xref: /dpdk/drivers/common/sfc_efx/base/efx_mcdi.c (revision 312191e86eb0edf8e40822b4d8d91c85a9e02f2b)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2008-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 
10 #if EFSYS_OPT_MCDI
11 
12 /*
13  * There are three versions of the MCDI interface:
14  *  - MCDIv0: Siena BootROM. Transport uses MCDIv1 headers.
15  *  - MCDIv1: Siena firmware and Huntington BootROM.
16  *  - MCDIv2: EF10 firmware (Huntington/Medford) and Medford BootROM.
17  *            Transport uses MCDIv2 headers.
18  *
19  * MCDIv2 Header NOT_EPOCH flag
20  * ----------------------------
21  * A new epoch begins at initial startup or after an MC reboot, and defines when
22  * the MC should reject stale MCDI requests.
23  *
24  * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all
25  * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1.
26  *
27  * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a
28  * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0.
29  */
30 
31 
32 
33 #if EFSYS_OPT_SIENA
34 
35 static const efx_mcdi_ops_t	__efx_mcdi_siena_ops = {
36 	siena_mcdi_init,		/* emco_init */
37 	siena_mcdi_send_request,	/* emco_send_request */
38 	siena_mcdi_poll_reboot,		/* emco_poll_reboot */
39 	siena_mcdi_poll_response,	/* emco_poll_response */
40 	siena_mcdi_read_response,	/* emco_read_response */
41 	siena_mcdi_fini,		/* emco_fini */
42 	siena_mcdi_feature_supported,	/* emco_feature_supported */
43 	siena_mcdi_get_timeout,		/* emco_get_timeout */
44 };
45 
46 #endif	/* EFSYS_OPT_SIENA */
47 
48 #if EFX_OPTS_EF10()
49 
50 static const efx_mcdi_ops_t	__efx_mcdi_ef10_ops = {
51 	ef10_mcdi_init,			/* emco_init */
52 	ef10_mcdi_send_request,		/* emco_send_request */
53 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
54 	ef10_mcdi_poll_response,	/* emco_poll_response */
55 	ef10_mcdi_read_response,	/* emco_read_response */
56 	ef10_mcdi_fini,			/* emco_fini */
57 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
58 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
59 };
60 
61 #endif	/* EFX_OPTS_EF10() */
62 
63 #if EFSYS_OPT_RIVERHEAD
64 
65 static const efx_mcdi_ops_t	__efx_mcdi_rhead_ops = {
66 	ef10_mcdi_init,			/* emco_init */
67 	ef10_mcdi_send_request,		/* emco_send_request */
68 	ef10_mcdi_poll_reboot,		/* emco_poll_reboot */
69 	ef10_mcdi_poll_response,	/* emco_poll_response */
70 	ef10_mcdi_read_response,	/* emco_read_response */
71 	ef10_mcdi_fini,			/* emco_fini */
72 	ef10_mcdi_feature_supported,	/* emco_feature_supported */
73 	ef10_mcdi_get_timeout,		/* emco_get_timeout */
74 };
75 
76 #endif	/* EFSYS_OPT_RIVERHEAD */
77 
78 
79 
80 	__checkReturn	efx_rc_t
81 efx_mcdi_init(
82 	__in		efx_nic_t *enp,
83 	__in		const efx_mcdi_transport_t *emtp)
84 {
85 	const efx_mcdi_ops_t *emcop;
86 	efx_rc_t rc;
87 
88 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
89 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
90 
91 	switch (enp->en_family) {
92 #if EFSYS_OPT_SIENA
93 	case EFX_FAMILY_SIENA:
94 		emcop = &__efx_mcdi_siena_ops;
95 		break;
96 #endif	/* EFSYS_OPT_SIENA */
97 
98 #if EFSYS_OPT_HUNTINGTON
99 	case EFX_FAMILY_HUNTINGTON:
100 		emcop = &__efx_mcdi_ef10_ops;
101 		break;
102 #endif	/* EFSYS_OPT_HUNTINGTON */
103 
104 #if EFSYS_OPT_MEDFORD
105 	case EFX_FAMILY_MEDFORD:
106 		emcop = &__efx_mcdi_ef10_ops;
107 		break;
108 #endif	/* EFSYS_OPT_MEDFORD */
109 
110 #if EFSYS_OPT_MEDFORD2
111 	case EFX_FAMILY_MEDFORD2:
112 		emcop = &__efx_mcdi_ef10_ops;
113 		break;
114 #endif	/* EFSYS_OPT_MEDFORD2 */
115 
116 #if EFSYS_OPT_RIVERHEAD
117 	case EFX_FAMILY_RIVERHEAD:
118 		emcop = &__efx_mcdi_rhead_ops;
119 		break;
120 #endif	/* EFSYS_OPT_RIVERHEAD */
121 
122 	default:
123 		EFSYS_ASSERT(0);
124 		rc = ENOTSUP;
125 		goto fail1;
126 	}
127 
128 	if (enp->en_features & EFX_FEATURE_MCDI_DMA) {
129 		/* MCDI requires a DMA buffer in host memory */
130 		if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) {
131 			rc = EINVAL;
132 			goto fail2;
133 		}
134 	}
135 	enp->en_mcdi.em_emtp = emtp;
136 
137 	if (emcop != NULL && emcop->emco_init != NULL) {
138 		if ((rc = emcop->emco_init(enp, emtp)) != 0)
139 			goto fail3;
140 	}
141 
142 	enp->en_mcdi.em_emcop = emcop;
143 	enp->en_mod_flags |= EFX_MOD_MCDI;
144 
145 	return (0);
146 
147 fail3:
148 	EFSYS_PROBE(fail3);
149 fail2:
150 	EFSYS_PROBE(fail2);
151 fail1:
152 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
153 
154 	enp->en_mcdi.em_emcop = NULL;
155 	enp->en_mcdi.em_emtp = NULL;
156 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
157 
158 	return (rc);
159 }
160 
161 			void
162 efx_mcdi_fini(
163 	__in		efx_nic_t *enp)
164 {
165 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
166 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
167 
168 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
169 	EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI);
170 
171 	if (emcop != NULL && emcop->emco_fini != NULL)
172 		emcop->emco_fini(enp);
173 
174 	emip->emi_port = 0;
175 	emip->emi_aborted = 0;
176 
177 	enp->en_mcdi.em_emcop = NULL;
178 	enp->en_mod_flags &= ~EFX_MOD_MCDI;
179 }
180 
181 			void
182 efx_mcdi_new_epoch(
183 	__in		efx_nic_t *enp)
184 {
185 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
186 	efsys_lock_state_t state;
187 
188 	/* Start a new epoch (allow fresh MCDI requests to succeed) */
189 	EFSYS_LOCK(enp->en_eslp, state);
190 	emip->emi_new_epoch = B_TRUE;
191 	EFSYS_UNLOCK(enp->en_eslp, state);
192 }
193 
194 static			void
195 efx_mcdi_send_request(
196 	__in		efx_nic_t *enp,
197 	__in		void *hdrp,
198 	__in		size_t hdr_len,
199 	__in		void *sdup,
200 	__in		size_t sdu_len)
201 {
202 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
203 
204 	emcop->emco_send_request(enp, hdrp, hdr_len, sdup, sdu_len);
205 }
206 
207 static			efx_rc_t
208 efx_mcdi_poll_reboot(
209 	__in		efx_nic_t *enp)
210 {
211 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
212 	efx_rc_t rc;
213 
214 	rc = emcop->emco_poll_reboot(enp);
215 	return (rc);
216 }
217 
218 static			boolean_t
219 efx_mcdi_poll_response(
220 	__in		efx_nic_t *enp)
221 {
222 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
223 	boolean_t available;
224 
225 	available = emcop->emco_poll_response(enp);
226 	return (available);
227 }
228 
229 static			void
230 efx_mcdi_read_response(
231 	__in		efx_nic_t *enp,
232 	__out		void *bufferp,
233 	__in		size_t offset,
234 	__in		size_t length)
235 {
236 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
237 
238 	emcop->emco_read_response(enp, bufferp, offset, length);
239 }
240 
241 			void
242 efx_mcdi_request_start(
243 	__in		efx_nic_t *enp,
244 	__in		efx_mcdi_req_t *emrp,
245 	__in		boolean_t ev_cpl)
246 {
247 #if EFSYS_OPT_MCDI_LOGGING
248 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
249 #endif
250 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
251 	efx_dword_t hdr[2];
252 	size_t hdr_len;
253 	unsigned int max_version;
254 	unsigned int seq;
255 	unsigned int xflags;
256 	boolean_t new_epoch;
257 	efsys_lock_state_t state;
258 
259 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
260 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
261 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
262 
263 	/*
264 	 * efx_mcdi_request_start() is naturally serialised against both
265 	 * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(),
266 	 * by virtue of there only being one outstanding MCDI request.
267 	 * Unfortunately, upper layers may also call efx_mcdi_request_abort()
268 	 * at any time, to timeout a pending mcdi request, That request may
269 	 * then subsequently complete, meaning efx_mcdi_ev_cpl() or
270 	 * efx_mcdi_ev_death() may end up running in parallel with
271 	 * efx_mcdi_request_start(). This race is handled by ensuring that
272 	 * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the
273 	 * en_eslp lock.
274 	 */
275 	EFSYS_LOCK(enp->en_eslp, state);
276 	EFSYS_ASSERT(emip->emi_pending_req == NULL);
277 	emip->emi_pending_req = emrp;
278 	emip->emi_ev_cpl = ev_cpl;
279 	emip->emi_poll_cnt = 0;
280 	seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ);
281 	new_epoch = emip->emi_new_epoch;
282 	max_version = emip->emi_max_version;
283 	EFSYS_UNLOCK(enp->en_eslp, state);
284 
285 	xflags = 0;
286 	if (ev_cpl)
287 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
288 
289 	/*
290 	 * Huntington firmware supports MCDIv2, but the Huntington BootROM only
291 	 * supports MCDIv1. Use MCDIv1 headers for MCDIv1 commands where
292 	 * possible to support this.
293 	 */
294 	if ((max_version >= 2) &&
295 	    ((emrp->emr_cmd > MC_CMD_CMD_SPACE_ESCAPE_7) ||
296 	    (emrp->emr_in_length > MCDI_CTL_SDU_LEN_MAX_V1) ||
297 	    (emrp->emr_out_length > MCDI_CTL_SDU_LEN_MAX_V1))) {
298 		/* Construct MCDI v2 header */
299 		hdr_len = sizeof (hdr);
300 		EFX_POPULATE_DWORD_8(hdr[0],
301 		    MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
302 		    MCDI_HEADER_RESYNC, 1,
303 		    MCDI_HEADER_DATALEN, 0,
304 		    MCDI_HEADER_SEQ, seq,
305 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
306 		    MCDI_HEADER_ERROR, 0,
307 		    MCDI_HEADER_RESPONSE, 0,
308 		    MCDI_HEADER_XFLAGS, xflags);
309 
310 		EFX_POPULATE_DWORD_2(hdr[1],
311 		    MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd,
312 		    MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length);
313 	} else {
314 		/* Construct MCDI v1 header */
315 		hdr_len = sizeof (hdr[0]);
316 		EFX_POPULATE_DWORD_8(hdr[0],
317 		    MCDI_HEADER_CODE, emrp->emr_cmd,
318 		    MCDI_HEADER_RESYNC, 1,
319 		    MCDI_HEADER_DATALEN, emrp->emr_in_length,
320 		    MCDI_HEADER_SEQ, seq,
321 		    MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1,
322 		    MCDI_HEADER_ERROR, 0,
323 		    MCDI_HEADER_RESPONSE, 0,
324 		    MCDI_HEADER_XFLAGS, xflags);
325 	}
326 
327 #if EFSYS_OPT_MCDI_LOGGING
328 	if (emtp->emt_logger != NULL) {
329 		emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST,
330 		    &hdr[0], hdr_len,
331 		    emrp->emr_in_buf, emrp->emr_in_length);
332 	}
333 #endif /* EFSYS_OPT_MCDI_LOGGING */
334 
335 	efx_mcdi_send_request(enp, &hdr[0], hdr_len,
336 	    emrp->emr_in_buf, emrp->emr_in_length);
337 }
338 
339 
340 static			void
341 efx_mcdi_read_response_header(
342 	__in		efx_nic_t *enp,
343 	__inout		efx_mcdi_req_t *emrp)
344 {
345 #if EFSYS_OPT_MCDI_LOGGING
346 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
347 #endif /* EFSYS_OPT_MCDI_LOGGING */
348 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
349 	efx_dword_t hdr[2];
350 	unsigned int hdr_len;
351 	unsigned int data_len;
352 	unsigned int seq;
353 	unsigned int cmd;
354 	unsigned int error;
355 	efx_rc_t rc;
356 
357 	EFSYS_ASSERT(emrp != NULL);
358 
359 	efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0]));
360 	hdr_len = sizeof (hdr[0]);
361 
362 	cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE);
363 	seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ);
364 	error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR);
365 
366 	if (cmd != MC_CMD_V2_EXTN) {
367 		data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN);
368 	} else {
369 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
370 		hdr_len += sizeof (hdr[1]);
371 
372 		cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
373 		data_len =
374 		    EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
375 	}
376 
377 	if (error && (data_len == 0)) {
378 		/* The MC has rebooted since the request was sent. */
379 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
380 		efx_mcdi_poll_reboot(enp);
381 		rc = EIO;
382 		goto fail1;
383 	}
384 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
385 	if (((cmd != emrp->emr_cmd) && (emrp->emr_cmd != MC_CMD_PROXY_CMD)) ||
386 #else
387 	if ((cmd != emrp->emr_cmd) ||
388 #endif
389 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
390 		/* Response is for a different request */
391 		rc = EIO;
392 		goto fail2;
393 	}
394 	if (error) {
395 		efx_dword_t err[2];
396 		unsigned int err_len = MIN(data_len, sizeof (err));
397 		int err_code = MC_CMD_ERR_EPROTO;
398 		int err_arg = 0;
399 
400 		/* Read error code (and arg num for MCDI v2 commands) */
401 		efx_mcdi_read_response(enp, &err, hdr_len, err_len);
402 
403 		if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t)))
404 			err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0);
405 #ifdef WITH_MCDI_V2
406 		if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t)))
407 			err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0);
408 #endif
409 		emrp->emr_err_code = err_code;
410 		emrp->emr_err_arg = err_arg;
411 
412 #if EFSYS_OPT_MCDI_PROXY_AUTH
413 		if ((err_code == MC_CMD_ERR_PROXY_PENDING) &&
414 		    (err_len == sizeof (err))) {
415 			/*
416 			 * The MCDI request would normally fail with EPERM, but
417 			 * firmware has forwarded it to an authorization agent
418 			 * attached to a privileged PF.
