xref: /dpdk/drivers/common/sfc_efx/base/ef10_nic.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2012-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 #if EFSYS_OPT_MON_MCDI
10 #include "mcdi_mon.h"
11 #endif
12 
13 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
14 
15 #include "ef10_tlv_layout.h"
16 
17 	__checkReturn	efx_rc_t
18 efx_mcdi_get_port_assignment(
19 	__in		efx_nic_t *enp,
20 	__out		uint32_t *portp)
21 {
22 	efx_mcdi_req_t req;
23 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
24 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
25 	efx_rc_t rc;
26 
27 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
28 
29 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
30 	req.emr_in_buf = payload;
31 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
32 	req.emr_out_buf = payload;
33 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
34 
35 	efx_mcdi_execute(enp, &req);
36 
37 	if (req.emr_rc != 0) {
38 		rc = req.emr_rc;
39 		goto fail1;
40 	}
41 
42 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
43 		rc = EMSGSIZE;
44 		goto fail2;
45 	}
46 
47 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
48 
49 	return (0);
50 
51 fail2:
52 	EFSYS_PROBE(fail2);
53 fail1:
54 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
55 
56 	return (rc);
57 }
58 
59 	__checkReturn	efx_rc_t
60 efx_mcdi_get_port_modes(
61 	__in		efx_nic_t *enp,
62 	__out		uint32_t *modesp,
63 	__out_opt	uint32_t *current_modep,
64 	__out_opt	uint32_t *default_modep)
65 {
66 	efx_mcdi_req_t req;
67 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
68 		MC_CMD_GET_PORT_MODES_OUT_LEN);
69 	efx_rc_t rc;
70 
71 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
72 
73 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
74 	req.emr_in_buf = payload;
75 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
76 	req.emr_out_buf = payload;
77 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
78 
79 	efx_mcdi_execute(enp, &req);
80 
81 	if (req.emr_rc != 0) {
82 		rc = req.emr_rc;
83 		goto fail1;
84 	}
85 
86 	/*
87 	 * Require only Modes and DefaultMode fields, unless the current mode
88 	 * was requested (CurrentMode field was added for Medford).
89 	 */
90 	if (req.emr_out_length_used <
91 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
92 		rc = EMSGSIZE;
93 		goto fail2;
94 	}
95 	if ((current_modep != NULL) && (req.emr_out_length_used <
96 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
97 		rc = EMSGSIZE;
98 		goto fail3;
99 	}
100 
101 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
102 
103 	if (current_modep != NULL) {
104 		*current_modep = MCDI_OUT_DWORD(req,
105 					    GET_PORT_MODES_OUT_CURRENT_MODE);
106 	}
107 
108 	if (default_modep != NULL) {
109 		*default_modep = MCDI_OUT_DWORD(req,
110 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
111 	}
112 
113 	return (0);
114 
115 fail3:
116 	EFSYS_PROBE(fail3);
117 fail2:
118 	EFSYS_PROBE(fail2);
119 fail1:
120 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
121 
122 	return (rc);
123 }
124 
125 	__checkReturn	efx_rc_t
126 ef10_nic_get_port_mode_bandwidth(
127 	__in		efx_nic_t *enp,
128 	__out		uint32_t *bandwidth_mbpsp)
129 {
130 	uint32_t port_modes;
131 	uint32_t current_mode;
132 	efx_port_t *epp = &(enp->en_port);
133 
134 	uint32_t single_lane;
135 	uint32_t dual_lane;
136 	uint32_t quad_lane;
137 	uint32_t bandwidth;
138 	efx_rc_t rc;
139 
140 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
141 				    &current_mode, NULL)) != 0) {
142 		/* No port mode info available. */
143 		goto fail1;
144 	}
145 
146 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
147 		single_lane = 25000;
148 	else
149 		single_lane = 10000;
150 
151 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
152 		dual_lane = 50000;
153 	else
154 		dual_lane = 20000;
155 
156 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
157 		quad_lane = 100000;
158 	else
159 		quad_lane = 40000;
160 
161 	switch (current_mode) {
162 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
163 		bandwidth = single_lane;
164 		break;
165 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
166 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
167 		bandwidth = dual_lane;
168 		break;
169 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
170 		bandwidth = single_lane + single_lane;
171 		break;
172 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
173 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
174 		bandwidth = 4 * single_lane;
175 		break;
176 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
177 		bandwidth = (2 * single_lane) + (2 * single_lane);
178 		break;
179 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
180 		bandwidth = dual_lane + dual_lane;
181 		break;
182 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
183 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
184 		bandwidth = dual_lane + (2 * single_lane);
185 		break;
186 	/* Legacy Medford-only mode. Do not use (see bug63270) */
187 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
188 		bandwidth = 4 * single_lane;
189 		break;
190 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
191 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
192 		bandwidth = quad_lane;
193 		break;
194 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
195 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
196 		bandwidth = 2 * dual_lane;
197 		break;
198 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
199 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
200 		bandwidth = quad_lane + (2 * single_lane);
201 		break;
202 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
203 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
204 		bandwidth = quad_lane + dual_lane;
205 		break;
206 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
207 		bandwidth = quad_lane + quad_lane;
208 		break;
209 	default:
210 		rc = EINVAL;
211 		goto fail2;
212 	}
213 
214 	*bandwidth_mbpsp = bandwidth;
215 
216 	return (0);
217 
218 fail2:
219 	EFSYS_PROBE(fail2);
220 fail1:
221 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
222 
223 	return (rc);
224 }
225 
226 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
227 
228 #if EFX_OPTS_EF10()
229 
230 	__checkReturn		efx_rc_t
231 efx_mcdi_vadaptor_alloc(
232 	__in			efx_nic_t *enp,
233 	__in			uint32_t port_id)
234 {
235 	efx_mcdi_req_t req;
236 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
237 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
238 	efx_rc_t rc;
239 
240 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
241 	req.emr_in_buf = payload;
242 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
243 	req.emr_out_buf = payload;
244 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
245 
246 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
247 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
248 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
249 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
250 
251 	efx_mcdi_execute(enp, &req);
252 
253 	if (req.emr_rc != 0) {
254 		rc = req.emr_rc;
255 		goto fail1;
256 	}
257 
258 	return (0);
259 
260 fail1:
261 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
262 
263 	return (rc);
264 }
265 
266 	__checkReturn		efx_rc_t
267 efx_mcdi_vadaptor_free(
268 	__in			efx_nic_t *enp,
269 	__in			uint32_t port_id)
270 {
271 	efx_mcdi_req_t req;
272 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
273 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
274 	efx_rc_t rc;
275 
276 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
277 	req.emr_in_buf = payload;
278 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
279 	req.emr_out_buf = payload;
280 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
281 
282 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
283 
284 	efx_mcdi_execute(enp, &req);
285 
286 	if (req.emr_rc != 0) {
287 		rc = req.emr_rc;
288 		goto fail1;
289 	}
290 
291 	return (0);
292 
293 fail1:
294 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
295 
296 	return (rc);
297 }
298 
299 #endif	/* EFX_OPTS_EF10() */
300 
301 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
302 
303 	__checkReturn	efx_rc_t
304 efx_mcdi_get_mac_address_pf(
305 	__in			efx_nic_t *enp,
306 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
307 {
308 	efx_mcdi_req_t req;
309 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
310 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
311 	efx_rc_t rc;
312 
313 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
314 
315 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
316 	req.emr_in_buf = payload;
317 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
318 	req.emr_out_buf = payload;
319 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
320 
321 	efx_mcdi_execute(enp, &req);
322 
323 	if (req.emr_rc != 0) {
324 		rc = req.emr_rc;
325 		goto fail1;
326 	}
327 
328 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
329 		rc = EMSGSIZE;
330 		goto fail2;
331 	}
332 
333 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
334 		rc = ENOENT;
335 		goto fail3;
336 	}
337 
338 	if (mac_addrp != NULL) {
339 		uint8_t *addrp;
340 
341 		addrp = MCDI_OUT2(req, uint8_t,
342 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
343 
344 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
345 	}
346 
347 	return (0);
348 
349 fail3:
350 	EFSYS_PROBE(fail3);
351 fail2:
352 	EFSYS_PROBE(fail2);
353 fail1:
354 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
355 
356 	return (rc);
357 }
358 
359 	__checkReturn	efx_rc_t
360 efx_mcdi_get_mac_address_vf(
361 	__in			efx_nic_t *enp,
362 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
363 {
364 	efx_mcdi_req_t req;
365 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
366 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
367 	efx_rc_t rc;
368 
369 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
370 
371 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
372 	req.emr_in_buf = payload;
373 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
374 	req.emr_out_buf = payload;
375 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
376 
377 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
378 	    EVB_PORT_ID_ASSIGNED);
379 
380 	efx_mcdi_execute(enp, &req);
381 
