION_V2_OUT_BOARD_REVISION);
1141 	}
1142 
1143 	return (0);
1144 
1145 fail2:
1146 	EFSYS_PROBE(fail2);
1147 fail1:
1148 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1149 
1150 	return (rc);
1151 }
1152 
1153 static	__checkReturn		efx_rc_t
1154 efx_mcdi_get_boot_status(
1155 	__in			efx_nic_t *enp,
1156 	__out			efx_mcdi_boot_t *statusp)
1157 {
1158 	EFX_MCDI_DECLARE_BUF(payload,
1159 	    MC_CMD_GET_BOOT_STATUS_IN_LEN,
1160 	    MC_CMD_GET_BOOT_STATUS_OUT_LEN);
1161 	efx_mcdi_req_t req;
1162 	efx_rc_t rc;
1163 
1164 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
1165 
1166 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
1167 	req.emr_in_buf = payload;
1168 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
1169 	req.emr_out_buf = payload;
1170 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
1171 
1172 	efx_mcdi_execute_quiet(enp, &req);
1173 
1174 	/*
1175 	 * NOTE: Unprivileged functions cannot access boot status,
1176 	 *       so the MCDI request will return EACCES. This is
1177 	 *       also checked in efx_mcdi_version.
1178 	 */
1179 
1180 	if (req.emr_rc != 0) {
1181 		rc = req.emr_rc;
1182 		goto fail1;
1183 	}
1184 
1185 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
1186 		rc = EMSGSIZE;
1187 		goto fail2;
1188 	}
1189 
1190 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
1191 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
1192 		*statusp = EFX_MCDI_BOOT_PRIMARY;
1193 	else
1194 		*statusp = EFX_MCDI_BOOT_SECONDARY;
1195 
1196 	return (0);
1197 
1198 fail2:
1199 	EFSYS_PROBE(fail2);
1200 fail1:
1201 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1202 
1203 	return (rc);
1204 }
1205 
1206 	__checkReturn		efx_rc_t
1207 efx_mcdi_version(
1208 	__in			efx_nic_t *enp,
1209 	__out_ecount_opt(4)	uint16_t versionp[4],
1210 	__out_opt		uint32_t *buildp,
1211 	__out_opt		efx_mcdi_boot_t *statusp)
1212 {
1213 	efx_mcdi_version_t ver;
1214 	efx_mcdi_boot_t status;
1215 	efx_rc_t rc;
1216 
1217 	rc = efx_mcdi_get_version(enp, 0, &ver);
1218 	if (rc != 0)
1219 		goto fail1;
1220 
1221 	/* The bootrom doesn't understand BOOT_STATUS */
1222 	if (MC_FW_VERSION_IS_BOOTLOADER(ver.emv_firmware)) {
1223 		status = EFX_MCDI_BOOT_ROM;
1224 		goto out;
1225 	}
1226 
1227 	rc = efx_mcdi_get_boot_status(enp, &status);
1228 	if (rc == EACCES) {
1229 		/* Unprivileged functions cannot access BOOT_STATUS */
1230 		status = EFX_MCDI_BOOT_PRIMARY;
1231 		memset(ver.emv_version, 0, sizeof (ver.emv_version));
1232 		ver.emv_firmware = 0;
1233 	} else if (rc != 0) {
1234 		goto fail2;
1235 	}
1236 
1237 out:
1238 	if (versionp != NULL)
1239 		memcpy(versionp, ver.emv_version, sizeof (ver.emv_version));
1240 	if (buildp != NULL)
1241 		*buildp = ver.emv_firmware;
1242 	if (statusp != NULL)
1243 		*statusp = status;
1244 
1245 	return (0);
1246 
1247 fail2:
1248 	EFSYS_PROBE(fail2);
1249 fail1:
1250 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1251 
1252 	return (rc);
1253 }
1254 
1255 	__checkReturn	efx_rc_t
1256 efx_mcdi_get_capabilities(
1257 	__in		efx_nic_t *enp,
1258 	__out_opt	uint32_t *flagsp,
1259 	__out_opt	uint16_t *rx_dpcpu_fw_idp,
1260 	__out_opt	uint16_t *tx_dpcpu_fw_idp,
1261 	__out_opt	uint32_t *flags2p,
1262 	__out_opt	uint32_t *tso2ncp)
1263 {
1264 	efx_mcdi_req_t req;
1265 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1266 		MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
1267 	boolean_t v2_capable;
1268 	efx_rc_t rc;
1269 
1270 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1271 	req.emr_in_buf = payload;
1272 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1273 	req.emr_out_buf = payload;
1274 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
1275 
1276 	efx_mcdi_execute_quiet(enp, &req);
1277 
1278 	if (req.emr_rc != 0) {
1279 		rc = req.emr_rc;
1280 		goto fail1;
1281 	}
1282 
1283 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1284 		rc = EMSGSIZE;
1285 		goto fail2;
1286 	}
1287 
1288 	if (flagsp != NULL)
1289 		*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
1290 
1291 	if (rx_dpcpu_fw_idp != NULL)
1292 		*rx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1293 					GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
1294 
1295 	if (tx_dpcpu_fw_idp != NULL)
1296 		*tx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1297 					GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
1298 
1299 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
1300 		v2_capable = B_FALSE;
1301 	else
1302 		v2_capable = B_TRUE;
1303 
1304 	if (flags2p != NULL) {
1305 		*flags2p = (v2_capable) ?
1306 			MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) :
1307 			0;
1308 	}
1309 
1310 	if (tso2ncp != NULL) {
1311 		*tso2ncp = (v2_capable) ?
1312 			MCDI_OUT_WORD(req,
1313 				GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) :
1314 			0;
1315 	}
1316 
1317 	return (0);
1318 
1319 fail2:
1320 	EFSYS_PROBE(fail2);
1321 fail1:
1322 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1323 
1324 	return (rc);
1325 }
1326 
1327 static	__checkReturn	efx_rc_t
1328 efx_mcdi_do_reboot(
1329 	__in		efx_nic_t *enp,
1330 	__in		boolean_t after_assertion)
1331 {
1332 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN,
1333 		MC_CMD_REBOOT_OUT_LEN);
1334 	efx_mcdi_req_t req;
1335 	efx_rc_t rc;
1336 
1337 	/*
1338 	 * We could require the caller to have caused en_mod_flags=0 to
1339 	 * call this function. This doesn't help the other port though,
1340 	 * who's about to get the MC ripped out from underneath them.
1341 	 * Since they have to cope with the subsequent fallout of MCDI
1342 	 * failures, we should as well.
1343 	 */
1344 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1345 
1346 	req.emr_cmd = MC_CMD_REBOOT;
1347 	req.emr_in_buf = payload;
1348 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1349 	req.emr_out_buf = payload;
1350 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1351 
1352 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1353 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1354 
1355 	efx_mcdi_execute_quiet(enp, &req);
1356 
1357 	if (req.emr_rc == EACCES) {
1358 		/* Unprivileged functions cannot reboot the MC. */
1359 		goto out;
1360 	}
1361 
1362 	/* A successful reboot request returns EIO. */
1363 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1364 		rc = req.emr_rc;
1365 		goto fail1;
1366 	}
1367 
1368 out:
1369 	return (0);
1370 
1371 fail1:
1372 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1373 
1374 	return (rc);
1375 }
1376 
1377 	__checkReturn	efx_rc_t
1378 efx_mcdi_reboot(
1379 	__in		efx_nic_t *enp)
1380 {
1381 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1382 }
1383 
1384 	__checkReturn	efx_rc_t
1385 efx_mcdi_exit_assertion_handler(
1386 	__in		efx_nic_t *enp)
1387 {
1388 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1389 }
1390 
1391 	__checkReturn	efx_rc_t
1392 efx_mcdi_read_assertion(
1393 	__in		efx_nic_t *enp)
1394 {
1395 	efx_mcdi_req_t req;
1396 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN,
1397 		MC_CMD_GET_ASSERTS_OUT_LEN);
1398 	const char *reason;
1399 	unsigned int flags;
1400 	unsigned int index;
1401 	unsigned int ofst;
1402 	int retry;
1403 	efx_rc_t rc;
1404 
1405 	/*
1406 	 * Before we attempt to chat to the MC, we should verify that the MC
1407 	 * isn't in it's assertion handler, either due to a previous reboot,
1408 	 * or because we're reinitializing due to an eec_exception().
1409 	 *
1410 	 * Use GET_ASSERTS to read any assertion state that may be present.
1411 	 * Retry this command twice. Once because a boot-time assertion failure
1412 	 * might cause the 1st MCDI request to fail. And once again because
1413 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1414 	 * partner port(s) on the same NIC.