419 			 *
420 			 * Save the authorization request handle. The client
421 			 * must wait for a PROXY_RESPONSE event, or timeout.
422 			 */
423 			emrp->emr_proxy_handle = err_arg;
424 		}
425 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
426 
427 #if EFSYS_OPT_MCDI_LOGGING
428 		if (emtp->emt_logger != NULL) {
429 			emtp->emt_logger(emtp->emt_context,
430 			    EFX_LOG_MCDI_RESPONSE,
431 			    &hdr[0], hdr_len,
432 			    &err[0], err_len);
433 		}
434 #endif /* EFSYS_OPT_MCDI_LOGGING */
435 
436 		if (!emrp->emr_quiet) {
437 			EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd,
438 			    int, err_code, int, err_arg);
439 		}
440 
441 		rc = efx_mcdi_request_errcode(err_code);
442 		goto fail3;
443 	}
444 
445 	emrp->emr_rc = 0;
446 	emrp->emr_out_length_used = data_len;
447 #if EFSYS_OPT_MCDI_PROXY_AUTH
448 	emrp->emr_proxy_handle = 0;
449 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
450 	return;
451 
452 fail3:
453 fail2:
454 fail1:
455 	emrp->emr_rc = rc;
456 	emrp->emr_out_length_used = 0;
457 }
458 
459 static			void
460 efx_mcdi_finish_response(
461 	__in		efx_nic_t *enp,
462 	__in		efx_mcdi_req_t *emrp)
463 {
464 #if EFSYS_OPT_MCDI_LOGGING
465 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
466 #endif /* EFSYS_OPT_MCDI_LOGGING */
467 	efx_dword_t hdr[2];
468 	unsigned int hdr_len;
469 	size_t bytes;
470 	unsigned int resp_off;
471 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
472 	unsigned int resp_cmd;
473 	boolean_t proxied_cmd_resp = B_FALSE;
474 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
475 
476 	if (emrp->emr_out_buf == NULL)
477 		return;
478 
479 	/* Read the command header to detect MCDI response format */
480 	hdr_len = sizeof (hdr[0]);
481 	efx_mcdi_read_response(enp, &hdr[0], 0, hdr_len);
482 	if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) {
483 		/*
484 		 * Read the actual payload length. The length given in the event
485 		 * is only correct for responses with the V1 format.
486 		 */
487 		efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1]));
488 		hdr_len += sizeof (hdr[1]);
489 		resp_off = hdr_len;
490 
491 		emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1],
492 						MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
493 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
494 		/*
495 		 * A proxy MCDI command is executed by PF on behalf of
496 		 * one of its VFs. The command to be proxied follows
497 		 * immediately afterward in the host buffer.
498 		 * PROXY_CMD inner call complete response should be copied to
499 		 * output buffer so that it can be returned to the requesting
500 		 * function in MC_CMD_PROXY_COMPLETE payload.
501 		 */
502 		resp_cmd =
503 			EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD);
504 		proxied_cmd_resp = ((emrp->emr_cmd == MC_CMD_PROXY_CMD) &&
505 					(resp_cmd != MC_CMD_PROXY_CMD));
506 		if (proxied_cmd_resp) {
507 			resp_off = 0;
508 			emrp->emr_out_length_used += hdr_len;
509 		}
510 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
511 	} else {
512 		resp_off = hdr_len;
513 	}
514 
515 	/* Copy payload out into caller supplied buffer */
516 	bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length);
517 	efx_mcdi_read_response(enp, emrp->emr_out_buf, resp_off, bytes);
518 
519 #if EFSYS_OPT_MCDI_LOGGING
520 	if (emtp->emt_logger != NULL) {
521 		emtp->emt_logger(emtp->emt_context,
522 		    EFX_LOG_MCDI_RESPONSE,
523 		    &hdr[0], hdr_len,
524 		    emrp->emr_out_buf, bytes);
525 	}
526 #endif /* EFSYS_OPT_MCDI_LOGGING */
527 }
528 
529 
530 	__checkReturn	boolean_t
531 efx_mcdi_request_poll(
532 	__in		efx_nic_t *enp)
533 {
534 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
535 	efx_mcdi_req_t *emrp;
536 	efsys_lock_state_t state;
537 	efx_rc_t rc;
538 
539 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
540 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
541 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
542 
543 	/* Serialise against post-watchdog efx_mcdi_ev* */
544 	EFSYS_LOCK(enp->en_eslp, state);
545 
546 	EFSYS_ASSERT(emip->emi_pending_req != NULL);
547 	EFSYS_ASSERT(!emip->emi_ev_cpl);
548 	emrp = emip->emi_pending_req;
549 
550 	/* Check if hardware is unavailable */
551 	if (efx_nic_hw_unavailable(enp)) {
552 		EFSYS_UNLOCK(enp->en_eslp, state);
553 		return (B_FALSE);
554 	}
555 
556 	/* Check for reboot atomically w.r.t efx_mcdi_request_start */
557 	if (emip->emi_poll_cnt++ == 0) {
558 		if ((rc = efx_mcdi_poll_reboot(enp)) != 0) {
559 			emip->emi_pending_req = NULL;
560 			EFSYS_UNLOCK(enp->en_eslp, state);
561 
562 			/* Reboot/Assertion */
563 			if (rc == EIO || rc == EINTR)
564 				efx_mcdi_raise_exception(enp, emrp, rc);
565 
566 			goto fail1;
567 		}
568 	}
569 
570 	/* Check if a response is available */
571 	if (efx_mcdi_poll_response(enp) == B_FALSE) {
572 		EFSYS_UNLOCK(enp->en_eslp, state);
573 		return (B_FALSE);
574 	}
575 
576 	/* Read the response header */
577 	efx_mcdi_read_response_header(enp, emrp);
578 
579 	/* Request complete */
580 	emip->emi_pending_req = NULL;
581 
582 	/* Ensure stale MCDI requests fail after an MC reboot. */
583 	emip->emi_new_epoch = B_FALSE;
584 
585 	EFSYS_UNLOCK(enp->en_eslp, state);
586 
587 	if ((rc = emrp->emr_rc) != 0)
588 		goto fail2;
589 
590 	efx_mcdi_finish_response(enp, emrp);
591 	return (B_TRUE);
592 
593 fail2:
594 	if (!emrp->emr_quiet)
595 		EFSYS_PROBE(fail2);
596 fail1:
597 	if (!emrp->emr_quiet)
598 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
599 
600 	return (B_TRUE);
601 }
602 
603 	__checkReturn	boolean_t
604 efx_mcdi_request_abort(
605 	__in		efx_nic_t *enp)
606 {
607 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
608 	efx_mcdi_req_t *emrp;
609 	boolean_t aborted;
610 	efsys_lock_state_t state;
611 
612 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
613 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
614 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
615 
616 	/*
617 	 * efx_mcdi_ev_* may have already completed this event, and be
618 	 * spinning/blocked on the upper layer lock. So it *is* legitimate
619 	 * to for emi_pending_req to be NULL. If there is a pending event
620 	 * completed request, then provide a "credit" to allow
621 	 * efx_mcdi_ev_cpl() to accept a single spurious completion.
622 	 */
623 	EFSYS_LOCK(enp->en_eslp, state);
624 	emrp = emip->emi_pending_req;
625 	aborted = (emrp != NULL);
626 	if (aborted) {
627 		emip->emi_pending_req = NULL;
628 
629 		/* Error the request */
630 		emrp->emr_out_length_used = 0;
631 		emrp->emr_rc = ETIMEDOUT;
632 
633 		/* Provide a credit for seqno/emr_pending_req mismatches */
634 		if (emip->emi_ev_cpl)
635 			++emip->emi_aborted;
636 
637 		/*
638 		 * The upper layer has called us, so we don't
639 		 * need to complete the request.
640 		 */
641 	}
642 	EFSYS_UNLOCK(enp->en_eslp, state);
643 
644 	return (aborted);
645 }
646 
647 			void
648 efx_mcdi_get_timeout(
649 	__in		efx_nic_t *enp,
650 	__in		efx_mcdi_req_t *emrp,
651 	__out		uint32_t *timeoutp)
652 {
653 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
654 
655 	emcop->emco_get_timeout(enp, emrp, timeoutp);
656 }
657 
658 	__checkReturn	efx_rc_t
659 efx_mcdi_request_errcode(
660 	__in		unsigned int err)
661 {
662 
663 	switch (err) {
664 		/* MCDI v1 */
665 	case MC_CMD_ERR_EPERM:
666 		return (EACCES);
667 	case MC_CMD_ERR_ENOENT:
668 		return (ENOENT);
669 	case MC_CMD_ERR_EINTR:
670 		return (EINTR);
671 	case MC_CMD_ERR_EACCES:
672 		return (EACCES);
673 	case MC_CMD_ERR_EBUSY:
674 		return (EBUSY);
675 	case MC_CMD_ERR_EINVAL:
676 		return (EINVAL);
677 	case MC_CMD_ERR_EDEADLK:
678 		return (EDEADLK);
679 	case MC_CMD_ERR_ENOSYS:
680 		return (ENOTSUP);
681 	case MC_CMD_ERR_ETIME:
682 		return (ETIMEDOUT);
683 	case MC_CMD_ERR_ENOTSUP:
684 		return (ENOTSUP);
685 	case MC_CMD_ERR_EALREADY:
686 		return (EALREADY);
687 
688 		/* MCDI v2 */
689 	case MC_CMD_ERR_EEXIST:
690 		return (EEXIST);
691 #ifdef MC_CMD_ERR_EAGAIN
692 	case MC_CMD_ERR_EAGAIN:
693 		return (EAGAIN);
694 #endif
695 #ifdef MC_CMD_ERR_ENOSPC
696 	case MC_CMD_ERR_ENOSPC:
697 		return (ENOSPC);
698 #endif
699 	case MC_CMD_ERR_ERANGE:
700 		return (ERANGE);
701 
702 	case MC_CMD_ERR_ALLOC_FAIL:
703 		return (ENOMEM);
704 	case MC_CMD_ERR_NO_VADAPTOR:
705 		return (ENOENT);
706 	case MC_CMD_ERR_NO_EVB_PORT:
707 		return (ENOENT);
708 	case MC_CMD_ERR_NO_VSWITCH:
709 		return (ENODEV);
710 	case MC_CMD_ERR_VLAN_LIMIT:
711 		return (EINVAL);
712 	case MC_CMD_ERR_BAD_PCI_FUNC:
713 		return (ENODEV);
714 	case MC_CMD_ERR_BAD_VLAN_MODE:
715 		return (EINVAL);
716 	case MC_CMD_ERR_BAD_VSWITCH_TYPE:
717 		return (EINVAL);
718 	case MC_CMD_ERR_BAD_VPORT_TYPE:
719 		return (EINVAL);
720 	case MC_CMD_ERR_MAC_EXIST:
721 		return (EEXIST);
722 
723 	case MC_CMD_ERR_PROXY_PENDING:
724 		return (EAGAIN);
725 
726 	default:
727 		EFSYS_PROBE1(mc_pcol_error, int, err);
728 		return (EIO);
729 	}
730 }
731 
732 			void
733 efx_mcdi_raise_exception(
734 	__in		efx_nic_t *enp,
735 	__in_opt	efx_mcdi_req_t *emrp,
736 	__in		int rc)
737 {
738 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
739 	efx_mcdi_exception_t exception;
740 
741 	/* Reboot or Assertion failure only */
742 	EFSYS_ASSERT(rc == EIO || rc == EINTR);
743 
744 	/*
745 	 * If MC_CMD_REBOOT causes a reboot (dependent on parameters),
746 	 * then the EIO is not worthy of an exception.