382 	if (req.emr_rc != 0) {
383 		rc = req.emr_rc;
384 		goto fail1;
385 	}
386 
387 	if (req.emr_out_length_used <
388 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
389 		rc = EMSGSIZE;
390 		goto fail2;
391 	}
392 
393 	if (MCDI_OUT_DWORD(req,
394 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
395 		rc = ENOENT;
396 		goto fail3;
397 	}
398 
399 	if (mac_addrp != NULL) {
400 		uint8_t *addrp;
401 
402 		addrp = MCDI_OUT2(req, uint8_t,
403 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
404 
405 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
406 	}
407 
408 	return (0);
409 
410 fail3:
411 	EFSYS_PROBE(fail3);
412 fail2:
413 	EFSYS_PROBE(fail2);
414 fail1:
415 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
416 
417 	return (rc);
418 }
419 
420 	__checkReturn	efx_rc_t
421 efx_mcdi_get_clock(
422 	__in		efx_nic_t *enp,
423 	__out		uint32_t *sys_freqp,
424 	__out		uint32_t *dpcpu_freqp)
425 {
426 	efx_mcdi_req_t req;
427 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
428 		MC_CMD_GET_CLOCK_OUT_LEN);
429 	efx_rc_t rc;
430 
431 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
432 
433 	req.emr_cmd = MC_CMD_GET_CLOCK;
434 	req.emr_in_buf = payload;
435 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
436 	req.emr_out_buf = payload;
437 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
438 
439 	efx_mcdi_execute(enp, &req);
440 
441 	if (req.emr_rc != 0) {
442 		rc = req.emr_rc;
443 		goto fail1;
444 	}
445 
446 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
447 		rc = EMSGSIZE;
448 		goto fail2;
449 	}
450 
451 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
452 	if (*sys_freqp == 0) {
453 		rc = EINVAL;
454 		goto fail3;
455 	}
456 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
457 	if (*dpcpu_freqp == 0) {
458 		rc = EINVAL;
459 		goto fail4;
460 	}
461 
462 	return (0);
463 
464 fail4:
465 	EFSYS_PROBE(fail4);
466 fail3:
467 	EFSYS_PROBE(fail3);
468 fail2:
469 	EFSYS_PROBE(fail2);
470 fail1:
471 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
472 
473 	return (rc);
474 }
475 
476 	__checkReturn	efx_rc_t
477 efx_mcdi_get_rxdp_config(
478 	__in		efx_nic_t *enp,
479 	__out		uint32_t *end_paddingp)
480 {
481 	efx_mcdi_req_t req;
482 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
483 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
484 	uint32_t end_padding;
485 	efx_rc_t rc;
486 
487 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
488 	req.emr_in_buf = payload;
489 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
490 	req.emr_out_buf = payload;
491 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
492 
493 	efx_mcdi_execute(enp, &req);
494 
495 	if (req.emr_rc != 0) {
496 		rc = req.emr_rc;
497 		goto fail1;
498 	}
499 
500 	if (req.emr_out_length_used < MC_CMD_GET_RXDP_CONFIG_OUT_LEN) {
501 		rc = EMSGSIZE;
502 		goto fail2;
503 	}
504 
505 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
506 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
507 		/* RX DMA end padding is disabled */
508 		end_padding = 0;
509 	} else {
510 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
511 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
512 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
513 			end_padding = 64;
514 			break;
515 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
516 			end_padding = 128;
517 			break;
518 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
519 			end_padding = 256;
520 			break;
521 		default:
522 			rc = ENOTSUP;
523 			goto fail3;
524 		}
525 	}
526 
527 	*end_paddingp = end_padding;
528 
529 	return (0);
530 
531 fail3:
532 	EFSYS_PROBE(fail3);
533 fail2:
534 	EFSYS_PROBE(fail2);
535 fail1:
536 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
537 
538 	return (rc);
539 }
540 
541 	__checkReturn	efx_rc_t
542 efx_mcdi_get_vector_cfg(
543 	__in		efx_nic_t *enp,
544 	__out_opt	uint32_t *vec_basep,
545 	__out_opt	uint32_t *pf_nvecp,
546 	__out_opt	uint32_t *vf_nvecp)
547 {
548 	efx_mcdi_req_t req;
549 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
550 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
551 	efx_rc_t rc;
552 
553 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
554 	req.emr_in_buf = payload;
555 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
556 	req.emr_out_buf = payload;
557 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
558 
559 	efx_mcdi_execute(enp, &req);
560 
561 	if (req.emr_rc != 0) {
562 		rc = req.emr_rc;
563 		goto fail1;
564 	}
565 
566 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
567 		rc = EMSGSIZE;
568 		goto fail2;
569 	}
570 
571 	if (vec_basep != NULL)
572 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
573 	if (pf_nvecp != NULL)
574 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
575 	if (vf_nvecp != NULL)
576 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
577 
578 	return (0);
579 
580 fail2:
581 	EFSYS_PROBE(fail2);
582 fail1:
583 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
584 
585 	return (rc);
586 }
587 
588 	__checkReturn	efx_rc_t
589 efx_mcdi_alloc_vis(
590 	__in		efx_nic_t *enp,
591 	__in		uint32_t min_vi_count,
592 	__in		uint32_t max_vi_count,
593 	__out		uint32_t *vi_basep,
594 	__out		uint32_t *vi_countp,
595 	__out		uint32_t *vi_shiftp)
596 {
597 	efx_mcdi_req_t req;
598 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
599 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
600 	efx_rc_t rc;
601 
602 	if (vi_countp == NULL) {
603 		rc = EINVAL;
604 		goto fail1;
605 	}
606 
607 	req.emr_cmd = MC_CMD_ALLOC_VIS;
608 	req.emr_in_buf = payload;
609 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
610 	req.emr_out_buf = payload;
611 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
612 
613 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
614 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
615 
616 	efx_mcdi_execute(enp, &req);
617 
618 	if (req.emr_rc != 0) {
619 		rc = req.emr_rc;
620 		goto fail2;
621 	}
622 
623 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
624 		rc = EMSGSIZE;
625 		goto fail3;
626 	}
627 
628 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
629 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
630 
631 	/* Report VI_SHIFT if available (always zero for Huntington) */
632 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
633 		*vi_shiftp = 0;
634 	else
635 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
636 
637 	return (0);
638 
639 fail3:
640 	EFSYS_PROBE(fail3);
641 fail2:
642 	EFSYS_PROBE(fail2);
643 fail1:
644 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
645 
646 	return (rc);
647 }
648 
649 
650 	__checkReturn	efx_rc_t
651 efx_mcdi_free_vis(
652 	__in		efx_nic_t *enp)
653 {
654 	efx_mcdi_req_t req;
655 	efx_rc_t rc;
656 
657 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
658 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
659 
660 	req.emr_cmd = MC_CMD_FREE_VIS;
661 	req.emr_in_buf = NULL;
662 	req.emr_in_length = 0;
663 	req.emr_out_buf = NULL;
664 	req.emr_out_length = 0;
665 
666 	efx_mcdi_execute_quiet(enp, &req);
667 
668 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
669 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
670 		rc = req.emr_rc;
671 		goto fail1;
672 	}
673 
674 	return (0);
675 
676 fail1:
677 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
678 
679 	return (rc);
680 }
681 
682 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
683 
684 #if EFX_OPTS_EF10()
685 
686 static	__checkReturn	efx_rc_t
687 efx_mcdi_alloc_piobuf(
688 	__in		efx_nic_t *enp,
689 	__out		efx_piobuf_handle_t *handlep)
690 {
691 	efx_mcdi_req_t req;
692 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
693 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
694 	efx_rc_t rc;
695 
696 	if (handlep == NULL) {
697 		rc = EINVAL;
698 		goto fail1;
699 	}
700 
701 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
702 	req.emr_in_buf = payload;
703 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
704 	req.emr_out_buf = payload;
705 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
706 
707 	efx_mcdi_execute_quiet(enp, &req);
708 
709 	if (req.emr_rc != 0) {
710 		rc = req.emr_rc;
711 		goto fail2;
712 	}
713 
714 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
715 		rc = EMSGSIZE;
716 		goto fail3;
717 	}
718 
719 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
720 
721 	return (0);
722 
723 fail3:
724 	EFSYS_PROBE(fail3);
725 fail2:
726 	EFSYS_PROBE(fail2);
727 fail1:
728 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
729 
730 	return (rc);
731 }
732 
733 static	__checkReturn	efx_rc_t
734 efx_mcdi_free_piobuf(
735 	__in		efx_nic_t *enp,
736 	__in		efx_piobuf_handle_t handle)
737 {
738 	efx_mcdi_req_t req;
739 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
740 		MC_CMD_FREE_PIOBUF_OUT_LEN);
741 	efx_rc_t rc;
742 
743 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
744 	req.emr_in_buf = payload;
745 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
746 	req.emr_out_buf = payload;
747 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
748 
749 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
750 
751 	efx_mcdi_execute_quiet(enp, &req);
752 
753 	if (req.emr_rc != 0) {
754 		rc = req.emr_rc;
755 		goto fail1;
756 	}
757 
758 	return (0);
759 
760 fail1:
761 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
762 
763 	return (rc);
764 }
765 
766 static	__checkReturn	efx_rc_t
767 efx_mcdi_link_piobuf(
768 	__in		efx_nic_t *enp,
769 	__in		uint32_t vi_index,
770 	__in		efx_piobuf_handle_t handle)
771 {
772 	efx_mcdi_req_t req;
773 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
774 		MC_CMD_LINK_PIOBUF_OUT_LEN);
775 	efx_rc_t rc;
776 
777 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
778 	req.emr_in_buf = payload;
779 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
780 	req.emr_out_buf = payload;
781 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
782 
783 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
784 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
785 
786 	efx_mcdi_execute(enp, &req);
787 
788 	if (req.emr_rc != 0) {
789 		rc = req.emr_rc;
790 		goto fail1;
791 	}
792 
793 	return (0);
794 
795 fail1:
796 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
797 
798 	return (rc);
799 }
800 
