xref: /dpdk/drivers/common/sfc_efx/base/ef10_nic.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2012-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 #if EFSYS_OPT_MON_MCDI
10 #include "mcdi_mon.h"
11 #endif
12 
13 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
14 
15 #include "ef10_tlv_layout.h"
16 
17 	__checkReturn	efx_rc_t
18 efx_mcdi_get_port_assignment(
19 	__in		efx_nic_t *enp,
20 	__out		uint32_t *portp)
21 {
22 	efx_mcdi_req_t req;
23 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
24 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
25 	efx_rc_t rc;
26 
27 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
28 
29 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
30 	req.emr_in_buf = payload;
31 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
32 	req.emr_out_buf = payload;
33 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
34 
35 	efx_mcdi_execute(enp, &req);
36 
37 	if (req.emr_rc != 0) {
38 		rc = req.emr_rc;
39 		goto fail1;
40 	}
41 
42 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
43 		rc = EMSGSIZE;
44 		goto fail2;
45 	}
46 
47 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
48 
49 	return (0);
50 
51 fail2:
52 	EFSYS_PROBE(fail2);
53 fail1:
54 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
55 
56 	return (rc);
57 }
58 
59 	__checkReturn	efx_rc_t
60 efx_mcdi_get_port_modes(
61 	__in		efx_nic_t *enp,
62 	__out		uint32_t *modesp,
63 	__out_opt	uint32_t *current_modep,
64 	__out_opt	uint32_t *default_modep)
65 {
66 	efx_mcdi_req_t req;
67 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
68 		MC_CMD_GET_PORT_MODES_OUT_LEN);
69 	efx_rc_t rc;
70 
71 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
72 
73 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
74 	req.emr_in_buf = payload;
75 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
76 	req.emr_out_buf = payload;
77 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
78 
79 	efx_mcdi_execute(enp, &req);
80 
81 	if (req.emr_rc != 0) {
82 		rc = req.emr_rc;
83 		goto fail1;
84 	}
85 
86 	/*
87 	 * Require only Modes and DefaultMode fields, unless the current mode
88 	 * was requested (CurrentMode field was added for Medford).
89 	 */
90 	if (req.emr_out_length_used <
91 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
92 		rc = EMSGSIZE;
93 		goto fail2;
94 	}
95 	if ((current_modep != NULL) && (req.emr_out_length_used <
96 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
97 		rc = EMSGSIZE;
98 		goto fail3;
99 	}
100 
101 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
102 
103 	if (current_modep != NULL) {
104 		*current_modep = MCDI_OUT_DWORD(req,
105 					    GET_PORT_MODES_OUT_CURRENT_MODE);
106 	}
107 
108 	if (default_modep != NULL) {
109 		*default_modep = MCDI_OUT_DWORD(req,
110 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
111 	}
112 
113 	return (0);
114 
115 fail3:
116 	EFSYS_PROBE(fail3);
117 fail2:
118 	EFSYS_PROBE(fail2);
119 fail1:
120 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
121 
122 	return (rc);
123 }
124 
125 	__checkReturn	efx_rc_t
126 ef10_nic_get_port_mode_bandwidth(
127 	__in		efx_nic_t *enp,
128 	__out		uint32_t *bandwidth_mbpsp)
129 {
130 	uint32_t port_modes;
131 	uint32_t current_mode;
132 	efx_port_t *epp = &(enp->en_port);
133 
134 	uint32_t single_lane;
135 	uint32_t dual_lane;
136 	uint32_t quad_lane;
137 	uint32_t bandwidth;
138 	efx_rc_t rc;
139 
140 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
141 				    &current_mode, NULL)) != 0) {
142 		/* No port mode info available. */
143 		goto fail1;
144 	}
145 
146 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
147 		single_lane = 25000;
148 	else
149 		single_lane = 10000;
150 
151 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
152 		dual_lane = 50000;
153 	else
154 		dual_lane = 20000;
155 
156 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
157 		quad_lane = 100000;
158 	else
159 		quad_lane = 40000;
160 
161 	switch (current_mode) {
162 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
163 		bandwidth = single_lane;
164 		break;
165 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
166 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
167 		bandwidth = dual_lane;
168 		break;
169 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
170 		bandwidth = single_lane + single_lane;
171 		break;
172 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
173 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
174 		bandwidth = 4 * single_lane;
175 		break;
176 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
177 		bandwidth = (2 * single_lane) + (2 * single_lane);
178 		break;
179 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
180 		bandwidth = dual_lane + dual_lane;
181 		break;
182 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
183 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
184 		bandwidth = dual_lane + (2 * single_lane);
185 		break;
186 	/* Legacy Medford-only mode. Do not use (see bug63270) */
187 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
188 		bandwidth = 4 * single_lane;
189 		break;
190 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
191 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
192 		bandwidth = quad_lane;
193 		break;
194 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
195 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
196 		bandwidth = 2 * dual_lane;
197 		break;
198 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
199 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
200 		bandwidth = quad_lane + (2 * single_lane);
201 		break;
202 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
203 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
204 		bandwidth = quad_lane + dual_lane;
205 		break;
206 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
207 		bandwidth = quad_lane + quad_lane;
208 		break;
209 	default:
210 		rc = EINVAL;
211 		goto fail2;
212 	}
213 
214 	*bandwidth_mbpsp = bandwidth;
215 
216 	return (0);
217 
218 fail2:
219 	EFSYS_PROBE(fail2);
220 fail1:
221 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
222 
223 	return (rc);
224 }
225 
226 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
227 
228 #if EFX_OPTS_EF10()
229 
230 	__checkReturn		efx_rc_t
231 efx_mcdi_vadaptor_alloc(
232 	__in			efx_nic_t *enp,
233 	__in			uint32_t port_id)
234 {
235 	efx_mcdi_req_t req;
236 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
237 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
238 	efx_rc_t rc;
239 
240 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
241 	req.emr_in_buf = payload;
242 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
243 	req.emr_out_buf = payload;
244 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
245 
246 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
247 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
248 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
249 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
250 
251 	efx_mcdi_execute(enp, &req);
252 
253 	if (req.emr_rc != 0) {
254 		rc = req.emr_rc;
255 		goto fail1;
256 	}
257 
258 	return (0);
259 
260 fail1:
261 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
262 
263 	return (rc);
264 }
265 
266 	__checkReturn		efx_rc_t
267 efx_mcdi_vadaptor_free(
268 	__in			efx_nic_t *enp,
269 	__in			uint32_t port_id)
270 {
271 	efx_mcdi_req_t req;
272 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
273 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
274 	efx_rc_t rc;
275 
276 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
277 	req.emr_in_buf = payload;
278 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
279 	req.emr_out_buf = payload;
280 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
281 
282 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
283 
284 	efx_mcdi_execute(enp, &req);
285 
286 	if (req.emr_rc != 0) {
287 		rc = req.emr_rc;
288 		goto fail1;
289 	}
290 
291 	return (0);
292 
293 fail1:
294 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
295 
296 	return (rc);
297 }
298 
299 #endif	/* EFX_OPTS_EF10() */
300 
301 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
302 
303 	__checkReturn	efx_rc_t
304 efx_mcdi_get_mac_address_pf(
305 	__in			efx_nic_t *enp,
306 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
307 {
308 	efx_mcdi_req_t req;
309 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
310 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
311 	efx_rc_t rc;
312 
313 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
314 
315 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
316 	req.emr_in_buf = payload;
317 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
318 	req.emr_out_buf = payload;
319 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
320 
321 	efx_mcdi_execute(enp, &req);
322 
323 	if (req.emr_rc != 0) {
324 		rc = req.emr_rc;
325 		goto fail1;
326 	}
327 
328 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
329 		rc = EMSGSIZE;
330 		goto fail2;
331 	}
332 
333 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
334 		rc = ENOENT;
335 		goto fail3;
336 	}
337 
338 	if (mac_addrp != NULL) {
339 		uint8_t *addrp;
340 
341 		addrp = MCDI_OUT2(req, uint8_t,
342 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
343 
344 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
345 	}
346 
347 	return (0);
348 
349 fail3:
350 	EFSYS_PROBE(fail3);
351 fail2:
352 	EFSYS_PROBE(fail2);
353 fail1:
354 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
355 
356 	return (rc);
357 }
358 
359 	__checkReturn	efx_rc_t
360 efx_mcdi_get_mac_address_vf(
361 	__in			efx_nic_t *enp,
362 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
363 {
364 	efx_mcdi_req_t req;
365 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
366 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
367 	efx_rc_t rc;
368 
369 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
370 
371 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
372 	req.emr_in_buf = payload;
373 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
374 	req.emr_out_buf = payload;
375 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
376 
377 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
378 	    EVB_PORT_ID_ASSIGNED);