747 	 */
748 	if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO)
749 		return;
750 
751 	exception = (rc == EIO)
752 		? EFX_MCDI_EXCEPTION_MC_REBOOT
753 		: EFX_MCDI_EXCEPTION_MC_BADASSERT;
754 
755 	emtp->emt_exception(emtp->emt_context, exception);
756 }
757 
758 			void
759 efx_mcdi_execute(
760 	__in		efx_nic_t *enp,
761 	__inout		efx_mcdi_req_t *emrp)
762 {
763 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
764 
765 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
766 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
767 
768 	emrp->emr_quiet = B_FALSE;
769 	emtp->emt_execute(emtp->emt_context, emrp);
770 }
771 
772 			void
773 efx_mcdi_execute_quiet(
774 	__in		efx_nic_t *enp,
775 	__inout		efx_mcdi_req_t *emrp)
776 {
777 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
778 
779 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
780 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
781 
782 	emrp->emr_quiet = B_TRUE;
783 	emtp->emt_execute(emtp->emt_context, emrp);
784 }
785 
786 			void
787 efx_mcdi_ev_cpl(
788 	__in		efx_nic_t *enp,
789 	__in		unsigned int seq,
790 	__in		unsigned int outlen,
791 	__in		int errcode)
792 {
793 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
794 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
795 	efx_mcdi_req_t *emrp;
796 	efsys_lock_state_t state;
797 
798 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
799 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
800 
801 	/*
802 	 * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start()
803 	 * when we're completing an aborted request.
804 	 */
805 	EFSYS_LOCK(enp->en_eslp, state);
806 	if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl ||
807 	    (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) {
808 		EFSYS_ASSERT(emip->emi_aborted > 0);
809 		if (emip->emi_aborted > 0)
810 			--emip->emi_aborted;
811 		EFSYS_UNLOCK(enp->en_eslp, state);
812 		return;
813 	}
814 
815 	emrp = emip->emi_pending_req;
816 	emip->emi_pending_req = NULL;
817 	EFSYS_UNLOCK(enp->en_eslp, state);
818 
819 	if (emip->emi_max_version >= 2) {
820 		/* MCDIv2 response details do not fit into an event. */
821 		efx_mcdi_read_response_header(enp, emrp);
822 	} else {
823 		if (errcode != 0) {
824 			if (!emrp->emr_quiet) {
825 				EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd,
826 				    int, errcode);
827 			}
828 			emrp->emr_out_length_used = 0;
829 			emrp->emr_rc = efx_mcdi_request_errcode(errcode);
830 		} else {
831 			emrp->emr_out_length_used = outlen;
832 			emrp->emr_rc = 0;
833 		}
834 	}
835 	if (emrp->emr_rc == 0)
836 		efx_mcdi_finish_response(enp, emrp);
837 
838 	emtp->emt_ev_cpl(emtp->emt_context);
839 }
840 
841 #if EFSYS_OPT_MCDI_PROXY_AUTH
842 
843 	__checkReturn	efx_rc_t
844 efx_mcdi_get_proxy_handle(
845 	__in		efx_nic_t *enp,
846 	__in		efx_mcdi_req_t *emrp,
847 	__out		uint32_t *handlep)
848 {
849 	efx_rc_t rc;
850 
851 	_NOTE(ARGUNUSED(enp))
852 
853 	/*
854 	 * Return proxy handle from MCDI request that returned with error
855 	 * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching
856 	 * PROXY_RESPONSE event.
857 	 */
858 	if ((emrp == NULL) || (handlep == NULL)) {
859 		rc = EINVAL;
860 		goto fail1;
861 	}
862 	if ((emrp->emr_rc != 0) &&
863 	    (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) {
864 		*handlep = emrp->emr_proxy_handle;
865 		rc = 0;
866 	} else {
867 		*handlep = 0;
868 		rc = ENOENT;
869 	}
870 	return (rc);
871 
872 fail1:
873 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
874 	return (rc);
875 }
876 
877 			void
878 efx_mcdi_ev_proxy_response(
879 	__in		efx_nic_t *enp,
880 	__in		unsigned int handle,
881 	__in		unsigned int status)
882 {
883 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
884 	efx_rc_t rc;
885 
886 	/*
887 	 * Handle results of an authorization request for a privileged MCDI
888 	 * command. If authorization was granted then we must re-issue the
889 	 * original MCDI request. If authorization failed or timed out,
890 	 * then the original MCDI request should be completed with the
891 	 * result code from this event.
892 	 */
893 	rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status);
894 
895 	emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc);
896 }
897 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */
898 
899 #if EFSYS_OPT_MCDI_PROXY_AUTH_SERVER
900 			void
901 efx_mcdi_ev_proxy_request(
902 	__in		efx_nic_t *enp,
903 	__in		unsigned int index)
904 {
905 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
906 
907 	if (emtp->emt_ev_proxy_request != NULL)
908 		emtp->emt_ev_proxy_request(emtp->emt_context, index);
909 }
910 #endif /* EFSYS_OPT_MCDI_PROXY_AUTH_SERVER */
911 			void
912 efx_mcdi_ev_death(
913 	__in		efx_nic_t *enp,
914 	__in		int rc)
915 {
916 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
917 	const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp;
918 	efx_mcdi_req_t *emrp = NULL;
919 	boolean_t ev_cpl;
920 	efsys_lock_state_t state;
921 
922 	/*
923 	 * The MCDI request (if there is one) has been terminated, either
924 	 * by a BADASSERT or REBOOT event.
925 	 *
926 	 * If there is an outstanding event-completed MCDI operation, then we
927 	 * will never receive the completion event (because both MCDI
928 	 * completions and BADASSERT events are sent to the same evq). So
929 	 * complete this MCDI op.
930 	 *
931 	 * This function might run in parallel with efx_mcdi_request_poll()
932 	 * for poll completed mcdi requests, and also with
933 	 * efx_mcdi_request_start() for post-watchdog completions.
934 	 */
935 	EFSYS_LOCK(enp->en_eslp, state);
936 	emrp = emip->emi_pending_req;
937 	ev_cpl = emip->emi_ev_cpl;
938 	if (emrp != NULL && emip->emi_ev_cpl) {
939 		emip->emi_pending_req = NULL;
940 
941 		emrp->emr_out_length_used = 0;
942 		emrp->emr_rc = rc;
943 		++emip->emi_aborted;
944 	}
945 
946 	/*
947 	 * Since we're running in parallel with a request, consume the
948 	 * status word before dropping the lock.
949 	 */
950 	if (rc == EIO || rc == EINTR) {
951 		EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US);
952 		(void) efx_mcdi_poll_reboot(enp);
953 		emip->emi_new_epoch = B_TRUE;
954 	}
955 
956 	EFSYS_UNLOCK(enp->en_eslp, state);
957 
958 	efx_mcdi_raise_exception(enp, emrp, rc);
959 
960 	if (emrp != NULL && ev_cpl)
961 		emtp->emt_ev_cpl(emtp->emt_context);
962 }
963 
964 	__checkReturn		efx_rc_t
965 efx_mcdi_get_version(
966 	__in			efx_nic_t *enp,
967 	__out			efx_mcdi_version_t *verp)
968 {
969 	EFX_MCDI_DECLARE_BUF(payload,
970 	    MC_CMD_GET_VERSION_IN_LEN,
971 	    MC_CMD_GET_VERSION_OUT_LEN);
972 	size_t min_resp_len_required;
973 	efx_mcdi_req_t req;
974 	efx_rc_t rc;
975 
976 	EFX_STATIC_ASSERT(sizeof (verp->emv_version) ==
977 	    MC_CMD_GET_VERSION_OUT_VERSION_LEN);
978 	EFX_STATIC_ASSERT(sizeof (verp->emv_firmware) ==
979 	    MC_CMD_GET_VERSION_OUT_FIRMWARE_LEN);
980 
981 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
982 
983 	req.emr_cmd = MC_CMD_GET_VERSION;
984 	req.emr_in_buf = payload;
985 	req.emr_out_buf = payload;
986 	req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN;
987 	req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN;
988 
989 	min_resp_len_required = MC_CMD_GET_VERSION_V0_OUT_LEN;
990 
991 	efx_mcdi_execute(enp, &req);
992 
993 	if (req.emr_rc != 0) {
994 		rc = req.emr_rc;
995 		goto fail1;
996 	}
997 
998 	if (req.emr_out_length_used < min_resp_len_required) {
999 		rc = EMSGSIZE;
1000 		goto fail2;
1001 	}
1002 
1003 	memset(verp, 0, sizeof (*verp));
1004 
1005 	if (req.emr_out_length_used > min_resp_len_required) {
1006 		efx_word_t *ver_words;
1007 
1008 		if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) {
1009 			rc = EMSGSIZE;
1010 			goto fail3;
1011 		}
1012 
1013 		ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION);
1014 
1015 		verp->emv_version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0);
1016 		verp->emv_version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0);
1017 		verp->emv_version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0);
1018 		verp->emv_version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0);
1019 	}
1020 
1021 	verp->emv_firmware = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE);
1022 
1023 	return (0);
1024 
1025 fail3:
1026 	EFSYS_PROBE(fail3);
1027 fail2:
1028 	EFSYS_PROBE(fail2);
1029 fail1:
1030 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1031 
1032 	return (rc);
1033 }
1034 
1035 static	__checkReturn		efx_rc_t
1036 efx_mcdi_get_boot_status(
1037 	__in			efx_nic_t *enp,
1038 	__out			efx_mcdi_boot_t *statusp)
1039 {
1040 	EFX_MCDI_DECLARE_BUF(payload,
1041 	    MC_CMD_GET_BOOT_STATUS_IN_LEN,
1042 	    MC_CMD_GET_BOOT_STATUS_OUT_LEN);
1043 	efx_mcdi_req_t req;
1044 	efx_rc_t rc;
1045 
1046 	EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI);
1047 
1048 	req.emr_cmd = MC_CMD_GET_BOOT_STATUS;
1049 	req.emr_in_buf = payload;
1050 	req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN;
1051 	req.emr_out_buf = payload;
1052 	req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN;
1053 
1054 	efx_mcdi_execute_quiet(enp, &req);
1055 
1056 	if (req.emr_rc != 0) {
1057 		rc = req.emr_rc;
1058 		goto fail1;
1059 	}
1060 
1061 	if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) {
1062 		rc = EMSGSIZE;
1063 		goto fail2;
1064 	}
1065 
1066 	if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS,
1067 	    GET_BOOT_STATUS_OUT_FLAGS_PRIMARY))
1068 		*statusp = EFX_MCDI_BOOT_PRIMARY;
1069 	else
1070 		*statusp = EFX_MCDI_BOOT_SECONDARY;
1071 
1072 	return (0);
1073 
1074 fail2:
1075 	EFSYS_PROBE(fail2);
1076 fail1:
1077 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1078 
1079 	return (rc);
1080 }
1081 
1082 	__checkReturn		efx_rc_t
1083 efx_mcdi_version(
1084 	__in			efx_nic_t *enp,
1085 	__out_ecount_opt(4)	uint16_t versionp[4],
1086 	__out_opt		uint32_t *buildp,
1087 	__out_opt		efx_mcdi_boot_t *statusp)
1088 {
1089 	efx_mcdi_version_t ver;
1090 	efx_mcdi_boot_t status;
1091 	efx_rc_t rc;
1092 
1093 	rc = efx_mcdi_get_version(enp, &ver);
1094 	if (rc != 0)
1095 		goto fail1;
1096 
1097 	/* The bootrom doesn't understand BOOT_STATUS */
1098 	if (MC_FW_VERSION_IS_BOOTLOADER(ver.emv_firmware)) {
1099 		status = EFX_MCDI_BOOT_ROM;
1100 		goto out;
1101 	}
1102 
1103 	rc = efx_mcdi_get_boot_status(enp, &status);
1104 	if (rc == EACCES) {
1105 		/* Unprivileged functions cannot access BOOT_STATUS */
1106 		status = EFX_MCDI_BOOT_PRIMARY;
1107 		memset(ver.emv_version, 0, sizeof (ver.emv_version));
1108 		ver.emv_firmware = 0;
1109 	} else if (rc != 0) {
1110 		goto fail2;
1111 	}
1112 
1113 out:
1114 	if (versionp != NULL)
1115 		memcpy(versionp, ver.emv_version, sizeof (ver.emv_version));
1116 	if (buildp != NULL)
1117 		*buildp = ver.emv_firmware;
1118 	if (statusp != NULL)
1119 		*statusp = status;
1120 
1121 	return (0);
1122 
1123 fail2:
1124 	EFSYS_PROBE(fail2);
1125 fail1:
1126 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1127 
1128 	return (rc);
1129 }
1130 
1131 	__checkReturn	efx_rc_t
1132 efx_mcdi_get_capabilities(
1133 	__in		efx_nic_t *enp,
1134 	__out_opt	uint32_t *flagsp,
1135 	__out_opt	uint16_t *rx_dpcpu_fw_idp,
1136 	__out_opt	uint16_t *tx_dpcpu_fw_idp,
1137 	__out_opt	uint32_t *flags2p,
1138 	__out_opt	uint32_t *tso2ncp)
1139 {
1140 	efx_mcdi_req_t req;
1141 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1142 		MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
1143 	boolean_t v2_capable;
1144 	efx_rc_t rc;
1145 
1146 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1147 	req.emr_in_buf = payload;
1148 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1149 	req.emr_out_buf = payload;
1150 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
1151 
1152 	efx_mcdi_execute_quiet(enp, &req);
1153 
1154 	if (req.emr_rc != 0) {
1155 		rc = req.emr_rc;
1156 		goto fail1;
1157 	}
1158 
1159 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1160 		rc = EMSGSIZE;
1161 		goto fail2;
1162 	}
1163 
1164 	if (flagsp != NULL)
1165 		*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
1166 
1167 	if (rx_dpcpu_fw_idp != NULL)
1168 		*rx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1169 					GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
1170 
1171 	if (tx_dpcpu_fw_idp != NULL)
1172 		*tx_dpcpu_fw_idp = MCDI_OUT_WORD(req,
1173 					GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
1174 
1175 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
1176 		v2_capable = B_FALSE;
1177 	else
1178 		v2_capable = B_TRUE;
1179 
1180 	if (flags2p != NULL) {
1181 		*flags2p = (v2_capable) ?
