xref: /dpdk/drivers/common/sfc_efx/base/ef10_nic.c (revision 97b914f4e715565d53d38ac6e04815b9be5e58a9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2012-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 #if EFSYS_OPT_MON_MCDI
10 #include "mcdi_mon.h"
11 #endif
12 
13 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
14 
15 #include "ef10_tlv_layout.h"
16 
17 	__checkReturn	efx_rc_t
18 efx_mcdi_get_port_assignment(
19 	__in		efx_nic_t *enp,
20 	__out		uint32_t *portp)
21 {
22 	efx_mcdi_req_t req;
23 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
24 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
25 	efx_rc_t rc;
26 
27 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
28 
29 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
30 	req.emr_in_buf = payload;
31 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
32 	req.emr_out_buf = payload;
33 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
34 
35 	efx_mcdi_execute(enp, &req);
36 
37 	if (req.emr_rc != 0) {
38 		rc = req.emr_rc;
39 		goto fail1;
40 	}
41 
42 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
43 		rc = EMSGSIZE;
44 		goto fail2;
45 	}
46 
47 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
48 
49 	return (0);
50 
51 fail2:
52 	EFSYS_PROBE(fail2);
53 fail1:
54 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
55 
56 	return (rc);
57 }
58 
59 	__checkReturn	efx_rc_t
60 efx_mcdi_get_port_modes(
61 	__in		efx_nic_t *enp,
62 	__out		uint32_t *modesp,
63 	__out_opt	uint32_t *current_modep,
64 	__out_opt	uint32_t *default_modep)
65 {
66 	efx_mcdi_req_t req;
67 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
68 		MC_CMD_GET_PORT_MODES_OUT_LEN);
69 	efx_rc_t rc;
70 
71 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
72 
73 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
74 	req.emr_in_buf = payload;
75 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
76 	req.emr_out_buf = payload;
77 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
78 
79 	efx_mcdi_execute(enp, &req);
80 
81 	if (req.emr_rc != 0) {
82 		rc = req.emr_rc;
83 		goto fail1;
84 	}
85 
86 	/*
87 	 * Require only Modes and DefaultMode fields, unless the current mode
88 	 * was requested (CurrentMode field was added for Medford).
89 	 */
90 	if (req.emr_out_length_used <
91 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
92 		rc = EMSGSIZE;
93 		goto fail2;
94 	}
95 	if ((current_modep != NULL) && (req.emr_out_length_used <
96 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
97 		rc = EMSGSIZE;
98 		goto fail3;
99 	}
100 
101 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
102 
103 	if (current_modep != NULL) {
104 		*current_modep = MCDI_OUT_DWORD(req,
105 					    GET_PORT_MODES_OUT_CURRENT_MODE);
106 	}
107 
108 	if (default_modep != NULL) {
109 		*default_modep = MCDI_OUT_DWORD(req,
110 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
111 	}
112 
113 	return (0);
114 
115 fail3:
116 	EFSYS_PROBE(fail3);
117 fail2:
118 	EFSYS_PROBE(fail2);
119 fail1:
120 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
121 
122 	return (rc);
123 }
124 
125 	__checkReturn	efx_rc_t
126 ef10_nic_get_port_mode_bandwidth(
127 	__in		efx_nic_t *enp,
128 	__out		uint32_t *bandwidth_mbpsp)
129 {
130 	uint32_t port_modes;
131 	uint32_t current_mode;
132 	efx_port_t *epp = &(enp->en_port);
133 
134 	uint32_t single_lane;
135 	uint32_t dual_lane;
136 	uint32_t quad_lane;
137 	uint32_t bandwidth;
138 	efx_rc_t rc;
139 
140 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
141 				    &current_mode, NULL)) != 0) {
142 		/* No port mode info available. */
143 		goto fail1;
144 	}
145 
146 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
147 		single_lane = 25000;
148 	else
149 		single_lane = 10000;
150 
151 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
152 		dual_lane = 50000;
153 	else
154 		dual_lane = 20000;
155 
156 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
157 		quad_lane = 100000;
158 	else
159 		quad_lane = 40000;
160 
161 	switch (current_mode) {
162 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
163 		bandwidth = single_lane;
164 		break;
165 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
166 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
167 		bandwidth = dual_lane;
168 		break;
169 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
170 		bandwidth = single_lane + single_lane;
171 		break;
172 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
173 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
174 		bandwidth = 4 * single_lane;
175 		break;
176 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
177 		bandwidth = (2 * single_lane) + (2 * single_lane);
178 		break;
179 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
180 		bandwidth = dual_lane + dual_lane;