379 
380 	efx_mcdi_execute(enp, &req);
381 
382 	if (req.emr_rc != 0) {
383 		rc = req.emr_rc;
384 		goto fail1;
385 	}
386 
387 	if (req.emr_out_length_used <
388 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
389 		rc = EMSGSIZE;
390 		goto fail2;
391 	}
392 
393 	if (MCDI_OUT_DWORD(req,
394 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
395 		rc = ENOENT;
396 		goto fail3;
397 	}
398 
399 	if (mac_addrp != NULL) {
400 		uint8_t *addrp;
401 
402 		addrp = MCDI_OUT2(req, uint8_t,
403 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
404 
405 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
406 	}
407 
408 	return (0);
409 
410 fail3:
411 	EFSYS_PROBE(fail3);
412 fail2:
413 	EFSYS_PROBE(fail2);
414 fail1:
415 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
416 
417 	return (rc);
418 }
419 
420 	__checkReturn	efx_rc_t
421 efx_mcdi_get_clock(
422 	__in		efx_nic_t *enp,
423 	__out		uint32_t *sys_freqp,
424 	__out		uint32_t *dpcpu_freqp)
425 {
426 	efx_mcdi_req_t req;
427 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
428 		MC_CMD_GET_CLOCK_OUT_LEN);
429 	efx_rc_t rc;
430 
431 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
432 
433 	req.emr_cmd = MC_CMD_GET_CLOCK;
434 	req.emr_in_buf = payload;
435 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
436 	req.emr_out_buf = payload;
437 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
438 
439 	efx_mcdi_execute(enp, &req);
440 
441 	if (req.emr_rc != 0) {
442 		rc = req.emr_rc;
443 		goto fail1;
444 	}
445 
446 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
447 		rc = EMSGSIZE;
448 		goto fail2;
449 	}
450 
451 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
452 	if (*sys_freqp == 0) {
453 		rc = EINVAL;
454 		goto fail3;
455 	}
456 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
457 	if (*dpcpu_freqp == 0) {
458 		rc = EINVAL;
459 		goto fail4;
460 	}
461 
462 	return (0);
463 
464 fail4:
465 	EFSYS_PROBE(fail4);
466 fail3:
467 	EFSYS_PROBE(fail3);
468 fail2:
469 	EFSYS_PROBE(fail2);
470 fail1:
471 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
472 
473 	return (rc);
474 }
475 
476 	__checkReturn	efx_rc_t
477 efx_mcdi_get_rxdp_config(
478 	__in		efx_nic_t *enp,
479 	__out		uint32_t *end_paddingp)
480 {
481 	efx_mcdi_req_t req;
482 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
483 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
484 	uint32_t end_padding;
485 	efx_rc_t rc;
486 
487 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
488 	req.emr_in_buf = payload;
489 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
490 	req.emr_out_buf = payload;
491 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
492 
493 	efx_mcdi_execute(enp, &req);
494 	if (req.emr_rc != 0) {
495 		rc = req.emr_rc;
496 		goto fail1;
497 	}
498 
499 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
500 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
501 		/* RX DMA end padding is disabled */
502 		end_padding = 0;
503 	} else {
504 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
505 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
506 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
507 			end_padding = 64;
508 			break;
509 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
510 			end_padding = 128;
511 			break;
512 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
513 			end_padding = 256;
514 			break;
515 		default:
516 			rc = ENOTSUP;
517 			goto fail2;
518 		}
519 	}
520 
521 	*end_paddingp = end_padding;
522 
523 	return (0);
524 
525 fail2:
526 	EFSYS_PROBE(fail2);
527 fail1:
528 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
529 
530 	return (rc);
531 }
532 
533 	__checkReturn	efx_rc_t
534 efx_mcdi_get_vector_cfg(
535 	__in		efx_nic_t *enp,
536 	__out_opt	uint32_t *vec_basep,
537 	__out_opt	uint32_t *pf_nvecp,
538 	__out_opt	uint32_t *vf_nvecp)
539 {
540 	efx_mcdi_req_t req;
541 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
542 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
543 	efx_rc_t rc;
544 
545 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
546 	req.emr_in_buf = payload;
547 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
548 	req.emr_out_buf = payload;
549 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
550 
551 	efx_mcdi_execute(enp, &req);
552 
553 	if (req.emr_rc != 0) {
554 		rc = req.emr_rc;
555 		goto fail1;
556 	}
557 
558 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
559 		rc = EMSGSIZE;
560 		goto fail2;
561 	}
562 
563 	if (vec_basep != NULL)
564 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
565 	if (pf_nvecp != NULL)
566 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
567 	if (vf_nvecp != NULL)
568 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
569 
570 	return (0);
571 
572 fail2:
573 	EFSYS_PROBE(fail2);
574 fail1:
575 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
576 
577 	return (rc);
578 }
579 
580 	__checkReturn	efx_rc_t
581 efx_mcdi_alloc_vis(
582 	__in		efx_nic_t *enp,
583 	__in		uint32_t min_vi_count,
584 	__in		uint32_t max_vi_count,
585 	__out		uint32_t *vi_basep,
586 	__out		uint32_t *vi_countp,
587 	__out		uint32_t *vi_shiftp)
588 {
589 	efx_mcdi_req_t req;
590 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
591 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
592 	efx_rc_t rc;
593 
594 	if (vi_countp == NULL) {
595 		rc = EINVAL;
596 		goto fail1;
597 	}
598 
599 	req.emr_cmd = MC_CMD_ALLOC_VIS;
600 	req.emr_in_buf = payload;
601 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
602 	req.emr_out_buf = payload;
603 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
604 
605 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
606 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
607 
608 	efx_mcdi_execute(enp, &req);
609 
610 	if (req.emr_rc != 0) {
611 		rc = req.emr_rc;
612 		goto fail2;
613 	}
614 
615 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
616 		rc = EMSGSIZE;
617 		goto fail3;
618 	}
619 
620 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
621 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
622 
623 	/* Report VI_SHIFT if available (always zero for Huntington) */
624 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
625 		*vi_shiftp = 0;
626 	else
627 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
628 
629 	return (0);
630 
631 fail3:
632 	EFSYS_PROBE(fail3);
633 fail2:
634 	EFSYS_PROBE(fail2);
635 fail1:
636 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
637 
638 	return (rc);
639 }
640 
641 
642 	__checkReturn	efx_rc_t
643 efx_mcdi_free_vis(
644 	__in		efx_nic_t *enp)
645 {
646 	efx_mcdi_req_t req;
647 	efx_rc_t rc;
648 
649 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
650 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
651 
652 	req.emr_cmd = MC_CMD_FREE_VIS;
653 	req.emr_in_buf = NULL;
654 	req.emr_in_length = 0;
655 	req.emr_out_buf = NULL;
656 	req.emr_out_length = 0;
657 
658 	efx_mcdi_execute_quiet(enp, &req);
659 
660 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
661 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
662 		rc = req.emr_rc;
663 		goto fail1;
664 	}
665 
666 	return (0);
667 
668 fail1:
669 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
670 
671 	return (rc);
672 }
673 
674 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
675 
676 #if EFX_OPTS_EF10()
677 
678 static	__checkReturn	efx_rc_t
679 efx_mcdi_alloc_piobuf(
680 	__in		efx_nic_t *enp,
681 	__out		efx_piobuf_handle_t *handlep)
682 {
683 	efx_mcdi_req_t req;
684 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
685 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
686 	efx_rc_t rc;
687 
688 	if (handlep == NULL) {
689 		rc = EINVAL;
690 		goto fail1;
691 	}
692 
693 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
694 	req.emr_in_buf = payload;
695 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
696 	req.emr_out_buf = payload;
697 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
698 
699 	efx_mcdi_execute_quiet(enp, &req);
700 
701 	if (req.emr_rc != 0) {
702 		rc = req.emr_rc;
703 		goto fail2;
704 	}
705 
706 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
707 		rc = EMSGSIZE;
708 		goto fail3;
709 	}
710 
711 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
712 
713 	return (0);
714 
715 fail3:
716 	EFSYS_PROBE(fail3);
717 fail2:
718 	EFSYS_PROBE(fail2);
719 fail1:
720 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
721 
722 	return (rc);
723 }
724 
725 static	__checkReturn	efx_rc_t
726 efx_mcdi_free_piobuf(
727 	__in		efx_nic_t *enp,
728 	__in		efx_piobuf_handle_t handle)
729 {
730 	efx_mcdi_req_t req;
731 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
732 		MC_CMD_FREE_PIOBUF_OUT_LEN);
733 	efx_rc_t rc;
734 
735 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
736 	req.emr_in_buf = payload;
737 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
738 	req.emr_out_buf = payload;
739 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
740 
741 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
742 
743 	efx_mcdi_execute_quiet(enp, &req);
744 
745 	if (req.emr_rc != 0) {
746 		rc = req.emr_rc;
747 		goto fail1;
748 	}
749 
750 	return (0);
751 
752 fail1:
753 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
754 
755 	return (rc);
756 }
757 
758 static	__checkReturn	efx_rc_t
759 efx_mcdi_link_piobuf(
760 	__in		efx_nic_t *enp,
761 	__in		uint32_t vi_index,
762 	__in		efx_piobuf_handle_t handle)
763 {
764 	efx_mcdi_req_t req;
765 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
766 		MC_CMD_LINK_PIOBUF_OUT_LEN);
767 	efx_rc_t rc;
768 
769 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
770 	req.emr_in_buf = payload;
771 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
772 	req.emr_out_buf = payload;
773 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
774 
775 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
776 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
777 
778 	efx_mcdi_execute(enp, &req);
779 
780 	if (req.emr_rc != 0) {
781 		rc = req.emr_rc;
782 		goto fail1;
783 	}
784 
785 	return (0);
786 
787 fail1:
788 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
789 
790 	return (rc);
791 }
792 
793 static	__checkReturn	efx_rc_t
794 efx_mcdi_unlink_piobuf(