1182 			MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2) :
1183 			0;
1184 	}
1185 
1186 	if (tso2ncp != NULL) {
1187 		*tso2ncp = (v2_capable) ?
1188 			MCDI_OUT_WORD(req,
1189 				GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS) :
1190 			0;
1191 	}
1192 
1193 	return (0);
1194 
1195 fail2:
1196 	EFSYS_PROBE(fail2);
1197 fail1:
1198 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1199 
1200 	return (rc);
1201 }
1202 
1203 static	__checkReturn	efx_rc_t
1204 efx_mcdi_do_reboot(
1205 	__in		efx_nic_t *enp,
1206 	__in		boolean_t after_assertion)
1207 {
1208 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_REBOOT_IN_LEN,
1209 		MC_CMD_REBOOT_OUT_LEN);
1210 	efx_mcdi_req_t req;
1211 	efx_rc_t rc;
1212 
1213 	/*
1214 	 * We could require the caller to have caused en_mod_flags=0 to
1215 	 * call this function. This doesn't help the other port though,
1216 	 * who's about to get the MC ripped out from underneath them.
1217 	 * Since they have to cope with the subsequent fallout of MCDI
1218 	 * failures, we should as well.
1219 	 */
1220 	EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
1221 
1222 	req.emr_cmd = MC_CMD_REBOOT;
1223 	req.emr_in_buf = payload;
1224 	req.emr_in_length = MC_CMD_REBOOT_IN_LEN;
1225 	req.emr_out_buf = payload;
1226 	req.emr_out_length = MC_CMD_REBOOT_OUT_LEN;
1227 
1228 	MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS,
1229 	    (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0));
1230 
1231 	efx_mcdi_execute_quiet(enp, &req);
1232 
1233 	if (req.emr_rc == EACCES) {
1234 		/* Unprivileged functions cannot reboot the MC. */
1235 		goto out;
1236 	}
1237 
1238 	/* A successful reboot request returns EIO. */
1239 	if (req.emr_rc != 0 && req.emr_rc != EIO) {
1240 		rc = req.emr_rc;
1241 		goto fail1;
1242 	}
1243 
1244 out:
1245 	return (0);
1246 
1247 fail1:
1248 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1249 
1250 	return (rc);
1251 }
1252 
1253 	__checkReturn	efx_rc_t
1254 efx_mcdi_reboot(
1255 	__in		efx_nic_t *enp)
1256 {
1257 	return (efx_mcdi_do_reboot(enp, B_FALSE));
1258 }
1259 
1260 	__checkReturn	efx_rc_t
1261 efx_mcdi_exit_assertion_handler(
1262 	__in		efx_nic_t *enp)
1263 {
1264 	return (efx_mcdi_do_reboot(enp, B_TRUE));
1265 }
1266 
1267 	__checkReturn	efx_rc_t
1268 efx_mcdi_read_assertion(
1269 	__in		efx_nic_t *enp)
1270 {
1271 	efx_mcdi_req_t req;
1272 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_ASSERTS_IN_LEN,
1273 		MC_CMD_GET_ASSERTS_OUT_LEN);
1274 	const char *reason;
1275 	unsigned int flags;
1276 	unsigned int index;
1277 	unsigned int ofst;
1278 	int retry;
1279 	efx_rc_t rc;
1280 
1281 	/*
1282 	 * Before we attempt to chat to the MC, we should verify that the MC
1283 	 * isn't in it's assertion handler, either due to a previous reboot,
1284 	 * or because we're reinitializing due to an eec_exception().
1285 	 *
1286 	 * Use GET_ASSERTS to read any assertion state that may be present.
1287 	 * Retry this command twice. Once because a boot-time assertion failure
1288 	 * might cause the 1st MCDI request to fail. And once again because
1289 	 * we might race with efx_mcdi_exit_assertion_handler() running on
1290 	 * partner port(s) on the same NIC.
1291 	 */
1292 	retry = 2;
1293 	do {
1294 		(void) memset(payload, 0, sizeof (payload));
1295 		req.emr_cmd = MC_CMD_GET_ASSERTS;
1296 		req.emr_in_buf = payload;
1297 		req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN;
1298 		req.emr_out_buf = payload;
1299 		req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN;
1300 
1301 		MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1);
1302 		efx_mcdi_execute_quiet(enp, &req);
1303 
1304 	} while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0);
1305 
1306 	if (req.emr_rc != 0) {
1307 		if (req.emr_rc == EACCES) {
1308 			/* Unprivileged functions cannot clear assertions. */
1309 			goto out;
1310 		}
1311 		rc = req.emr_rc;
1312 		goto fail1;
1313 	}
1314 
1315 	if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) {
1316 		rc = EMSGSIZE;
1317 		goto fail2;
1318 	}
1319 
1320 	/* Print out any assertion state recorded */
1321 	flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1322 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1323 		return (0);
1324 
1325 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1326 		? "system-level assertion"
1327 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1328 		? "thread-level assertion"
1329 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1330 		? "watchdog reset"
1331 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP)
1332 		? "illegal address trap"
1333 		: "unknown assertion";
1334 	EFSYS_PROBE3(mcpu_assertion,
1335 	    const char *, reason, unsigned int,
1336 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1337 	    unsigned int,
1338 	    MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS));
1339 
1340 	/* Print out the registers (r1 ... r31) */
1341 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1342 	for (index = 1;
1343 		index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1344 		index++) {
1345 		EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int,
1346 			    EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst),
1347 					    EFX_DWORD_0));
1348 		ofst += sizeof (efx_dword_t);
1349 	}
1350 	EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN);
1351 
1352 out:
1353 	return (0);
1354 
1355 fail2:
1356 	EFSYS_PROBE(fail2);
1357 fail1:
1358 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1359 
1360 	return (rc);
1361 }
1362 
1363 
1364 /*
1365  * Internal routines for for specific MCDI requests.
1366  */
1367 
1368 	__checkReturn	efx_rc_t
1369 efx_mcdi_drv_attach(
1370 	__in		efx_nic_t *enp,
1371 	__in		boolean_t attach)
1372 {
1373 	efx_mcdi_req_t req;
1374 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_DRV_ATTACH_IN_V2_LEN,
1375 		MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1376 	efx_rc_t rc;
1377 
1378 	req.emr_cmd = MC_CMD_DRV_ATTACH;
1379 	req.emr_in_buf = payload;
1380 	if (enp->en_drv_version[0] == '\0') {
1381 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN;
1382 	} else {
1383 		req.emr_in_length = MC_CMD_DRV_ATTACH_IN_V2_LEN;
1384 	}
1385 	req.emr_out_buf = payload;
1386 	req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN;
1387 
1388 	/*
1389 	 * Typically, client drivers use DONT_CARE for the datapath firmware
1390 	 * type to ensure that the driver can attach to an unprivileged
1391 	 * function. The datapath firmware type to use is controlled by the
1392 	 * 'sfboot' utility.
1393 	 * If a client driver wishes to attach with a specific datapath firmware
1394 	 * type, that can be passed in second argument of efx_nic_probe API. One
1395 	 * such example is the ESXi native driver that attempts attaching with
1396 	 * FULL_FEATURED datapath firmware type first and fall backs to
1397 	 * DONT_CARE datapath firmware type if MC_CMD_DRV_ATTACH fails.
1398 	 */
1399 	MCDI_IN_POPULATE_DWORD_2(req, DRV_ATTACH_IN_NEW_STATE,
1400 	    DRV_ATTACH_IN_ATTACH, attach ? 1 : 0,
1401 	    DRV_ATTACH_IN_SUBVARIANT_AWARE, EFSYS_OPT_FW_SUBVARIANT_AWARE);
1402 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1);
1403 	MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, enp->efv);
1404 
1405 	if (req.emr_in_length >= MC_CMD_DRV_ATTACH_IN_V2_LEN) {
1406 		EFX_STATIC_ASSERT(sizeof (enp->en_drv_version) ==
1407 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1408 		memcpy(MCDI_IN2(req, char, DRV_ATTACH_IN_V2_DRIVER_VERSION),
1409 		    enp->en_drv_version,
1410 		    MC_CMD_DRV_ATTACH_IN_V2_DRIVER_VERSION_LEN);
1411 	}
1412 
1413 	efx_mcdi_execute(enp, &req);
1414 
1415 	if (req.emr_rc != 0) {
1416 		rc = req.emr_rc;
1417 		goto fail1;
1418 	}
1419 
1420 	if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) {
1421 		rc = EMSGSIZE;
1422 		goto fail2;
1423 	}
1424 
1425 	return (0);
1426 
1427 fail2:
1428 	EFSYS_PROBE(fail2);
1429 fail1:
1430 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1431 
1432 	return (rc);
1433 }
1434 
1435 	__checkReturn		efx_rc_t
1436 efx_mcdi_get_board_cfg(
1437 	__in			efx_nic_t *enp,
1438 	__out_opt		uint32_t *board_typep,
1439 	__out_opt		efx_dword_t *capabilitiesp,
1440 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
1441 {
1442 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1443 	efx_mcdi_req_t req;
1444 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_BOARD_CFG_IN_LEN,
1445 		MC_CMD_GET_BOARD_CFG_OUT_LENMIN);
1446 	efx_rc_t rc;
1447 
1448 	req.emr_cmd = MC_CMD_GET_BOARD_CFG;
1449 	req.emr_in_buf = payload;
1450 	req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN;
1451 	req.emr_out_buf = payload;
1452 	req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN;
1453 
1454 	efx_mcdi_execute(enp, &req);
1455 
1456 	if (req.emr_rc != 0) {
1457 		rc = req.emr_rc;
1458 		goto fail1;
1459 	}
1460 
1461 	if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1462 		rc = EMSGSIZE;
1463 		goto fail2;
1464 	}
1465 
1466 	if (mac_addrp != NULL) {
1467 		uint8_t *addrp;
1468 
1469 		if (emip->emi_port == 1) {
1470 			addrp = MCDI_OUT2(req, uint8_t,
1471 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0);
1472 		} else if (emip->emi_port == 2) {
1473 			addrp = MCDI_OUT2(req, uint8_t,
1474 			    GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1);
1475 		} else {
1476 			rc = EINVAL;
1477 			goto fail3;
1478 		}
1479 
1480 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
1481 	}
1482 
1483 	if (capabilitiesp != NULL) {
1484 		if (emip->emi_port == 1) {
1485 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1486 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1487 		} else if (emip->emi_port == 2) {
1488 			*capabilitiesp = *MCDI_OUT2(req, efx_dword_t,
1489 			    GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1490 		} else {
1491 			rc = EINVAL;
1492 			goto fail4;
1493 		}
1494 	}
1495 
1496 	if (board_typep != NULL) {
1497 		*board_typep = MCDI_OUT_DWORD(req,
1498 		    GET_BOARD_CFG_OUT_BOARD_TYPE);
1499 	}
1500 
1501 	return (0);
1502 
1503 fail4:
1504 	EFSYS_PROBE(fail4);
1505 fail3:
1506 	EFSYS_PROBE(fail3);
1507 fail2:
1508 	EFSYS_PROBE(fail2);
1509 fail1:
1510 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1511 
1512 	return (rc);
1513 }
1514 
1515 	__checkReturn	efx_rc_t
1516 efx_mcdi_get_resource_limits(
1517 	__in		efx_nic_t *enp,
1518 	__out_opt	uint32_t *nevqp,
1519 	__out_opt	uint32_t *nrxqp,
1520 	__out_opt	uint32_t *ntxqp)
1521 {
1522 	efx_mcdi_req_t req;
1523 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RESOURCE_LIMITS_IN_LEN,
1524 		MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN);
1525 	efx_rc_t rc;
1526 
1527 	req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS;
1528 	req.emr_in_buf = payload;
1529 	req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN;
1530 	req.emr_out_buf = payload;
1531 	req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN;
1532 
1533 	efx_mcdi_execute(enp, &req);
1534 
1535 	if (req.emr_rc != 0) {
1536 		rc = req.emr_rc;
1537 		goto fail1;
1538 	}
1539 
1540 	if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) {
1541 		rc = EMSGSIZE;
1542 		goto fail2;
1543 	}
1544 
1545 	if (nevqp != NULL)
1546 		*nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ);
1547 	if (nrxqp != NULL)
1548 		*nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ);
1549 	if (ntxqp != NULL)
1550 		*ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ);
1551 
1552 	return (0);
1553 
1554 fail2:
1555 	EFSYS_PROBE(fail2);
1556 fail1:
1557 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1558 
1559 	return (rc);
1560 }
1561 
1562 	__checkReturn	efx_rc_t
1563 efx_mcdi_get_phy_cfg(
1564 	__in		efx_nic_t *enp)
1565 {
1566 	efx_port_t *epp = &(enp->en_port);
1567 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1568 	efx_mcdi_req_t req;
1569 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_CFG_IN_LEN,
1570 		MC_CMD_GET_PHY_CFG_OUT_LEN);
1571 #if EFSYS_OPT_NAMES
1572 	const char *namep;
1573 	size_t namelen;
1574 #endif
1575 	uint32_t phy_media_type;
1576 	efx_rc_t rc;
1577 
1578 	req.emr_cmd = MC_CMD_GET_PHY_CFG;
1579 	req.emr_in_buf = payload;
1580 	req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN;
1581 	req.emr_out_buf = payload;