181 		break;
182 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
183 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
184 		bandwidth = dual_lane + (2 * single_lane);
185 		break;
186 	/* Legacy Medford-only mode. Do not use (see bug63270) */
187 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
188 		bandwidth = 4 * single_lane;
189 		break;
190 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
191 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
192 		bandwidth = quad_lane;
193 		break;
194 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
195 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
196 		bandwidth = 2 * dual_lane;
197 		break;
198 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
199 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
200 		bandwidth = quad_lane + (2 * single_lane);
201 		break;
202 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
203 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
204 		bandwidth = quad_lane + dual_lane;
205 		break;
206 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
207 		bandwidth = quad_lane + quad_lane;
208 		break;
209 	default:
210 		rc = EINVAL;
211 		goto fail2;
212 	}
213 
214 	*bandwidth_mbpsp = bandwidth;
215 
216 	return (0);
217 
218 fail2:
219 	EFSYS_PROBE(fail2);
220 fail1:
221 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
222 
223 	return (rc);
224 }
225 
226 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
227 
228 #if EFX_OPTS_EF10()
229 
230 	__checkReturn		efx_rc_t
231 efx_mcdi_vadaptor_alloc(
232 	__in			efx_nic_t *enp,
233 	__in			uint32_t port_id)
234 {
235 	efx_mcdi_req_t req;
236 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
237 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
238 	efx_rc_t rc;
239 
240 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
241 	req.emr_in_buf = payload;
242 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
243 	req.emr_out_buf = payload;
244 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
245 
246 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
247 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
248 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
249 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
250 
251 	efx_mcdi_execute(enp, &req);
252 
253 	if (req.emr_rc != 0) {
254 		rc = req.emr_rc;
255 		goto fail1;
256 	}
257 
258 	return (0);
259 
260 fail1:
261 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
262 
263 	return (rc);
264 }
265 
266 	__checkReturn		efx_rc_t
267 efx_mcdi_vadaptor_free(
268 	__in			efx_nic_t *enp,
269 	__in			uint32_t port_id)
270 {
271 	efx_mcdi_req_t req;
272 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
273 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
274 	efx_rc_t rc;
275 
276 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
277 	req.emr_in_buf = payload;
278 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
279 	req.emr_out_buf = payload;
280 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
281 
282 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
283 
284 	efx_mcdi_execute(enp, &req);
285 
286 	if (req.emr_rc != 0) {
287 		rc = req.emr_rc;
288 		goto fail1;
289 	}
290 
291 	return (0);
292 
293 fail1:
294 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
295 
296 	return (rc);
297 }
298 
299 #endif	/* EFX_OPTS_EF10() */
300 
301 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
302 
303 	__checkReturn	efx_rc_t
304 efx_mcdi_get_mac_address_pf(
305 	__in			efx_nic_t *enp,
306 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
307 {
308 	efx_mcdi_req_t req;
309 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
310 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
311 	efx_rc_t rc;
312 
313 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
314 
315 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
316 	req.emr_in_buf = payload;
317 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
318 	req.emr_out_buf = payload;
319 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
320 
321 	efx_mcdi_execute(enp, &req);
322 
323 	if (req.emr_rc != 0) {
324 		rc = req.emr_rc;
325 		goto fail1;
326 	}
327 
328 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
329 		rc = EMSGSIZE;
330 		goto fail2;
331 	}
332 
333 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
334 		rc = ENOENT;
335 		goto fail3;
336 	}
337 
338 	if (mac_addrp != NULL) {
339 		uint8_t *addrp;
340 
341 		addrp = MCDI_OUT2(req, uint8_t,
342 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
343 
344 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
345 	}
346 
347 	return (0);
348 
349 fail3:
350 	EFSYS_PROBE(fail3);
351 fail2:
352 	EFSYS_PROBE(fail2);
353 fail1:
354 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
355 