795 	__in		efx_nic_t *enp,
796 	__in		uint32_t vi_index)
797 {
798 	efx_mcdi_req_t req;
799 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
800 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
801 	efx_rc_t rc;
802 
803 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
804 	req.emr_in_buf = payload;
805 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
806 	req.emr_out_buf = payload;
807 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
808 
809 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
810 
811 	efx_mcdi_execute_quiet(enp, &req);
812 
813 	if (req.emr_rc != 0) {
814 		rc = req.emr_rc;
815 		goto fail1;
816 	}
817 
818 	return (0);
819 
820 fail1:
821 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
822 
823 	return (rc);
824 }
825 
826 static			void
827 ef10_nic_alloc_piobufs(
828 	__in		efx_nic_t *enp,
829 	__in		uint32_t max_piobuf_count)
830 {
831 	efx_piobuf_handle_t *handlep;
832 	unsigned int i;
833 
834 	EFSYS_ASSERT3U(max_piobuf_count, <=,
835 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
836 
837 	enp->en_arch.ef10.ena_piobuf_count = 0;
838 
839 	for (i = 0; i < max_piobuf_count; i++) {
840 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
841 
842 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
843 			goto fail1;
844 
845 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
846 		enp->en_arch.ef10.ena_piobuf_count++;
847 	}
848 
849 	return;
850 
851 fail1:
852 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
853 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
854 
855 		(void) efx_mcdi_free_piobuf(enp, *handlep);
856 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
857 	}
858 	enp->en_arch.ef10.ena_piobuf_count = 0;
859 }
860 
861 
862 static			void
863 ef10_nic_free_piobufs(
864 	__in		efx_nic_t *enp)
865 {
866 	efx_piobuf_handle_t *handlep;
867 	unsigned int i;
868 
869 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
870 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
871 
872 		(void) efx_mcdi_free_piobuf(enp, *handlep);
873 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
874 	}
875 	enp->en_arch.ef10.ena_piobuf_count = 0;
876 }
877 
878 /* Sub-allocate a block from a piobuf */
879 	__checkReturn	efx_rc_t
880 ef10_nic_pio_alloc(
881 	__inout		efx_nic_t *enp,
882 	__out		uint32_t *bufnump,
883 	__out		efx_piobuf_handle_t *handlep,
884 	__out		uint32_t *blknump,
885 	__out		uint32_t *offsetp,
886 	__out		size_t *sizep)
887 {
888 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
889 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
890 	uint32_t blk_per_buf;
891 	uint32_t buf, blk;
892 	efx_rc_t rc;
893 
894 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
895 	EFSYS_ASSERT(bufnump);
896 	EFSYS_ASSERT(handlep);
897 	EFSYS_ASSERT(blknump);
898 	EFSYS_ASSERT(offsetp);
899 	EFSYS_ASSERT(sizep);
900 
901 	if ((edcp->edc_pio_alloc_size == 0) ||
902 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
903 		rc = ENOMEM;
904 		goto fail1;
905 	}
906 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
907 
908 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
909 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
910 
911 		if (~(*map) == 0)
912 			continue;
913 
914 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
915 		for (blk = 0; blk < blk_per_buf; blk++) {
916 			if ((*map & (1u << blk)) == 0) {
917 				*map |= (1u << blk);
918 				goto done;
919 			}
920 		}
921 	}
922 	rc = ENOMEM;
923 	goto fail2;
924 
925 done:
926 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
927 	*bufnump = buf;
928 	*blknump = blk;
929 	*sizep = edcp->edc_pio_alloc_size;
930 	*offsetp = blk * (*sizep);
931 
932 	return (0);
933 
934 fail2:
935 	EFSYS_PROBE(fail2);
936 fail1:
937 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
938 
939 	return (rc);
940 }
941 
942 /* Free a piobuf sub-allocated block */
943 	__checkReturn	efx_rc_t
944 ef10_nic_pio_free(
945 	__inout		efx_nic_t *enp,
946 	__in		uint32_t bufnum,
947 	__in		uint32_t blknum)
948 {
949 	uint32_t *map;
950 	efx_rc_t rc;
951 
952 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
953 	    (blknum >= (8 * sizeof (*map)))) {
954 		rc = EINVAL;
955 		goto fail1;
956 	}
957 
958 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
959 	if ((*map & (1u << blknum)) == 0) {
960 		rc = ENOENT;
961 		goto fail2;
962 	}
963 	*map &= ~(1u << blknum);
964 
965 	return (0);
966 
967 fail2:
968 	EFSYS_PROBE(fail2);
969 fail1:
970 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
971 
972 	return (rc);
973 }
974 
975 	__checkReturn	efx_rc_t
976 ef10_nic_pio_link(
977 	__inout		efx_nic_t *enp,
978 	__in		uint32_t vi_index,
979 	__in		efx_piobuf_handle_t handle)
980 {
981 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
982 }
983 
984 	__checkReturn	efx_rc_t
985 ef10_nic_pio_unlink(
986 	__inout		efx_nic_t *enp,
987 	__in		uint32_t vi_index)
988 {
989 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
990 }
991 
992 #endif	/* EFX_OPTS_EF10() */
993 
994 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
995 
996 static	__checkReturn	efx_rc_t
997 ef10_mcdi_get_pf_count(
998 	__in		efx_nic_t *enp,
999 	__out		uint32_t *pf_countp)
1000 {
1001 	efx_mcdi_req_t req;
1002 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1003 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1004 	efx_rc_t rc;
1005 
1006 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1007 	req.emr_in_buf = payload;
1008 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1009 	req.emr_out_buf = payload;
1010 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1011 
1012 	efx_mcdi_execute(enp, &req);
1013 
1014 	if (req.emr_rc != 0) {
1015 		rc = req.emr_rc;
1016 		goto fail1;
1017 	}
1018 
1019 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1020 		rc = EMSGSIZE;
1021 		goto fail2;
1022 	}
1023 
1024 	*pf_countp = *MCDI_OUT(req, uint8_t,
1025 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1026 
1027 	EFSYS_ASSERT(*pf_countp != 0);
1028 
1029 	return (0);
1030 
1031 fail2:
1032 	EFSYS_PROBE(fail2);
1033 fail1:
1034 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1035 
1036 	return (rc);
1037 }
1038 
1039 static	__checkReturn	efx_rc_t
1040 ef10_get_datapath_caps(
1041 	__in		efx_nic_t *enp)
1042 {
1043 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1044 	efx_mcdi_req_t req;
1045 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1046 		MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
1047 	efx_rc_t rc;
1048 
1049 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1050 	req.emr_in_buf = payload;
1051 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1052 	req.emr_out_buf = payload;
1053 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V7_OUT_LEN;
1054 
1055 	efx_mcdi_execute_quiet(enp, &req);
1056 
1057 	if (req.emr_rc != 0) {
1058 		rc = req.emr_rc;
1059 		goto fail1;
1060 	}
1061 
1062 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1063 		rc = EMSGSIZE;
1064 		goto fail2;
1065 	}
1066 
1067 #define	CAP_FLAGS1(_req, _flag)						\
1068 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1069 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1070 
1071 #define	CAP_FLAGS2(_req, _flag)						\
1072 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1073 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1074 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1075 
1076 #define	CAP_FLAGS3(_req, _flag)						\
1077 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) && \
1078 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V7_OUT_FLAGS3) &	\
1079 	    (1u << (MC_CMD_GET_CAPABILITIES_V7_OUT_ ## _flag ## _LBN))))
1080 
1081 	/* Check if RXDP firmware inserts 14 byte prefix */
1082 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14))
1083 		encp->enc_rx_prefix_size = 14;
1084 	else
1085 		encp->enc_rx_prefix_size = 0;
1086 
1087 #if EFSYS_OPT_RX_SCALE
1088 	/* Check if the firmware supports additional RSS modes */
1089 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1090 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1091 	else
1092 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1093 #endif /* EFSYS_OPT_RX_SCALE */
1094 
1095 	/* Check if the firmware supports TSO */
1096 	if (CAP_FLAGS1(req, TX_TSO))
1097 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1098 	else
1099 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1100 
1101 	/* Check if the firmware supports FATSOv2 */
1102 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1103 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1104 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1105 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1106 	} else {
1107 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1108 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1109 	}
1110 
1111 	/* Check if the firmware supports FATSOv2 encap */
1112 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1113 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1114 	else
1115 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1116 
1117 	/* Check if TSOv3 is supported */
1118 	if (CAP_FLAGS2(req, TX_TSO_V3))
1119 		encp->enc_tso_v3_enabled = B_TRUE;
1120 	else
1121 		encp->enc_tso_v3_enabled = B_FALSE;
1122 
1123 	/* Check if the firmware has vadapter/vport/vswitch support */
1124 	if (CAP_FLAGS1(req, EVB))
1125 		encp->enc_datapath_cap_evb = B_TRUE;
1126 	else
1127 		encp->enc_datapath_cap_evb = B_FALSE;
1128 
1129 	/* Check if the firmware supports vport reconfiguration */
1130 	if (CAP_FLAGS1(req, VPORT_RECONFIGURE))
1131 		encp->enc_vport_reconfigure_supported = B_TRUE;
1132 	else
1133 		encp->enc_vport_reconfigure_supported = B_FALSE;
1134 
1135 	/* Check if the firmware supports VLAN insertion */
1136 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1137 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1138 	else
1139 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1140 
1141 	/* Check if the firmware supports RX event batching */
1142 	if (CAP_FLAGS1(req, RX_BATCHING))
1143 		encp->enc_rx_batching_enabled = B_TRUE;
1144 	else
1145 		encp->enc_rx_batching_enabled = B_FALSE;
1146 
1147 	/*
1148 	 * Even if batching isn't reported as supported, we may still get
1149 	 * batched events (see bug61153).