801 static	__checkReturn	efx_rc_t
802 efx_mcdi_unlink_piobuf(
803 	__in		efx_nic_t *enp,
804 	__in		uint32_t vi_index)
805 {
806 	efx_mcdi_req_t req;
807 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
808 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
809 	efx_rc_t rc;
810 
811 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
812 	req.emr_in_buf = payload;
813 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
814 	req.emr_out_buf = payload;
815 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
816 
817 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
818 
819 	efx_mcdi_execute_quiet(enp, &req);
820 
821 	if (req.emr_rc != 0) {
822 		rc = req.emr_rc;
823 		goto fail1;
824 	}
825 
826 	return (0);
827 
828 fail1:
829 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
830 
831 	return (rc);
832 }
833 
834 static			void
835 ef10_nic_alloc_piobufs(
836 	__in		efx_nic_t *enp,
837 	__in		uint32_t max_piobuf_count)
838 {
839 	efx_piobuf_handle_t *handlep;
840 	unsigned int i;
841 
842 	EFSYS_ASSERT3U(max_piobuf_count, <=,
843 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
844 
845 	enp->en_arch.ef10.ena_piobuf_count = 0;
846 
847 	for (i = 0; i < max_piobuf_count; i++) {
848 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
849 
850 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
851 			goto fail1;
852 
853 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
854 		enp->en_arch.ef10.ena_piobuf_count++;
855 	}
856 
857 	return;
858 
859 fail1:
860 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
861 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
862 
863 		(void) efx_mcdi_free_piobuf(enp, *handlep);
864 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
865 	}
866 	enp->en_arch.ef10.ena_piobuf_count = 0;
867 }
868 
869 
870 static			void
871 ef10_nic_free_piobufs(
872 	__in		efx_nic_t *enp)
873 {
874 	efx_piobuf_handle_t *handlep;
875 	unsigned int i;
876 
877 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
878 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
879 
880 		(void) efx_mcdi_free_piobuf(enp, *handlep);
881 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
882 	}
883 	enp->en_arch.ef10.ena_piobuf_count = 0;
884 }
885 
886 /* Sub-allocate a block from a piobuf */
887 	__checkReturn	efx_rc_t
888 ef10_nic_pio_alloc(
889 	__inout		efx_nic_t *enp,
890 	__out		uint32_t *bufnump,
891 	__out		efx_piobuf_handle_t *handlep,
892 	__out		uint32_t *blknump,
893 	__out		uint32_t *offsetp,
894 	__out		size_t *sizep)
895 {
896 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
897 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
898 	uint32_t blk_per_buf;
899 	uint32_t buf, blk;
900 	efx_rc_t rc;
901 
902 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
903 	EFSYS_ASSERT(bufnump);
904 	EFSYS_ASSERT(handlep);
905 	EFSYS_ASSERT(blknump);
906 	EFSYS_ASSERT(offsetp);
907 	EFSYS_ASSERT(sizep);
908 
909 	if ((edcp->edc_pio_alloc_size == 0) ||
910 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
911 		rc = ENOMEM;
912 		goto fail1;
913 	}
914 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
915 
916 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
917 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
918 
919 		if (~(*map) == 0)
920 			continue;
921 
922 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
923 		for (blk = 0; blk < blk_per_buf; blk++) {
924 			if ((*map & (1u << blk)) == 0) {
925 				*map |= (1u << blk);
926 				goto done;
927 			}
928 		}
929 	}
930 	rc = ENOMEM;
931 	goto fail2;
932 
933 done:
934 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
935 	*bufnump = buf;
936 	*blknump = blk;
937 	*sizep = edcp->edc_pio_alloc_size;
938 	*offsetp = blk * (*sizep);
939 
940 	return (0);
941 
942 fail2:
943 	EFSYS_PROBE(fail2);
944 fail1:
945 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
946 
947 	return (rc);
948 }
949 
950 /* Free a piobuf sub-allocated block */
951 	__checkReturn	efx_rc_t
952 ef10_nic_pio_free(
953 	__inout		efx_nic_t *enp,
954 	__in		uint32_t bufnum,
955 	__in		uint32_t blknum)
956 {
957 	uint32_t *map;
958 	efx_rc_t rc;
959 
960 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
961 	    (blknum >= (8 * sizeof (*map)))) {
962 		rc = EINVAL;
963 		goto fail1;
964 	}
965 
966 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
967 	if ((*map & (1u << blknum)) == 0) {
968 		rc = ENOENT;
969 		goto fail2;
970 	}
971 	*map &= ~(1u << blknum);
972 
973 	return (0);
974 
975 fail2:
976 	EFSYS_PROBE(fail2);
977 fail1:
978 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
979 
980 	return (rc);
981 }
982 
983 	__checkReturn	efx_rc_t
984 ef10_nic_pio_link(
985 	__inout		efx_nic_t *enp,
986 	__in		uint32_t vi_index,
987 	__in		efx_piobuf_handle_t handle)
988 {
989 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
990 }
991 
992 	__checkReturn	efx_rc_t
993 ef10_nic_pio_unlink(
994 	__inout		efx_nic_t *enp,
995 	__in		uint32_t vi_index)
996 {
997 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
998 }
999 
1000 #endif	/* EFX_OPTS_EF10() */
1001 
1002 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
1003 
1004 static	__checkReturn	efx_rc_t
1005 ef10_mcdi_get_pf_count(
1006 	__in		efx_nic_t *enp,
1007 	__out		uint32_t *pf_countp)
1008 {
1009 	efx_mcdi_req_t req;
1010 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1011 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1012 	efx_rc_t rc;
1013 
1014 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1015 	req.emr_in_buf = payload;
1016 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1017 	req.emr_out_buf = payload;
1018 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1019 
1020 	efx_mcdi_execute(enp, &req);
1021 
1022 	if (req.emr_rc != 0) {
1023 		rc = req.emr_rc;
1024 		goto fail1;
1025 	}
1026 
1027 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1028 		rc = EMSGSIZE;
1029 		goto fail2;
1030 	}
1031 
1032 	*pf_countp = *MCDI_OUT(req, uint8_t,
1033 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1034 
1035 	EFSYS_ASSERT(*pf_countp != 0);
1036 
1037 	return (0);
1038 
1039 fail2:
1040 	EFSYS_PROBE(fail2);
1041 fail1:
1042 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1043 
1044 	return (rc);
1045 }
1046 
1047 static	__checkReturn	efx_rc_t
1048 ef10_get_datapath_caps(
1049 	__in		efx_nic_t *enp)
1050 {
1051 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1052 	efx_mcdi_req_t req;
1053 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1054 		MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
1055 	efx_rc_t rc;
1056 
1057 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1058 	req.emr_in_buf = payload;
1059 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1060 	req.emr_out_buf = payload;
1061 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V7_OUT_LEN;
1062 
1063 	efx_mcdi_execute_quiet(enp, &req);
1064 
1065 	if (req.emr_rc != 0) {
1066 		rc = req.emr_rc;
1067 		goto fail1;
1068 	}
1069 
1070 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1071 		rc = EMSGSIZE;
1072 		goto fail2;
1073 	}
1074 
1075 #define	CAP_FLAGS1(_req, _flag)						\
1076 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1077 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1078 
1079 #define	CAP_FLAGS2(_req, _flag)						\
1080 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1081 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1082 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1083 
1084 #define	CAP_FLAGS3(_req, _flag)						\
1085 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) && \
1086 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V7_OUT_FLAGS3) &	\
1087 	    (1u << (MC_CMD_GET_CAPABILITIES_V7_OUT_ ## _flag ## _LBN))))
1088 
1089 	/* Check if RXDP firmware inserts 14 byte prefix */
1090 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14))
1091 		encp->enc_rx_prefix_size = 14;
1092 	else
1093 		encp->enc_rx_prefix_size = 0;
1094 
1095 #if EFSYS_OPT_RX_SCALE
1096 	/* Check if the firmware supports additional RSS modes */
1097 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1098 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1099 	else
1100 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1101 #endif /* EFSYS_OPT_RX_SCALE */
1102 
1103 	/* Check if the firmware supports TSO */
1104 	if (CAP_FLAGS1(req, TX_TSO))
1105 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1106 	else
1107 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1108 
1109 	/* Check if the firmware supports FATSOv2 */
1110 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1111 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1112 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1113 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1114 	} else {
1115 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1116 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1117 	}
1118 
1119 	/* Check if the firmware supports FATSOv2 encap */
1120 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1121 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1122 	else
1123 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1124 
1125 	/* Check if TSOv3 is supported */
1126 	if (CAP_FLAGS2(req, TX_TSO_V3))
1127 		encp->enc_tso_v3_enabled = B_TRUE;
1128 	else
1129 		encp->enc_tso_v3_enabled = B_FALSE;
1130 
1131 	/* Check if the firmware has vadapter/vport/vswitch support */
1132 	if (CAP_FLAGS1(req, EVB))
1133 		encp->enc_datapath_cap_evb = B_TRUE;
1134 	else
1135 		encp->enc_datapath_cap_evb = B_FALSE;
1136 
1137 	/* Check if the firmware supports vport reconfiguration */
1138 	if (CAP_FLAGS1(req, VPORT_RECONFIGURE))
1139 		encp->enc_vport_reconfigure_supported = B_TRUE;
1140 	else
1141 		encp->enc_vport_reconfigure_supported = B_FALSE;
1142 
1143 	/* Check if the firmware supports VLAN insertion */
1144 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1145 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1146 	else
1147 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1148 
1149 	/* Check if the firmware supports RX event batching */
1150 	if (CAP_FLAGS1(req, RX_BATCHING))
1151 		encp->enc_rx_batching_enabled = B_TRUE;
1152 	else
1153 		encp->enc_rx_batching_enabled = B_FALSE;
1154 
1155 	/*
1156 	 * Even if batching isn't reported as supported, we may still get
1157 	 * batched events (see bug61153).