1415 	 */
1416 	retry = 2;
1417 	do {
1418 		(void) memset(payload, 0, sizeof (payload));
1419 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1420 		req.emr_in_buf = payload;
1421 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1422 		req.emr_out_buf = payload;
1423 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1424 
1425 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1426 		efx_mcdi_execute_quiet(enp, &req);
1427 
1428 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1429 
1430 	if (req.emr_rc != 0) {
1431 		if (req.emr_rc == EACCES) {
1432 			/* Unprivileged functions cannot clear assertions. */
1433 			goto out;
1434 		}
1435 		rc = req.emr_rc;
1436 		goto fail1;
1437 	}
1438 
1439 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1440 		rc = EMSGSIZE;
1441 		goto fail2;
1442 	}
1443 
1444 	/* Print out any assertion state recorded */
1445 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1446 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1447 		return (0);
1448 
1449 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1450 		? "system-level assertion"
1451 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1452 		? "thread-level assertion"
1453 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1454 		? "watchdog reset"
1455 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1456 		? "illegal address trap"
1457 		: "unknown assertion";
1458 	EFSYS_PROBE3(mcpu_assertion,
1459 	    const char *, reason, unsigned int,
1460 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1461 	    unsigned int,
1462 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1463 
1464 	/* Print out the registers (r1 ... r31) */
1465 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1466 	for (index = 1;
1467 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1468 		index++) {
1469 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1470 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1471 					    EFX_DWORD_0));
1472 		ofst += sizeof (efx_dword_t);
1473 	}
1474 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1475 
1476 out:
1477 	return (0);
1478 
1479 fail2:
1480 	EFSYS_PROBE(fail2);
1481 fail1:
1482 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1483 
1484 	return (rc);
1485 }
1486 
1487 
1488 /*
1489  * Internal routines for for specific MCDI requests.
1490  */
1491 
1492 	__checkReturn	efx_rc_t
1493 efx_mcdi_drv_attach(
1494 	__in		efx_nic_t *enp,
1495 	__in		boolean_t attach)
1496 {
1497 	efx_mcdi_req_t req;
1498 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_V2_LEN,
1499 		MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1500 	efx_rc_t rc;
1501 
1502 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1503 	req.emr_in_buf = payload;
1504 	if (enp->en_drv_version[0] == '\0') {
1505 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1506 	} else {
1507 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_V2_LEN;
1508 	}
1509 	req.emr_out_buf = payload;
1510 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1511 
1512 	/*
1513 	 * Typically, client drivers use DONT_CARE for the datapath firmware
1514 	 * type to ensure that the driver can attach to an unprivileged
1515 	 * function. The datapath firmware type to use is controlled by the
1516 	 * 'sfboot' utility.
1517 	 * If a client driver wishes to attach with a specific datapath firmware
1518 	 * type, that can be passed in second argument of efx_nic_probe API. One
1519 	 * such example is the ESXi native driver that attempts attaching with
1520 	 * FULL_FEATURED datapath firmware type first and fall backs to
1521 	 * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails.
1522 	 */
1523 	MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE,
1524 	    DRV_ATTACH_IN_ATTACH, attach ? 1 : 0,
1525 	    DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE);
1526 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1527 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv);
1528 
1529 	if (req.emr_in_length >= MC_CMD_DRV_ATTACH_IN_V2_LEN) {
1530 		EFX_STATIC_ASSERT(sizeof (enp->en_drv_version) ==
1531 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1532 		memcpy(MCDI_IN2(req, char, DRV_ATTACH_IN_V2_DRIVER_VERSION),
1533 		    enp->en_drv_version,
1534 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1535 	}
1536 
1537 	efx_mcdi_execute(enp, &req);
1538 
1539 	if (req.emr_rc != 0) {
1540 		rc = req.emr_rc;
1541 		goto fail1;
1542 	}
1543 
1544 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1545 		rc = EMSGSIZE;
1546 		goto fail2;
1547 	}
1548 
1549 	return (0);
1550 
1551 fail2:
1552 	EFSYS_PROBE(fail2);
1553 fail1:
1554 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1555 
1556 	return (rc);
1557 }
1558 
1559 	__checkReturn		efx_rc_t
1560 efx_mcdi_get_board_cfg(
1561 	__in			efx_nic_t *enp,
1562 	__out_opt		uint32_t *board_typep,
1563 	__out_opt		efx_dword_t *capabilitiesp,
1564 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1565 {
1566 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1567 	efx_mcdi_req_t req;
1568 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN,
1569 		MC_CMD_GET_BOARD_CFG_OUT_LENMIN);
1570 	efx_rc_t rc;
1571 
1572 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1573 	req.emr_in_buf = payload;
1574 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1575 	req.emr_out_buf = payload;
1576 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1577 
1578 	efx_mcdi_execute(enp, &req);
1579 
1580 	if (req.emr_rc != 0) {
1581 		rc = req.emr_rc;
1582 		goto fail1;
1583 	}
1584 
1585 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1586 		rc = EMSGSIZE;
1587 		goto fail2;
1588 	}
1589 
1590 	if (mac_addrp != NULL) {
1591 		uint8_t *addrp;
1592 
1593 		if (emip->emi_port == 1) {
1594 			addrp = MCDI_OUT2(req, uint8_t,
1595 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1596 		} else if (emip->emi_port == 2) {
1597 			addrp = MCDI_OUT2(req, uint8_t,
1598 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1599 		} else {
1600 			rc = EINVAL;
1601 			goto fail3;
1602 		}
1603 
1604 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1605 	}
1606 
1607 	if (capabilitiesp != NULL) {
1608 		if (emip->emi_port == 1) {
1609 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1610 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1611 		} else if (emip->emi_port == 2) {
1612 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1613 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1614 		} else {
1615 			rc = EINVAL;
1616 			goto fail4;
1617 		}
1618 	}
1619 
1620 	if (board_typep != NULL) {
1621 		*board_typep = MCDI_OUT_DWORD(req,
1622 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1623 	}
1624 
1625 	return (0);
1626 
1627 fail4:
1628 	EFSYS_PROBE(fail4);
1629 fail3:
1630 	EFSYS_PROBE(fail3);
1631 fail2:
1632 	EFSYS_PROBE(fail2);
1633 fail1:
1634 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1635 
1636 	return (rc);
1637 }
1638 
1639 	__checkReturn	efx_rc_t
1640 efx_mcdi_get_resource_limits(
1641 	__in		efx_nic_t *enp,
1642 	__out_opt	uint32_t *nevqp,
1643 	__out_opt	uint32_t *nrxqp,
1644 	__out_opt	uint32_t *ntxqp)
1645 {
1646 	efx_mcdi_req_t req;
1647 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1648 		MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN);
1649 	efx_rc_t rc;
1650 
1651 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1652 	req.emr_in_buf = payload;
1653 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1654 	req.emr_out_buf = payload;
1655 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1656 
1657 	efx_mcdi_execute(enp, &req);
1658 
1659 	if (req.emr_rc != 0) {
1660 		rc = req.emr_rc;
1661 		goto fail1;
1662 	}
1663 
1664 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1665 		rc = EMSGSIZE;
1666 		goto fail2;
1667 	}
1668 
1669 	if (nevqp != NULL)
1670 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1671 	if (nrxqp != NULL)
1672 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1673 	if (ntxqp != NULL)
1674 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1675 
1676 	return (0);
1677 
1678 fail2:
1679 	EFSYS_PROBE(fail2);
1680 fail1:
1681 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1682 
1683 	return (rc);
1684 }
1685 
1686 	__checkReturn	efx_rc_t
1687 efx_mcdi_get_phy_cfg(
1688 	__in		efx_nic_t *enp)
1689 {
1690 	efx_port_t *epp = &(enp->en_port);
1691 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1692 	efx_mcdi_req_t req;
1693 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN,
1694 		MC_CMD_GET_PHY_CFG_OUT_LEN);
1695 #if EFSYS_OPT_NAMES
1696 	const char *namep;
1697 	size_t namelen;
1698 #endif
1699 	uint32_t phy_media_type;
1700 	efx_rc_t rc;
1701 
1702 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1703 	req.emr_in_buf = payload;
1704 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1705 	req.emr_out_buf = payload;
1706 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1707 
1708 	efx_mcdi_execute(enp, &req);
1709 
1710 	if (req.emr_rc != 0) {
1711 		rc = req.emr_rc;
1712 		goto fail1;
1713 	}
1714 
1715 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1716 		rc = EMSGSIZE;
1717 		goto fail2;
1718 	}
1719 
1720 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1721 #if EFSYS_OPT_NAMES
1722 	namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME);
1723 	namelen = MIN(sizeof (encp->enc_phy_name) - 1,
1724 		    strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1725 	(void) memset(encp->enc_phy_name, 0,
1726 	    sizeof (encp->enc_phy_name));
1727 	memcpy(encp->enc_phy_name, namep, namelen);
1728 #endif	/* EFSYS_OPT_NAMES */
1729 	(void) memset(encp->enc_phy_revision, 0,
1730 	    sizeof (encp->enc_phy_revision));
1731 	memcpy(encp->enc_phy_revision,
1732 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1733 		MIN(sizeof (encp->enc_phy_revision) - 1,
1734 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1735 #if EFSYS_OPT_PHY_LED_CONTROL
1736 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1737 			    (1 << EFX_PHY_LED_OFF) |
1738 			    (1 << EFX_PHY_LED_ON));
1739 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1740 
1741 	/* Get the media type of the fixed port, if recognised. */