1150 	 */
1151 	encp->enc_rx_batch_max = 16;
1152 
1153 	/* Check if the firmware supports disabling scatter on RXQs */
1154 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1155 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1156 	else
1157 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1158 
1159 	/* Check if the firmware supports packed stream mode */
1160 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1161 		encp->enc_rx_packed_stream_supported = B_TRUE;
1162 	else
1163 		encp->enc_rx_packed_stream_supported = B_FALSE;
1164 
1165 	/*
1166 	 * Check if the firmware supports configurable buffer sizes
1167 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1168 	 */
1169 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1170 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1171 	else
1172 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1173 
1174 	/* Check if the firmware supports equal stride super-buffer mode */
1175 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1176 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1177 	else
1178 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1179 
1180 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1181 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1182 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1183 	else
1184 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1185 
1186 	/* Check if the firmware supports set mac with running filters */
1187 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1188 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1189 	else
1190 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1191 
1192 	/*
1193 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1194 	 * specifying which parameters to configure.
1195 	 */
1196 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1197 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1198 	else
1199 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1200 
1201 	/*
1202 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1203 	 * us to let the firmware choose the settings to use on an EVQ.
1204 	 */
1205 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1206 		encp->enc_init_evq_v2_supported = B_TRUE;
1207 	else
1208 		encp->enc_init_evq_v2_supported = B_FALSE;
1209 
1210 	/*
1211 	 * Check if firmware supports extended width event queues, which have
1212 	 * a different event descriptor layout.
1213 	 */
1214 	if (CAP_FLAGS3(req, EXTENDED_WIDTH_EVQS_SUPPORTED))
1215 		encp->enc_init_evq_extended_width_supported = B_TRUE;
1216 	else
1217 		encp->enc_init_evq_extended_width_supported = B_FALSE;
1218 
1219 	/*
1220 	 * Check if the NO_CONT_EV mode for RX events is supported.
1221 	 */
1222 	if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV))
1223 		encp->enc_no_cont_ev_mode_supported = B_TRUE;
1224 	else
1225 		encp->enc_no_cont_ev_mode_supported = B_FALSE;
1226 
1227 	/*
1228 	 * Check if buffer size may and must be specified on INIT_RXQ.
1229 	 * It may be always specified to efx_rx_qcreate(), but will be
1230 	 * just kept libefx internal if MCDI does not support it.
1231 	 */
1232 	if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE))
1233 		encp->enc_init_rxq_with_buffer_size = B_TRUE;
1234 	else
1235 		encp->enc_init_rxq_with_buffer_size = B_FALSE;
1236 
1237 	/*
1238 	 * Check if firmware-verified NVRAM updates must be used.
1239 	 *
1240 	 * The firmware trusted installer requires all NVRAM updates to use
1241 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1242 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1243 	 * partition and report the result).
1244 	 */
1245 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1246 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1247 	else
1248 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1249 
1250 	if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT))
1251 		encp->enc_nvram_update_poll_verify_result_supported = B_TRUE;
1252 	else
1253 		encp->enc_nvram_update_poll_verify_result_supported = B_FALSE;
1254 
1255 	/*
1256 	 * Check if firmware update via the BUNDLE partition is supported
1257 	 */
1258 	if (CAP_FLAGS2(req, BUNDLE_UPDATE))
1259 		encp->enc_nvram_bundle_update_supported = B_TRUE;
1260 	else
1261 		encp->enc_nvram_bundle_update_supported = B_FALSE;
1262 
1263 	/*
1264 	 * Check if firmware provides packet memory and Rx datapath
1265 	 * counters.
1266 	 */
1267 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1268 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1269 	else
1270 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1271 
1272 	/*
1273 	 * Check if the 40G MAC hardware is capable of reporting
1274 	 * statistics for Tx size bins.
1275 	 */
1276 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1277 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1278 	else
1279 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1280 
1281 	/*
1282 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1283 	 * The capability indicates Geneve protocol support as well.
1284 	 */
1285 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1286 		encp->enc_tunnel_encapsulations_supported =
1287 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1288 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1289 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1290 
1291 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1292 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1293 		encp->enc_tunnel_config_udp_entries_max =
1294 		    EFX_TUNNEL_MAXNENTRIES;
1295 	} else {
1296 		encp->enc_tunnel_config_udp_entries_max = 0;
1297 	}
1298 
1299 	/*
1300 	 * Check if firmware reports the VI window mode.
1301 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1302 	 * Medford and Huntington have a fixed 8K VI window size.
1303 	 */
1304 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1305 		uint8_t mode =
1306 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1307 
1308 		switch (mode) {
1309 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1310 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1311 			break;
1312 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1313 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1314 			break;
1315 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1316 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1317 			break;
1318 		default:
1319 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1320 			break;
1321 		}
1322 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1323 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1324 		/* Huntington and Medford have fixed 8K window size */
1325 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1326 	} else {
1327 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1328 	}
1329 
1330 	/* Check if firmware supports extended MAC stats. */
1331 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1332 		/* Extended stats buffer supported */
1333 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1334 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1335 	} else {
1336 		/* Use Siena-compatible legacy MAC stats */
1337 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1338 	}
1339 
1340 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1341 		encp->enc_fec_counters = B_TRUE;
1342 	else
1343 		encp->enc_fec_counters = B_FALSE;
1344 
1345 	/* Check if the firmware provides head-of-line blocking counters */
1346 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1347 		encp->enc_hlb_counters = B_TRUE;
1348 	else
1349 		encp->enc_hlb_counters = B_FALSE;
1350 
1351 #if EFSYS_OPT_RX_SCALE
1352 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1353 		/* Only one exclusive RSS context is available per port. */
1354 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1355 
1356 		switch (enp->en_family) {
1357 		case EFX_FAMILY_MEDFORD2:
1358 			encp->enc_rx_scale_hash_alg_mask =
1359 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1360 			break;
1361 
1362 		case EFX_FAMILY_MEDFORD:
1363 		case EFX_FAMILY_HUNTINGTON:
1364 			/*
1365 			 * Packed stream firmware variant maintains a
1366 			 * non-standard algorithm for hash computation.
1367 			 * It implies explicit XORing together
1368 			 * source + destination IP addresses (or last
1369 			 * four bytes in the case of IPv6) and using the
1370 			 * resulting value as the input to a Toeplitz hash.
1371 			 */
1372 			encp->enc_rx_scale_hash_alg_mask =
1373 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1374 			break;
1375 
1376 		default:
1377 			rc = EINVAL;
1378 			goto fail3;
1379 		}
1380 
1381 		/* Port numbers cannot contribute to the hash value */
1382 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1383 	} else {
1384 		/*
1385 		 * Maximum number of exclusive RSS contexts.
1386 		 * EF10 hardware supports 64 in total, but 6 are reserved
1387 		 * for shared contexts. They are a global resource so
1388 		 * not all may be available.
1389 		 */
1390 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1391 
1392 		encp->enc_rx_scale_hash_alg_mask =
1393 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1394 
1395 		/*
1396 		 * It is possible to use port numbers as
1397 		 * the input data for hash computation.
1398 		 */
1399 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1400 	}
1401 #endif /* EFSYS_OPT_RX_SCALE */
1402 
1403 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1404 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1405 		encp->enc_filter_action_flag_supported = B_TRUE;
1406 	else
1407 		encp->enc_filter_action_flag_supported = B_FALSE;
1408 
1409 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1410 		encp->enc_filter_action_mark_supported = B_TRUE;
1411 	else
1412 		encp->enc_filter_action_mark_supported = B_FALSE;
1413 
1414 	/* Get maximum supported value for "MARK" filter action */
1415 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1416 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1417 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1418 	else
1419 		encp->enc_filter_action_mark_max = 0;
1420 
1421 #undef CAP_FLAGS1
1422 #undef CAP_FLAGS2
1423 
1424 	return (0);
1425 
1426 #if EFSYS_OPT_RX_SCALE
1427 fail3:
1428 	EFSYS_PROBE(fail3);
1429 #endif /* EFSYS_OPT_RX_SCALE */
1430 fail2:
1431 	EFSYS_PROBE(fail2);
1432 fail1:
1433 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1434 
1435 	return (rc);
1436 }
1437 
1438 
1439 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1440 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1441 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1442 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1443 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1444 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1445 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1446 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1447 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1448 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1449 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1450 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1451 
1452 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1453 
1454 
1455 	__checkReturn		efx_rc_t
1456 ef10_get_privilege_mask(
1457 	__in			efx_nic_t *enp,
1458 	__out			uint32_t *maskp)
1459 {
1460 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1461 	uint32_t mask;
1462 	efx_rc_t rc;
1463 
1464 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1465 					    &mask)) != 0) {
1466 		if (rc != ENOTSUP)
1467 			goto fail1;
1468 
1469 		/* Fallback for old firmware without privilege mask support */
1470 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1471 			/* Assume PF has admin privilege */
1472 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1473 		} else {
1474 			/* VF is always unprivileged by default */
1475 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1476 		}
1477 	}
1478 
1479 	*maskp = mask;
1480 
1481 	return (0);
1482 
1483 fail1:
1484 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1485 
1486 	return (rc);
1487 }
1488 
1489 
1490 #define	EFX_EXT_PORT_MAX	4
1491 #define	EFX_EXT_PORT_NA		0xFF
1492 
1493 /*
1494  * Table of mapping schemes from port number to external number.