1158 	 */
1159 	encp->enc_rx_batch_max = 16;
1160 
1161 	/* Check if the firmware supports disabling scatter on RXQs */
1162 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1163 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1164 	else
1165 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1166 
1167 	/* No limit on maximum number of Rx scatter elements per packet. */
1168 	encp->enc_rx_scatter_max = -1;
1169 
1170 	/* Check if the firmware supports packed stream mode */
1171 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1172 		encp->enc_rx_packed_stream_supported = B_TRUE;
1173 	else
1174 		encp->enc_rx_packed_stream_supported = B_FALSE;
1175 
1176 	/*
1177 	 * Check if the firmware supports configurable buffer sizes
1178 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1179 	 */
1180 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1181 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1182 	else
1183 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1184 
1185 	/* Check if the firmware supports equal stride super-buffer mode */
1186 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1187 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1188 	else
1189 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1190 
1191 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1192 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1193 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1194 	else
1195 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1196 
1197 	/* Check if the firmware supports set mac with running filters */
1198 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1199 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1200 	else
1201 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1202 
1203 	/*
1204 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1205 	 * specifying which parameters to configure.
1206 	 */
1207 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1208 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1209 	else
1210 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1211 
1212 	/*
1213 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1214 	 * us to let the firmware choose the settings to use on an EVQ.
1215 	 */
1216 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1217 		encp->enc_init_evq_v2_supported = B_TRUE;
1218 	else
1219 		encp->enc_init_evq_v2_supported = B_FALSE;
1220 
1221 	/*
1222 	 * Check if firmware supports extended width event queues, which have
1223 	 * a different event descriptor layout.
1224 	 */
1225 	if (CAP_FLAGS3(req, EXTENDED_WIDTH_EVQS_SUPPORTED))
1226 		encp->enc_init_evq_extended_width_supported = B_TRUE;
1227 	else
1228 		encp->enc_init_evq_extended_width_supported = B_FALSE;
1229 
1230 	/*
1231 	 * Check if the NO_CONT_EV mode for RX events is supported.
1232 	 */
1233 	if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV))
1234 		encp->enc_no_cont_ev_mode_supported = B_TRUE;
1235 	else
1236 		encp->enc_no_cont_ev_mode_supported = B_FALSE;
1237 
1238 	/*
1239 	 * Check if buffer size may and must be specified on INIT_RXQ.
1240 	 * It may be always specified to efx_rx_qcreate(), but will be
1241 	 * just kept libefx internal if MCDI does not support it.
1242 	 */
1243 	if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE))
1244 		encp->enc_init_rxq_with_buffer_size = B_TRUE;
1245 	else
1246 		encp->enc_init_rxq_with_buffer_size = B_FALSE;
1247 
1248 	/*
1249 	 * Check if firmware-verified NVRAM updates must be used.
1250 	 *
1251 	 * The firmware trusted installer requires all NVRAM updates to use
1252 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1253 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1254 	 * partition and report the result).
1255 	 */
1256 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1257 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1258 	else
1259 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1260 
1261 	if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT))
1262 		encp->enc_nvram_update_poll_verify_result_supported = B_TRUE;
1263 	else
1264 		encp->enc_nvram_update_poll_verify_result_supported = B_FALSE;
1265 
1266 	/*
1267 	 * Check if firmware update via the BUNDLE partition is supported
1268 	 */
1269 	if (CAP_FLAGS2(req, BUNDLE_UPDATE))
1270 		encp->enc_nvram_bundle_update_supported = B_TRUE;
1271 	else
1272 		encp->enc_nvram_bundle_update_supported = B_FALSE;
1273 
1274 	/*
1275 	 * Check if firmware provides packet memory and Rx datapath
1276 	 * counters.
1277 	 */
1278 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1279 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1280 	else
1281 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1282 
1283 	/*
1284 	 * Check if the 40G MAC hardware is capable of reporting
1285 	 * statistics for Tx size bins.
1286 	 */
1287 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1288 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1289 	else
1290 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1291 
1292 	/*
1293 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1294 	 * The capability indicates Geneve protocol support as well.
1295 	 */
1296 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1297 		encp->enc_tunnel_encapsulations_supported =
1298 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1299 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1300 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1301 
1302 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1303 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1304 		encp->enc_tunnel_config_udp_entries_max =
1305 		    EFX_TUNNEL_MAXNENTRIES;
1306 	} else {
1307 		encp->enc_tunnel_config_udp_entries_max = 0;
1308 	}
1309 
1310 	/*
1311 	 * Check if firmware reports the VI window mode.
1312 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1313 	 * Medford and Huntington have a fixed 8K VI window size.
1314 	 */
1315 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1316 		uint8_t mode =
1317 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1318 
1319 		switch (mode) {
1320 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1321 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1322 			break;
1323 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1324 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1325 			break;
1326 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1327 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1328 			break;
1329 		default:
1330 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1331 			break;
1332 		}
1333 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1334 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1335 		/* Huntington and Medford have fixed 8K window size */
1336 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1337 	} else {
1338 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1339 	}
1340 
1341 	/* Check if firmware supports extended MAC stats. */
1342 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1343 		/* Extended stats buffer supported */
1344 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1345 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1346 	} else {
1347 		/* Use Siena-compatible legacy MAC stats */
1348 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1349 	}
1350 
1351 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1352 		encp->enc_fec_counters = B_TRUE;
1353 	else
1354 		encp->enc_fec_counters = B_FALSE;
1355 
1356 	/* Check if the firmware provides head-of-line blocking counters */
1357 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1358 		encp->enc_hlb_counters = B_TRUE;
1359 	else
1360 		encp->enc_hlb_counters = B_FALSE;
1361 
1362 #if EFSYS_OPT_RX_SCALE
1363 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1364 		/* Only one exclusive RSS context is available per port. */
1365 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1366 
1367 		switch (enp->en_family) {
1368 		case EFX_FAMILY_MEDFORD2:
1369 			encp->enc_rx_scale_hash_alg_mask =
1370 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1371 			break;
1372 
1373 		case EFX_FAMILY_MEDFORD:
1374 		case EFX_FAMILY_HUNTINGTON:
1375 			/*
1376 			 * Packed stream firmware variant maintains a
1377 			 * non-standard algorithm for hash computation.
1378 			 * It implies explicit XORing together
1379 			 * source + destination IP addresses (or last
1380 			 * four bytes in the case of IPv6) and using the
1381 			 * resulting value as the input to a Toeplitz hash.
1382 			 */
1383 			encp->enc_rx_scale_hash_alg_mask =
1384 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1385 			break;
1386 
1387 		default:
1388 			rc = EINVAL;
1389 			goto fail3;
1390 		}
1391 
1392 		/* Port numbers cannot contribute to the hash value */
1393 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1394 	} else {
1395 		/*
1396 		 * Maximum number of exclusive RSS contexts.
1397 		 * EF10 hardware supports 64 in total, but 6 are reserved
1398 		 * for shared contexts. They are a global resource so
1399 		 * not all may be available.
1400 		 */
1401 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1402 
1403 		encp->enc_rx_scale_hash_alg_mask =
1404 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1405 
1406 		/*
1407 		 * It is possible to use port numbers as
1408 		 * the input data for hash computation.
1409 		 */
1410 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1411 	}
1412 #endif /* EFSYS_OPT_RX_SCALE */
1413 
1414 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1415 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1416 		encp->enc_filter_action_flag_supported = B_TRUE;
1417 	else
1418 		encp->enc_filter_action_flag_supported = B_FALSE;
1419 
1420 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1421 		encp->enc_filter_action_mark_supported = B_TRUE;
1422 	else
1423 		encp->enc_filter_action_mark_supported = B_FALSE;
1424 
1425 	/* Get maximum supported value for "MARK" filter action */
1426 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1427 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1428 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1429 	else
1430 		encp->enc_filter_action_mark_max = 0;
1431 
1432 #if EFSYS_OPT_MAE
1433 	/*
1434 	 * Check support for EF100 Match Action Engine (MAE).
1435 	 * MAE hardware is present on Riverhead boards (from R2),
1436 	 * and on Keystone, and requires support in firmware.
1437 	 *
1438 	 * MAE control operations require MAE control privilege,
1439 	 * which is not available for VFs.
1440 	 *
1441 	 * Privileges can change dynamically at runtime: we assume
1442 	 * MAE support requires the privilege is granted initially,
1443 	 * and ignore later dynamic changes.
1444 	 */
1445 	if (CAP_FLAGS3(req, MAE_SUPPORTED)) {
1446 		encp->enc_mae_supported = B_TRUE;
1447 		if (EFX_MCDI_HAVE_PRIVILEGE(encp->enc_privilege_mask, MAE))
1448 			encp->enc_mae_admin = B_TRUE;
1449 		else
1450 			encp->enc_mae_admin = B_FALSE;
1451 	} else {
1452 		encp->enc_mae_supported = B_FALSE;
1453 		encp->enc_mae_admin = B_FALSE;
1454 	}
1455 #else
1456 	encp->enc_mae_supported = B_FALSE;
1457 	encp->enc_mae_admin = B_FALSE;
1458 #endif /* EFSYS_OPT_MAE */
1459 
1460 #undef CAP_FLAGS1
1461 #undef CAP_FLAGS2
1462 #undef CAP_FLAGS3
1463 
1464 	return (0);
1465 
1466 #if EFSYS_OPT_RX_SCALE
1467 fail3:
1468 	EFSYS_PROBE(fail3);
1469 #endif /* EFSYS_OPT_RX_SCALE */
1470 fail2:
1471 	EFSYS_PROBE(fail2);
1472 fail1:
1473 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1474 
1475 	return (rc);
1476 }
1477 
1478 
1479 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1480 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1481 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1482 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1483 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1484 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1485 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1486 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1487 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1488 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1489 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1490 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1491 
1492 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1493 
1494 
1495 	__checkReturn		efx_rc_t
1496 ef10_get_privilege_mask(
1497 	__in			efx_nic_t *enp,
1498 	__out			uint32_t *maskp)
1499 {
1500 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1501 	uint32_t mask;
1502 	efx_rc_t rc;
1503 
1504 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1505 					    &mask)) != 0) {
1506 		if (rc != ENOTSUP)
1507 			goto fail1;
1508 
1509 		/* Fallback for old firmware without privilege mask support */
1510 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1511 			/* Assume PF has admin privilege */
1512 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1513 		} else {
1514 			/* VF is always unprivileged by default */
1515 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1516 		}
1517 	}
1518 
1519 	*maskp = mask;
1520 
1521 	return (0);
1522 
1523 fail1:
1524 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1525 
1526 	return (rc);
1527 }
1528 
1529 
1530 #define	EFX_EXT_PORT_MAX	4
1531 #define	EFX_EXT_PORT_NA		0xFF
1532 
1533 /*
1534  * Table of mapping schemes from port number to external number.