1742 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1743 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1744 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1745 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1746 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1747 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1748 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1749 	phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1750 	epp->ep_fixed_port_type = (efx_phy_media_type_t)phy_media_type;
1751 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1752 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1753 
1754 	epp->ep_phy_cap_mask =
1755 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1756 #if EFSYS_OPT_PHY_FLAGS
1757 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1758 #endif	/* EFSYS_OPT_PHY_FLAGS */
1759 
1760 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1761 
1762 	/* Populate internal state */
1763 	encp->enc_mcdi_mdio_channel =
1764 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1765 
1766 #if EFSYS_OPT_PHY_STATS
1767 	encp->enc_mcdi_phy_stat_mask =
1768 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1769 #endif	/* EFSYS_OPT_PHY_STATS */
1770 
1771 #if EFSYS_OPT_BIST
1772 	encp->enc_bist_mask = 0;
1773 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1774 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1775 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1776 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1777 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1778 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1779 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1780 	    GET_PHY_CFG_OUT_BIST))
1781 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1782 #endif  /* EFSYS_OPT_BIST */
1783 
1784 	return (0);
1785 
1786 fail2:
1787 	EFSYS_PROBE(fail2);
1788 fail1:
1789 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1790 
1791 	return (rc);
1792 }
1793 
1794 	__checkReturn		efx_rc_t
1795 efx_mcdi_firmware_update_supported(
1796 	__in			efx_nic_t *enp,
1797 	__out			boolean_t *supportedp)
1798 {
1799 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1800 	efx_rc_t rc;
1801 
1802 	if (emcop != NULL) {
1803 		if ((rc = emcop->emco_feature_supported(enp,
1804 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1805 			goto fail1;
1806 	} else {
1807 		/* Earlier devices always supported updates */
1808 		*supportedp = B_TRUE;
1809 	}
1810 
1811 	return (0);
1812 
1813 fail1:
1814 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1815 
1816 	return (rc);
1817 }
1818 
1819 	__checkReturn		efx_rc_t
1820 efx_mcdi_macaddr_change_supported(
1821 	__in			efx_nic_t *enp,
1822 	__out			boolean_t *supportedp)
1823 {
1824 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1825 	efx_rc_t rc;
1826 
1827 	if (emcop != NULL) {
1828 		if ((rc = emcop->emco_feature_supported(enp,
1829 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1830 			goto fail1;
1831 	} else {
1832 		/* Earlier devices always supported MAC changes */
1833 		*supportedp = B_TRUE;
1834 	}
1835 
1836 	return (0);
1837 
1838 fail1:
1839 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1840 
1841 	return (rc);
1842 }
1843 
1844 	__checkReturn		efx_rc_t
1845 efx_mcdi_link_control_supported(
1846 	__in			efx_nic_t *enp,
1847 	__out			boolean_t *supportedp)
1848 {
1849 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1850 	efx_rc_t rc;
1851 
1852 	if (emcop != NULL) {
1853 		if ((rc = emcop->emco_feature_supported(enp,
1854 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1855 			goto fail1;
1856 	} else {
1857 		/* Earlier devices always supported link control */
1858 		*supportedp = B_TRUE;
1859 	}
1860 
1861 	return (0);
1862 
1863 fail1:
1864 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1865 
1866 	return (rc);
1867 }
1868 
1869 	__checkReturn		efx_rc_t
1870 efx_mcdi_mac_spoofing_supported(
1871 	__in			efx_nic_t *enp,
1872 	__out			boolean_t *supportedp)
1873 {
1874 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1875 	efx_rc_t rc;
1876 
1877 	if (emcop != NULL) {
1878 		if ((rc = emcop->emco_feature_supported(enp,
1879 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1880 			goto fail1;
1881 	} else {
1882 		/* Earlier devices always supported MAC spoofing */
1883 		*supportedp = B_TRUE;
1884 	}
1885 
1886 	return (0);
1887 
1888 fail1:
1889 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1890 
1891 	return (rc);
1892 }
1893 
1894 #if EFSYS_OPT_BIST
1895 
1896 #if EFX_OPTS_EF10()
1897 /*
1898  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1899  * where memory BIST tests can be run and not much else can interfere or happen.
1900  * A reboot is required to exit this mode.
1901  */
1902 	__checkReturn		efx_rc_t
1903 efx_mcdi_bist_enable_offline(
1904 	__in			efx_nic_t *enp)
1905 {
1906 	efx_mcdi_req_t req;
1907 	efx_rc_t rc;
1908 
1909 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1910 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1911 
1912 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1913 	req.emr_in_buf = NULL;
1914 	req.emr_in_length = 0;
1915 	req.emr_out_buf = NULL;
1916 	req.emr_out_length = 0;
1917 
1918 	efx_mcdi_execute(enp, &req);
1919 
1920 	if (req.emr_rc != 0) {
1921 		rc = req.emr_rc;
1922 		goto fail1;
1923 	}
1924 
1925 	return (0);
1926 
1927 fail1:
1928 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1929 
1930 	return (rc);
1931 }
1932 #endif /* EFX_OPTS_EF10() */
1933 
1934 	__checkReturn		efx_rc_t
1935 efx_mcdi_bist_start(
1936 	__in			efx_nic_t *enp,
1937 	__in			efx_bist_type_t type)
1938 {
1939 	efx_mcdi_req_t req;
1940 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN,
1941 		MC_CMD_START_BIST_OUT_LEN);
1942 	efx_rc_t rc;
1943 
1944 	req.emr_cmd = MC_CMD_START_BIST;
1945 	req.emr_in_buf = payload;
1946 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1947 	req.emr_out_buf = payload;
1948 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1949 
1950 	switch (type) {
1951 	case EFX_BIST_TYPE_PHY_NORMAL:
1952 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1953 		break;
1954 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1955 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1956 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1957 		break;
1958 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1959 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1960 		    MC_CMD_PHY_BIST_CABLE_LONG);
1961 		break;
1962 	case EFX_BIST_TYPE_MC_MEM:
1963 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1964 		    MC_CMD_MC_MEM_BIST);
1965 		break;
1966 	case EFX_BIST_TYPE_SAT_MEM:
1967 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1968 		    MC_CMD_PORT_MEM_BIST);
1969 		break;
1970 	case EFX_BIST_TYPE_REG:
1971 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1972 		    MC_CMD_REG_BIST);
1973 		break;
1974 	default:
1975 		EFSYS_ASSERT(0);
1976 	}
1977 
1978 	efx_mcdi_execute(enp, &req);
1979 
1980 	if (req.emr_rc != 0) {
1981 		rc = req.emr_rc;
1982 		goto fail1;
1983 	}
1984 
1985 	return (0);
1986 
1987 fail1:
1988 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1989 
1990 	return (rc);
1991 }
1992 
1993 #endif /* EFSYS_OPT_BIST */
1994 
1995 
1996 /* Enable logging of some events (e.g. link state changes) */
1997 	__checkReturn	efx_rc_t
1998 efx_mcdi_log_ctrl(
1999 	__in		efx_nic_t *enp)
2000 {
2001 	efx_mcdi_req_t req;
2002 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN,
2003 		MC_CMD_LOG_CTRL_OUT_LEN);
2004 	efx_rc_t rc;
2005 
2006 	req.emr_cmd = MC_CMD_LOG_CTRL;
2007 	req.emr_in_buf = payload;
2008 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
2009 	req.emr_out_buf = payload;
2010 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
2011 
2012 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
2013 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
2014 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
2015 
2016 	efx_mcdi_execute(enp, &req);
2017 
2018 	if (req.emr_rc != 0) {
2019 		rc = req.emr_rc;
2020 		goto fail1;
2021 	}
2022 
2023 	return (0);
2024 
2025 fail1:
2026 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2027 
2028 	return (rc);
2029 }
2030 
2031 
2032 #if EFSYS_OPT_MAC_STATS
2033 
2034 	__checkReturn	efx_rc_t
2035 efx_mcdi_mac_stats(
2036 	__in		efx_nic_t *enp,
2037 	__in		uint32_t vport_id,
2038 	__in_opt	efsys_mem_t *esmp,
2039 	__in		efx_stats_action_t action,
2040 	__in		uint16_t period_ms)
2041 {
2042 	efx_mcdi_req_t req;
2043 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN,
2044 		MC_CMD_MAC_STATS_V2_OUT_DMA_LEN);
2045 	int clear = (action == EFX_STATS_CLEAR);
2046 	int upload = (action == EFX_STATS_UPLOAD);
2047 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
2048 	int events = (action == EFX_STATS_ENABLE_EVENTS);
2049 	int disable = (action == EFX_STATS_DISABLE);
2050 	efx_rc_t rc;
2051 
2052 	req.emr_cmd = MC_CMD_MAC_STATS;
2053 	req.emr_in_buf = payload;
2054 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
2055 	req.emr_out_buf = payload;
2056 	req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN;
2057 
2058 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
2059 	    MAC_STATS_IN_DMA, upload,
2060 	    MAC_STATS_IN_CLEAR, clear,
2061 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
2062 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
2063 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
2064 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0);
2065 
2066 	if (enable || events || upload) {
2067 		const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
2068 		uint32_t bytes;
2069 
2070 		/* Periodic stats or stats upload require a DMA buffer */
2071 		if (esmp == NULL) {
2072 			rc = EINVAL;
2073 			goto fail1;
2074 		}
2075 
2076 		if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) {
2077 			/* MAC stats count too small for legacy MAC stats */
2078 			rc = ENOSPC;
2079 			goto fail2;
2080 		}
2081 
2082 		bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t);
2083 
2084 		if (EFSYS_MEM_SIZE(esmp) < bytes) {
2085 			/* DMA buffer too small */
2086 			rc = ENOSPC;
2087 			goto fail3;
2088 		}
2089 
2090 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
2091 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
2092 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
2093 			    EFSYS_MEM_ADDR(esmp) >> 32);
2094 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
2095 	}
2096 
2097 	/*
2098 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
2099 	 *	 as this may fail (and leave periodic DMA enabled) if the
2100 	 *	 vadapter has already been deleted.