1495  *
1496  * Each port number ultimately corresponds to a connector: either as part of
1497  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1498  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1499  * "Salina"). In general:
1500  *
1501  * Port number (0-based)
1502  *     |
1503  *   port mapping (n:1)
1504  *     |
1505  *     v
1506  * External port number (1-based)
1507  *     |
1508  *   fixed (1:1) or cable assembly (1:m)
1509  *     |
1510  *     v
1511  * Connector
1512  *
1513  * The external numbering refers to the cages or magjacks on the board,
1514  * as visibly annotated on the board or back panel. This table describes
1515  * how to determine which external cage/magjack corresponds to the port
1516  * numbers used by the driver.
1517  *
1518  * The count of consecutive port numbers that map to each external number,
1519  * is determined by the chip family and the current port mode.
1520  *
1521  * For the Huntington family, the current port mode cannot be discovered,
1522  * but a single mapping is used by all modes for a given chip variant,
1523  * so the mapping used is instead the last match in the table to the full
1524  * set of port modes to which the NIC can be configured. Therefore the
1525  * ordering of entries in the mapping table is significant.
1526  */
1527 static struct ef10_external_port_map_s {
1528 	efx_family_t	family;
1529 	uint32_t	modes_mask;
1530 	uint8_t		base_port[EFX_EXT_PORT_MAX];
1531 }	__ef10_external_port_mappings[] = {
1532 	/*
1533 	 * Modes used by Huntington family controllers where each port
1534 	 * number maps to a separate cage.
1535 	 * SFN7x22F (Torino):
1536 	 *	port 0 -> cage 1
1537 	 *	port 1 -> cage 2
1538 	 * SFN7xx4F (Pavia):
1539 	 *	port 0 -> cage 1
1540 	 *	port 1 -> cage 2
1541 	 *	port 2 -> cage 3
1542 	 *	port 3 -> cage 4
1543 	 */
1544 	{
1545 		EFX_FAMILY_HUNTINGTON,
1546 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1547 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1548 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1549 		{ 0, 1, 2, 3 }
1550 	},
1551 	/*
1552 	 * Modes which for Huntington identify a chip variant where 2
1553 	 * adjacent port numbers map to each cage.
1554 	 * SFN7x42Q (Monza):
1555 	 *	port 0 -> cage 1
1556 	 *	port 1 -> cage 1
1557 	 *	port 2 -> cage 2
1558 	 *	port 3 -> cage 2
1559 	 */
1560 	{
1561 		EFX_FAMILY_HUNTINGTON,
1562 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1563 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1564 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1565 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1566 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1567 	},
1568 	/*
1569 	 * Modes that on Medford allocate each port number to a separate
1570 	 * cage.
1571 	 *	port 0 -> cage 1
1572 	 *	port 1 -> cage 2
1573 	 *	port 2 -> cage 3
1574 	 *	port 3 -> cage 4
1575 	 */
1576 	{
1577 		EFX_FAMILY_MEDFORD,
1578 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1579 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1580 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1581 		{ 0, 1, 2, 3 }
1582 	},
1583 	/*
1584 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1585 	 * cage.
1586 	 *	port 0 -> cage 1
1587 	 *	port 1 -> cage 1
1588 	 *	port 2 -> cage 2
1589 	 *	port 3 -> cage 2
1590 	 */
1591 	{
1592 		EFX_FAMILY_MEDFORD,
1593 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1594 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1595 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1596 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1597 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1598 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1599 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1600 	},
1601 	/*
1602 	 * Modes that on Medford allocate 4 adjacent port numbers to
1603 	 * cage 1.
1604 	 *	port 0 -> cage 1
1605 	 *	port 1 -> cage 1
1606 	 *	port 2 -> cage 1
1607 	 *	port 3 -> cage 1
1608 	 */
1609 	{
1610 		EFX_FAMILY_MEDFORD,
1611 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1612 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1613 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1614 	},
1615 	/*
1616 	 * Modes that on Medford allocate 4 adjacent port numbers to
1617 	 * cage 2.
1618 	 *	port 0 -> cage 2
1619 	 *	port 1 -> cage 2
1620 	 *	port 2 -> cage 2
1621 	 *	port 3 -> cage 2
1622 	 */
1623 	{
1624 		EFX_FAMILY_MEDFORD,
1625 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1626 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1627 	},
1628 	/*
1629 	 * Modes that on Medford2 allocate each port number to a separate
1630 	 * cage.
1631 	 *	port 0 -> cage 1
1632 	 *	port 1 -> cage 2
1633 	 *	port 2 -> cage 3
1634 	 *	port 3 -> cage 4
1635 	 */
1636 	{
1637 		EFX_FAMILY_MEDFORD2,
1638 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1639 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1640 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1641 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1642 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1643 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1644 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1645 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1646 		{ 0, 1, 2, 3 }
1647 	},
1648 	/*
1649 	 * Modes that on Medford2 allocate 1 port to cage 1 and the rest
1650 	 * to cage 2.
1651 	 *	port 0 -> cage 1
1652 	 *	port 1 -> cage 2
1653 	 *	port 2 -> cage 2
1654 	 */
1655 	{
1656 		EFX_FAMILY_MEDFORD2,
1657 		(1U << TLV_PORT_MODE_1x2_2x1) |			/* mode 17 */
1658 		(1U << TLV_PORT_MODE_1x4_2x1),			/* mode 6 */
1659 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1660 	},
1661 	/*
1662 	 * Modes that on Medford2 allocate 2 adjacent port numbers to cage 1
1663 	 * and the rest to cage 2.
1664 	 *	port 0 -> cage 1
1665 	 *	port 1 -> cage 1
1666 	 *	port 2 -> cage 2
1667 	 *	port 3 -> cage 2
1668 	 */
1669 	{
1670 		EFX_FAMILY_MEDFORD2,
1671 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1672 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1673 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1674 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1675 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1676 	},
1677 	/*
1678 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1679 	 * to cage 1.
1680 	 *	port 0 -> cage 1
1681 	 *	port 1 -> cage 1
1682 	 *	port 2 -> cage 1
1683 	 *	port 3 -> cage 1
1684 	 */
1685 	{
1686 		EFX_FAMILY_MEDFORD2,
1687 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1688 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1689 	},
1690 	/*
1691 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1692 	 * to cage 2.
1693 	 *	port 0 -> cage 2
1694 	 *	port 1 -> cage 2
1695 	 *	port 2 -> cage 2
1696 	 *	port 3 -> cage 2
1697 	 */
1698 	{
1699 		EFX_FAMILY_MEDFORD2,
1700 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1701 		(1U << TLV_PORT_MODE_NA_1x2) |			/* mode 11 */
1702 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1703 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1704 	},
1705 	/*
1706 	 * Modes that on Riverhead allocate each port number to a separate
1707 	 * cage.
1708 	 *	port 0 -> cage 1
1709 	 *	port 1 -> cage 2
1710 	 */
1711 	{
1712 		EFX_FAMILY_RIVERHEAD,
1713 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1714 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1715 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1716 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1717 	},
1718 };
1719 
1720 static	__checkReturn	efx_rc_t
1721 ef10_external_port_mapping(
1722 	__in		efx_nic_t *enp,
1723 	__in		uint32_t port,
1724 	__out		uint8_t *external_portp)
1725 {
1726 	efx_rc_t rc;
1727 	int i;
1728 	uint32_t port_modes;
1729 	uint32_t matches;
1730 	uint32_t current;
1731 	struct ef10_external_port_map_s *mapp = NULL;
1732 	int ext_index = port; /* Default 1-1 mapping */
1733 
1734 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1735 		    NULL)) != 0) {
1736 		/*
1737 		 * No current port mode information (i.e. Huntington)
1738 		 * - infer mapping from available modes
1739 		 */
1740 		if ((rc = efx_mcdi_get_port_modes(enp,
1741 			    &port_modes, NULL, NULL)) != 0) {
1742 			/*
1743 			 * No port mode information available
1744 			 * - use default mapping
1745 			 */
1746 			goto out;
1747 		}
1748 	} else {
1749 		/* Only need to scan the current mode */
1750 		port_modes = 1 << current;
1751 	}
1752 
1753 	/*
1754 	 * Infer the internal port -> external number mapping from
1755 	 * the possible port modes for this NIC.
1756 	 */
1757 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1758 		struct ef10_external_port_map_s *eepmp =
1759 		    &__ef10_external_port_mappings[i];
1760 		if (eepmp->family != enp->en_family)
1761 			continue;
1762 		matches = (eepmp->modes_mask & port_modes);
1763 		if (matches != 0) {
1764 			/*
1765 			 * Some modes match. For some Huntington boards
1766 			 * there will be multiple matches. The mapping on the
1767 			 * last match is used.
1768 			 */
1769 			mapp = eepmp;
1770 			port_modes &= ~matches;
1771 		}
1772 	}
1773 
1774 	if (port_modes != 0) {
1775 		/* Some advertised modes are not supported */
1776 		rc = ENOTSUP;
1777 		goto fail1;
1778 	}
1779 
1780 out:
1781 	if (mapp != NULL) {
1782 		/*
1783 		 * External ports are assigned a sequence of consecutive
1784 		 * port numbers, so find the one with the closest base_port.