356 	return (rc);
357 }
358 
359 	__checkReturn	efx_rc_t
360 efx_mcdi_get_mac_address_vf(
361 	__in			efx_nic_t *enp,
362 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
363 {
364 	efx_mcdi_req_t req;
365 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
366 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
367 	efx_rc_t rc;
368 
369 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
370 
371 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
372 	req.emr_in_buf = payload;
373 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
374 	req.emr_out_buf = payload;
375 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
376 
377 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
378 	    EVB_PORT_ID_ASSIGNED);
379 
380 	efx_mcdi_execute(enp, &req);
381 
382 	if (req.emr_rc != 0) {
383 		rc = req.emr_rc;
384 		goto fail1;
385 	}
386 
387 	if (req.emr_out_length_used <
388 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
389 		rc = EMSGSIZE;
390 		goto fail2;
391 	}
392 
393 	if (MCDI_OUT_DWORD(req,
394 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
395 		rc = ENOENT;
396 		goto fail3;
397 	}
398 
399 	if (mac_addrp != NULL) {
400 		uint8_t *addrp;
401 
402 		addrp = MCDI_OUT2(req, uint8_t,
403 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
404 
405 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
406 	}
407 
408 	return (0);
409 
410 fail3:
411 	EFSYS_PROBE(fail3);
412 fail2:
413 	EFSYS_PROBE(fail2);
414 fail1:
415 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
416 
417 	return (rc);
418 }
419 
420 	__checkReturn	efx_rc_t
421 efx_mcdi_get_clock(
422 	__in		efx_nic_t *enp,
423 	__out		uint32_t *sys_freqp,
424 	__out		uint32_t *dpcpu_freqp)
425 {
426 	efx_mcdi_req_t req;
427 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
428 		MC_CMD_GET_CLOCK_OUT_LEN);
429 	efx_rc_t rc;
430 
431 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
432 
433 	req.emr_cmd = MC_CMD_GET_CLOCK;
434 	req.emr_in_buf = payload;
435 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
436 	req.emr_out_buf = payload;
437 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
438 
439 	efx_mcdi_execute(enp, &req);
440 
441 	if (req.emr_rc != 0) {
442 		rc = req.emr_rc;
443 		goto fail1;
444 	}
445 
446 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
447 		rc = EMSGSIZE;
448 		goto fail2;
449 	}
450 
451 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
452 	if (*sys_freqp == 0) {
453 		rc = EINVAL;
454 		goto fail3;
455 	}
456 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
457 	if (*dpcpu_freqp == 0) {
458 		rc = EINVAL;
459 		goto fail4;
460 	}
461 
462 	return (0);
463 
464 fail4:
465 	EFSYS_PROBE(fail4);
466 fail3:
467 	EFSYS_PROBE(fail3);
468 fail2:
469 	EFSYS_PROBE(fail2);
470 fail1:
471 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
472 
473 	return (rc);
474 }
475 
476 	__checkReturn	efx_rc_t
477 efx_mcdi_get_rxdp_config(
478 	__in		efx_nic_t *enp,
479 	__out		uint32_t *end_paddingp)
480 {
481 	efx_mcdi_req_t req;
482 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
483 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
484 	uint32_t end_padding;
485 	efx_rc_t rc;
486 
487 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
488 	req.emr_in_buf = payload;
489 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
490 	req.emr_out_buf = payload;
491 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
492 
493 	efx_mcdi_execute(enp, &req);
494 
495 	if (req.emr_rc != 0) {
496 		rc = req.emr_rc;
497 		goto fail1;
498 	}
499 
500 	if (req.emr_out_length_used < MC_CMD_GET_RXDP_CONFIG_OUT_LEN) {
501 		rc = EMSGSIZE;
502 		goto fail2;
503 	}
504 
505 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
506 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
507 		/* RX DMA end padding is disabled */
508 		end_padding = 0;
509 	} else {
510 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
511 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
512 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
513 			end_padding = 64;
514 			break;
515 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
516 			end_padding = 128;
517 			break;
518 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
519 			end_padding = 256;
520 			break;
521 		default:
522 			rc = ENOTSUP;
523 			goto fail3;
524 		}
525 	}
526 
527 	*end_paddingp = end_padding;
528 
529 	return (0);
530 
531 fail3:
532 	EFSYS_PROBE(fail3);
533 fail2:
534 	EFSYS_PROBE(fail2);
535 fail1:
536 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
537 
538 	return (rc);
539 }
540 
541 	__checkReturn	efx_rc_t
542 efx_mcdi_get_vector_cfg(
543 	__in		efx_nic_t *enp,
544 	__out_opt	uint32_t *vec_basep,
545 	__out_opt	uint32_t *pf_nvecp,
546 	__out_opt	uint32_t *vf_nvecp)
547 {
548 	efx_mcdi_req_t req;