1535  *
1536  * Each port number ultimately corresponds to a connector: either as part of
1537  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1538  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1539  * "Salina"). In general:
1540  *
1541  * Port number (0-based)
1542  *     |
1543  *   port mapping (n:1)
1544  *     |
1545  *     v
1546  * External port number (1-based)
1547  *     |
1548  *   fixed (1:1) or cable assembly (1:m)
1549  *     |
1550  *     v
1551  * Connector
1552  *
1553  * The external numbering refers to the cages or magjacks on the board,
1554  * as visibly annotated on the board or back panel. This table describes
1555  * how to determine which external cage/magjack corresponds to the port
1556  * numbers used by the driver.
1557  *
1558  * The count of consecutive port numbers that map to each external number,
1559  * is determined by the chip family and the current port mode.
1560  *
1561  * For the Huntington family, the current port mode cannot be discovered,
1562  * but a single mapping is used by all modes for a given chip variant,
1563  * so the mapping used is instead the last match in the table to the full
1564  * set of port modes to which the NIC can be configured. Therefore the
1565  * ordering of entries in the mapping table is significant.
1566  */
1567 static struct ef10_external_port_map_s {
1568 	efx_family_t	family;
1569 	uint32_t	modes_mask;
1570 	uint8_t		base_port[EFX_EXT_PORT_MAX];
1571 }	__ef10_external_port_mappings[] = {
1572 	/*
1573 	 * Modes used by Huntington family controllers where each port
1574 	 * number maps to a separate cage.
1575 	 * SFN7x22F (Torino):
1576 	 *	port 0 -> cage 1
1577 	 *	port 1 -> cage 2
1578 	 * SFN7xx4F (Pavia):
1579 	 *	port 0 -> cage 1
1580 	 *	port 1 -> cage 2
1581 	 *	port 2 -> cage 3
1582 	 *	port 3 -> cage 4
1583 	 */
1584 	{
1585 		EFX_FAMILY_HUNTINGTON,
1586 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1587 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1588 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1589 		{ 0, 1, 2, 3 }
1590 	},
1591 	/*
1592 	 * Modes which for Huntington identify a chip variant where 2
1593 	 * adjacent port numbers map to each cage.
1594 	 * SFN7x42Q (Monza):
1595 	 *	port 0 -> cage 1
1596 	 *	port 1 -> cage 1
1597 	 *	port 2 -> cage 2
1598 	 *	port 3 -> cage 2
1599 	 */
1600 	{
1601 		EFX_FAMILY_HUNTINGTON,
1602 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1603 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1604 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1605 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1606 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1607 	},
1608 	/*
1609 	 * Modes that on Medford allocate each port number to a separate
1610 	 * cage.
1611 	 *	port 0 -> cage 1
1612 	 *	port 1 -> cage 2
1613 	 *	port 2 -> cage 3
1614 	 *	port 3 -> cage 4
1615 	 */
1616 	{
1617 		EFX_FAMILY_MEDFORD,
1618 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1619 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1620 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1621 		{ 0, 1, 2, 3 }
1622 	},
1623 	/*
1624 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1625 	 * cage.
1626 	 *	port 0 -> cage 1
1627 	 *	port 1 -> cage 1
1628 	 *	port 2 -> cage 2
1629 	 *	port 3 -> cage 2
1630 	 */
1631 	{
1632 		EFX_FAMILY_MEDFORD,
1633 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1634 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1635 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1636 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1637 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1638 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1639 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1640 	},
1641 	/*
1642 	 * Modes that on Medford allocate 4 adjacent port numbers to
1643 	 * cage 1.
1644 	 *	port 0 -> cage 1
1645 	 *	port 1 -> cage 1
1646 	 *	port 2 -> cage 1
1647 	 *	port 3 -> cage 1
1648 	 */
1649 	{
1650 		EFX_FAMILY_MEDFORD,
1651 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1652 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1653 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1654 	},
1655 	/*
1656 	 * Modes that on Medford allocate 4 adjacent port numbers to
1657 	 * cage 2.
1658 	 *	port 0 -> cage 2
1659 	 *	port 1 -> cage 2
1660 	 *	port 2 -> cage 2
1661 	 *	port 3 -> cage 2
1662 	 */
1663 	{
1664 		EFX_FAMILY_MEDFORD,
1665 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1666 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1667 	},
1668 	/*
1669 	 * Modes that on Medford2 allocate each port number to a separate
1670 	 * cage.
1671 	 *	port 0 -> cage 1
1672 	 *	port 1 -> cage 2
1673 	 *	port 2 -> cage 3
1674 	 *	port 3 -> cage 4
1675 	 */
1676 	{
1677 		EFX_FAMILY_MEDFORD2,
1678 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1679 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1680 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1681 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1682 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1683 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1684 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1685 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1686 		{ 0, 1, 2, 3 }
1687 	},
1688 	/*
1689 	 * Modes that on Medford2 allocate 1 port to cage 1 and the rest
1690 	 * to cage 2.
1691 	 *	port 0 -> cage 1
1692 	 *	port 1 -> cage 2
1693 	 *	port 2 -> cage 2
1694 	 */
1695 	{
1696 		EFX_FAMILY_MEDFORD2,
1697 		(1U << TLV_PORT_MODE_1x2_2x1) |			/* mode 17 */
1698 		(1U << TLV_PORT_MODE_1x4_2x1),			/* mode 6 */
1699 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1700 	},
1701 	/*
1702 	 * Modes that on Medford2 allocate 2 adjacent port numbers to cage 1
1703 	 * and the rest to cage 2.
1704 	 *	port 0 -> cage 1
1705 	 *	port 1 -> cage 1
1706 	 *	port 2 -> cage 2
1707 	 *	port 3 -> cage 2
1708 	 */
1709 	{
1710 		EFX_FAMILY_MEDFORD2,
1711 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1712 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1713 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1714 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1715 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1716 	},
1717 	/*
1718 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1719 	 * to cage 1.
1720 	 *	port 0 -> cage 1
1721 	 *	port 1 -> cage 1
1722 	 *	port 2 -> cage 1
1723 	 *	port 3 -> cage 1
1724 	 */
1725 	{
1726 		EFX_FAMILY_MEDFORD2,
1727 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1728 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1729 	},
1730 	/*
1731 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1732 	 * to cage 2.
1733 	 *	port 0 -> cage 2
1734 	 *	port 1 -> cage 2
1735 	 *	port 2 -> cage 2
1736 	 *	port 3 -> cage 2
1737 	 */
1738 	{
1739 		EFX_FAMILY_MEDFORD2,
1740 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1741 		(1U << TLV_PORT_MODE_NA_1x2) |			/* mode 11 */
1742 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1743 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1744 	},
1745 	/*
1746 	 * Modes that on Riverhead allocate each port number to a separate
1747 	 * cage.
1748 	 *	port 0 -> cage 1
1749 	 *	port 1 -> cage 2
1750 	 */
1751 	{
1752 		EFX_FAMILY_RIVERHEAD,
1753 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1754 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1755 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1756 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1757 	},
1758 };
1759 
1760 static	__checkReturn	efx_rc_t
1761 ef10_external_port_mapping(
1762 	__in		efx_nic_t *enp,
1763 	__in		uint32_t port,
1764 	__out		uint8_t *external_portp)
1765 {
1766 	efx_rc_t rc;
1767 	int i;
1768 	uint32_t port_modes;
1769 	uint32_t matches;
1770 	uint32_t current;
1771 	struct ef10_external_port_map_s *mapp = NULL;
1772 	int ext_index = port; /* Default 1-1 mapping */
1773 
1774 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1775 		    NULL)) != 0) {
1776 		/*
1777 		 * No current port mode information (i.e. Huntington)
1778 		 * - infer mapping from available modes
1779 		 */
1780 		if ((rc = efx_mcdi_get_port_modes(enp,
1781 			    &port_modes, NULL, NULL)) != 0) {
1782 			/*
1783 			 * No port mode information available
1784 			 * - use default mapping
1785 			 */
1786 			goto out;
1787 		}
1788 	} else {
1789 		/* Only need to scan the current mode */
1790 		port_modes = 1 << current;
1791 	}
1792 
1793 	/*
1794 	 * Infer the internal port -> external number mapping from
1795 	 * the possible port modes for this NIC.
1796 	 */
1797 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1798 		struct ef10_external_port_map_s *eepmp =
1799 		    &__ef10_external_port_mappings[i];
1800 		if (eepmp->family != enp->en_family)
1801 			continue;
1802 		matches = (eepmp->modes_mask & port_modes);
1803 		if (matches != 0) {
1804 			/*
1805 			 * Some modes match. For some Huntington boards
1806 			 * there will be multiple matches. The mapping on the
1807 			 * last match is used.
1808 			 */
1809 			mapp = eepmp;
1810 			port_modes &= ~matches;
1811 		}
1812 	}
1813 
1814 	if (port_modes != 0) {
1815 		/* Some advertised modes are not supported */
1816 		rc = ENOTSUP;
1817 		goto fail1;
1818 	}
1819 
1820 out:
1821 	if (mapp != NULL) {
1822 		/*
1823 		 * External ports are assigned a sequence of consecutive
1824 		 * port numbers, so find the one with the closest base_port.