1785 		 */
1786 		uint32_t delta = EFX_EXT_PORT_NA;
1787 
1788 		for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
1789 			uint32_t base = mapp->base_port[i];
1790 			if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
1791 				if ((port - base) < delta) {
1792 					delta = (port - base);
1793 					ext_index = i;
1794 				}
1795 			}
1796 		}
1797 	}
1798 	*external_portp = (uint8_t)(ext_index + 1);
1799 
1800 	return (0);
1801 
1802 fail1:
1803 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1804 
1805 	return (rc);
1806 }
1807 
1808 	__checkReturn	efx_rc_t
1809 efx_mcdi_nic_board_cfg(
1810 	__in		efx_nic_t *enp)
1811 {
1812 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1813 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1814 	ef10_link_state_t els;
1815 	efx_port_t *epp = &(enp->en_port);
1816 	uint32_t board_type = 0;
1817 	uint32_t base, nvec;
1818 	uint32_t port;
1819 	uint32_t mask;
1820 	uint32_t pf;
1821 	uint32_t vf;
1822 	uint8_t mac_addr[6] = { 0 };
1823 	efx_rc_t rc;
1824 
1825 	/* Get the (zero-based) MCDI port number */
1826 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1827 		goto fail1;
1828 
1829 	/* EFX MCDI interface uses one-based port numbers */
1830 	emip->emi_port = port + 1;
1831 
1832 	encp->enc_assigned_port = port;
1833 
1834 	if ((rc = ef10_external_port_mapping(enp, port,
1835 		    &encp->enc_external_port)) != 0)
1836 		goto fail2;
1837 
1838 	/*
1839 	 * Get PCIe function number from firmware (used for
1840 	 * per-function privilege and dynamic config info).
1841 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1842 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1843 	 */
1844 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
1845 		goto fail3;
1846 
1847 	encp->enc_pf = pf;
1848 	encp->enc_vf = vf;
1849 
1850 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1851 		goto fail4;
1852 
1853 	/* MAC address for this function */
1854 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1855 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1856 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1857 		/*
1858 		 * Disable static config checking, ONLY for manufacturing test
1859 		 * and setup at the factory, to allow the static config to be
1860 		 * installed.
1861 		 */
1862 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1863 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
1864 			/*
1865 			 * If the static config does not include a global MAC
1866 			 * address pool then the board may return a locally
1867 			 * administered MAC address (this should only happen on
1868 			 * incorrectly programmed boards).
1869 			 */
1870 			rc = EINVAL;
1871 		}
1872 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1873 	} else {
1874 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
1875 	}
1876 	if (rc != 0)
1877 		goto fail5;
1878 
1879 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
1880 
1881 	/* Board configuration (legacy) */
1882 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
1883 	if (rc != 0) {
1884 		/* Unprivileged functions may not be able to read board cfg */
1885 		if (rc == EACCES)
1886 			board_type = 0;
1887 		else
1888 			goto fail6;
1889 	}
1890 
1891 	encp->enc_board_type = board_type;
1892 
1893 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
1894 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
1895 		goto fail7;
1896 
1897 	/*
1898 	 * Firmware with support for *_FEC capability bits does not
1899 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
1900 	 * Add them here so that drivers understand that they are supported.
1901 	 */
1902 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
1903 		epp->ep_phy_cap_mask |=
1904 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
1905 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
1906 		epp->ep_phy_cap_mask |=
1907 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
1908 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
1909 		epp->ep_phy_cap_mask |=
1910 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
1911 
1912 	/* Obtain the default PHY advertised capabilities */
1913 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
1914 		goto fail8;
1915 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
1916 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
1917 
1918 	/* Check capabilities of running datapath firmware */
1919 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
1920 		goto fail9;
1921 
1922 	/* Get interrupt vector limits */
1923 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
1924 		if (EFX_PCI_FUNCTION_IS_PF(encp))
1925 			goto fail10;
1926 
1927 		/* Ignore error (cannot query vector limits from a VF). */
1928 		base = 0;
1929 		nvec = 1024;
1930 	}
1931 	encp->enc_intr_vec_base = base;
1932 	encp->enc_intr_limit = nvec;
1933 
1934 	/*
1935 	 * Get the current privilege mask. Note that this may be modified
1936 	 * dynamically, so this value is informational only. DO NOT use
1937 	 * the privilege mask to check for sufficient privileges, as that
1938 	 * can result in time-of-check/time-of-use bugs.
1939 	 */
1940 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
1941 		goto fail11;
1942 	encp->enc_privilege_mask = mask;
1943 
1944 	return (0);
1945 
1946 fail11:
1947 	EFSYS_PROBE(fail11);
1948 fail10:
1949 	EFSYS_PROBE(fail10);
1950 fail9:
1951 	EFSYS_PROBE(fail9);
1952 fail8:
1953 	EFSYS_PROBE(fail8);
1954 fail7:
1955 	EFSYS_PROBE(fail7);
1956 fail6:
1957 	EFSYS_PROBE(fail6);
1958 fail5:
1959 	EFSYS_PROBE(fail5);
1960 fail4:
1961 	EFSYS_PROBE(fail4);
1962 fail3:
1963 	EFSYS_PROBE(fail3);
1964 fail2:
1965 	EFSYS_PROBE(fail2);
1966 fail1:
1967 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1968 
1969 	return (rc);
1970 }
1971 
1972 	__checkReturn	efx_rc_t
1973 efx_mcdi_entity_reset(
1974 	__in		efx_nic_t *enp)
1975 {
1976 	efx_mcdi_req_t req;
1977 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
1978 		MC_CMD_ENTITY_RESET_OUT_LEN);
1979 	efx_rc_t rc;
1980 
1981 	req.emr_cmd = MC_CMD_ENTITY_RESET;
1982 	req.emr_in_buf = payload;
1983 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
1984 	req.emr_out_buf = payload;
1985 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
1986 
1987 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
1988 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1989 
1990 	efx_mcdi_execute(enp, &req);
1991 
1992 	if (req.emr_rc != 0) {
1993 		rc = req.emr_rc;
1994 		goto fail1;
1995 	}
1996 
1997 	return (0);
1998 
1999 fail1:
2000 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2001 
2002 	return (rc);
2003 }
2004 
2005 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2006 
2007 #if EFX_OPTS_EF10()
2008 
2009 static	__checkReturn	efx_rc_t
2010 ef10_set_workaround_bug26807(
2011 	__in		efx_nic_t *enp)
2012 {
2013 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2014 	uint32_t flags;
2015 	efx_rc_t rc;
2016 
2017 	/*
2018 	 * If the bug26807 workaround is enabled, then firmware has enabled
2019 	 * support for chained multicast filters. Firmware will reset (FLR)
2020 	 * functions which have filters in the hardware filter table when the
2021 	 * workaround is enabled/disabled.
2022 	 *
2023 	 * We must recheck if the workaround is enabled after inserting the
2024 	 * first hardware filter, in case it has been changed since this check.
2025 	 */
2026 	rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
2027 	    B_TRUE, &flags);
2028 	if (rc == 0) {
2029 		encp->enc_bug26807_workaround = B_TRUE;
2030 		if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
2031 			/*
2032 			 * Other functions had installed filters before the
2033 			 * workaround was enabled, and they have been reset
2034 			 * by firmware.
2035 			 */
2036 			EFSYS_PROBE(bug26807_workaround_flr_done);
2037 			/* FIXME: bump MC warm boot count ? */
2038 		}
2039 	} else if (rc == EACCES) {
2040 		/*
2041 		 * Unprivileged functions cannot enable the workaround in older
2042 		 * firmware.
2043 		 */
2044 		encp->enc_bug26807_workaround = B_FALSE;
2045 	} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
2046 		encp->enc_bug26807_workaround = B_FALSE;
2047 	} else {
2048 		goto fail1;
2049 	}
2050 
2051 	return (0);
2052 
2053 fail1:
2054 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2055 
2056 	return (rc);
2057 }
2058 
2059 static	__checkReturn	efx_rc_t
2060 ef10_nic_board_cfg(
2061 	__in		efx_nic_t *enp)
2062 {
2063 	const efx_nic_ops_t *enop = enp->en_enop;
2064 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2065 	efx_rc_t rc;
2066 
2067 	if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0)
2068 		goto fail1;
2069 
2070 	/*
2071 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
2072 	 * We only support the 14 byte prefix here.
2073 	 */
2074 	if (encp->enc_rx_prefix_size != 14) {
2075 		rc = ENOTSUP;
2076 		goto fail2;
2077 	}
2078 
2079 	encp->enc_clk_mult = 1; /* not used for EF10 */
2080 
2081 	/* Alignment for WPTR updates */
2082 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
2083 
2084 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
2085 	/* No boundary crossing limits */
2086 	encp->enc_tx_dma_desc_boundary = 0;
2087 
2088 	/*
2089 	 * Maximum number of bytes into the frame the TCP header can start for
2090 	 * firmware assisted TSO to work.
2091 	 */
2092 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
2093 
2094 	/* EF10 TSO engine demands that packet header be contiguous. */
2095 	encp->enc_tx_tso_max_header_ndescs = 1;
2096 
2097 	/* The overall TSO header length is not limited. */
2098 	encp->enc_tx_tso_max_header_length = UINT32_MAX;
2099 
2100 	/*
2101 	 * There are no specific limitations on the number of
2102 	 * TSO payload descriptors.
2103 	 */
2104 	encp->enc_tx_tso_max_payload_ndescs = UINT32_MAX;
2105 
2106 	/* TSO superframe payload length is not limited. */
2107 	encp->enc_tx_tso_max_payload_length = UINT32_MAX;
2108 
2109 	/*
2110 	 * Limitation on the maximum number of outgoing packets per
2111 	 * TSO transaction described in SF-108452-SW.