549 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
550 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
551 	efx_rc_t rc;
552 
553 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
554 	req.emr_in_buf = payload;
555 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
556 	req.emr_out_buf = payload;
557 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
558 
559 	efx_mcdi_execute(enp, &req);
560 
561 	if (req.emr_rc != 0) {
562 		rc = req.emr_rc;
563 		goto fail1;
564 	}
565 
566 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
567 		rc = EMSGSIZE;
568 		goto fail2;
569 	}
570 
571 	if (vec_basep != NULL)
572 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
573 	if (pf_nvecp != NULL)
574 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
575 	if (vf_nvecp != NULL)
576 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
577 
578 	return (0);
579 
580 fail2:
581 	EFSYS_PROBE(fail2);
582 fail1:
583 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
584 
585 	return (rc);
586 }
587 
588 	__checkReturn	efx_rc_t
589 efx_mcdi_alloc_vis(
590 	__in		efx_nic_t *enp,
591 	__in		uint32_t min_vi_count,
592 	__in		uint32_t max_vi_count,
593 	__out		uint32_t *vi_basep,
594 	__out		uint32_t *vi_countp,
595 	__out		uint32_t *vi_shiftp)
596 {
597 	efx_mcdi_req_t req;
598 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
599 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
600 	efx_rc_t rc;
601 
602 	if (vi_countp == NULL) {
603 		rc = EINVAL;
604 		goto fail1;
605 	}
606 
607 	req.emr_cmd = MC_CMD_ALLOC_VIS;
608 	req.emr_in_buf = payload;
609 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
610 	req.emr_out_buf = payload;
611 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
612 
613 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
614 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
615 
616 	efx_mcdi_execute(enp, &req);
617 
618 	if (req.emr_rc != 0) {
619 		rc = req.emr_rc;
620 		goto fail2;
621 	}
622 
623 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
624 		rc = EMSGSIZE;
625 		goto fail3;
626 	}
627 
628 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
629 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
630 
631 	/* Report VI_SHIFT if available (always zero for Huntington) */
632 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
633 		*vi_shiftp = 0;
634 	else
635 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
636 
637 	return (0);
638 
639 fail3:
640 	EFSYS_PROBE(fail3);
641 fail2:
642 	EFSYS_PROBE(fail2);
643 fail1:
644 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
645 
646 	return (rc);
647 }
648 
649 
650 	__checkReturn	efx_rc_t
651 efx_mcdi_free_vis(
652 	__in		efx_nic_t *enp)
653 {
654 	efx_mcdi_req_t req;
655 	efx_rc_t rc;
656 
657 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
658 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
659 
660 	req.emr_cmd = MC_CMD_FREE_VIS;
661 	req.emr_in_buf = NULL;
662 	req.emr_in_length = 0;
663 	req.emr_out_buf = NULL;
664 	req.emr_out_length = 0;
665 
666 	efx_mcdi_execute_quiet(enp, &req);
667 
668 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
669 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
670 		rc = req.emr_rc;
671 		goto fail1;
672 	}
673 
674 	return (0);
675 
676 fail1:
677 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
678 
679 	return (rc);
680 }
681 
682 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
683 
684 #if EFX_OPTS_EF10()
685 
686 static	__checkReturn	efx_rc_t
687 efx_mcdi_alloc_piobuf(
688 	__in		efx_nic_t *enp,
689 	__out		efx_piobuf_handle_t *handlep)
690 {
691 	efx_mcdi_req_t req;
692 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
693 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
694 	efx_rc_t rc;
695 
696 	if (handlep == NULL) {
697 		rc = EINVAL;
698 		goto fail1;
699 	}
700 
701 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
702 	req.emr_in_buf = payload;
703 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
704 	req.emr_out_buf = payload;
705 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
706 
707 	efx_mcdi_execute_quiet(enp, &req);
708 
709 	if (req.emr_rc != 0) {
710 		rc = req.emr_rc;
711 		goto fail2;
712 	}
713 
714 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
715 		rc = EMSGSIZE;
716 		goto fail3;
717 	}
718 
719 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
720 
721 	return (0);
722 
723 fail3:
724 	EFSYS_PROBE(fail3);
725 fail2:
726 	EFSYS_PROBE(fail2);
727 fail1:
728 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
729 
730 	return (rc);
731 }
732 
733 static	__checkReturn	efx_rc_t
734 efx_mcdi_free_piobuf(
735 	__in		efx_nic_t *enp,
736 	__in		efx_piobuf_handle_t handle)
737 {
738 	efx_mcdi_req_t req;
739 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