1825 		 */
1826 		uint32_t delta = EFX_EXT_PORT_NA;
1827 
1828 		for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
1829 			uint32_t base = mapp->base_port[i];
1830 			if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
1831 				if ((port - base) < delta) {
1832 					delta = (port - base);
1833 					ext_index = i;
1834 				}
1835 			}
1836 		}
1837 	}
1838 	*external_portp = (uint8_t)(ext_index + 1);
1839 
1840 	return (0);
1841 
1842 fail1:
1843 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1844 
1845 	return (rc);
1846 }
1847 
1848 	__checkReturn	efx_rc_t
1849 efx_mcdi_nic_board_cfg(
1850 	__in		efx_nic_t *enp)
1851 {
1852 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1853 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1854 	ef10_link_state_t els;
1855 	efx_port_t *epp = &(enp->en_port);
1856 	efx_pcie_interface_t intf;
1857 	uint32_t board_type = 0;
1858 	uint32_t base, nvec;
1859 	uint32_t port;
1860 	uint32_t mask;
1861 	uint32_t pf;
1862 	uint32_t vf;
1863 	uint8_t mac_addr[6] = { 0 };
1864 	efx_rc_t rc;
1865 
1866 	/* Get the (zero-based) MCDI port number */
1867 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1868 		goto fail1;
1869 
1870 	/* EFX MCDI interface uses one-based port numbers */
1871 	emip->emi_port = port + 1;
1872 
1873 	encp->enc_assigned_port = port;
1874 
1875 	if ((rc = ef10_external_port_mapping(enp, port,
1876 		    &encp->enc_external_port)) != 0)
1877 		goto fail2;
1878 
1879 	/*
1880 	 * Get PCIe function number from firmware (used for
1881 	 * per-function privilege and dynamic config info).
1882 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1883 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1884 	 */
1885 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf, &intf)) != 0)
1886 		goto fail3;
1887 
1888 	encp->enc_pf = pf;
1889 	encp->enc_vf = vf;
1890 	encp->enc_intf = intf;
1891 
1892 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1893 		goto fail4;
1894 
1895 	/* MAC address for this function */
1896 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1897 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1898 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1899 		/*
1900 		 * Disable static config checking, ONLY for manufacturing test
1901 		 * and setup at the factory, to allow the static config to be
1902 		 * installed.
1903 		 */
1904 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1905 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
1906 			/*
1907 			 * If the static config does not include a global MAC
1908 			 * address pool then the board may return a locally
1909 			 * administered MAC address (this should only happen on
1910 			 * incorrectly programmed boards).
1911 			 */
1912 			rc = EINVAL;
1913 		}
1914 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1915 	} else {
1916 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
1917 	}
1918 	if (rc != 0)
1919 		goto fail5;
1920 
1921 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
1922 
1923 	/*
1924 	 * Get the current privilege mask. Note that this may be modified
1925 	 * dynamically, so for most cases the value is informational only.
1926 	 * If the privilege being discovered can't be granted dynamically,
1927 	 * it's fine to rely on the value. In all other cases, DO NOT use
1928 	 * the privilege mask to check for sufficient privileges, as that
1929 	 * can result in time-of-check/time-of-use bugs.
1930 	 */
1931 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
1932 		goto fail6;
1933 	encp->enc_privilege_mask = mask;
1934 
1935 	/* Board configuration (legacy) */
1936 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
1937 	if (rc != 0) {
1938 		/* Unprivileged functions may not be able to read board cfg */
1939 		if (rc == EACCES)
1940 			board_type = 0;
1941 		else
1942 			goto fail7;
1943 	}
1944 
1945 	encp->enc_board_type = board_type;
1946 
1947 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
1948 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
1949 		goto fail8;
1950 
1951 	/*
1952 	 * Firmware with support for *_FEC capability bits does not
1953 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
1954 	 * Add them here so that drivers understand that they are supported.
1955 	 */
1956 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
1957 		epp->ep_phy_cap_mask |=
1958 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
1959 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
1960 		epp->ep_phy_cap_mask |=
1961 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
1962 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
1963 		epp->ep_phy_cap_mask |=
1964 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
1965 
1966 	/* Obtain the default PHY advertised capabilities */
1967 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
1968 		goto fail9;
1969 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
1970 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
1971 
1972 	/* Check capabilities of running datapath firmware */
1973 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
1974 		goto fail10;
1975 
1976 	/* Get interrupt vector limits */
1977 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
1978 		if (EFX_PCI_FUNCTION_IS_PF(encp))
1979 			goto fail11;
1980 
1981 		/* Ignore error (cannot query vector limits from a VF). */
1982 		base = 0;
1983 		nvec = 1024;
1984 	}
1985 	encp->enc_intr_vec_base = base;
1986 	encp->enc_intr_limit = nvec;
1987 
1988 	return (0);
1989 
1990 fail11:
1991 	EFSYS_PROBE(fail11);
1992 fail10:
1993 	EFSYS_PROBE(fail10);
1994 fail9:
1995 	EFSYS_PROBE(fail9);
1996 fail8:
1997 	EFSYS_PROBE(fail8);
1998 fail7:
1999 	EFSYS_PROBE(fail7);
2000 fail6:
2001 	EFSYS_PROBE(fail6);
2002 fail5:
2003 	EFSYS_PROBE(fail5);
2004 fail4:
2005 	EFSYS_PROBE(fail4);
2006 fail3:
2007 	EFSYS_PROBE(fail3);
2008 fail2:
2009 	EFSYS_PROBE(fail2);
2010 fail1:
2011 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2012 
2013 	return (rc);
2014 }
2015 
2016 	__checkReturn	efx_rc_t
2017 efx_mcdi_entity_reset(
2018 	__in		efx_nic_t *enp)
2019 {
2020 	efx_mcdi_req_t req;
2021 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
2022 		MC_CMD_ENTITY_RESET_OUT_LEN);
2023 	efx_rc_t rc;
2024 
2025 	req.emr_cmd = MC_CMD_ENTITY_RESET;
2026 	req.emr_in_buf = payload;
2027 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
2028 	req.emr_out_buf = payload;
2029 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
2030 
2031 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
2032 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
2033 
2034 	efx_mcdi_execute(enp, &req);
2035 
2036 	if (req.emr_rc != 0) {
2037 		rc = req.emr_rc;
2038 		goto fail1;
2039 	}
2040 
2041 	return (0);
2042 
2043 fail1:
2044 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2045 
2046 	return (rc);
2047 }
2048 
2049 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2050 
2051 #if EFX_OPTS_EF10()
2052 
2053 static	__checkReturn	efx_rc_t
2054 ef10_set_workaround_bug26807(
2055 	__in		efx_nic_t *enp)
2056 {
2057 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2058 	uint32_t flags;
2059 	efx_rc_t rc;
2060 
2061 	/*
2062 	 * If the bug26807 workaround is enabled, then firmware has enabled
2063 	 * support for chained multicast filters. Firmware will reset (FLR)
2064 	 * functions which have filters in the hardware filter table when the
2065 	 * workaround is enabled/disabled.
2066 	 *
2067 	 * We must recheck if the workaround is enabled after inserting the
2068 	 * first hardware filter, in case it has been changed since this check.
2069 	 */
2070 	rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
2071 	    B_TRUE, &flags);
2072 	if (rc == 0) {
2073 		encp->enc_bug26807_workaround = B_TRUE;
2074 		if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
2075 			/*
2076 			 * Other functions had installed filters before the
2077 			 * workaround was enabled, and they have been reset
2078 			 * by firmware.
2079 			 */
2080 			EFSYS_PROBE(bug26807_workaround_flr_done);
2081 			/* FIXME: bump MC warm boot count ? */
2082 		}
2083 	} else if (rc == EACCES) {
2084 		/*
2085 		 * Unprivileged functions cannot enable the workaround in older
2086 		 * firmware.
2087 		 */
2088 		encp->enc_bug26807_workaround = B_FALSE;
2089 	} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
2090 		encp->enc_bug26807_workaround = B_FALSE;
2091 	} else {
2092 		goto fail1;
2093 	}
2094 
2095 	return (0);
2096 
2097 fail1:
2098 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2099 
2100 	return (rc);
2101 }
2102 
2103 static	__checkReturn	efx_rc_t
2104 ef10_nic_board_cfg(
2105 	__in		efx_nic_t *enp)
2106 {
2107 	const efx_nic_ops_t *enop = enp->en_enop;
2108 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2109 	efx_rc_t rc;
2110 
2111 	if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0)
2112 		goto fail1;
2113 
2114 	/*
2115 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
2116 	 * We only support the 14 byte prefix here.
2117 	 */
2118 	if (encp->enc_rx_prefix_size != 14) {
2119 		rc = ENOTSUP;
2120 		goto fail2;
2121 	}
2122 
2123 	encp->enc_clk_mult = 1; /* not used for EF10 */
2124 
2125 	/* Alignment for WPTR updates */
2126 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
2127 
2128 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
2129 	/* No boundary crossing limits */
2130 	encp->enc_tx_dma_desc_boundary = 0;
2131 
2132 	/*
2133 	 * Maximum number of bytes into the frame the TCP header can start for
2134 	 * firmware assisted TSO to work.
2135 	 */
2136 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
2137 
2138 	/* EF10 TSO engine demands that packet header be contiguous. */
2139 	encp->enc_tx_tso_max_header_ndescs = 1;
2140 
2141 	/* The overall TSO header length is not limited. */
2142 	encp->enc_tx_tso_max_header_length = UINT32_MAX;
2143 
2144 	/*
2145 	 * There are no specific limitations on the number of
2146 	 * TSO payload descriptors.