1582 	req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN;
1583 
1584 	efx_mcdi_execute(enp, &req);
1585 
1586 	if (req.emr_rc != 0) {
1587 		rc = req.emr_rc;
1588 		goto fail1;
1589 	}
1590 
1591 	if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) {
1592 		rc = EMSGSIZE;
1593 		goto fail2;
1594 	}
1595 
1596 	encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE);
1597 #if EFSYS_OPT_NAMES
1598 	namep = MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME);
1599 	namelen = MIN(sizeof (encp->enc_phy_name) - 1,
1600 		    strnlen(namep, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN));
1601 	(void) memset(encp->enc_phy_name, 0,
1602 	    sizeof (encp->enc_phy_name));
1603 	memcpy(encp->enc_phy_name, namep, namelen);
1604 #endif	/* EFSYS_OPT_NAMES */
1605 	(void) memset(encp->enc_phy_revision, 0,
1606 	    sizeof (encp->enc_phy_revision));
1607 	memcpy(encp->enc_phy_revision,
1608 		MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION),
1609 		MIN(sizeof (encp->enc_phy_revision) - 1,
1610 		    MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN));
1611 #if EFSYS_OPT_PHY_LED_CONTROL
1612 	encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) |
1613 			    (1 << EFX_PHY_LED_OFF) |
1614 			    (1 << EFX_PHY_LED_ON));
1615 #endif	/* EFSYS_OPT_PHY_LED_CONTROL */
1616 
1617 	/* Get the media type of the fixed port, if recognised. */
1618 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI);
1619 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4);
1620 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4);
1621 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP);
1622 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS);
1623 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T);
1624 	EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS);
1625 	phy_media_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE);
1626 	epp->ep_fixed_port_type = (efx_phy_media_type_t)phy_media_type;
1627 	if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES)
1628 		epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID;
1629 
1630 	epp->ep_phy_cap_mask =
1631 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP);
1632 #if EFSYS_OPT_PHY_FLAGS
1633 	encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS);
1634 #endif	/* EFSYS_OPT_PHY_FLAGS */
1635 
1636 	encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT);
1637 
1638 	/* Populate internal state */
1639 	encp->enc_mcdi_mdio_channel =
1640 		(uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL);
1641 
1642 #if EFSYS_OPT_PHY_STATS
1643 	encp->enc_mcdi_phy_stat_mask =
1644 		MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK);
1645 #endif	/* EFSYS_OPT_PHY_STATS */
1646 
1647 #if EFSYS_OPT_BIST
1648 	encp->enc_bist_mask = 0;
1649 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1650 	    GET_PHY_CFG_OUT_BIST_CABLE_SHORT))
1651 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT);
1652 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1653 	    GET_PHY_CFG_OUT_BIST_CABLE_LONG))
1654 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG);
1655 	if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS,
1656 	    GET_PHY_CFG_OUT_BIST))
1657 		encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL);
1658 #endif  /* EFSYS_OPT_BIST */
1659 
1660 	return (0);
1661 
1662 fail2:
1663 	EFSYS_PROBE(fail2);
1664 fail1:
1665 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1666 
1667 	return (rc);
1668 }
1669 
1670 	__checkReturn		efx_rc_t
1671 efx_mcdi_firmware_update_supported(
1672 	__in			efx_nic_t *enp,
1673 	__out			boolean_t *supportedp)
1674 {
1675 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1676 	efx_rc_t rc;
1677 
1678 	if (emcop != NULL) {
1679 		if ((rc = emcop->emco_feature_supported(enp,
1680 			    EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0)
1681 			goto fail1;
1682 	} else {
1683 		/* Earlier devices always supported updates */
1684 		*supportedp = B_TRUE;
1685 	}
1686 
1687 	return (0);
1688 
1689 fail1:
1690 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1691 
1692 	return (rc);
1693 }
1694 
1695 	__checkReturn		efx_rc_t
1696 efx_mcdi_macaddr_change_supported(
1697 	__in			efx_nic_t *enp,
1698 	__out			boolean_t *supportedp)
1699 {
1700 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1701 	efx_rc_t rc;
1702 
1703 	if (emcop != NULL) {
1704 		if ((rc = emcop->emco_feature_supported(enp,
1705 			    EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0)
1706 			goto fail1;
1707 	} else {
1708 		/* Earlier devices always supported MAC changes */
1709 		*supportedp = B_TRUE;
1710 	}
1711 
1712 	return (0);
1713 
1714 fail1:
1715 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1716 
1717 	return (rc);
1718 }
1719 
1720 	__checkReturn		efx_rc_t
1721 efx_mcdi_link_control_supported(
1722 	__in			efx_nic_t *enp,
1723 	__out			boolean_t *supportedp)
1724 {
1725 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1726 	efx_rc_t rc;
1727 
1728 	if (emcop != NULL) {
1729 		if ((rc = emcop->emco_feature_supported(enp,
1730 			    EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0)
1731 			goto fail1;
1732 	} else {
1733 		/* Earlier devices always supported link control */
1734 		*supportedp = B_TRUE;
1735 	}
1736 
1737 	return (0);
1738 
1739 fail1:
1740 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1741 
1742 	return (rc);
1743 }
1744 
1745 	__checkReturn		efx_rc_t
1746 efx_mcdi_mac_spoofing_supported(
1747 	__in			efx_nic_t *enp,
1748 	__out			boolean_t *supportedp)
1749 {
1750 	const efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop;
1751 	efx_rc_t rc;
1752 
1753 	if (emcop != NULL) {
1754 		if ((rc = emcop->emco_feature_supported(enp,
1755 			    EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0)
1756 			goto fail1;
1757 	} else {
1758 		/* Earlier devices always supported MAC spoofing */
1759 		*supportedp = B_TRUE;
1760 	}
1761 
1762 	return (0);
1763 
1764 fail1:
1765 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1766 
1767 	return (rc);
1768 }
1769 
1770 #if EFSYS_OPT_BIST
1771 
1772 #if EFX_OPTS_EF10()
1773 /*
1774  * Enter bist offline mode. This is a fw mode which puts the NIC into a state
1775  * where memory BIST tests can be run and not much else can interfere or happen.
1776  * A reboot is required to exit this mode.
1777  */
1778 	__checkReturn		efx_rc_t
1779 efx_mcdi_bist_enable_offline(
1780 	__in			efx_nic_t *enp)
1781 {
1782 	efx_mcdi_req_t req;
1783 	efx_rc_t rc;
1784 
1785 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0);
1786 	EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0);
1787 
1788 	req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST;
1789 	req.emr_in_buf = NULL;
1790 	req.emr_in_length = 0;
1791 	req.emr_out_buf = NULL;
1792 	req.emr_out_length = 0;
1793 
1794 	efx_mcdi_execute(enp, &req);
1795 
1796 	if (req.emr_rc != 0) {
1797 		rc = req.emr_rc;
1798 		goto fail1;
1799 	}
1800 
1801 	return (0);
1802 
1803 fail1:
1804 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1805 
1806 	return (rc);
1807 }
1808 #endif /* EFX_OPTS_EF10() */
1809 
1810 	__checkReturn		efx_rc_t
1811 efx_mcdi_bist_start(
1812 	__in			efx_nic_t *enp,
1813 	__in			efx_bist_type_t type)
1814 {
1815 	efx_mcdi_req_t req;
1816 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_START_BIST_IN_LEN,
1817 		MC_CMD_START_BIST_OUT_LEN);
1818 	efx_rc_t rc;
1819 
1820 	req.emr_cmd = MC_CMD_START_BIST;
1821 	req.emr_in_buf = payload;
1822 	req.emr_in_length = MC_CMD_START_BIST_IN_LEN;
1823 	req.emr_out_buf = payload;
1824 	req.emr_out_length = MC_CMD_START_BIST_OUT_LEN;
1825 
1826 	switch (type) {
1827 	case EFX_BIST_TYPE_PHY_NORMAL:
1828 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST);
1829 		break;
1830 	case EFX_BIST_TYPE_PHY_CABLE_SHORT:
1831 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1832 		    MC_CMD_PHY_BIST_CABLE_SHORT);
1833 		break;
1834 	case EFX_BIST_TYPE_PHY_CABLE_LONG:
1835 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1836 		    MC_CMD_PHY_BIST_CABLE_LONG);
1837 		break;
1838 	case EFX_BIST_TYPE_MC_MEM:
1839 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1840 		    MC_CMD_MC_MEM_BIST);
1841 		break;
1842 	case EFX_BIST_TYPE_SAT_MEM:
1843 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1844 		    MC_CMD_PORT_MEM_BIST);
1845 		break;
1846 	case EFX_BIST_TYPE_REG:
1847 		MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE,
1848 		    MC_CMD_REG_BIST);
1849 		break;
1850 	default:
1851 		EFSYS_ASSERT(0);
1852 	}
1853 
1854 	efx_mcdi_execute(enp, &req);
1855 
1856 	if (req.emr_rc != 0) {
1857 		rc = req.emr_rc;
1858 		goto fail1;
1859 	}
1860 
1861 	return (0);
1862 
1863 fail1:
1864 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1865 
1866 	return (rc);
1867 }
1868 
1869 #endif /* EFSYS_OPT_BIST */
1870 
1871 
1872 /* Enable logging of some events (e.g. link state changes) */
1873 	__checkReturn	efx_rc_t
1874 efx_mcdi_log_ctrl(
1875 	__in		efx_nic_t *enp)
1876 {
1877 	efx_mcdi_req_t req;
1878 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LOG_CTRL_IN_LEN,
1879 		MC_CMD_LOG_CTRL_OUT_LEN);
1880 	efx_rc_t rc;
1881 
1882 	req.emr_cmd = MC_CMD_LOG_CTRL;
1883 	req.emr_in_buf = payload;
1884 	req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN;
1885 	req.emr_out_buf = payload;
1886 	req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN;
1887 
1888 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST,
1889 		    MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ);
1890 	MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0);
1891 
1892 	efx_mcdi_execute(enp, &req);
1893 
1894 	if (req.emr_rc != 0) {
1895 		rc = req.emr_rc;
1896 		goto fail1;
1897 	}
1898 
1899 	return (0);
1900 
1901 fail1:
1902 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1903 
1904 	return (rc);
1905 }
1906 
1907 
1908 #if EFSYS_OPT_MAC_STATS
1909 
1910 	__checkReturn	efx_rc_t
1911 efx_mcdi_mac_stats(
1912 	__in		efx_nic_t *enp,
1913 	__in		uint32_t vport_id,
1914 	__in_opt	efsys_mem_t *esmp,
1915 	__in		efx_stats_action_t action,
1916 	__in		uint16_t period_ms)
1917 {
1918 	efx_mcdi_req_t req;
1919 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_MAC_STATS_IN_LEN,
1920 		MC_CMD_MAC_STATS_V2_OUT_DMA_LEN);
1921 	int clear = (action == EFX_STATS_CLEAR);
1922 	int upload = (action == EFX_STATS_UPLOAD);
1923 	int enable = (action == EFX_STATS_ENABLE_NOEVENTS);
1924 	int events = (action == EFX_STATS_ENABLE_EVENTS);
1925 	int disable = (action == EFX_STATS_DISABLE);
1926 	efx_rc_t rc;
1927 
1928 	req.emr_cmd = MC_CMD_MAC_STATS;
1929 	req.emr_in_buf = payload;
1930 	req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN;
1931 	req.emr_out_buf = payload;
1932 	req.emr_out_length = MC_CMD_MAC_STATS_V2_OUT_DMA_LEN;
1933 
1934 	MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD,
1935 	    MAC_STATS_IN_DMA, upload,
1936 	    MAC_STATS_IN_CLEAR, clear,
1937 	    MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable,
1938 	    MAC_STATS_IN_PERIODIC_ENABLE, enable | events,
1939 	    MAC_STATS_IN_PERIODIC_NOEVENT, !events,
1940 	    MAC_STATS_IN_PERIOD_MS, (enable | events) ? period_ms : 0);
1941 
1942 	if (enable || events || upload) {
1943 		const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
1944 		uint32_t bytes;
1945 
1946 		/* Periodic stats or stats upload require a DMA buffer */
1947 		if (esmp == NULL) {
1948 			rc = EINVAL;
1949 			goto fail1;
1950 		}
1951 
1952 		if (encp->enc_mac_stats_nstats < MC_CMD_MAC_NSTATS) {
1953 			/* MAC stats count too small for legacy MAC stats */
1954 			rc = ENOSPC;
1955 			goto fail2;
1956 		}
1957 
1958 		bytes = encp->enc_mac_stats_nstats * sizeof (efx_qword_t);
1959 
1960 		if (EFSYS_MEM_SIZE(esmp) < bytes) {
1961 			/* DMA buffer too small */
1962 			rc = ENOSPC;
1963 			goto fail3;
1964 		}
1965 
1966 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO,
1967 			    EFSYS_MEM_ADDR(esmp) & 0xffffffff);
1968 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI,
1969 			    EFSYS_MEM_ADDR(esmp) >> 32);
1970 		MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes);
1971 	}
1972 
1973 	/*
1974 	 * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats,
1975 	 *	 as this may fail (and leave periodic DMA enabled) if the
1976 	 *	 vadapter has already been deleted.