740 		MC_CMD_FREE_PIOBUF_OUT_LEN);
741 	efx_rc_t rc;
742 
743 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
744 	req.emr_in_buf = payload;
745 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
746 	req.emr_out_buf = payload;
747 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
748 
749 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
750 
751 	efx_mcdi_execute_quiet(enp, &req);
752 
753 	if (req.emr_rc != 0) {
754 		rc = req.emr_rc;
755 		goto fail1;
756 	}
757 
758 	return (0);
759 
760 fail1:
761 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
762 
763 	return (rc);
764 }
765 
766 static	__checkReturn	efx_rc_t
767 efx_mcdi_link_piobuf(
768 	__in		efx_nic_t *enp,
769 	__in		uint32_t vi_index,
770 	__in		efx_piobuf_handle_t handle)
771 {
772 	efx_mcdi_req_t req;
773 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
774 		MC_CMD_LINK_PIOBUF_OUT_LEN);
775 	efx_rc_t rc;
776 
777 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
778 	req.emr_in_buf = payload;
779 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
780 	req.emr_out_buf = payload;
781 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
782 
783 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
784 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
785 
786 	efx_mcdi_execute(enp, &req);
787 
788 	if (req.emr_rc != 0) {
789 		rc = req.emr_rc;
790 		goto fail1;
791 	}
792 
793 	return (0);
794 
795 fail1:
796 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
797 
798 	return (rc);
799 }
800 
801 static	__checkReturn	efx_rc_t
802 efx_mcdi_unlink_piobuf(
803 	__in		efx_nic_t *enp,
804 	__in		uint32_t vi_index)
805 {
806 	efx_mcdi_req_t req;
807 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
808 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
809 	efx_rc_t rc;
810 
811 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
812 	req.emr_in_buf = payload;
813 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
814 	req.emr_out_buf = payload;
815 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
816 
817 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
818 
819 	efx_mcdi_execute_quiet(enp, &req);
820 
821 	if (req.emr_rc != 0) {
822 		rc = req.emr_rc;
823 		goto fail1;
824 	}
825 
826 	return (0);
827 
828 fail1:
829 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
830 
831 	return (rc);
832 }
833 
834 static			void
835 ef10_nic_alloc_piobufs(
836 	__in		efx_nic_t *enp,
837 	__in		uint32_t max_piobuf_count)
838 {
839 	efx_piobuf_handle_t *handlep;
840 	unsigned int i;
841 
842 	EFSYS_ASSERT3U(max_piobuf_count, <=,
843 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
844 
845 	enp->en_arch.ef10.ena_piobuf_count = 0;
846 
847 	for (i = 0; i < max_piobuf_count; i++) {
848 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
849 
850 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
851 			goto fail1;
852 
853 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
854 		enp->en_arch.ef10.ena_piobuf_count++;
855 	}
856 
857 	return;
858 
859 fail1:
860 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
861 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
862 
863 		(void) efx_mcdi_free_piobuf(enp, *handlep);
864 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
865 	}
866 	enp->en_arch.ef10.ena_piobuf_count = 0;
867 }
868 
869 
870 static			void
871 ef10_nic_free_piobufs(
872 	__in		efx_nic_t *enp)
873 {
874 	efx_piobuf_handle_t *handlep;
875 	unsigned int i;
876 
877 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
878 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
879 
880 		(void) efx_mcdi_free_piobuf(enp, *handlep);
881 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
882 	}
883 	enp->en_arch.ef10.ena_piobuf_count = 0;
884 }
885 
886 /* Sub-allocate a block from a piobuf */
887 	__checkReturn	efx_rc_t
888 ef10_nic_pio_alloc(
889 	__inout		efx_nic_t *enp,
890 	__out		uint32_t *bufnump,
891 	__out		efx_piobuf_handle_t *handlep,
892 	__out		uint32_t *blknump,
893 	__out		uint32_t *offsetp,
894 	__out		size_t *sizep)
895 {
896 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
897 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
898 	uint32_t blk_per_buf;
899 	uint32_t buf, blk;
900 	efx_rc_t rc;
901 
902 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
903 	EFSYS_ASSERT(bufnump);
904 	EFSYS_ASSERT(handlep);
905 	EFSYS_ASSERT(blknump);
906 	EFSYS_ASSERT(offsetp);
907 	EFSYS_ASSERT(sizep);
908 
909 	if ((edcp->edc_pio_alloc_size == 0) ||
910 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
911 		rc = ENOMEM;
912 		goto fail1;
913 	}
914 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
915 
916 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
917 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
918 
919 		if (~(*map) == 0)