2101 	 */
2102 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
2103 		(disable ? EVB_PORT_ID_NULL : vport_id));
2104 
2105 	efx_mcdi_execute(enp, &req);
2106 
2107 	if (req.emr_rc != 0) {
2108 		/* EF10: Expect ENOENT if no DMA queues are initialised */
2109 		if ((req.emr_rc != ENOENT) ||
2110 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
2111 			rc = req.emr_rc;
2112 			goto fail4;
2113 		}
2114 	}
2115 
2116 	return (0);
2117 
2118 fail4:
2119 	EFSYS_PROBE(fail4);
2120 fail3:
2121 	EFSYS_PROBE(fail3);
2122 fail2:
2123 	EFSYS_PROBE(fail2);
2124 fail1:
2125 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2126 
2127 	return (rc);
2128 }
2129 
2130 	__checkReturn	efx_rc_t
2131 efx_mcdi_mac_stats_clear(
2132 	__in		efx_nic_t *enp)
2133 {
2134 	efx_rc_t rc;
2135 
2136 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2137 			EFX_STATS_CLEAR, 0)) != 0)
2138 		goto fail1;
2139 
2140 	return (0);
2141 
2142 fail1:
2143 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2144 
2145 	return (rc);
2146 }
2147 
2148 	__checkReturn	efx_rc_t
2149 efx_mcdi_mac_stats_upload(
2150 	__in		efx_nic_t *enp,
2151 	__in		efsys_mem_t *esmp)
2152 {
2153 	efx_rc_t rc;
2154 
2155 	/*
2156 	 * The MC DMAs aggregate statistics for our convenience, so we can
2157 	 * avoid having to pull the statistics buffer into the cache to
2158 	 * maintain cumulative statistics.
2159 	 */
2160 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2161 			EFX_STATS_UPLOAD, 0)) != 0)
2162 		goto fail1;
2163 
2164 	return (0);
2165 
2166 fail1:
2167 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2168 
2169 	return (rc);
2170 }
2171 
2172 	__checkReturn	efx_rc_t
2173 efx_mcdi_mac_stats_periodic(
2174 	__in		efx_nic_t *enp,
2175 	__in		efsys_mem_t *esmp,
2176 	__in		uint16_t period_ms,
2177 	__in		boolean_t events)
2178 {
2179 	efx_rc_t rc;
2180 
2181 	/*
2182 	 * The MC DMAs aggregate statistics for our convenience, so we can
2183 	 * avoid having to pull the statistics buffer into the cache to
2184 	 * maintain cumulative statistics.
2185 	 * Huntington uses a fixed 1sec period.
2186 	 * Medford uses a fixed 1sec period before v6.2.1.1033 firmware.
2187 	 */
2188 	if (period_ms == 0)
2189 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2190 			EFX_STATS_DISABLE, 0);
2191 	else if (events)
2192 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2193 			EFX_STATS_ENABLE_EVENTS, period_ms);
2194 	else
2195 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2196 			EFX_STATS_ENABLE_NOEVENTS, period_ms);
2197 
2198 	if (rc != 0)
2199 		goto fail1;
2200 
2201 	return (0);
2202 
2203 fail1:
2204 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2205 
2206 	return (rc);
2207 }
2208 
2209 #endif	/* EFSYS_OPT_MAC_STATS */
2210 
2211 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2212 
2213 	__checkReturn		efx_rc_t
2214 efx_mcdi_intf_from_pcie(
2215 	__in			uint32_t pcie_intf,
2216 	__out			efx_pcie_interface_t *efx_intf)
2217 {
2218 	efx_rc_t rc;
2219 
2220 	switch (pcie_intf) {
2221 	case PCIE_INTERFACE_CALLER:
2222 		*efx_intf = EFX_PCIE_INTERFACE_CALLER;
2223 		break;
2224 	case PCIE_INTERFACE_HOST_PRIMARY:
2225 		*efx_intf = EFX_PCIE_INTERFACE_HOST_PRIMARY;
2226 		break;
2227 	case PCIE_INTERFACE_NIC_EMBEDDED:
2228 		*efx_intf = EFX_PCIE_INTERFACE_NIC_EMBEDDED;
2229 		break;
2230 	default:
2231 		rc = EINVAL;
2232 		goto fail1;
2233 	}
2234 
2235 	return (0);
2236 
2237 fail1:
2238 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2239 
2240 	return (rc);
2241 }
2242 
2243 	__checkReturn		efx_rc_t
2244 efx_mcdi_intf_to_pcie(
2245 	__in			efx_pcie_interface_t efx_intf,
2246 	__out			uint32_t *pcie_intf)
2247 {
2248 	efx_rc_t rc;
2249 
2250 	switch (efx_intf) {
2251 	case EFX_PCIE_INTERFACE_CALLER:
2252 		*pcie_intf = PCIE_INTERFACE_CALLER;
2253 		break;
2254 	case EFX_PCIE_INTERFACE_HOST_PRIMARY:
2255 		*pcie_intf = PCIE_INTERFACE_HOST_PRIMARY;
2256 		break;
2257 	case EFX_PCIE_INTERFACE_NIC_EMBEDDED:
2258 		*pcie_intf = PCIE_INTERFACE_NIC_EMBEDDED;
2259 		break;
2260 	default:
2261 		rc = EINVAL;
2262 		goto fail1;
2263 	}
2264 
2265 	return (0);
2266 
2267 fail1:
2268 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2269 	return (rc);
2270 }
2271 
2272 /*
2273  * This function returns the pf and vf number of a function.  If it is a pf the
2274  * vf number is 0xffff.  The vf number is the index of the vf on that
2275  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
2276  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
2277  */
2278 	__checkReturn		efx_rc_t
2279 efx_mcdi_get_function_info(
2280 	__in			efx_nic_t *enp,
2281 	__out			uint32_t *pfp,
2282 	__out_opt		uint32_t *vfp,
2283 	__out_opt		efx_pcie_interface_t *intfp)
2284 {
2285 	efx_pcie_interface_t intf;
2286 	efx_mcdi_req_t req;
2287 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN,
2288 		MC_CMD_GET_FUNCTION_INFO_OUT_V2_LEN);
2289 	uint32_t pcie_intf;
2290 	efx_rc_t rc;
2291 
2292 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
2293 	req.emr_in_buf = payload;
2294 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
2295 	req.emr_out_buf = payload;
2296 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_V2_LEN;
2297 
2298 	efx_mcdi_execute(enp, &req);
2299 
2300 	if (req.emr_rc != 0) {
2301 		rc = req.emr_rc;
2302 		goto fail1;
2303 	}
2304 
2305 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
2306 		rc = EMSGSIZE;
2307 		goto fail2;
2308 	}
2309 
2310 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
2311 	if (vfp != NULL)
2312 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
2313 
2314 	if (req.emr_out_length < MC_CMD_GET_FUNCTION_INFO_OUT_V2_LEN) {
2315 		intf = EFX_PCIE_INTERFACE_HOST_PRIMARY;
2316 	} else {
2317 		pcie_intf = MCDI_OUT_DWORD(req,
2318 		    GET_FUNCTION_INFO_OUT_V2_INTF);
2319 
2320 		rc = efx_mcdi_intf_from_pcie(pcie_intf, &intf);
2321 		if (rc != 0)
2322 			goto fail3;
2323 	}
2324 
2325 	if (intfp != NULL)
2326 		*intfp = intf;
2327 
2328 	return (0);
2329 
2330 fail3:
2331 	EFSYS_PROBE(fail3);
2332 fail2:
2333 	EFSYS_PROBE(fail2);
2334 fail1:
2335 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2336 
2337 	return (rc);
2338 }
2339 
2340 	__checkReturn		efx_rc_t
2341 efx_mcdi_privilege_mask(
2342 	__in			efx_nic_t *enp,
2343 	__in			uint32_t pf,
2344 	__in			uint32_t vf,
2345 	__out			uint32_t *maskp)
2346 {
2347 	efx_mcdi_req_t req;
2348 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN,
2349 		MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2350 	efx_rc_t rc;
2351 
2352 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
2353 	req.emr_in_buf = payload;
2354 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
2355 	req.emr_out_buf = payload;
2356 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
2357 
2358 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
2359 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2360 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2361 
2362 	efx_mcdi_execute(enp, &req);
2363 
2364 	if (req.emr_rc != 0) {
2365 		rc = req.emr_rc;
2366 		goto fail1;
2367 	}
2368 
2369 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
2370 		rc = EMSGSIZE;
2371 		goto fail2;
2372 	}
2373 
2374 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
2375 
2376 	return (0);
2377 
2378 fail2:
2379 	EFSYS_PROBE(fail2);
2380 fail1:
2381 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2382 
2383 	return (rc);
2384 }
2385 
2386 #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2387 
2388 	__checkReturn		efx_rc_t
2389 efx_mcdi_set_workaround(
2390 	__in			efx_nic_t *enp,
2391 	__in			uint32_t type,
2392 	__in			boolean_t enabled,
2393 	__out_opt		uint32_t *flagsp)
2394 {
2395 	efx_mcdi_req_t req;
2396 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN,
2397 		MC_CMD_WORKAROUND_EXT_OUT_LEN);
2398 	efx_rc_t rc;
2399 
2400 	req.emr_cmd = MC_CMD_WORKAROUND;
2401 	req.emr_in_buf = payload;
2402 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2403 	req.emr_out_buf = payload;
2404 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2405 
2406 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2407 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2408 
2409 	efx_mcdi_execute_quiet(enp, &req);
2410 
2411 	if (req.emr_rc != 0) {
2412 		rc = req.emr_rc;
2413 		goto fail1;
2414 	}
2415 
2416 	if (flagsp != NULL) {
2417 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2418 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2419 		else
2420 			*flagsp = 0;
2421 	}
2422 
2423 	return (0);
2424 
2425 fail1:
2426 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2427 
2428 	return (rc);
2429 }
2430 
2431 
2432 	__checkReturn		efx_rc_t
2433 efx_mcdi_get_workarounds(
2434 	__in			efx_nic_t *enp,
2435 	__out_opt		uint32_t *implementedp,
2436 	__out_opt		uint32_t *enabledp)
2437 {
2438 	efx_mcdi_req_t req;
2439 	EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2440 	efx_rc_t rc;
2441 
2442 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2443 	req.emr_in_buf = NULL;
2444 	req.emr_in_length = 0;
2445 	req.emr_out_buf = payload;
2446 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2447 
2448 	efx_mcdi_execute(enp, &req);
2449 
2450 	if (req.emr_rc != 0) {
2451 		rc = req.emr_rc;
2452 		goto fail1;
2453 	}
2454 
2455 	if (req.emr_out_length_used < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2456 		rc = EMSGSIZE;
2457 		goto fail2;
2458 	}
2459 
2460 	if (implementedp != NULL) {
2461 		*implementedp =
2462 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2463 	}
2464 
2465 	if (enabledp != NULL) {
2466 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2467 	}
2468 
2469 	return (0);
2470 
2471 fail2:
2472 	EFSYS_PROBE(fail2);
2473 fail1:
2474 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2475 
2476 	return (rc);
2477 }
2478 
2479 /*
2480  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2481  * It is used in MCDI interface as well.