1977 	 */
1978 	MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID,
1979 		(disable ? EVB_PORT_ID_NULL : vport_id));
1980 
1981 	efx_mcdi_execute(enp, &req);
1982 
1983 	if (req.emr_rc != 0) {
1984 		/* EF10: Expect ENOENT if no DMA queues are initialised */
1985 		if ((req.emr_rc != ENOENT) ||
1986 		    (enp->en_rx_qcount + enp->en_tx_qcount != 0)) {
1987 			rc = req.emr_rc;
1988 			goto fail4;
1989 		}
1990 	}
1991 
1992 	return (0);
1993 
1994 fail4:
1995 	EFSYS_PROBE(fail4);
1996 fail3:
1997 	EFSYS_PROBE(fail3);
1998 fail2:
1999 	EFSYS_PROBE(fail2);
2000 fail1:
2001 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2002 
2003 	return (rc);
2004 }
2005 
2006 	__checkReturn	efx_rc_t
2007 efx_mcdi_mac_stats_clear(
2008 	__in		efx_nic_t *enp)
2009 {
2010 	efx_rc_t rc;
2011 
2012 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2013 			EFX_STATS_CLEAR, 0)) != 0)
2014 		goto fail1;
2015 
2016 	return (0);
2017 
2018 fail1:
2019 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2020 
2021 	return (rc);
2022 }
2023 
2024 	__checkReturn	efx_rc_t
2025 efx_mcdi_mac_stats_upload(
2026 	__in		efx_nic_t *enp,
2027 	__in		efsys_mem_t *esmp)
2028 {
2029 	efx_rc_t rc;
2030 
2031 	/*
2032 	 * The MC DMAs aggregate statistics for our convenience, so we can
2033 	 * avoid having to pull the statistics buffer into the cache to
2034 	 * maintain cumulative statistics.
2035 	 */
2036 	if ((rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2037 			EFX_STATS_UPLOAD, 0)) != 0)
2038 		goto fail1;
2039 
2040 	return (0);
2041 
2042 fail1:
2043 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2044 
2045 	return (rc);
2046 }
2047 
2048 	__checkReturn	efx_rc_t
2049 efx_mcdi_mac_stats_periodic(
2050 	__in		efx_nic_t *enp,
2051 	__in		efsys_mem_t *esmp,
2052 	__in		uint16_t period_ms,
2053 	__in		boolean_t events)
2054 {
2055 	efx_rc_t rc;
2056 
2057 	/*
2058 	 * The MC DMAs aggregate statistics for our convenience, so we can
2059 	 * avoid having to pull the statistics buffer into the cache to
2060 	 * maintain cumulative statistics.
2061 	 * Huntington uses a fixed 1sec period.
2062 	 * Medford uses a fixed 1sec period before v6.2.1.1033 firmware.
2063 	 */
2064 	if (period_ms == 0)
2065 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, NULL,
2066 			EFX_STATS_DISABLE, 0);
2067 	else if (events)
2068 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2069 			EFX_STATS_ENABLE_EVENTS, period_ms);
2070 	else
2071 		rc = efx_mcdi_mac_stats(enp, enp->en_vport_id, esmp,
2072 			EFX_STATS_ENABLE_NOEVENTS, period_ms);
2073 
2074 	if (rc != 0)
2075 		goto fail1;
2076 
2077 	return (0);
2078 
2079 fail1:
2080 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2081 
2082 	return (rc);
2083 }
2084 
2085 #endif	/* EFSYS_OPT_MAC_STATS */
2086 
2087 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2088 
2089 /*
2090  * This function returns the pf and vf number of a function.  If it is a pf the
2091  * vf number is 0xffff.  The vf number is the index of the vf on that
2092  * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0),
2093  * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff).
2094  */
2095 	__checkReturn		efx_rc_t
2096 efx_mcdi_get_function_info(
2097 	__in			efx_nic_t *enp,
2098 	__out			uint32_t *pfp,
2099 	__out_opt		uint32_t *vfp)
2100 {
2101 	efx_mcdi_req_t req;
2102 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_FUNCTION_INFO_IN_LEN,
2103 		MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2104 	efx_rc_t rc;
2105 
2106 	req.emr_cmd = MC_CMD_GET_FUNCTION_INFO;
2107 	req.emr_in_buf = payload;
2108 	req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN;
2109 	req.emr_out_buf = payload;
2110 	req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN;
2111 
2112 	efx_mcdi_execute(enp, &req);
2113 
2114 	if (req.emr_rc != 0) {
2115 		rc = req.emr_rc;
2116 		goto fail1;
2117 	}
2118 
2119 	if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) {
2120 		rc = EMSGSIZE;
2121 		goto fail2;
2122 	}
2123 
2124 	*pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF);
2125 	if (vfp != NULL)
2126 		*vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF);
2127 
2128 	return (0);
2129 
2130 fail2:
2131 	EFSYS_PROBE(fail2);
2132 fail1:
2133 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2134 
2135 	return (rc);
2136 }
2137 
2138 	__checkReturn		efx_rc_t
2139 efx_mcdi_privilege_mask(
2140 	__in			efx_nic_t *enp,
2141 	__in			uint32_t pf,
2142 	__in			uint32_t vf,
2143 	__out			uint32_t *maskp)
2144 {
2145 	efx_mcdi_req_t req;
2146 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_PRIVILEGE_MASK_IN_LEN,
2147 		MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2148 	efx_rc_t rc;
2149 
2150 	req.emr_cmd = MC_CMD_PRIVILEGE_MASK;
2151 	req.emr_in_buf = payload;
2152 	req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN;
2153 	req.emr_out_buf = payload;
2154 	req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN;
2155 
2156 	MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION,
2157 	    PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2158 	    PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2159 
2160 	efx_mcdi_execute(enp, &req);
2161 
2162 	if (req.emr_rc != 0) {
2163 		rc = req.emr_rc;
2164 		goto fail1;
2165 	}
2166 
2167 	if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) {
2168 		rc = EMSGSIZE;
2169 		goto fail2;
2170 	}
2171 
2172 	*maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK);
2173 
2174 	return (0);
2175 
2176 fail2:
2177 	EFSYS_PROBE(fail2);
2178 fail1:
2179 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2180 
2181 	return (rc);
2182 }
2183 
2184 #endif /* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2185 
2186 	__checkReturn		efx_rc_t
2187 efx_mcdi_set_workaround(
2188 	__in			efx_nic_t *enp,
2189 	__in			uint32_t type,
2190 	__in			boolean_t enabled,
2191 	__out_opt		uint32_t *flagsp)
2192 {
2193 	efx_mcdi_req_t req;
2194 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_WORKAROUND_IN_LEN,
2195 		MC_CMD_WORKAROUND_EXT_OUT_LEN);
2196 	efx_rc_t rc;
2197 
2198 	req.emr_cmd = MC_CMD_WORKAROUND;
2199 	req.emr_in_buf = payload;
2200 	req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN;
2201 	req.emr_out_buf = payload;
2202 	req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN;
2203 
2204 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type);
2205 	MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0);
2206 
2207 	efx_mcdi_execute_quiet(enp, &req);
2208 
2209 	if (req.emr_rc != 0) {
2210 		rc = req.emr_rc;
2211 		goto fail1;
2212 	}
2213 
2214 	if (flagsp != NULL) {
2215 		if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2216 			*flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS);
2217 		else
2218 			*flagsp = 0;
2219 	}
2220 
2221 	return (0);
2222 
2223 fail1:
2224 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2225 
2226 	return (rc);
2227 }
2228 
2229 
2230 	__checkReturn		efx_rc_t
2231 efx_mcdi_get_workarounds(
2232 	__in			efx_nic_t *enp,
2233 	__out_opt		uint32_t *implementedp,
2234 	__out_opt		uint32_t *enabledp)
2235 {
2236 	efx_mcdi_req_t req;
2237 	EFX_MCDI_DECLARE_BUF(payload, 0, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2238 	efx_rc_t rc;
2239 
2240 	req.emr_cmd = MC_CMD_GET_WORKAROUNDS;
2241 	req.emr_in_buf = NULL;
2242 	req.emr_in_length = 0;
2243 	req.emr_out_buf = payload;
2244 	req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN;
2245 
2246 	efx_mcdi_execute(enp, &req);
2247 
2248 	if (req.emr_rc != 0) {
2249 		rc = req.emr_rc;
2250 		goto fail1;
2251 	}
2252 
2253 	if (implementedp != NULL) {
2254 		*implementedp =
2255 		    MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2256 	}
2257 
2258 	if (enabledp != NULL) {
2259 		*enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED);
2260 	}
2261 
2262 	return (0);
2263 
2264 fail1:
2265 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2266 
2267 	return (rc);
2268 }
2269 
2270 /*
2271  * Size of media information page in accordance with SFF-8472 and SFF-8436.
2272  * It is used in MCDI interface as well.
2273  */
2274 #define	EFX_PHY_MEDIA_INFO_PAGE_SIZE		0x80
2275 
2276 /*
2277  * Transceiver identifiers from SFF-8024 Table 4-1.
2278  */
2279 #define	EFX_SFF_TRANSCEIVER_ID_SFP		0x03 /* SFP/SFP+/SFP28 */
2280 #define	EFX_SFF_TRANSCEIVER_ID_QSFP		0x0c /* QSFP */
2281 #define	EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS	0x0d /* QSFP+ or later */
2282 #define	EFX_SFF_TRANSCEIVER_ID_QSFP28		0x11 /* QSFP28 or later */
2283 
2284 static	__checkReturn		efx_rc_t
2285 efx_mcdi_get_phy_media_info(
2286 	__in			efx_nic_t *enp,
2287 	__in			uint32_t mcdi_page,
2288 	__in			uint8_t offset,
2289 	__in			uint8_t len,
2290 	__out_bcount(len)	uint8_t *data)
2291 {
2292 	efx_mcdi_req_t req;
2293 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN,
2294 		MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(
2295 			EFX_PHY_MEDIA_INFO_PAGE_SIZE));
2296 	efx_rc_t rc;
2297 
2298 	EFSYS_ASSERT((uint32_t)offset + len <= EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2299 
2300 	req.emr_cmd = MC_CMD_GET_PHY_MEDIA_INFO;
2301 	req.emr_in_buf = payload;
2302 	req.emr_in_length = MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN;
2303 	req.emr_out_buf = payload;
2304 	req.emr_out_length =
2305 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2306 
2307 	MCDI_IN_SET_DWORD(req, GET_PHY_MEDIA_INFO_IN_PAGE, mcdi_page);
2308 
2309 	efx_mcdi_execute(enp, &req);
2310 
2311 	if (req.emr_rc != 0) {
2312 		rc = req.emr_rc;
2313 		goto fail1;
2314 	}
2315 
2316 	if (req.emr_out_length_used !=
2317 	    MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(EFX_PHY_MEDIA_INFO_PAGE_SIZE)) {
2318 		rc = EMSGSIZE;
2319 		goto fail2;
2320 	}
2321 
2322 	if (MCDI_OUT_DWORD(req, GET_PHY_MEDIA_INFO_OUT_DATALEN) !=
2323 	    EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2324 		rc = EIO;
2325 		goto fail3;
2326 	}
2327 
2328 	memcpy(data,
2329 	    MCDI_OUT2(req, uint8_t, GET_PHY_MEDIA_INFO_OUT_DATA) + offset,
2330 	    len);
2331 
2332 	return (0);
2333 
2334 fail3:
2335 	EFSYS_PROBE(fail3);
2336 fail2:
2337 	EFSYS_PROBE(fail2);
2338 fail1:
2339 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2340 
2341 	return (rc);
2342 }
2343 
2344 	__checkReturn		efx_rc_t
2345 efx_mcdi_phy_module_get_info(
2346 	__in			efx_nic_t *enp,
2347 	__in			uint8_t dev_addr,
2348 	__in			size_t offset,
2349 	__in			size_t len,
2350 	__out_bcount(len)	uint8_t *data)
2351 {
2352 	efx_port_t *epp = &(enp->en_port);
2353 	efx_rc_t rc;
2354 	uint32_t mcdi_lower_page;
2355 	uint32_t mcdi_upper_page;
2356 	uint8_t id;
2357 
2358 	EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
2359 
2360 	/*
2361 	 * Map device address to MC_CMD_GET_PHY_MEDIA_INFO pages.
2362 	 * Offset plus length interface allows to access page 0 only.
2363 	 * I.e. non-zero upper pages are not accessible.
2364 	 * See SFF-8472 section 4 Memory Organization and SFF-8436 section 7.6
2365 	 * QSFP+ Memory Map for details on how information is structured
2366 	 * and accessible.
2367 	 */
2368 	switch (epp->ep_fixed_port_type) {
2369 	case EFX_PHY_MEDIA_SFP_PLUS:
2370 	case EFX_PHY_MEDIA_QSFP_PLUS:
2371 		/* Port type supports modules */
2372 		break;
2373 	default:
2374 		rc = ENOTSUP;
2375 		goto fail1;
2376 	}
2377 
2378 	/*
2379 	 * For all supported port types, MCDI page 0 offset 0 holds the
2380 	 * transceiver identifier. Probe to determine the data layout.
2381 	 * Definitions from SFF-8024 Table 4-1.