920 			continue;
921 
922 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
923 		for (blk = 0; blk < blk_per_buf; blk++) {
924 			if ((*map & (1u << blk)) == 0) {
925 				*map |= (1u << blk);
926 				goto done;
927 			}
928 		}
929 	}
930 	rc = ENOMEM;
931 	goto fail2;
932 
933 done:
934 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
935 	*bufnump = buf;
936 	*blknump = blk;
937 	*sizep = edcp->edc_pio_alloc_size;
938 	*offsetp = blk * (*sizep);
939 
940 	return (0);
941 
942 fail2:
943 	EFSYS_PROBE(fail2);
944 fail1:
945 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
946 
947 	return (rc);
948 }
949 
950 /* Free a piobuf sub-allocated block */
951 	__checkReturn	efx_rc_t
952 ef10_nic_pio_free(
953 	__inout		efx_nic_t *enp,
954 	__in		uint32_t bufnum,
955 	__in		uint32_t blknum)
956 {
957 	uint32_t *map;
958 	efx_rc_t rc;
959 
960 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
961 	    (blknum >= (8 * sizeof (*map)))) {
962 		rc = EINVAL;
963 		goto fail1;
964 	}
965 
966 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
967 	if ((*map & (1u << blknum)) == 0) {
968 		rc = ENOENT;
969 		goto fail2;
970 	}
971 	*map &= ~(1u << blknum);
972 
973 	return (0);
974 
975 fail2:
976 	EFSYS_PROBE(fail2);
977 fail1:
978 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
979 
980 	return (rc);
981 }
982 
983 	__checkReturn	efx_rc_t
984 ef10_nic_pio_link(
985 	__inout		efx_nic_t *enp,
986 	__in		uint32_t vi_index,
987 	__in		efx_piobuf_handle_t handle)
988 {
989 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
990 }
991 
992 	__checkReturn	efx_rc_t
993 ef10_nic_pio_unlink(
994 	__inout		efx_nic_t *enp,
995 	__in		uint32_t vi_index)
996 {
997 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
998 }
999 
1000 #endif	/* EFX_OPTS_EF10() */
1001 
1002 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
1003 
1004 static	__checkReturn	efx_rc_t
1005 ef10_mcdi_get_pf_count(
1006 	__in		efx_nic_t *enp,
1007 	__out		uint32_t *pf_countp)
1008 {
1009 	efx_mcdi_req_t req;
1010 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1011 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1012 	efx_rc_t rc;
1013 
1014 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1015 	req.emr_in_buf = payload;
1016 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1017 	req.emr_out_buf = payload;
1018 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1019 
1020 	efx_mcdi_execute(enp, &req);
1021 
1022 	if (req.emr_rc != 0) {
1023 		rc = req.emr_rc;
1024 		goto fail1;
1025 	}
1026 
1027 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1028 		rc = EMSGSIZE;
1029 		goto fail2;
1030 	}
1031 
1032 	*pf_countp = *MCDI_OUT(req, uint8_t,
1033 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1034 
1035 	EFSYS_ASSERT(*pf_countp != 0);
1036 
1037 	return (0);
1038 
1039 fail2:
1040 	EFSYS_PROBE(fail2);
1041 fail1:
1042 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1043 
1044 	return (rc);
1045 }
1046 
1047 static	__checkReturn	efx_rc_t
1048 ef10_get_datapath_caps(
1049 	__in		efx_nic_t *enp)
1050 {
1051 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1052 	efx_mcdi_req_t req;
1053 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1054 		MC_CMD_GET_CAPABILITIES_V9_OUT_LEN);
1055 	efx_rc_t rc;
1056 
1057 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1058 	req.emr_in_buf = payload;
1059 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1060 	req.emr_out_buf = payload;
1061 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V9_OUT_LEN;
1062 
1063 	efx_mcdi_execute_quiet(enp, &req);
1064 
1065 	if (req.emr_rc != 0) {
1066 		rc = req.emr_rc;
1067 		goto fail1;
1068 	}
1069 
1070 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1071 		rc = EMSGSIZE;
1072 		goto fail2;
1073 	}
1074 
1075 #define	CAP_FLAGS1(_req, _flag)						\
1076 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1077 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1078 
1079 #define	CAP_FLAGS2(_req, _flag)						\
1080 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1081 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1082 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1083 
1084 #define	CAP_FLAGS3(_req, _flag)						\
1085 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) && \
1086 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V7_OUT_FLAGS3) &	\
1087 	    (1u << (MC_CMD_GET_CAPABILITIES_V7_OUT_ ## _flag ## _LBN))))
1088 
1089 	/* Check if RXDP firmware inserts 14 byte prefix */
1090 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14))
1091 		encp->enc_rx_prefix_size = 14;
1092 	else
1093 		encp->enc_rx_prefix_size = 0;
1094 
1095 #if EFSYS_OPT_RX_SCALE
1096 	/* Check if the firmware supports additional RSS modes */
1097 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1098 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1099 	else