2482  */
2483 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2484 
2485 /*
2486  * Transceiver identifiers from SFF-8024 Table 4-1.
2487  */
2488 #define	EFX_SFF_TRANSCEIVER_ID_SFP		0x03 /* SFP/SFP+/SFP28 */
2489 #define	EFX_SFF_TRANSCEIVER_ID_QSFP		0x0c /* QSFP */
2490 #define	EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS	0x0d /* QSFP+ or later */
2491 #define	EFX_SFF_TRANSCEIVER_ID_QSFP28		0x11 /* QSFP28 or later */
2492 
2493 static	__checkReturn		efx_rc_t
2494 efx_mcdi_get_phy_media_info(
2495 	__in			efx_nic_t *enp,
2496 	__in			uint32_t mcdi_page,
2497 	__in			uint8_t offset,
2498 	__in			uint8_t len,
2499 	__out_bcount(len)	uint8_t *data)
2500 {
2501 	efx_mcdi_req_t req;
2502 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2503 		MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2504 			EFX_PHY_MEDIA_INFO_PAGE_SIZE));
2505 	efx_rc_t rc;
2506 
2507 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2508 
2509 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2510 	req.emr_in_buf = payload;
2511 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2512 	req.emr_out_buf = payload;
2513 	req.emr_out_length =
2514 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2515 
2516 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2517 
2518 	efx_mcdi_execute(enp, &req);
2519 
2520 	if (req.emr_rc != 0) {
2521 		rc = req.emr_rc;
2522 		goto fail1;
2523 	}
2524 
2525 	if (req.emr_out_length_used !=
2526 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2527 		rc = EMSGSIZE;
2528 		goto fail2;
2529 	}
2530 
2531 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2532 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2533 		rc = EIO;
2534 		goto fail3;
2535 	}
2536 
2537 	memcpy(data,
2538 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2539 	    len);
2540 
2541 	return (0);
2542 
2543 fail3:
2544 	EFSYS_PROBE(fail3);
2545 fail2:
2546 	EFSYS_PROBE(fail2);
2547 fail1:
2548 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2549 
2550 	return (rc);
2551 }
2552 
2553 	__checkReturn		efx_rc_t
2554 efx_mcdi_phy_module_get_info(
2555 	__in			efx_nic_t *enp,
2556 	__in			uint8_t dev_addr,
2557 	__in			size_t offset,
2558 	__in			size_t len,
2559 	__out_bcount(len)	uint8_t *data)
2560 {
2561 	efx_port_t *epp = &(enp->en_port);
2562 	efx_rc_t rc;
2563 	uint32_t mcdi_lower_page;
2564 	uint32_t mcdi_upper_page;
2565 	uint8_t id;
2566 
2567 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2568 
2569 	/*
2570 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2571 	 * Offset plus length interface allows to access page 0 only.
2572 	 * I.e. non-zero upper pages are not accessible.
2573 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2574 	 * QSFP+ Memory Map for details on how information is structured
2575 	 * and accessible.
2576 	 */
2577 	switch (epp->ep_fixed_port_type) {
2578 	case EFX_PHY_MEDIA_SFP_PLUS:
2579 	case EFX_PHY_MEDIA_QSFP_PLUS:
2580 		/* Port type supports modules */
2581 		break;
2582 	default:
2583 		rc = ENOTSUP;
2584 		goto fail1;
2585 	}
2586 
2587 	/*
2588 	 * For all supported port types, MCDI page 0 offset 0 holds the
2589 	 * transceiver identifier. Probe to determine the data layout.
2590 	 * Definitions from SFF-8024 Table 4-1.
2591 	 */
2592 	rc = efx_mcdi_get_phy_media_info(enp,
2593 		    0, 0, sizeof(id), &id);
2594 	if (rc != 0)
2595 		goto fail2;
2596 
2597 	switch (id) {
2598 	case EFX_SFF_TRANSCEIVER_ID_SFP:
2599 		/*
2600 		 * In accordance with SFF-8472 Diagnostic Monitoring
2601 		 * Interface for Optical Transceivers section 4 Memory
2602 		 * Organization two 2-wire addresses are defined.
2603 		 */
2604 		switch (dev_addr) {
2605 		/* Base information */
2606 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2607 			/*
2608 			 * MCDI page 0 should be used to access lower
2609 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2610 			 */
2611 			mcdi_lower_page = 0;
2612 			/*
2613 			 * MCDI page 1 should be used to access  upper
2614 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2615 			 */
2616 			mcdi_upper_page = 1;
2617 			break;
2618 		/* Diagnostics */
2619 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2620 			/*
2621 			 * MCDI page 2 should be used to access lower
2622 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2623 			 */
2624 			mcdi_lower_page = 2;
2625 			/*
2626 			 * MCDI page 3 should be used to access upper
2627 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2628 			 */
2629 			mcdi_upper_page = 3;
2630 			break;
2631 		default:
2632 			rc = ENOTSUP;
2633 			goto fail3;
2634 		}
2635 		break;
2636 	case EFX_SFF_TRANSCEIVER_ID_QSFP:
2637 	case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS:
2638 	case EFX_SFF_TRANSCEIVER_ID_QSFP28:
2639 		switch (dev_addr) {
2640 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2641 			/*
2642 			 * MCDI page -1 should be used to access lower page 0
2643 			 * (0x00 - 0x7f).
2644 			 */
2645 			mcdi_lower_page = (uint32_t)-1;
2646 			/*
2647 			 * MCDI page 0 should be used to access upper page 0
2648 			 * (0x80h - 0xff).
2649 			 */
2650 			mcdi_upper_page = 0;
2651 			break;
2652 		default:
2653 			rc = ENOTSUP;
2654 			goto fail3;
2655 		}
2656 		break;
2657 	default:
2658 		rc = ENOTSUP;
2659 		goto fail3;
2660 	}
2661 
2662 	EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF);
2663 
2664 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2665 		size_t read_len =
2666 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2667 
2668 		rc = efx_mcdi_get_phy_media_info(enp,
2669 		    mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data);
2670 		if (rc != 0)
2671 			goto fail4;
2672 
2673 		data += read_len;
2674 		len -= read_len;
2675 
2676 		offset = 0;
2677 	} else {
2678 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2679 	}
2680 
2681 	if (len > 0) {
2682 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2683 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2684 
2685 		rc = efx_mcdi_get_phy_media_info(enp,
2686 		    mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data);
2687 		if (rc != 0)
2688 			goto fail5;
2689 	}
2690 
2691 	return (0);
2692 
2693 fail5:
2694 	EFSYS_PROBE(fail5);
2695 fail4:
2696 	EFSYS_PROBE(fail4);
2697 fail3:
2698 	EFSYS_PROBE(fail3);
2699 fail2:
2700 	EFSYS_PROBE(fail2);
2701 fail1:
2702 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2703 
2704 	return (rc);
2705 }
2706 
2707 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2708 
2709 #define	INIT_EVQ_MAXNBUFS	MC_CMD_INIT_EVQ_V2_IN_DMA_ADDR_MAXNUM
2710 
2711 #if EFX_OPTS_EF10()
2712 # if (INIT_EVQ_MAXNBUFS < EF10_EVQ_MAXNBUFS)
2713 #  error "INIT_EVQ_MAXNBUFS too small"
2714 # endif
2715 #endif /* EFX_OPTS_EF10 */
2716 #if EFSYS_OPT_RIVERHEAD
2717 # if (INIT_EVQ_MAXNBUFS < RHEAD_EVQ_MAXNBUFS)
2718 #  error "INIT_EVQ_MAXNBUFS too small"
2719 # endif
2720 #endif /* EFSYS_OPT_RIVERHEAD */
2721 
2722 	__checkReturn	efx_rc_t
2723 efx_mcdi_init_evq(
2724 	__in		efx_nic_t *enp,
2725 	__in		unsigned int instance,
2726 	__in		efsys_mem_t *esmp,
2727 	__in		size_t nevs,
2728 	__in		uint32_t irq,
2729 	__in		uint32_t target_evq,
2730 	__in		uint32_t us,
2731 	__in		uint32_t flags,
2732 	__in		boolean_t low_latency)
2733 {
2734 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(enp);
2735 	efx_mcdi_req_t req;
2736 	EFX_MCDI_DECLARE_BUF(payload,
2737 		MC_CMD_INIT_EVQ_V2_IN_LEN(INIT_EVQ_MAXNBUFS),
2738 		MC_CMD_INIT_EVQ_V2_OUT_LEN);
2739 	boolean_t interrupting;
2740 	int ev_extended_width;
2741 	int ev_cut_through;
2742 	int ev_merge;
2743 	unsigned int evq_type;
2744 	efx_qword_t *dma_addr;
2745 	uint64_t addr;
2746 	int npages;
2747 	int i;
2748 	efx_rc_t rc;
2749 
2750 	npages = efx_evq_nbufs(enp, nevs, flags);
2751 	if (npages > INIT_EVQ_MAXNBUFS) {
2752 		rc = EINVAL;
2753 		goto fail1;
2754 	}
2755 
2756 	req.emr_cmd = MC_CMD_INIT_EVQ;
2757 	req.emr_in_buf = payload;
2758 	req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages);
2759 	req.emr_out_buf = payload;
2760 	req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN;
2761 
2762 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs);
2763 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance);
2764 
2765 	interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
2766 	    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
2767 
2768 	if (interrupting)
2769 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq);
2770 	else
2771 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TARGET_EVQ, target_evq);
2772 
2773 	if (encp->enc_init_evq_v2_supported) {
2774 		/*
2775 		 * On Medford the low latency license is required to enable RX
2776 		 * and event cut through and to disable RX batching.  If event
2777 		 * queue type in flags is auto, we let the firmware decide the
2778 		 * settings to use. If the adapter has a low latency license,
2779 		 * it will choose the best settings for low latency, otherwise
2780 		 * it will choose the best settings for throughput.