2382 	 */
2383 	rc = efx_mcdi_get_phy_media_info(enp,
2384 		    0, 0, sizeof(id), &id);
2385 	if (rc != 0)
2386 		goto fail2;
2387 
2388 	switch (id) {
2389 	case EFX_SFF_TRANSCEIVER_ID_SFP:
2390 		/*
2391 		 * In accordance with SFF-8472 Diagnostic Monitoring
2392 		 * Interface for Optical Transceivers section 4 Memory
2393 		 * Organization two 2-wire addresses are defined.
2394 		 */
2395 		switch (dev_addr) {
2396 		/* Base information */
2397 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_BASE:
2398 			/*
2399 			 * MCDI page 0 should be used to access lower
2400 			 * page 0 (0x00 - 0x7f) at the device address 0xA0.
2401 			 */
2402 			mcdi_lower_page = 0;
2403 			/*
2404 			 * MCDI page 1 should be used to access  upper
2405 			 * page 0 (0x80 - 0xff) at the device address 0xA0.
2406 			 */
2407 			mcdi_upper_page = 1;
2408 			break;
2409 		/* Diagnostics */
2410 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_SFP_DDM:
2411 			/*
2412 			 * MCDI page 2 should be used to access lower
2413 			 * page 0 (0x00 - 0x7f) at the device address 0xA2.
2414 			 */
2415 			mcdi_lower_page = 2;
2416 			/*
2417 			 * MCDI page 3 should be used to access upper
2418 			 * page 0 (0x80 - 0xff) at the device address 0xA2.
2419 			 */
2420 			mcdi_upper_page = 3;
2421 			break;
2422 		default:
2423 			rc = ENOTSUP;
2424 			goto fail3;
2425 		}
2426 		break;
2427 	case EFX_SFF_TRANSCEIVER_ID_QSFP:
2428 	case EFX_SFF_TRANSCEIVER_ID_QSFP_PLUS:
2429 	case EFX_SFF_TRANSCEIVER_ID_QSFP28:
2430 		switch (dev_addr) {
2431 		case EFX_PHY_MEDIA_INFO_DEV_ADDR_QSFP:
2432 			/*
2433 			 * MCDI page -1 should be used to access lower page 0
2434 			 * (0x00 - 0x7f).
2435 			 */
2436 			mcdi_lower_page = (uint32_t)-1;
2437 			/*
2438 			 * MCDI page 0 should be used to access upper page 0
2439 			 * (0x80h - 0xff).
2440 			 */
2441 			mcdi_upper_page = 0;
2442 			break;
2443 		default:
2444 			rc = ENOTSUP;
2445 			goto fail3;
2446 		}
2447 		break;
2448 	default:
2449 		rc = ENOTSUP;
2450 		goto fail3;
2451 	}
2452 
2453 	EFX_STATIC_ASSERT(EFX_PHY_MEDIA_INFO_PAGE_SIZE <= 0xFF);
2454 
2455 	if (offset < EFX_PHY_MEDIA_INFO_PAGE_SIZE) {
2456 		size_t read_len =
2457 		    MIN(len, EFX_PHY_MEDIA_INFO_PAGE_SIZE - offset);
2458 
2459 		rc = efx_mcdi_get_phy_media_info(enp,
2460 		    mcdi_lower_page, (uint8_t)offset, (uint8_t)read_len, data);
2461 		if (rc != 0)
2462 			goto fail4;
2463 
2464 		data += read_len;
2465 		len -= read_len;
2466 
2467 		offset = 0;
2468 	} else {
2469 		offset -= EFX_PHY_MEDIA_INFO_PAGE_SIZE;
2470 	}
2471 
2472 	if (len > 0) {
2473 		EFSYS_ASSERT3U(len, <=, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2474 		EFSYS_ASSERT3U(offset, <, EFX_PHY_MEDIA_INFO_PAGE_SIZE);
2475 
2476 		rc = efx_mcdi_get_phy_media_info(enp,
2477 		    mcdi_upper_page, (uint8_t)offset, (uint8_t)len, data);
2478 		if (rc != 0)
2479 			goto fail5;
2480 	}
2481 
2482 	return (0);
2483 
2484 fail5:
2485 	EFSYS_PROBE(fail5);
2486 fail4:
2487 	EFSYS_PROBE(fail4);
2488 fail3:
2489 	EFSYS_PROBE(fail3);
2490 fail2:
2491 	EFSYS_PROBE(fail2);
2492 fail1:
2493 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2494 
2495 	return (rc);
2496 }
2497 
2498 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2499 
2500 #define	INIT_EVQ_MAXNBUFS	MC_CMD_INIT_EVQ_V2_IN_DMA_ADDR_MAXNUM
2501 
2502 #if EFX_OPTS_EF10()
2503 # if (INIT_EVQ_MAXNBUFS < EF10_EVQ_MAXNBUFS)
2504 #  error "INIT_EVQ_MAXNBUFS too small"
2505 # endif
2506 #endif /* EFX_OPTS_EF10 */
2507 #if EFSYS_OPT_RIVERHEAD
2508 # if (INIT_EVQ_MAXNBUFS < RHEAD_EVQ_MAXNBUFS)
2509 #  error "INIT_EVQ_MAXNBUFS too small"
2510 # endif
2511 #endif /* EFSYS_OPT_RIVERHEAD */
2512 
2513 	__checkReturn	efx_rc_t
2514 efx_mcdi_init_evq(
2515 	__in		efx_nic_t *enp,
2516 	__in		unsigned int instance,
2517 	__in		efsys_mem_t *esmp,
2518 	__in		size_t nevs,
2519 	__in		uint32_t irq,
2520 	__in		uint32_t us,
2521 	__in		uint32_t flags,
2522 	__in		boolean_t low_latency)
2523 {
2524 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(enp);
2525 	efx_mcdi_req_t req;
2526 	EFX_MCDI_DECLARE_BUF(payload,
2527 		MC_CMD_INIT_EVQ_V2_IN_LEN(INIT_EVQ_MAXNBUFS),
2528 		MC_CMD_INIT_EVQ_V2_OUT_LEN);
2529 	boolean_t interrupting;
2530 	int ev_extended_width;
2531 	int ev_cut_through;
2532 	int ev_merge;
2533 	unsigned int evq_type;
2534 	efx_qword_t *dma_addr;
2535 	uint64_t addr;
2536 	int npages;
2537 	int i;
2538 	efx_rc_t rc;
2539 
2540 	npages = efx_evq_nbufs(enp, nevs, flags);
2541 	if (npages > INIT_EVQ_MAXNBUFS) {
2542 		rc = EINVAL;
2543 		goto fail1;
2544 	}
2545 
2546 	req.emr_cmd = MC_CMD_INIT_EVQ;
2547 	req.emr_in_buf = payload;
2548 	req.emr_in_length = MC_CMD_INIT_EVQ_V2_IN_LEN(npages);
2549 	req.emr_out_buf = payload;
2550 	req.emr_out_length = MC_CMD_INIT_EVQ_V2_OUT_LEN;
2551 
2552 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_SIZE, nevs);
2553 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_INSTANCE, instance);
2554 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_IRQ_NUM, irq);
2555 
2556 	interrupting = ((flags & EFX_EVQ_FLAGS_NOTIFY_MASK) ==
2557 	    EFX_EVQ_FLAGS_NOTIFY_INTERRUPT);
2558 
2559 	if (encp->enc_init_evq_v2_supported) {
2560 		/*
2561 		 * On Medford the low latency license is required to enable RX
2562 		 * and event cut through and to disable RX batching.  If event
2563 		 * queue type in flags is auto, we let the firmware decide the
2564 		 * settings to use. If the adapter has a low latency license,
2565 		 * it will choose the best settings for low latency, otherwise
2566 		 * it will choose the best settings for throughput.
2567 		 */
2568 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2569 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2570 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO;
2571 			break;
2572 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2573 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_THROUGHPUT;
2574 			break;
2575 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2576 			evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_LOW_LATENCY;
2577 			break;
2578 		default:
2579 			rc = EINVAL;
2580 			goto fail2;
2581 		}
2582 		/* EvQ type controls merging, no manual settings */
2583 		ev_merge = 0;
2584 		ev_cut_through = 0;
2585 	} else {
2586 		/* EvQ types other than manual are not supported */
2587 		evq_type = MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_MANUAL;
2588 		/*
2589 		 * On Huntington RX and TX event batching can only be requested
2590 		 * together (even if the datapath firmware doesn't actually
2591 		 * support RX batching). If event cut through is enabled no RX
2592 		 * batching will occur.
2593 		 *
2594 		 * So always enable RX and TX event batching, and enable event
2595 		 * cut through if we want low latency operation.
2596 		 */
2597 		ev_merge = 1;
2598 		switch (flags & EFX_EVQ_FLAGS_TYPE_MASK) {
2599 		case EFX_EVQ_FLAGS_TYPE_AUTO:
2600 			ev_cut_through = low_latency ? 1 : 0;
2601 			break;
2602 		case EFX_EVQ_FLAGS_TYPE_THROUGHPUT:
2603 			ev_cut_through = 0;
2604 			break;
2605 		case EFX_EVQ_FLAGS_TYPE_LOW_LATENCY:
2606 			ev_cut_through = 1;
2607 			break;
2608 		default:
2609 			rc = EINVAL;
2610 			goto fail2;
2611 		}
2612 	}
2613 
2614 	/*
2615 	 * On EF100, extended width event queues have a different event
2616 	 * descriptor layout and are used to support descriptor proxy queues.
2617 	 */
2618 	ev_extended_width = 0;
2619 #if EFSYS_OPT_EV_EXTENDED_WIDTH
2620 	if (encp->enc_init_evq_extended_width_supported) {
2621 		if (flags & EFX_EVQ_FLAGS_EXTENDED_WIDTH)
2622 			ev_extended_width = 1;
2623 	}
2624 #endif
2625 
2626 	MCDI_IN_POPULATE_DWORD_8(req, INIT_EVQ_V2_IN_FLAGS,
2627 	    INIT_EVQ_V2_IN_FLAG_INTERRUPTING, interrupting,
2628 	    INIT_EVQ_V2_IN_FLAG_RPTR_DOS, 0,
2629 	    INIT_EVQ_V2_IN_FLAG_INT_ARMD, 0,
2630 	    INIT_EVQ_V2_IN_FLAG_CUT_THRU, ev_cut_through,
2631 	    INIT_EVQ_V2_IN_FLAG_RX_MERGE, ev_merge,
2632 	    INIT_EVQ_V2_IN_FLAG_TX_MERGE, ev_merge,
2633 	    INIT_EVQ_V2_IN_FLAG_TYPE, evq_type,
2634 	    INIT_EVQ_V2_IN_FLAG_EXT_WIDTH, ev_extended_width);
2635 
2636 	/* If the value is zero then disable the timer */
2637 	if (us == 0) {
2638 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2639 		    MC_CMD_INIT_EVQ_V2_IN_TMR_MODE_DIS);
2640 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, 0);
2641 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, 0);
2642 	} else {
2643 		unsigned int ticks;
2644 
2645 		if ((rc = efx_ev_usecs_to_ticks(enp, us, &ticks)) != 0)
2646 			goto fail3;
2647 
2648 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_MODE,
2649 		    MC_CMD_INIT_EVQ_V2_IN_TMR_INT_HLDOFF);
2650 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_LOAD, ticks);
2651 		MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_TMR_RELOAD, ticks);
2652 	}
2653 
2654 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_MODE,
2655 	    MC_CMD_INIT_EVQ_V2_IN_COUNT_MODE_DIS);
2656 	MCDI_IN_SET_DWORD(req, INIT_EVQ_V2_IN_COUNT_THRSHLD, 0);
2657 
2658 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_V2_IN_DMA_ADDR);
2659 	addr = EFSYS_MEM_ADDR(esmp);
2660 
2661 	for (i = 0; i < npages; i++) {
2662 		EFX_POPULATE_QWORD_2(*dma_addr,
2663 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2664 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2665 
2666 		dma_addr++;
2667 		addr += EFX_BUF_SIZE;
2668 	}
2669 
2670 	efx_mcdi_execute(enp, &req);
2671 
2672 	if (req.emr_rc != 0) {
2673 		rc = req.emr_rc;
2674 		goto fail4;
2675 	}
2676 
2677 	if (encp->enc_init_evq_v2_supported) {
2678 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_V2_OUT_LEN) {
2679 			rc = EMSGSIZE;
2680 			goto fail5;
2681 		}
2682 		EFSYS_PROBE1(mcdi_evq_flags, uint32_t,
2683 			    MCDI_OUT_DWORD(req, INIT_EVQ_V2_OUT_FLAGS));
2684 	} else {
2685 		if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) {
2686 			rc = EMSGSIZE;
2687 			goto fail6;
2688 		}
2689 	}
2690 
2691 	/* NOTE: ignore the returned IRQ param as firmware does not set it. */
2692 
2693 	return (0);
2694 
2695 fail6:
2696 	EFSYS_PROBE(fail6);
2697 fail5:
2698 	EFSYS_PROBE(fail5);
2699 fail4:
2700 	EFSYS_PROBE(fail4);
2701 fail3:
2702 	EFSYS_PROBE(fail3);
2703 fail2:
2704 	EFSYS_PROBE(fail2);
2705 fail1:
2706 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2707 
2708 	return (rc);
2709 }
2710 
2711 	__checkReturn	efx_rc_t
2712 efx_mcdi_fini_evq(
2713 	__in		efx_nic_t *enp,
2714 	__in		uint32_t instance)
2715 {
2716 	efx_mcdi_req_t req;
2717 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_EVQ_IN_LEN,
2718 		MC_CMD_FINI_EVQ_OUT_LEN);
2719 	efx_rc_t rc;
2720 
2721 	req.emr_cmd = MC_CMD_FINI_EVQ;
2722 	req.emr_in_buf = payload;
2723 	req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN;
2724 	req.emr_out_buf = payload;
2725 	req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN;
2726 
2727 	MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance);
2728 
2729 	efx_mcdi_execute_quiet(enp, &req);
2730 
2731 	if (req.emr_rc != 0) {
2732 		rc = req.emr_rc;
2733 		goto fail1;
2734 	}
2735 
2736 	return (0);
2737 
2738 fail1:
2739 	/*
2740 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2741 	 * that the EVQ has already been destroyed.