2147 	 */
2148 	encp->enc_tx_tso_max_payload_ndescs = UINT32_MAX;
2149 
2150 	/* TSO superframe payload length is not limited. */
2151 	encp->enc_tx_tso_max_payload_length = UINT32_MAX;
2152 
2153 	/*
2154 	 * Limitation on the maximum number of outgoing packets per
2155 	 * TSO transaction described in SF-108452-SW.
2156 	 */
2157 	encp->enc_tx_tso_max_nframes = 32767;
2158 
2159 	/*
2160 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
2161 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
2162 	 * resources (allocated to this PCIe function), which is zero until
2163 	 * after we have allocated VIs.
2164 	 */
2165 	encp->enc_evq_limit = 1024;
2166 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
2167 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
2168 
2169 	encp->enc_buftbl_limit = UINT32_MAX;
2170 
2171 	if ((rc = ef10_set_workaround_bug26807(enp)) != 0)
2172 		goto fail3;
2173 
2174 	/* Get remaining controller-specific board config */
2175 	if ((rc = enop->eno_board_cfg(enp)) != 0)
2176 		if (rc != EACCES)
2177 			goto fail4;
2178 
2179 	return (0);
2180 
2181 fail4:
2182 	EFSYS_PROBE(fail4);
2183 fail3:
2184 	EFSYS_PROBE(fail3);
2185 fail2:
2186 	EFSYS_PROBE(fail2);
2187 fail1:
2188 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2189 
2190 	return (rc);
2191 }
2192 
2193 	__checkReturn	efx_rc_t
2194 ef10_nic_probe(
2195 	__in		efx_nic_t *enp)
2196 {
2197 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2198 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2199 	efx_rc_t rc;
2200 
2201 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2202 
2203 	/* Read and clear any assertion state */
2204 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2205 		goto fail1;
2206 
2207 	/* Exit the assertion handler */
2208 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2209 		if (rc != EACCES)
2210 			goto fail2;
2211 
2212 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
2213 		goto fail3;
2214 
2215 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
2216 		goto fail4;
2217 
2218 	/*
2219 	 * Set default driver config limits (based on board config).
2220 	 *
2221 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2222 	 * sufficient and small enough to allow multiple functions on the same
2223 	 * port.
2224 	 */
2225 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2226 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2227 
2228 	/* The client driver must configure and enable PIO buffer support */
2229 	edcp->edc_max_piobuf_count = 0;
2230 	edcp->edc_pio_alloc_size = 0;
2231 
2232 #if EFSYS_OPT_MAC_STATS
2233 	/* Wipe the MAC statistics */
2234 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2235 		goto fail5;
2236 #endif
2237 
2238 #if EFSYS_OPT_LOOPBACK
2239 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2240 		goto fail6;
2241 #endif
2242 
2243 #if EFSYS_OPT_MON_STATS
2244 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2245 		/* Unprivileged functions do not have access to sensors */
2246 		if (rc != EACCES)
2247 			goto fail7;
2248 	}
2249 #endif
2250 
2251 	return (0);
2252 
2253 #if EFSYS_OPT_MON_STATS
2254 fail7:
2255 	EFSYS_PROBE(fail7);
2256 #endif
2257 #if EFSYS_OPT_LOOPBACK
2258 fail6:
2259 	EFSYS_PROBE(fail6);
2260 #endif
2261 #if EFSYS_OPT_MAC_STATS
2262 fail5:
2263 	EFSYS_PROBE(fail5);
2264 #endif
2265 fail4:
2266 	EFSYS_PROBE(fail4);
2267 fail3:
2268 	EFSYS_PROBE(fail3);
2269 fail2:
2270 	EFSYS_PROBE(fail2);
2271 fail1:
2272 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2273 
2274 	return (rc);
2275 }
2276 
2277 	__checkReturn	efx_rc_t
2278 ef10_nic_set_drv_limits(
2279 	__inout		efx_nic_t *enp,
2280 	__in		efx_drv_limits_t *edlp)
2281 {
2282 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2283 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2284 	uint32_t min_evq_count, max_evq_count;
2285 	uint32_t min_rxq_count, max_rxq_count;
2286 	uint32_t min_txq_count, max_txq_count;
2287 	efx_rc_t rc;
2288 
2289 	if (edlp == NULL) {
2290 		rc = EINVAL;
2291 		goto fail1;
2292 	}
2293 
2294 	/* Get minimum required and maximum usable VI limits */
2295 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2296 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2297 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2298 
2299 	edcp->edc_min_vi_count =
2300 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2301 
2302 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2303 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2304 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2305 
2306 	edcp->edc_max_vi_count =
2307 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2308 
2309 	/*
2310 	 * Check limits for sub-allocated piobuf blocks.
2311 	 * PIO is optional, so don't fail if the limits are incorrect.
2312 	 */
2313 	if ((encp->enc_piobuf_size == 0) ||
2314 	    (encp->enc_piobuf_limit == 0) ||
2315 	    (edlp->edl_min_pio_alloc_size == 0) ||
2316 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2317 		/* Disable PIO */
2318 		edcp->edc_max_piobuf_count = 0;
2319 		edcp->edc_pio_alloc_size = 0;
2320 	} else {
2321 		uint32_t blk_size, blk_count, blks_per_piobuf;
2322 
2323 		blk_size =
2324 		    MAX(edlp->edl_min_pio_alloc_size,
2325 			    encp->enc_piobuf_min_alloc_size);
2326 
2327 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2328 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2329 
2330 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2331 
2332 		/* A zero max pio alloc count means unlimited */
2333 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2334 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2335 			blk_count = edlp->edl_max_pio_alloc_count;
2336 		}
2337 
2338 		edcp->edc_pio_alloc_size = blk_size;
2339 		edcp->edc_max_piobuf_count =
2340 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2341 	}
2342 
2343 	return (0);
2344 
2345 fail1:
2346 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2347 
2348 	return (rc);
2349 }
2350 
2351 
2352 	__checkReturn	efx_rc_t
2353 ef10_nic_reset(
2354 	__in		efx_nic_t *enp)
2355 {
2356 	efx_rc_t rc;
2357 
2358 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2359 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2360 		goto fail1;
2361 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2362 		goto fail2;
2363 
2364 	if ((rc = efx_mcdi_entity_reset(enp)) != 0)
2365 		goto fail3;
2366 
2367 	/* Clear RX/TX DMA queue errors */
2368 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2369 
2370 	return (0);
2371 
2372 fail3:
2373 	EFSYS_PROBE(fail3);
2374 fail2:
2375 	EFSYS_PROBE(fail2);
2376 fail1:
2377 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2378 
2379 	return (rc);
2380 }
2381 
2382 #endif	/* EFX_OPTS_EF10() */
2383 
2384 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2385 
2386 	__checkReturn	efx_rc_t
2387 ef10_upstream_port_vadaptor_alloc(
2388 	__in		efx_nic_t *enp)
2389 {
2390 	uint32_t retry;
2391 	uint32_t delay_us;
2392 	efx_rc_t rc;
2393 
2394 	/*
2395 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2396 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2397 	 * retry the request several times after waiting a while. The wait time
2398 	 * between retries starts small (10ms) and exponentially increases.
2399 	 * Total wait time is a little over two seconds. Retry logic in the
2400 	 * client driver may mean this whole loop is repeated if it continues to
2401 	 * fail.
2402 	 */
2403 	retry = 0;
2404 	delay_us = 10000;
2405 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2406 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2407 		    (rc != ENOENT)) {
2408 			/*
2409 			 * Do not retry alloc for PF, or for other errors on
2410 			 * a VF.
2411 			 */
2412 			goto fail1;
2413 		}
2414 
2415 		/* VF startup before PF is ready. Retry allocation. */
2416 		if (retry > 5) {
2417 			/* Too many attempts */
2418 			rc = EINVAL;
2419 			goto fail2;
2420 		}
2421 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2422 		EFSYS_SLEEP(delay_us);
2423 		retry++;
2424 		if (delay_us < 500000)
2425 			delay_us <<= 2;
2426 	}
2427 
2428 	return (0);
2429 
2430 fail2:
2431 	EFSYS_PROBE(fail2);
2432 fail1:
2433 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2434 
2435 	return (rc);
2436 }
2437 
2438 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2439 
2440 #if EFX_OPTS_EF10()
2441 
2442 	__checkReturn	efx_rc_t
2443 ef10_nic_init(
2444 	__in		efx_nic_t *enp)
2445 {
2446 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2447 	uint32_t min_vi_count, max_vi_count;
2448 	uint32_t vi_count, vi_base, vi_shift;
2449 	uint32_t i;
2450 	uint32_t vi_window_size;
2451 	efx_rc_t rc;
2452 	boolean_t alloc_vadaptor = B_TRUE;
2453 
2454 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2455 
2456 	/* Enable reporting of some events (e.g. link change) */
2457 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2458 		goto fail1;
2459 
2460 	/* Allocate (optional) on-chip PIO buffers */
2461 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2462 
2463 	/*
2464 	 * For best performance, PIO writes should use a write-combined
2465 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2466 	 * aperture of each VI would be a burden to drivers (and not
2467 	 * possible if the host page size is >4Kbyte).
2468 	 *
2469 	 * To avoid this we use a single uncached (UC) mapping for VI
2470 	 * register access, and a single WC mapping for extra VIs used
2471 	 * for PIO writes.
2472 	 *
2473 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2474 	 * each VI that is using a sub-allocated block from the piobuf.
2475 	 */
2476 	min_vi_count = edcp->edc_min_vi_count;
2477 	max_vi_count =
2478 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2479 
2480 	/* Ensure that the previously attached driver's VIs are freed */
2481 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2482 		goto fail2;
2483 
2484 	/*
2485 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2486 	 * fails then retrying the request for fewer VI resources may succeed.