2112 	 */
2113 	encp->enc_tx_tso_max_nframes = 32767;
2114 
2115 	/*
2116 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
2117 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
2118 	 * resources (allocated to this PCIe function), which is zero until
2119 	 * after we have allocated VIs.
2120 	 */
2121 	encp->enc_evq_limit = 1024;
2122 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
2123 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
2124 
2125 	encp->enc_buftbl_limit = UINT32_MAX;
2126 
2127 	if ((rc = ef10_set_workaround_bug26807(enp)) != 0)
2128 		goto fail3;
2129 
2130 	/* Get remaining controller-specific board config */
2131 	if ((rc = enop->eno_board_cfg(enp)) != 0)
2132 		if (rc != EACCES)
2133 			goto fail4;
2134 
2135 	return (0);
2136 
2137 fail4:
2138 	EFSYS_PROBE(fail4);
2139 fail3:
2140 	EFSYS_PROBE(fail3);
2141 fail2:
2142 	EFSYS_PROBE(fail2);
2143 fail1:
2144 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2145 
2146 	return (rc);
2147 }
2148 
2149 	__checkReturn	efx_rc_t
2150 ef10_nic_probe(
2151 	__in		efx_nic_t *enp)
2152 {
2153 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2154 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2155 	efx_rc_t rc;
2156 
2157 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2158 
2159 	/* Read and clear any assertion state */
2160 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2161 		goto fail1;
2162 
2163 	/* Exit the assertion handler */
2164 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2165 		if (rc != EACCES)
2166 			goto fail2;
2167 
2168 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
2169 		goto fail3;
2170 
2171 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
2172 		goto fail4;
2173 
2174 	/*
2175 	 * Set default driver config limits (based on board config).
2176 	 *
2177 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2178 	 * sufficient and small enough to allow multiple functions on the same
2179 	 * port.
2180 	 */
2181 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2182 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2183 
2184 	/* The client driver must configure and enable PIO buffer support */
2185 	edcp->edc_max_piobuf_count = 0;
2186 	edcp->edc_pio_alloc_size = 0;
2187 
2188 #if EFSYS_OPT_MAC_STATS
2189 	/* Wipe the MAC statistics */
2190 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2191 		goto fail5;
2192 #endif
2193 
2194 #if EFSYS_OPT_LOOPBACK
2195 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2196 		goto fail6;
2197 #endif
2198 
2199 #if EFSYS_OPT_MON_STATS
2200 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2201 		/* Unprivileged functions do not have access to sensors */
2202 		if (rc != EACCES)
2203 			goto fail7;
2204 	}
2205 #endif
2206 
2207 	return (0);
2208 
2209 #if EFSYS_OPT_MON_STATS
2210 fail7:
2211 	EFSYS_PROBE(fail7);
2212 #endif
2213 #if EFSYS_OPT_LOOPBACK
2214 fail6:
2215 	EFSYS_PROBE(fail6);
2216 #endif
2217 #if EFSYS_OPT_MAC_STATS
2218 fail5:
2219 	EFSYS_PROBE(fail5);
2220 #endif
2221 fail4:
2222 	EFSYS_PROBE(fail4);
2223 fail3:
2224 	EFSYS_PROBE(fail3);
2225 fail2:
2226 	EFSYS_PROBE(fail2);
2227 fail1:
2228 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2229 
2230 	return (rc);
2231 }
2232 
2233 	__checkReturn	efx_rc_t
2234 ef10_nic_set_drv_limits(
2235 	__inout		efx_nic_t *enp,
2236 	__in		efx_drv_limits_t *edlp)
2237 {
2238 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2239 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2240 	uint32_t min_evq_count, max_evq_count;
2241 	uint32_t min_rxq_count, max_rxq_count;
2242 	uint32_t min_txq_count, max_txq_count;
2243 	efx_rc_t rc;
2244 
2245 	if (edlp == NULL) {
2246 		rc = EINVAL;
2247 		goto fail1;
2248 	}
2249 
2250 	/* Get minimum required and maximum usable VI limits */
2251 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2252 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2253 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2254 
2255 	edcp->edc_min_vi_count =
2256 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2257 
2258 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2259 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2260 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2261 
2262 	edcp->edc_max_vi_count =
2263 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2264 
2265 	/*
2266 	 * Check limits for sub-allocated piobuf blocks.
2267 	 * PIO is optional, so don't fail if the limits are incorrect.
2268 	 */
2269 	if ((encp->enc_piobuf_size == 0) ||
2270 	    (encp->enc_piobuf_limit == 0) ||
2271 	    (edlp->edl_min_pio_alloc_size == 0) ||
2272 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2273 		/* Disable PIO */
2274 		edcp->edc_max_piobuf_count = 0;
2275 		edcp->edc_pio_alloc_size = 0;
2276 	} else {
2277 		uint32_t blk_size, blk_count, blks_per_piobuf;
2278 
2279 		blk_size =
2280 		    MAX(edlp->edl_min_pio_alloc_size,
2281 			    encp->enc_piobuf_min_alloc_size);
2282 
2283 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2284 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2285 
2286 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2287 
2288 		/* A zero max pio alloc count means unlimited */
2289 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2290 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2291 			blk_count = edlp->edl_max_pio_alloc_count;
2292 		}
2293 
2294 		edcp->edc_pio_alloc_size = blk_size;
2295 		edcp->edc_max_piobuf_count =
2296 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2297 	}
2298 
2299 	return (0);
2300 
2301 fail1:
2302 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2303 
2304 	return (rc);
2305 }
2306 
2307 
2308 	__checkReturn	efx_rc_t
2309 ef10_nic_reset(
2310 	__in		efx_nic_t *enp)
2311 {
2312 	efx_rc_t rc;
2313 
2314 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2315 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2316 		goto fail1;
2317 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2318 		goto fail2;
2319 
2320 	if ((rc = efx_mcdi_entity_reset(enp)) != 0)
2321 		goto fail3;
2322 
2323 	/* Clear RX/TX DMA queue errors */
2324 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2325 
2326 	return (0);
2327 
2328 fail3:
2329 	EFSYS_PROBE(fail3);
2330 fail2:
2331 	EFSYS_PROBE(fail2);
2332 fail1:
2333 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2334 
2335 	return (rc);
2336 }
2337 
2338 #endif	/* EFX_OPTS_EF10() */
2339 
2340 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2341 
2342 	__checkReturn	efx_rc_t
2343 ef10_upstream_port_vadaptor_alloc(
2344 	__in		efx_nic_t *enp)
2345 {
2346 	uint32_t retry;
2347 	uint32_t delay_us;
2348 	efx_rc_t rc;
2349 
2350 	/*
2351 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2352 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2353 	 * retry the request several times after waiting a while. The wait time
2354 	 * between retries starts small (10ms) and exponentially increases.
2355 	 * Total wait time is a little over two seconds. Retry logic in the
2356 	 * client driver may mean this whole loop is repeated if it continues to
2357 	 * fail.
2358 	 */
2359 	retry = 0;
2360 	delay_us = 10000;
2361 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2362 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2363 		    (rc != ENOENT)) {
2364 			/*
2365 			 * Do not retry alloc for PF, or for other errors on
2366 			 * a VF.
2367 			 */
2368 			goto fail1;
2369 		}
2370 
2371 		/* VF startup before PF is ready. Retry allocation. */
2372 		if (retry > 5) {
2373 			/* Too many attempts */
2374 			rc = EINVAL;
2375 			goto fail2;
2376 		}
2377 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2378 		EFSYS_SLEEP(delay_us);
2379 		retry++;
2380 		if (delay_us < 500000)
2381 			delay_us <<= 2;
2382 	}
2383 
2384 	return (0);
2385 
2386 fail2:
2387 	EFSYS_PROBE(fail2);
2388 fail1:
2389 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2390 
2391 	return (rc);
2392 }
2393 
2394 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2395 
2396 #if EFX_OPTS_EF10()
2397 
2398 	__checkReturn	efx_rc_t
2399 ef10_nic_init(
2400 	__in		efx_nic_t *enp)
2401 {
2402 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2403 	uint32_t min_vi_count, max_vi_count;
2404 	uint32_t vi_count, vi_base, vi_shift;
2405 	uint32_t i;
2406 	uint32_t vi_window_size;
2407 	efx_rc_t rc;
2408 	boolean_t alloc_vadaptor = B_TRUE;
2409 
2410 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2411 
2412 	/* Enable reporting of some events (e.g. link change) */
2413 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2414 		goto fail1;
2415 
2416 	/* Allocate (optional) on-chip PIO buffers */
2417 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2418 
2419 	/*
2420 	 * For best performance, PIO writes should use a write-combined
2421 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2422 	 * aperture of each VI would be a burden to drivers (and not
2423 	 * possible if the host page size is >4Kbyte).
2424 	 *
2425 	 * To avoid this we use a single uncached (UC) mapping for VI
2426 	 * register access, and a single WC mapping for extra VIs used
2427 	 * for PIO writes.
2428 	 *
2429 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2430 	 * each VI that is using a sub-allocated block from the piobuf.
2431 	 */
2432 	min_vi_count = edcp->edc_min_vi_count;
2433 	max_vi_count =
2434 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2435 
2436 	/* Ensure that the previously attached driver's VIs are freed */
2437 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2438 		goto fail2;
2439 
2440 	/*
2441 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2442 	 * fails then retrying the request for fewer VI resources may succeed.