2781 		 */
2782 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2783 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2784 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO;
2785 			break;
2786 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2787 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT;
2788 			break;
2789 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2790 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY;
2791 			break;
2792 		default:
2793 			rc = EINVAL;
2794 			goto fail2;
2795 		}
2796 		/* EvQ type controls merging, no manual settings */
2797 		ev_merge = 0;
2798 		ev_cut_through = 0;
2799 	} else {
2800 		/* EvQ types other than manual are not supported */
2801 		evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_MANUAL;
2802 		/*
2803 		 * On Huntington RX and TX event batching can only be requested
2804 		 * together (even if the datapath firmware doesn't actually
2805 		 * support RX batching). If event cut through is enabled no RX
2806 		 * batching will occur.
2807 		 *
2808 		 * So always enable RX and TX event batching, and enable event
2809 		 * cut through if we want low latency operation.
2810 		 */
2811 		ev_merge = 1;
2812 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2813 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2814 			ev_cut_through = low_latency ? 1 : 0;
2815 			break;
2816 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2817 			ev_cut_through = 0;
2818 			break;
2819 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2820 			ev_cut_through = 1;
2821 			break;
2822 		default:
2823 			rc = EINVAL;
2824 			goto fail2;
2825 		}
2826 	}
2827 
2828 	/*
2829 	 * On EF100, extended width event queues have a different event
2830 	 * descriptor layout and are used to support descriptor proxy queues.
2831 	 */
2832 	ev_extended_width = 0;
2833 #if EFSYS_OPT_EV_EXTENDED_WIDTH
2834 	if (encp->enc_init_evq_extended_width_supported) {
2835 		if (flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH)
2836 			ev_extended_width = 1;
2837 	}
2838 #endif
2839 
2840 	MCDI_IN_POPULATE_DWORD_8(req, INIT_EVQ_V2_IN_FLAGS,
2841 	    INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting,
2842 	    INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0,
2843 	    INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0,
2844 	    INIT_EVQ_V2_IN_FLAG_CUT_THRU, ev_cut_through,
2845 	    INIT_EVQ_V2_IN_FLAG_RX_MERGE, ev_merge,
2846 	    INIT_EVQ_V2_IN_FLAG_TX_MERGE, ev_merge,
2847 	    INIT_EVQ_V2_IN_FLAG_TYPE, evq_type,
2848 	    INIT_EVQ_V2_IN_FLAG_EXT_WIDTH, ev_extended_width);
2849 
2850 	/* If the value is zero then disable the timer */
2851 	if (us == 0) {
2852 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2853 		    MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS);
2854 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0);
2855 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0);
2856 	} else {
2857 		unsigned int ticks;
2858 
2859 		if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
2860 			goto fail3;
2861 
2862 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2863 		    MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF);
2864 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks);
2865 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks);
2866 	}
2867 
2868 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE,
2869 	    MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS);
2870 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0);
2871 
2872 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR);
2873 	addr = EFSYS_MEM_ADDR(esmp);
2874 
2875 	for (i = 0; i < npages; i++) {
2876 		EFX_POPULATE_QWORD_2(*dma_addr,
2877 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2878 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2879 
2880 		dma_addr++;
2881 		addr += EFX_BUF_SIZE;
2882 	}
2883 
2884 	efx_mcdi_execute(enp, &req);
2885 
2886 	if (req.emr_rc != 0) {
2887 		rc = req.emr_rc;
2888 		goto fail4;
2889 	}
2890 
2891 	if (encp->enc_init_evq_v2_supported) {
2892 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) {
2893 			rc = EMSGSIZE;
2894 			goto fail5;
2895 		}
2896 		EFSYS_PROBE1(mcdi_evq_flags, uint32_t,
2897 			    MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS));
2898 	} else {
2899 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) {
2900 			rc = EMSGSIZE;
2901 			goto fail6;
2902 		}
2903 	}
2904 
2905 	/* NOTE: ignore the returned IRQ param as firmware does not set it. */
2906 
2907 	return (0);
2908 
2909 fail6:
2910 	EFSYS_PROBE(fail6);
2911 fail5:
2912 	EFSYS_PROBE(fail5);
2913 fail4:
2914 	EFSYS_PROBE(fail4);
2915 fail3:
2916 	EFSYS_PROBE(fail3);
2917 fail2:
2918 	EFSYS_PROBE(fail2);
2919 fail1:
2920 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2921 
2922 	return (rc);
2923 }
2924 
2925 	__checkReturn	efx_rc_t
2926 efx_mcdi_fini_evq(
2927 	__in		efx_nic_t *enp,
2928 	__in		uint32_t instance)
2929 {
2930 	efx_mcdi_req_t req;
2931 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_EVQ_IN_LEN,
2932 		MC_CMD_FINI_EVQ_OUT_LEN);
2933 	efx_rc_t rc;
2934 
2935 	req.emr_cmd = MC_CMD_FINI_EVQ;
2936 	req.emr_in_buf = payload;
2937 	req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN;
2938 	req.emr_out_buf = payload;
2939 	req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN;
2940 
2941 	MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance);
2942 
2943 	efx_mcdi_execute_quiet(enp, &req);
2944 
2945 	if (req.emr_rc != 0) {
2946 		rc = req.emr_rc;
2947 		goto fail1;
2948 	}
2949 
2950 	return (0);
2951 
2952 fail1:
2953 	/*
2954 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2955 	 * that the EVQ has already been destroyed.
2956 	 */
2957 	if (rc != EALREADY)
2958 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2959 
2960 	return (rc);
2961 }
2962 
2963 	__checkReturn	efx_rc_t
2964 efx_mcdi_init_rxq(
2965 	__in		efx_nic_t *enp,
2966 	__in		uint32_t ndescs,
2967 	__in		efx_evq_t *eep,
2968 	__in		uint32_t label,
2969 	__in		uint32_t instance,
2970 	__in		efsys_mem_t *esmp,
2971 	__in		const efx_mcdi_init_rxq_params_t *params)
2972 {
2973 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2974 	efx_mcdi_req_t req;
2975 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_RXQ_V5_IN_LEN,
2976 		MC_CMD_INIT_RXQ_V5_OUT_LEN);
2977 	int npages = efx_rxq_nbufs(enp, ndescs);
2978 	int i;
2979 	efx_qword_t *dma_addr;
2980 	uint64_t addr;
2981 	efx_rc_t rc;
2982 	uint32_t dma_mode;
2983 	boolean_t want_outer_classes;
2984 	boolean_t no_cont_ev;
2985 
2986 	EFSYS_ASSERT3U(ndescs, <=, encp->enc_rxq_max_ndescs);
2987 
2988 	if ((esmp == NULL) ||
2989 	    (EFSYS_MEM_SIZE(esmp) < efx_rxq_size(enp, ndescs))) {
2990 		rc = EINVAL;
2991 		goto fail1;
2992 	}
2993 
2994 	no_cont_ev = (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV);
2995 	if ((no_cont_ev == B_TRUE) && (params->disable_scatter == B_FALSE)) {
2996 		/* TODO: Support scatter in NO_CONT_EV mode */
2997 		rc = EINVAL;
2998 		goto fail2;
2999 	}
3000 
3001 	if (params->ps_buf_size > 0)
3002 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM;
3003 	else if (params->es_bufs_per_desc > 0)
3004 		dma_mode = MC_CMD_INIT_RXQ_V3_IN_EQUAL_STRIDE_SUPER_BUFFER;
3005 	else
3006 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_SINGLE_PACKET;
3007 
3008 	if (encp->enc_tunnel_encapsulations_supported != 0 &&
3009 	    !params->want_inner_classes) {
3010 		/*
3011 		 * WANT_OUTER_CLASSES can only be specified on hardware which
3012 		 * supports tunnel encapsulation offloads, even though it is
3013 		 * effectively the behaviour the hardware gives.