2487 	 */
2488 	vi_count = 0;
2489 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2490 		    &vi_base, &vi_count, &vi_shift)) != 0)
2491 		goto fail3;
2492 
2493 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2494 
2495 	if (vi_count < min_vi_count) {
2496 		rc = ENOMEM;
2497 		goto fail4;
2498 	}
2499 
2500 	enp->en_arch.ef10.ena_vi_base = vi_base;
2501 	enp->en_arch.ef10.ena_vi_count = vi_count;
2502 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2503 
2504 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2505 		/* Not enough extra VIs to map piobufs */
2506 		ef10_nic_free_piobufs(enp);
2507 	}
2508 
2509 	enp->en_arch.ef10.ena_pio_write_vi_base =
2510 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2511 
2512 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2513 	    EFX_VI_WINDOW_SHIFT_INVALID);
2514 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2515 	    EFX_VI_WINDOW_SHIFT_64K);
2516 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2517 
2518 	/* Save UC memory mapping details */
2519 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2520 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2521 		enp->en_arch.ef10.ena_uc_mem_map_size =
2522 		    (vi_window_size *
2523 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2524 	} else {
2525 		enp->en_arch.ef10.ena_uc_mem_map_size =
2526 		    (vi_window_size *
2527 		    enp->en_arch.ef10.ena_vi_count);
2528 	}
2529 
2530 	/* Save WC memory mapping details */
2531 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2532 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2533 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2534 
2535 	enp->en_arch.ef10.ena_wc_mem_map_size =
2536 	    (vi_window_size *
2537 	    enp->en_arch.ef10.ena_piobuf_count);
2538 
2539 	/* Link piobufs to extra VIs in WC mapping */
2540 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2541 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2542 			rc = efx_mcdi_link_piobuf(enp,
2543 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2544 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2545 			if (rc != 0)
2546 				break;
2547 		}
2548 	}
2549 
2550 	/*
2551 	 * For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
2552 	 * during NIC initialization when vSwitch is created and vports are
2553 	 * allocated. Hence, skip vAdaptor allocation for EVB and update vport
2554 	 * id in NIC structure with the one allocated for PF.
2555 	 */
2556 
2557 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2558 #if EFSYS_OPT_EVB
2559 	if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
2560 		/* For EVB use vport allocated on vswitch */
2561 		enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
2562 		alloc_vadaptor = B_FALSE;
2563 	}
2564 #endif
2565 	if (alloc_vadaptor != B_FALSE) {
2566 		/* Allocate a vAdaptor attached to our upstream vPort/pPort */
2567 		if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
2568 			goto fail5;
2569 	}
2570 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2571 
2572 	return (0);
2573 
2574 fail5:
2575 	EFSYS_PROBE(fail5);
2576 fail4:
2577 	EFSYS_PROBE(fail4);
2578 fail3:
2579 	EFSYS_PROBE(fail3);
2580 fail2:
2581 	EFSYS_PROBE(fail2);
2582 
2583 	ef10_nic_free_piobufs(enp);
2584 
2585 fail1:
2586 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2587 
2588 	return (rc);
2589 }
2590 
2591 	__checkReturn	efx_rc_t
2592 ef10_nic_get_vi_pool(
2593 	__in		efx_nic_t *enp,
2594 	__out		uint32_t *vi_countp)
2595 {
2596 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2597 
2598 	/*
2599 	 * Report VIs that the client driver can use.
2600 	 * Do not include VIs used for PIO buffer writes.
2601 	 */
2602 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2603 
2604 	return (0);
2605 }
2606 
2607 	__checkReturn	efx_rc_t
2608 ef10_nic_get_bar_region(
2609 	__in		efx_nic_t *enp,
2610 	__in		efx_nic_region_t region,
2611 	__out		uint32_t *offsetp,
2612 	__out		size_t *sizep)
2613 {
2614 	efx_rc_t rc;
2615 
2616 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2617 
2618 	/*
2619 	 * TODO: Specify host memory mapping alignment and granularity
2620 	 * in efx_drv_limits_t so that they can be taken into account
2621 	 * when allocating extra VIs for PIO writes.
2622 	 */
2623 	switch (region) {
2624 	case EFX_REGION_VI:
2625 		/* UC mapped memory BAR region for VI registers */
2626 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2627 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2628 		break;
2629 
2630 	case EFX_REGION_PIO_WRITE_VI:
2631 		/* WC mapped memory BAR region for piobuf writes */
2632 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2633 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2634 		break;
2635 
2636 	default:
2637 		rc = EINVAL;
2638 		goto fail1;
2639 	}
2640 
2641 	return (0);
2642 
2643 fail1:
2644 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2645 
2646 	return (rc);
2647 }
2648 
2649 	__checkReturn	boolean_t
2650 ef10_nic_hw_unavailable(
2651 	__in		efx_nic_t *enp)
2652 {
2653 	efx_dword_t dword;
2654 
2655 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2656 		return (B_TRUE);
2657 
2658 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2659 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2660 		goto unavail;
2661 
2662 	return (B_FALSE);
2663 
2664 unavail:
2665 	ef10_nic_set_hw_unavailable(enp);
2666 
2667 	return (B_TRUE);
2668 }
2669 
2670 			void
2671 ef10_nic_set_hw_unavailable(
2672 	__in		efx_nic_t *enp)
2673 {
2674 	EFSYS_PROBE(hw_unavail);
2675 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2676 }
2677 
2678 
2679 			void
2680 ef10_nic_fini(
2681 	__in		efx_nic_t *enp)
2682 {
2683 	uint32_t i;
2684 	efx_rc_t rc;
2685 	boolean_t do_vadaptor_free = B_TRUE;
2686 
2687 #if EFSYS_OPT_EVB
2688 	if (enp->en_vswitchp != NULL) {
2689 		/*
2690 		 * For SR-IOV the vAdaptor is freed with the vswitch,
2691 		 * so do not free it here.
2692 		 */
2693 		do_vadaptor_free = B_FALSE;
2694 	}
2695 #endif
2696 	if (do_vadaptor_free != B_FALSE) {
2697 		(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2698 		enp->en_vport_id = EVB_PORT_ID_NULL;
2699 	}
2700 
2701 	/* Unlink piobufs from extra VIs in WC mapping */
2702 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2703 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2704 			rc = efx_mcdi_unlink_piobuf(enp,
2705 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2706 			if (rc != 0)
2707 				break;
2708 		}
2709 	}
2710 
2711 	ef10_nic_free_piobufs(enp);
2712 
2713 	(void) efx_mcdi_free_vis(enp);
2714 	enp->en_arch.ef10.ena_vi_count = 0;
2715 }
2716 
2717 			void
2718 ef10_nic_unprobe(
2719 	__in		efx_nic_t *enp)
2720 {
2721 #if EFSYS_OPT_MON_STATS
2722 	mcdi_mon_cfg_free(enp);
2723 #endif /* EFSYS_OPT_MON_STATS */
2724 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2725 }
2726 
2727 #if EFSYS_OPT_DIAG
2728 
2729 	__checkReturn	efx_rc_t
2730 ef10_nic_register_test(
2731 	__in		efx_nic_t *enp)
2732 {
2733 	efx_rc_t rc;
2734 
2735 	/* FIXME */
2736 	_NOTE(ARGUNUSED(enp))
2737 	_NOTE(CONSTANTCONDITION)
2738 	if (B_FALSE) {
2739 		rc = ENOTSUP;
2740 		goto fail1;
2741 	}
2742 	/* FIXME */
2743 
2744 	return (0);
2745 
2746 fail1:
2747 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2748 
2749 	return (rc);
2750 }
2751 
2752 #endif	/* EFSYS_OPT_DIAG */
2753 
2754 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2755 
2756 	__checkReturn	efx_rc_t
2757 efx_mcdi_get_nic_global(
2758 	__in		efx_nic_t *enp,
2759 	__in		uint32_t key,
2760 	__out		uint32_t *valuep)
2761 {
2762 	efx_mcdi_req_t req;
2763 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2764 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2765 	efx_rc_t rc;
2766 
2767 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2768 	req.emr_in_buf = payload;
2769 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2770 	req.emr_out_buf = payload;
2771 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2772 
2773 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2774 
2775 	efx_mcdi_execute(enp, &req);
2776 
2777 	if (req.emr_rc != 0) {
2778 		rc = req.emr_rc;
2779 		goto fail1;
2780 	}
2781 
2782 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2783 		rc = EMSGSIZE;
2784 		goto fail2;
2785 	}
2786 
2787 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2788 
2789 	return (0);
2790 
2791 fail2:
2792 	EFSYS_PROBE(fail2);
2793 fail1:
2794 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2795 
2796 	return (rc);
2797 }
2798 
2799 	__checkReturn	efx_rc_t
2800 efx_mcdi_set_nic_global(
2801 	__in		efx_nic_t *enp,
2802 	__in		uint32_t key,
2803 	__in		uint32_t value)
2804 {
2805 	efx_mcdi_req_t req;
2806 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2807 	efx_rc_t rc;
2808 
2809 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2810 	req.emr_in_buf = payload;
2811 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2812 	req.emr_out_buf = NULL;
2813 	req.emr_out_length = 0;
2814 
2815 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2816 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2817 
2818 	efx_mcdi_execute(enp, &req);
2819 
2820 	if (req.emr_rc != 0) {
2821 		rc = req.emr_rc;
2822 		goto fail1;
2823 	}
2824 
2825 	return (0);
2826 
2827 fail1:
2828 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2829 
2830 	return (rc);
2831 }
2832 
2833 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2834 
2835 #endif	/* EFX_OPTS_EF10() */
2836