2443 	 */
2444 	vi_count = 0;
2445 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2446 		    &vi_base, &vi_count, &vi_shift)) != 0)
2447 		goto fail3;
2448 
2449 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2450 
2451 	if (vi_count < min_vi_count) {
2452 		rc = ENOMEM;
2453 		goto fail4;
2454 	}
2455 
2456 	enp->en_arch.ef10.ena_vi_base = vi_base;
2457 	enp->en_arch.ef10.ena_vi_count = vi_count;
2458 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2459 
2460 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2461 		/* Not enough extra VIs to map piobufs */
2462 		ef10_nic_free_piobufs(enp);
2463 	}
2464 
2465 	enp->en_arch.ef10.ena_pio_write_vi_base =
2466 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2467 
2468 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2469 	    EFX_VI_WINDOW_SHIFT_INVALID);
2470 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2471 	    EFX_VI_WINDOW_SHIFT_64K);
2472 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2473 
2474 	/* Save UC memory mapping details */
2475 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2476 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2477 		enp->en_arch.ef10.ena_uc_mem_map_size =
2478 		    (vi_window_size *
2479 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2480 	} else {
2481 		enp->en_arch.ef10.ena_uc_mem_map_size =
2482 		    (vi_window_size *
2483 		    enp->en_arch.ef10.ena_vi_count);
2484 	}
2485 
2486 	/* Save WC memory mapping details */
2487 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2488 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2489 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2490 
2491 	enp->en_arch.ef10.ena_wc_mem_map_size =
2492 	    (vi_window_size *
2493 	    enp->en_arch.ef10.ena_piobuf_count);
2494 
2495 	/* Link piobufs to extra VIs in WC mapping */
2496 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2497 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2498 			rc = efx_mcdi_link_piobuf(enp,
2499 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2500 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2501 			if (rc != 0)
2502 				break;
2503 		}
2504 	}
2505 
2506 	/*
2507 	 * For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
2508 	 * during NIC initialization when vSwitch is created and vports are
2509 	 * allocated. Hence, skip vAdaptor allocation for EVB and update vport
2510 	 * id in NIC structure with the one allocated for PF.
2511 	 */
2512 
2513 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2514 #if EFSYS_OPT_EVB
2515 	if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
2516 		/* For EVB use vport allocated on vswitch */
2517 		enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
2518 		alloc_vadaptor = B_FALSE;
2519 	}
2520 #endif
2521 	if (alloc_vadaptor != B_FALSE) {
2522 		/* Allocate a vAdaptor attached to our upstream vPort/pPort */
2523 		if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
2524 			goto fail5;
2525 	}
2526 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2527 
2528 	return (0);
2529 
2530 fail5:
2531 	EFSYS_PROBE(fail5);
2532 fail4:
2533 	EFSYS_PROBE(fail4);
2534 fail3:
2535 	EFSYS_PROBE(fail3);
2536 fail2:
2537 	EFSYS_PROBE(fail2);
2538 
2539 	ef10_nic_free_piobufs(enp);
2540 
2541 fail1:
2542 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2543 
2544 	return (rc);
2545 }
2546 
2547 	__checkReturn	efx_rc_t
2548 ef10_nic_get_vi_pool(
2549 	__in		efx_nic_t *enp,
2550 	__out		uint32_t *vi_countp)
2551 {
2552 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2553 
2554 	/*
2555 	 * Report VIs that the client driver can use.
2556 	 * Do not include VIs used for PIO buffer writes.
2557 	 */
2558 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2559 
2560 	return (0);
2561 }
2562 
2563 	__checkReturn	efx_rc_t
2564 ef10_nic_get_bar_region(
2565 	__in		efx_nic_t *enp,
2566 	__in		efx_nic_region_t region,
2567 	__out		uint32_t *offsetp,
2568 	__out		size_t *sizep)
2569 {
2570 	efx_rc_t rc;
2571 
2572 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2573 
2574 	/*
2575 	 * TODO: Specify host memory mapping alignment and granularity
2576 	 * in efx_drv_limits_t so that they can be taken into account
2577 	 * when allocating extra VIs for PIO writes.
2578 	 */
2579 	switch (region) {
2580 	case EFX_REGION_VI:
2581 		/* UC mapped memory BAR region for VI registers */
2582 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2583 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2584 		break;
2585 
2586 	case EFX_REGION_PIO_WRITE_VI:
2587 		/* WC mapped memory BAR region for piobuf writes */
2588 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2589 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2590 		break;
2591 
2592 	default:
2593 		rc = EINVAL;
2594 		goto fail1;
2595 	}
2596 
2597 	return (0);
2598 
2599 fail1:
2600 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2601 
2602 	return (rc);
2603 }
2604 
2605 	__checkReturn	boolean_t
2606 ef10_nic_hw_unavailable(
2607 	__in		efx_nic_t *enp)
2608 {
2609 	efx_dword_t dword;
2610 
2611 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2612 		return (B_TRUE);
2613 
2614 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2615 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2616 		goto unavail;
2617 
2618 	return (B_FALSE);
2619 
2620 unavail:
2621 	ef10_nic_set_hw_unavailable(enp);
2622 
2623 	return (B_TRUE);
2624 }
2625 
2626 			void
2627 ef10_nic_set_hw_unavailable(
2628 	__in		efx_nic_t *enp)
2629 {
2630 	EFSYS_PROBE(hw_unavail);
2631 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2632 }
2633 
2634 
2635 			void
2636 ef10_nic_fini(
2637 	__in		efx_nic_t *enp)
2638 {
2639 	uint32_t i;
2640 	efx_rc_t rc;
2641 	boolean_t do_vadaptor_free = B_TRUE;
2642 
2643 #if EFSYS_OPT_EVB
2644 	if (enp->en_vswitchp != NULL) {
2645 		/*
2646 		 * For SR-IOV the vAdaptor is freed with the vswitch,
2647 		 * so do not free it here.
2648 		 */
2649 		do_vadaptor_free = B_FALSE;
2650 	}
2651 #endif
2652 	if (do_vadaptor_free != B_FALSE) {
2653 		(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2654 		enp->en_vport_id = EVB_PORT_ID_NULL;
2655 	}
2656 
2657 	/* Unlink piobufs from extra VIs in WC mapping */
2658 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2659 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2660 			rc = efx_mcdi_unlink_piobuf(enp,
2661 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2662 			if (rc != 0)
2663 				break;
2664 		}
2665 	}
2666 
2667 	ef10_nic_free_piobufs(enp);
2668 
2669 	(void) efx_mcdi_free_vis(enp);
2670 	enp->en_arch.ef10.ena_vi_count = 0;
2671 }
2672 
2673 			void
2674 ef10_nic_unprobe(
2675 	__in		efx_nic_t *enp)
2676 {
2677 #if EFSYS_OPT_MON_STATS
2678 	mcdi_mon_cfg_free(enp);
2679 #endif /* EFSYS_OPT_MON_STATS */
2680 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2681 }
2682 
2683 #if EFSYS_OPT_DIAG
2684 
2685 	__checkReturn	efx_rc_t
2686 ef10_nic_register_test(
2687 	__in		efx_nic_t *enp)
2688 {
2689 	efx_rc_t rc;
2690 
2691 	/* FIXME */
2692 	_NOTE(ARGUNUSED(enp))
2693 	_NOTE(CONSTANTCONDITION)
2694 	if (B_FALSE) {
2695 		rc = ENOTSUP;
2696 		goto fail1;
2697 	}
2698 	/* FIXME */
2699 
2700 	return (0);
2701 
2702 fail1:
2703 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2704 
2705 	return (rc);
2706 }
2707 
2708 #endif	/* EFSYS_OPT_DIAG */
2709 
2710 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2711 
2712 	__checkReturn	efx_rc_t
2713 efx_mcdi_get_nic_global(
2714 	__in		efx_nic_t *enp,
2715 	__in		uint32_t key,
2716 	__out		uint32_t *valuep)
2717 {
2718 	efx_mcdi_req_t req;
2719 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2720 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2721 	efx_rc_t rc;
2722 
2723 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2724 	req.emr_in_buf = payload;
2725 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2726 	req.emr_out_buf = payload;
2727 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2728 
2729 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2730 
2731 	efx_mcdi_execute(enp, &req);
2732 
2733 	if (req.emr_rc != 0) {
2734 		rc = req.emr_rc;
2735 		goto fail1;
2736 	}
2737 
2738 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2739 		rc = EMSGSIZE;
2740 		goto fail2;
2741 	}
2742 
2743 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2744 
2745 	return (0);
2746 
2747 fail2:
2748 	EFSYS_PROBE(fail2);
2749 fail1:
2750 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2751 
2752 	return (rc);
2753 }
2754 
2755 	__checkReturn	efx_rc_t
2756 efx_mcdi_set_nic_global(
2757 	__in		efx_nic_t *enp,
2758 	__in		uint32_t key,
2759 	__in		uint32_t value)
2760 {
2761 	efx_mcdi_req_t req;
2762 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2763 	efx_rc_t rc;
2764 
2765 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2766 	req.emr_in_buf = payload;
2767 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2768 	req.emr_out_buf = NULL;
2769 	req.emr_out_length = 0;
2770 
2771 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2772 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2773 
2774 	efx_mcdi_execute(enp, &req);
2775 
2776 	if (req.emr_rc != 0) {
2777 		rc = req.emr_rc;
2778 		goto fail1;
2779 	}
2780 
2781 	return (0);
2782 
2783 fail1:
2784 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2785 
2786 	return (rc);
2787 }
2788 
2789 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2790 
2791 #endif	/* EFX_OPTS_EF10() */
2792