3014 		 *
3015 		 * Also, on hardware which does support such offloads, older
3016 		 * firmware rejects the flag if the offloads are not supported
3017 		 * by the current firmware variant, which means this may fail if
3018 		 * the capabilities are not updated when the firmware variant
3019 		 * changes. This is not an issue on newer firmware, as it was
3020 		 * changed in bug 69842 (v6.4.2.1007) to permit this flag to be
3021 		 * specified on all firmware variants.
3022 		 */
3023 		want_outer_classes = B_TRUE;
3024 	} else {
3025 		want_outer_classes = B_FALSE;
3026 	}
3027 
3028 	req.emr_cmd = MC_CMD_INIT_RXQ;
3029 	req.emr_in_buf = payload;
3030 	req.emr_in_length = MC_CMD_INIT_RXQ_V5_IN_LEN;
3031 	req.emr_out_buf = payload;
3032 	req.emr_out_length = MC_CMD_INIT_RXQ_V5_OUT_LEN;
3033 
3034 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_SIZE, ndescs);
3035 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_TARGET_EVQ, eep->ee_index);
3036 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_LABEL, label);
3037 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_INSTANCE, instance);
3038 	MCDI_IN_POPULATE_DWORD_10(req, INIT_RXQ_EXT_IN_FLAGS,
3039 	    INIT_RXQ_EXT_IN_FLAG_BUFF_MODE, 0,
3040 	    INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT, 0,
3041 	    INIT_RXQ_EXT_IN_FLAG_TIMESTAMP, 0,
3042 	    INIT_RXQ_EXT_IN_CRC_MODE, 0,
3043 	    INIT_RXQ_EXT_IN_FLAG_PREFIX, 1,
3044 	    INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER, params->disable_scatter,
3045 	    INIT_RXQ_EXT_IN_DMA_MODE,
3046 	    dma_mode,
3047 	    INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE, params->ps_buf_size,
3048 	    INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES, want_outer_classes,
3049 	    INIT_RXQ_EXT_IN_FLAG_NO_CONT_EV, no_cont_ev);
3050 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_OWNER_ID, 0);
3051 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_PORT_ID, enp->en_vport_id);
3052 
3053 	if (params->es_bufs_per_desc > 0) {
3054 		MCDI_IN_SET_DWORD(req,
3055 		    INIT_RXQ_V3_IN_ES_PACKET_BUFFERS_PER_BUCKET,
3056 		    params->es_bufs_per_desc);
3057 		MCDI_IN_SET_DWORD(req,
3058 		    INIT_RXQ_V3_IN_ES_MAX_DMA_LEN, params->es_max_dma_len);
3059 		MCDI_IN_SET_DWORD(req,
3060 		    INIT_RXQ_V3_IN_ES_PACKET_STRIDE, params->es_buf_stride);
3061 		MCDI_IN_SET_DWORD(req,
3062 		    INIT_RXQ_V3_IN_ES_HEAD_OF_LINE_BLOCK_TIMEOUT,
3063 		    params->hol_block_timeout);
3064 	}
3065 
3066 	if (encp->enc_init_rxq_with_buffer_size)
3067 		MCDI_IN_SET_DWORD(req, INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES,
3068 		    params->buf_size);
3069 
3070 	MCDI_IN_SET_DWORD(req, INIT_RXQ_V5_IN_RX_PREFIX_ID, params->prefix_id);
3071 
3072 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR);
3073 	addr = EFSYS_MEM_ADDR(esmp);
3074 
3075 	for (i = 0; i < npages; i++) {
3076 		EFX_POPULATE_QWORD_2(*dma_addr,
3077 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
3078 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
3079 
3080 		dma_addr++;
3081 		addr += EFX_BUF_SIZE;
3082 	}
3083 
3084 	efx_mcdi_execute(enp, &req);
3085 
3086 	if (req.emr_rc != 0) {
3087 		rc = req.emr_rc;
3088 		goto fail3;
3089 	}
3090 
3091 	return (0);
3092 
3093 fail3:
3094 	EFSYS_PROBE(fail3);
3095 fail2:
3096 	EFSYS_PROBE(fail2);
3097 fail1:
3098 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3099 
3100 	return (rc);
3101 }
3102 
3103 	__checkReturn	efx_rc_t
3104 efx_mcdi_fini_rxq(
3105 	__in		efx_nic_t *enp,
3106 	__in		uint32_t instance)
3107 {
3108 	efx_mcdi_req_t req;
3109 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_RXQ_IN_LEN,
3110 		MC_CMD_FINI_RXQ_OUT_LEN);
3111 	efx_rc_t rc;
3112 
3113 	req.emr_cmd = MC_CMD_FINI_RXQ;
3114 	req.emr_in_buf = payload;
3115 	req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN;
3116 	req.emr_out_buf = payload;
3117 	req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN;
3118 
3119 	MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance);
3120 
3121 	efx_mcdi_execute_quiet(enp, &req);
3122 
3123 	if (req.emr_rc != 0) {
3124 		rc = req.emr_rc;
3125 		goto fail1;
3126 	}
3127 
3128 	return (0);
3129 
3130 fail1:
3131 	/*
3132 	 * EALREADY is not an error, but indicates that the MC has rebooted and
3133 	 * that the RXQ has already been destroyed.
3134 	 */
3135 	if (rc != EALREADY)
3136 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3137 
3138 	return (rc);
3139 }
3140 
3141 	__checkReturn	efx_rc_t
3142 efx_mcdi_init_txq(
3143 	__in		efx_nic_t *enp,
3144 	__in		uint32_t ndescs,
3145 	__in		uint32_t target_evq,
3146 	__in		uint32_t label,
3147 	__in		uint32_t instance,
3148 	__in		uint16_t flags,
3149 	__in		efsys_mem_t *esmp)
3150 {
3151 	efx_mcdi_req_t req;
3152 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_EXT_IN_LEN,
3153 		MC_CMD_INIT_TXQ_OUT_LEN);
3154 	efx_qword_t *dma_addr;
3155 	uint64_t addr;
3156 	int npages;
3157 	int i;
3158 	efx_rc_t rc;
3159 
3160 	EFSYS_ASSERT(MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MAXNUM >=
3161 	    efx_txq_nbufs(enp, enp->en_nic_cfg.enc_txq_max_ndescs));
3162 
3163 	if ((esmp == NULL) ||
3164 	    (EFSYS_MEM_SIZE(esmp) < efx_txq_size(enp, ndescs))) {
3165 		rc = EINVAL;
3166 		goto fail1;
3167 	}
3168 
3169 	npages = efx_txq_nbufs(enp, ndescs);
3170 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
3171 		rc = EINVAL;
3172 		goto fail2;
3173 	}
3174 
3175 	req.emr_cmd = MC_CMD_INIT_TXQ;
3176 	req.emr_in_buf = payload;
3177 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
3178 	req.emr_out_buf = payload;
3179 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
3180 
3181 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
3182 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
3183 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
3184 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
3185 
3186 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
3187 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
3188 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
3189 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
3190 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
3191 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
3192 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
3193 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
3194 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
3195 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
3196 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
3197 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
3198 	    INIT_TXQ_IN_CRC_MODE, 0,
3199 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
3200 
3201 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
3202 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, enp->en_vport_id);
3203 
3204 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
3205 	addr = EFSYS_MEM_ADDR(esmp);
3206 
3207 	for (i = 0; i < npages; i++) {
3208 		EFX_POPULATE_QWORD_2(*dma_addr,
3209 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
3210 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
3211 
3212 		dma_addr++;
3213 		addr += EFX_BUF_SIZE;
3214 	}
3215 
3216 	efx_mcdi_execute(enp, &req);
3217 
3218 	if (req.emr_rc != 0) {
3219 		rc = req.emr_rc;
3220 		goto fail3;
3221 	}
3222 
3223 	return (0);
3224 
3225 fail3:
3226 	EFSYS_PROBE(fail3);
3227 fail2:
3228 	EFSYS_PROBE(fail2);
3229 fail1:
3230 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3231 
3232 	return (rc);
3233 }
3234 
3235 	__checkReturn	efx_rc_t
3236 efx_mcdi_fini_txq(
3237 	__in		efx_nic_t *enp,
3238 	__in		uint32_t instance)
3239 {
3240 	efx_mcdi_req_t req;
3241 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
3242 		MC_CMD_FINI_TXQ_OUT_LEN);
3243 	efx_rc_t rc;
3244 
3245 	req.emr_cmd = MC_CMD_FINI_TXQ;
3246 	req.emr_in_buf = payload;
3247 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
3248 	req.emr_out_buf = payload;
3249 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
3250 
3251 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
3252 
3253 	efx_mcdi_execute_quiet(enp, &req);
3254 
3255 	if (req.emr_rc != 0) {
3256 		rc = req.emr_rc;
3257 		goto fail1;
3258 	}
3259 
3260 	return (0);
3261 
3262 fail1:
3263 	/*
3264 	 * EALREADY is not an error, but indicates that the MC has rebooted and
3265 	 * that the TXQ has already been destroyed.