1100 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1101 #endif /* EFSYS_OPT_RX_SCALE */
1102 
1103 	/* Check if the firmware supports TSO */
1104 	if (CAP_FLAGS1(req, TX_TSO))
1105 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1106 	else
1107 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1108 
1109 	/* Check if the firmware supports FATSOv2 */
1110 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1111 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1112 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1113 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1114 	} else {
1115 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1116 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1117 	}
1118 
1119 	/* Check if the firmware supports FATSOv2 encap */
1120 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1121 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1122 	else
1123 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1124 
1125 	/* Check if TSOv3 is supported */
1126 	if (CAP_FLAGS2(req, TX_TSO_V3))
1127 		encp->enc_tso_v3_enabled = B_TRUE;
1128 	else
1129 		encp->enc_tso_v3_enabled = B_FALSE;
1130 
1131 	/* Check if the firmware has vadapter/vport/vswitch support */
1132 	if (CAP_FLAGS1(req, EVB))
1133 		encp->enc_datapath_cap_evb = B_TRUE;
1134 	else
1135 		encp->enc_datapath_cap_evb = B_FALSE;
1136 
1137 	/* Check if the firmware supports vport reconfiguration */
1138 	if (CAP_FLAGS1(req, VPORT_RECONFIGURE))
1139 		encp->enc_vport_reconfigure_supported = B_TRUE;
1140 	else
1141 		encp->enc_vport_reconfigure_supported = B_FALSE;
1142 
1143 	/* Check if the firmware supports VLAN insertion */
1144 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1145 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1146 	else
1147 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1148 
1149 	/* Check if the firmware supports RX event batching */
1150 	if (CAP_FLAGS1(req, RX_BATCHING))
1151 		encp->enc_rx_batching_enabled = B_TRUE;
1152 	else
1153 		encp->enc_rx_batching_enabled = B_FALSE;
1154 
1155 	/*
1156 	 * Even if batching isn't reported as supported, we may still get
1157 	 * batched events (see bug61153).
1158 	 */
1159 	encp->enc_rx_batch_max = 16;
1160 
1161 	/* Check if the firmware supports disabling scatter on RXQs */
1162 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1163 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1164 	else
1165 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1166 
1167 	/* No limit on maximum number of Rx scatter elements per packet. */
1168 	encp->enc_rx_scatter_max = -1;
1169 
1170 	/* Check if the firmware supports packed stream mode */
1171 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1172 		encp->enc_rx_packed_stream_supported = B_TRUE;
1173 	else
1174 		encp->enc_rx_packed_stream_supported = B_FALSE;
1175 
1176 	/*
1177 	 * Check if the firmware supports configurable buffer sizes
1178 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1179 	 */
1180 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1181 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1182 	else
1183 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1184 
1185 	/* Check if the firmware supports equal stride super-buffer mode */
1186 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1187 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1188 	else
1189 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1190 
1191 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1192 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1193 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1194 	else
1195 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1196 
1197 	/* Check if the firmware supports set mac with running filters */
1198 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1199 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1200 	else
1201 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1202 
1203 	/*
1204 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1205 	 * specifying which parameters to configure.
1206 	 */
1207 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1208 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1209 	else
1210 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1211 
1212 	/*
1213 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1214 	 * us to let the firmware choose the settings to use on an EVQ.
1215 	 */
1216 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1217 		encp->enc_init_evq_v2_supported = B_TRUE;
1218 	else
1219 		encp->enc_init_evq_v2_supported = B_FALSE;
1220 
1221 	/*
1222 	 * Check if firmware supports extended width event queues, which have
1223 	 * a different event descriptor layout.