2742 	 */
2743 	if (rc != EALREADY)
2744 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2745 
2746 	return (rc);
2747 }
2748 
2749 	__checkReturn	efx_rc_t
2750 efx_mcdi_init_rxq(
2751 	__in		efx_nic_t *enp,
2752 	__in		uint32_t ndescs,
2753 	__in		efx_evq_t *eep,
2754 	__in		uint32_t label,
2755 	__in		uint32_t instance,
2756 	__in		efsys_mem_t *esmp,
2757 	__in		const efx_mcdi_init_rxq_params_t *params)
2758 {
2759 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2760 	efx_mcdi_req_t req;
2761 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_RXQ_V5_IN_LEN,
2762 		MC_CMD_INIT_RXQ_V5_OUT_LEN);
2763 	int npages = efx_rxq_nbufs(enp, ndescs);
2764 	int i;
2765 	efx_qword_t *dma_addr;
2766 	uint64_t addr;
2767 	efx_rc_t rc;
2768 	uint32_t dma_mode;
2769 	boolean_t want_outer_classes;
2770 	boolean_t no_cont_ev;
2771 
2772 	EFSYS_ASSERT3U(ndescs, <=, encp->enc_rxq_max_ndescs);
2773 
2774 	if ((esmp == NULL) ||
2775 	    (EFSYS_MEM_SIZE(esmp) < efx_rxq_size(enp, ndescs))) {
2776 		rc = EINVAL;
2777 		goto fail1;
2778 	}
2779 
2780 	no_cont_ev = (eep->ee_flags & EFX_EVQ_FLAGS_NO_CONT_EV);
2781 	if ((no_cont_ev == B_TRUE) && (params->disable_scatter == B_FALSE)) {
2782 		/* TODO: Support scatter in NO_CONT_EV mode */
2783 		rc = EINVAL;
2784 		goto fail2;
2785 	}
2786 
2787 	if (params->ps_buf_size > 0)
2788 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM;
2789 	else if (params->es_bufs_per_desc > 0)
2790 		dma_mode = MC_CMD_INIT_RXQ_V3_IN_EQUAL_STRIDE_SUPER_BUFFER;
2791 	else
2792 		dma_mode = MC_CMD_INIT_RXQ_EXT_IN_SINGLE_PACKET;
2793 
2794 	if (encp->enc_tunnel_encapsulations_supported != 0 &&
2795 	    !params->want_inner_classes) {
2796 		/*
2797 		 * WANT_OUTER_CLASSES can only be specified on hardware which
2798 		 * supports tunnel encapsulation offloads, even though it is
2799 		 * effectively the behaviour the hardware gives.
2800 		 *
2801 		 * Also, on hardware which does support such offloads, older
2802 		 * firmware rejects the flag if the offloads are not supported
2803 		 * by the current firmware variant, which means this may fail if
2804 		 * the capabilities are not updated when the firmware variant
2805 		 * changes. This is not an issue on newer firmware, as it was
2806 		 * changed in bug 69842 (v6.4.2.1007) to permit this flag to be
2807 		 * specified on all firmware variants.
2808 		 */
2809 		want_outer_classes = B_TRUE;
2810 	} else {
2811 		want_outer_classes = B_FALSE;
2812 	}
2813 
2814 	req.emr_cmd = MC_CMD_INIT_RXQ;
2815 	req.emr_in_buf = payload;
2816 	req.emr_in_length = MC_CMD_INIT_RXQ_V5_IN_LEN;
2817 	req.emr_out_buf = payload;
2818 	req.emr_out_length = MC_CMD_INIT_RXQ_V5_OUT_LEN;
2819 
2820 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_SIZE, ndescs);
2821 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_TARGET_EVQ, eep->ee_index);
2822 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_LABEL, label);
2823 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_INSTANCE, instance);
2824 	MCDI_IN_POPULATE_DWORD_10(req, INIT_RXQ_EXT_IN_FLAGS,
2825 	    INIT_RXQ_EXT_IN_FLAG_BUFF_MODE, 0,
2826 	    INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT, 0,
2827 	    INIT_RXQ_EXT_IN_FLAG_TIMESTAMP, 0,
2828 	    INIT_RXQ_EXT_IN_CRC_MODE, 0,
2829 	    INIT_RXQ_EXT_IN_FLAG_PREFIX, 1,
2830 	    INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER, params->disable_scatter,
2831 	    INIT_RXQ_EXT_IN_DMA_MODE,
2832 	    dma_mode,
2833 	    INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE, params->ps_buf_size,
2834 	    INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES, want_outer_classes,
2835 	    INIT_RXQ_EXT_IN_FLAG_NO_CONT_EV, no_cont_ev);
2836 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_OWNER_ID, 0);
2837 	MCDI_IN_SET_DWORD(req, INIT_RXQ_EXT_IN_PORT_ID, enp->en_vport_id);
2838 
2839 	if (params->es_bufs_per_desc > 0) {
2840 		MCDI_IN_SET_DWORD(req,
2841 		    INIT_RXQ_V3_IN_ES_PACKET_BUFFERS_PER_BUCKET,
2842 		    params->es_bufs_per_desc);
2843 		MCDI_IN_SET_DWORD(req,
2844 		    INIT_RXQ_V3_IN_ES_MAX_DMA_LEN, params->es_max_dma_len);
2845 		MCDI_IN_SET_DWORD(req,
2846 		    INIT_RXQ_V3_IN_ES_PACKET_STRIDE, params->es_buf_stride);
2847 		MCDI_IN_SET_DWORD(req,
2848 		    INIT_RXQ_V3_IN_ES_HEAD_OF_LINE_BLOCK_TIMEOUT,
2849 		    params->hol_block_timeout);
2850 	}
2851 
2852 	if (encp->enc_init_rxq_with_buffer_size)
2853 		MCDI_IN_SET_DWORD(req, INIT_RXQ_V4_IN_BUFFER_SIZE_BYTES,
2854 		    params->buf_size);
2855 
2856 	MCDI_IN_SET_DWORD(req, INIT_RXQ_V5_IN_RX_PREFIX_ID, params->prefix_id);
2857 
2858 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR);
2859 	addr = EFSYS_MEM_ADDR(esmp);
2860 
2861 	for (i = 0; i < npages; i++) {
2862 		EFX_POPULATE_QWORD_2(*dma_addr,
2863 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2864 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2865 
2866 		dma_addr++;
2867 		addr += EFX_BUF_SIZE;
2868 	}
2869 
2870 	efx_mcdi_execute(enp, &req);
2871 
2872 	if (req.emr_rc != 0) {
2873 		rc = req.emr_rc;
2874 		goto fail3;
2875 	}
2876 
2877 	return (0);
2878 
2879 fail3:
2880 	EFSYS_PROBE(fail3);
2881 fail2:
2882 	EFSYS_PROBE(fail2);
2883 fail1:
2884 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2885 
2886 	return (rc);
2887 }
2888 
2889 	__checkReturn	efx_rc_t
2890 efx_mcdi_fini_rxq(
2891 	__in		efx_nic_t *enp,
2892 	__in		uint32_t instance)
2893 {
2894 	efx_mcdi_req_t req;
2895 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_RXQ_IN_LEN,
2896 		MC_CMD_FINI_RXQ_OUT_LEN);
2897 	efx_rc_t rc;
2898 
2899 	req.emr_cmd = MC_CMD_FINI_RXQ;
2900 	req.emr_in_buf = payload;
2901 	req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN;
2902 	req.emr_out_buf = payload;
2903 	req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN;
2904 
2905 	MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance);
2906 
2907 	efx_mcdi_execute_quiet(enp, &req);
2908 
2909 	if (req.emr_rc != 0) {
2910 		rc = req.emr_rc;
2911 		goto fail1;
2912 	}
2913 
2914 	return (0);
2915 
2916 fail1:
2917 	/*
2918 	 * EALREADY is not an error, but indicates that the MC has rebooted and
2919 	 * that the RXQ has already been destroyed.
2920 	 */
2921 	if (rc != EALREADY)
2922 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
2923 
2924 	return (rc);
2925 }
2926 
2927 	__checkReturn	efx_rc_t
2928 efx_mcdi_init_txq(
2929 	__in		efx_nic_t *enp,
2930 	__in		uint32_t ndescs,
2931 	__in		uint32_t target_evq,
2932 	__in		uint32_t label,
2933 	__in		uint32_t instance,
2934 	__in		uint16_t flags,
2935 	__in		efsys_mem_t *esmp)
2936 {
2937 	efx_mcdi_req_t req;
2938 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_EXT_IN_LEN,
2939 		MC_CMD_INIT_TXQ_OUT_LEN);
2940 	efx_qword_t *dma_addr;
2941 	uint64_t addr;
2942 	int npages;
2943 	int i;
2944 	efx_rc_t rc;
2945 
2946 	EFSYS_ASSERT(MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MAXNUM >=
2947 	    efx_txq_nbufs(enp, enp->en_nic_cfg.enc_txq_max_ndescs));
2948 
2949 	if ((esmp == NULL) ||
2950 	    (EFSYS_MEM_SIZE(esmp) < efx_txq_size(enp, ndescs))) {
2951 		rc = EINVAL;
2952 		goto fail1;
2953 	}
2954 
2955 	npages = efx_txq_nbufs(enp, ndescs);
2956 	if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) {
2957 		rc = EINVAL;
2958 		goto fail2;
2959 	}
2960 
2961 	req.emr_cmd = MC_CMD_INIT_TXQ;
2962 	req.emr_in_buf = payload;
2963 	req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages);
2964 	req.emr_out_buf = payload;
2965 	req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN;
2966 
2967 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs);
2968 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq);
2969 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label);
2970 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance);
2971 
2972 	MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS,
2973 	    INIT_TXQ_IN_FLAG_BUFF_MODE, 0,
2974 	    INIT_TXQ_IN_FLAG_IP_CSUM_DIS,
2975 	    (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1,
2976 	    INIT_TXQ_IN_FLAG_TCP_CSUM_DIS,
2977 	    (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1,
2978 	    INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN,
2979 	    (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0,
2980 	    INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN,
2981 	    (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0,
2982 	    INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0,
2983 	    INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0,
2984 	    INIT_TXQ_IN_CRC_MODE, 0,
2985 	    INIT_TXQ_IN_FLAG_TIMESTAMP, 0);
2986 
2987 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0);
2988 	MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, enp->en_vport_id);
2989 
2990 	dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR);
2991 	addr = EFSYS_MEM_ADDR(esmp);
2992 
2993 	for (i = 0; i < npages; i++) {
2994 		EFX_POPULATE_QWORD_2(*dma_addr,
2995 		    EFX_DWORD_1, (uint32_t)(addr >> 32),
2996 		    EFX_DWORD_0, (uint32_t)(addr & 0xffffffff));
2997 
2998 		dma_addr++;
2999 		addr += EFX_BUF_SIZE;
3000 	}
3001 
3002 	efx_mcdi_execute(enp, &req);
3003 
3004 	if (req.emr_rc != 0) {
3005 		rc = req.emr_rc;
3006 		goto fail3;
3007 	}
3008 
3009 	return (0);
3010 
3011 fail3:
3012 	EFSYS_PROBE(fail3);
3013 fail2:
3014 	EFSYS_PROBE(fail2);
3015 fail1:
3016 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
3017 
3018 	return (rc);
3019 }
3020 
3021 	__checkReturn	efx_rc_t
3022 efx_mcdi_fini_txq(
3023 	__in		efx_nic_t *enp,
3024 	__in		uint32_t instance)
3025 {
3026 	efx_mcdi_req_t req;
3027 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN,
3028 		MC_CMD_FINI_TXQ_OUT_LEN);
3029 	efx_rc_t rc;
3030 
3031 	req.emr_cmd = MC_CMD_FINI_TXQ;
3032 	req.emr_in_buf = payload;
3033 	req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN;
3034 	req.emr_out_buf = payload;
3035 	req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN;
3036 
3037 	MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance);
3038 
3039 	efx_mcdi_execute_quiet(enp, &req);
3040 
3041 	if (req.emr_rc != 0) {
3042 		rc = req.emr_rc;
3043 		goto fail1;
3044 	}
3045 
3046 	return (0);
3047 
3048 fail1:
3049 	/*
3050 	 * EALREADY is not an error, but indicates that the MC has rebooted and
3051 	 * that the TXQ has already been destroyed.
3052 	 */
3053 	if (rc != EALREADY)
3054 		EFSYS_PROBE1(fail1, efx_rc_t, rc);
3055 
3056 	return (rc);
3057 }
3058 
3059 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
3060 
3061 #endif	/* EFSYS_OPT_MCDI */
3062