3266 	 */
3267 	if (rc != EALREADY)
3268 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3269 
3270 	return (rc);
3271 }
3272 
3273 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
3274 
3275 	__checkReturn	efx_rc_t
3276 efx_mcdi_get_nic_addr_info(
3277 	__in		efx_nic_t *enp,
3278 	__out		uint32_t *mapping_typep)
3279 {
3280 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_DESC_ADDR_INFO_IN_LEN,
3281 		MC_CMD_GET_DESC_ADDR_INFO_OUT_LEN);
3282 	efx_mcdi_req_t req;
3283 	efx_rc_t rc;
3284 
3285 	req.emr_cmd = MC_CMD_GET_DESC_ADDR_INFO;
3286 	req.emr_in_buf = payload;
3287 	req.emr_in_length = MC_CMD_GET_DESC_ADDR_INFO_IN_LEN;
3288 	req.emr_out_buf = payload;
3289 	req.emr_out_length = MC_CMD_GET_DESC_ADDR_INFO_OUT_LEN;
3290 
3291 	efx_mcdi_execute_quiet(enp, &req);
3292 
3293 	if (req.emr_rc != 0) {
3294 		rc = req.emr_rc;
3295 		goto fail1;
3296 	}
3297 
3298 	if (req.emr_out_length_used < MC_CMD_GET_DESC_ADDR_INFO_OUT_LEN) {
3299 		rc = EMSGSIZE;
3300 		goto fail2;
3301 	}
3302 
3303 	*mapping_typep =
3304 	    MCDI_OUT_DWORD(req, GET_DESC_ADDR_INFO_OUT_MAPPING_TYPE);
3305 
3306 	return (0);
3307 
3308 fail2:
3309 	EFSYS_PROBE(fail2);
3310 fail1:
3311 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3312 
3313 	return (rc);
3314 }
3315 
3316 	__checkReturn	efx_rc_t
3317 efx_mcdi_get_nic_addr_regions(
3318 	__in		efx_nic_t *enp,
3319 	__out		efx_nic_dma_region_info_t *endrip)
3320 {
3321 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_DESC_ADDR_REGIONS_IN_LEN,
3322 		MC_CMD_GET_DESC_ADDR_REGIONS_OUT_LENMAX_MCDI2);
3323 	efx_xword_t *regions;
3324 	efx_mcdi_req_t req;
3325 	efx_rc_t rc;
3326 	size_t alloc_size;
3327 	unsigned int nregions;
3328 	unsigned int i;
3329 
3330 	req.emr_cmd = MC_CMD_GET_DESC_ADDR_REGIONS;
3331 	req.emr_in_buf = payload;
3332 	req.emr_in_length = MC_CMD_GET_DESC_ADDR_REGIONS_IN_LEN;
3333 	req.emr_out_buf = payload;
3334 	req.emr_out_length = MC_CMD_GET_DESC_ADDR_REGIONS_OUT_LENMAX_MCDI2;
3335 
3336 	efx_mcdi_execute_quiet(enp, &req);
3337 
3338 	if (req.emr_rc != 0) {
3339 		rc = req.emr_rc;
3340 		goto fail1;
3341 	}
3342 
3343 	if (req.emr_out_length_used <
3344 	    MC_CMD_GET_DESC_ADDR_REGIONS_OUT_LENMIN) {
3345 		rc = EMSGSIZE;
3346 		goto fail2;
3347 	}
3348 
3349 	nregions = MC_CMD_GET_DESC_ADDR_REGIONS_OUT_REGIONS_NUM(
3350 	    req.emr_out_length_used);
3351 
3352 	EFX_STATIC_ASSERT(sizeof (*regions) == DESC_ADDR_REGION_LEN);
3353 	regions = MCDI_OUT2(req, efx_xword_t,
3354 	    GET_DESC_ADDR_REGIONS_OUT_REGIONS);
3355 
3356 	alloc_size = nregions * sizeof(endrip->endri_regions[0]);
3357 	if (alloc_size / sizeof (endrip->endri_regions[0]) != nregions) {
3358 		rc = ENOMEM;
3359 		goto fail3;
3360 	}
3361 
3362 	EFSYS_KMEM_ALLOC(enp->en_esip,
3363 	    alloc_size,
3364 	    endrip->endri_regions);
3365 	if (endrip->endri_regions == NULL) {
3366 		rc = ENOMEM;
3367 		goto fail4;
3368 	}
3369 
3370 	endrip->endri_count = nregions;
3371 	for (i = 0; i < nregions; ++i) {
3372 		efx_nic_dma_region_t *region_info;
3373 
3374 		region_info = &endrip->endri_regions[i];
3375 
3376 		region_info->endr_inuse = B_FALSE;
3377 
3378 		region_info->endr_nic_base =
3379 		    MCDI_OUT_INDEXED_MEMBER_QWORD(req,
3380 		        GET_DESC_ADDR_REGIONS_OUT_REGIONS, i,
3381 		        DESC_ADDR_REGION_DESC_ADDR_BASE);
3382 
3383 		region_info->endr_trgt_base =
3384 		    MCDI_OUT_INDEXED_MEMBER_QWORD(req,
3385 		        GET_DESC_ADDR_REGIONS_OUT_REGIONS, i,
3386 		        DESC_ADDR_REGION_TRGT_ADDR_BASE);
3387 
3388 		region_info->endr_window_log2 =
3389 		    MCDI_OUT_INDEXED_MEMBER_DWORD(req,
3390 		        GET_DESC_ADDR_REGIONS_OUT_REGIONS, i,
3391 		        DESC_ADDR_REGION_WINDOW_SIZE_LOG2);
3392 
3393 		region_info->endr_align_log2 =
3394 		    MCDI_OUT_INDEXED_MEMBER_DWORD(req,
3395 		        GET_DESC_ADDR_REGIONS_OUT_REGIONS, i,
3396 		        DESC_ADDR_REGION_TRGT_ADDR_ALIGN_LOG2);
3397 	}
3398 
3399 	return (0);
3400 
3401 fail4:
3402 	EFSYS_PROBE(fail4);
3403 fail3:
3404 	EFSYS_PROBE(fail3);
3405 fail2:
3406 	EFSYS_PROBE(fail2);
3407 fail1:
3408 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3409 
3410 	return (rc);
3411 }
3412 
3413 	__checkReturn	efx_rc_t
3414 efx_mcdi_set_nic_addr_regions(
3415 	__in		efx_nic_t *enp,
3416 	__in		const efx_nic_dma_region_info_t *endrip)
3417 {
3418 	EFX_MCDI_DECLARE_BUF(payload,
3419 		MC_CMD_SET_DESC_ADDR_REGIONS_IN_LENMAX_MCDI2,
3420 		MC_CMD_SET_DESC_ADDR_REGIONS_OUT_LEN);
3421 	efx_qword_t *trgt_addr_base;
3422 	efx_mcdi_req_t req;
3423 	unsigned int i;
3424 	efx_rc_t rc;
3425 
3426 	if (endrip->endri_count >
3427 	    MC_CMD_SET_DESC_ADDR_REGIONS_IN_TRGT_ADDR_BASE_MAXNUM) {
3428 		rc = EINVAL;
3429 		goto fail1;
3430 	}
3431 
3432 	req.emr_cmd = MC_CMD_SET_DESC_ADDR_REGIONS;
3433 	req.emr_in_buf = payload;
3434 	req.emr_in_length =
3435 	    MC_CMD_SET_DESC_ADDR_REGIONS_IN_LEN(endrip->endri_count);
3436 	req.emr_out_buf = payload;
3437 	req.emr_out_length = MC_CMD_SET_DESC_ADDR_REGIONS_OUT_LEN;
3438 
3439 	EFX_STATIC_ASSERT(sizeof (*trgt_addr_base) ==
3440 	    MC_CMD_SET_DESC_ADDR_REGIONS_IN_TRGT_ADDR_BASE_LEN);
3441 	trgt_addr_base = MCDI_OUT2(req, efx_qword_t,
3442 	    SET_DESC_ADDR_REGIONS_IN_TRGT_ADDR_BASE);
3443 
3444 	for (i = 0; i < endrip->endri_count; ++i) {
3445 		const efx_nic_dma_region_t *region_info;
3446 
3447 		region_info = &endrip->endri_regions[i];
3448 
3449 		if (region_info->endr_inuse != B_TRUE)
3450 			continue;
3451 
3452 		EFX_STATIC_ASSERT(sizeof (1U) * 8 >=
3453 		    MC_CMD_SET_DESC_ADDR_REGIONS_IN_TRGT_ADDR_BASE_MAXNUM);
3454 		MCDI_IN_SET_DWORD(req,
3455 		    SET_DESC_ADDR_REGIONS_IN_SET_REGION_MASK, 1U << i);
3456 
3457 		MCDI_IN_SET_INDEXED_QWORD(req,
3458 		    SET_DESC_ADDR_REGIONS_IN_TRGT_ADDR_BASE, i,
3459 		    region_info->endr_trgt_base);
3460 	}
3461 
3462 	efx_mcdi_execute_quiet(enp, &req);
3463 
3464 	if (req.emr_rc != 0) {
3465 		rc = req.emr_rc;
3466 		goto fail2;
3467 	}
3468 
3469 	return (0);
3470 
3471 fail2:
3472 	EFSYS_PROBE(fail2);
3473 fail1:
3474 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3475 
3476 	return (rc);
3477 }
3478 
3479 #endif	/* EFSYS_OPT_MCDI */
3480