1224 	 */
1225 	if (CAP_FLAGS3(req, EXTENDED_WIDTH_EVQS_SUPPORTED))
1226 		encp->enc_init_evq_extended_width_supported = B_TRUE;
1227 	else
1228 		encp->enc_init_evq_extended_width_supported = B_FALSE;
1229 
1230 	/*
1231 	 * Check if the NO_CONT_EV mode for RX events is supported.
1232 	 */
1233 	if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV))
1234 		encp->enc_no_cont_ev_mode_supported = B_TRUE;
1235 	else
1236 		encp->enc_no_cont_ev_mode_supported = B_FALSE;
1237 
1238 	/*
1239 	 * Check if buffer size may and must be specified on INIT_RXQ.
1240 	 * It may be always specified to efx_rx_qcreate(), but will be
1241 	 * just kept libefx internal if MCDI does not support it.
1242 	 */
1243 	if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE))
1244 		encp->enc_init_rxq_with_buffer_size = B_TRUE;
1245 	else
1246 		encp->enc_init_rxq_with_buffer_size = B_FALSE;
1247 
1248 	/*
1249 	 * Check if firmware-verified NVRAM updates must be used.
1250 	 *
1251 	 * The firmware trusted installer requires all NVRAM updates to use
1252 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1253 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1254 	 * partition and report the result).
1255 	 */
1256 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1257 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1258 	else
1259 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1260 
1261 	if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT))
1262 		encp->enc_nvram_update_poll_verify_result_supported = B_TRUE;
1263 	else
1264 		encp->enc_nvram_update_poll_verify_result_supported = B_FALSE;
1265 
1266 	/*
1267 	 * Check if firmware update via the BUNDLE partition is supported
1268 	 */
1269 	if (CAP_FLAGS2(req, BUNDLE_UPDATE))
1270 		encp->enc_nvram_bundle_update_supported = B_TRUE;
1271 	else
1272 		encp->enc_nvram_bundle_update_supported = B_FALSE;
1273 
1274 	/*
1275 	 * Check if firmware provides packet memory and Rx datapath
1276 	 * counters.
1277 	 */
1278 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1279 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1280 	else
1281 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1282 
1283 	/*
1284 	 * Check if the 40G MAC hardware is capable of reporting
1285 	 * statistics for Tx size bins.
1286 	 */
1287 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1288 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1289 	else
1290 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1291 
1292 	/*
1293 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1294 	 * The capability indicates Geneve protocol support as well.
1295 	 */
1296 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1297 		encp->enc_tunnel_encapsulations_supported =
1298 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1299 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1300 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1301 
1302 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1303 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1304 		encp->enc_tunnel_config_udp_entries_max =
1305 		    EFX_TUNNEL_MAXNENTRIES;
1306 	} else {
1307 		encp->enc_tunnel_config_udp_entries_max = 0;
1308 	}
1309 
1310 	/*
1311 	 * Check if firmware reports the VI window mode.
1312 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1313 	 * Medford and Huntington have a fixed 8K VI window size.
1314 	 */
1315 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1316 		uint8_t mode =
1317 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1318 
1319 		switch (mode) {
1320 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1321 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1322 			break;
1323 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1324 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1325 			break;
1326 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1327 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1328 			break;
1329 		default:
1330 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1331 			break;
1332 		}
1333 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1334 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1335 		/* Huntington and Medford have fixed 8K window size */
1336 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1337 	} else {
1338 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1339 	}
1340 
1341 	/* Check if firmware supports extended MAC stats. */
1342 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1343 		/* Extended stats buffer supported */
1344 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1345 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1346 	} else {
1347 		/* Use Siena-compatible legacy MAC stats */
1348 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1349 	}
1350 
1351 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1352 		encp->enc_fec_counters = B_TRUE;
1353 	else
1354 		encp->enc_fec_counters = B_FALSE;
1355 
1356 	/* Check if the firmware provides head-of-line blocking counters */
1357 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1358 		encp->enc_hlb_counters = B_TRUE;
1359 	else
1360 		encp->enc_hlb_counters = B_FALSE;
1361 
1362 #if EFSYS_OPT_RX_SCALE
1363 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1364 		/* Only one exclusive RSS context is available per port. */
1365 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1366 
1367 		switch (enp->en_family) {
1368 		case EFX_FAMILY_MEDFORD2:
1369 			encp->enc_rx_scale_hash_alg_mask =
1370 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1371 			break;
1372 
1373 		case EFX_FAMILY_MEDFORD:
1374 		case EFX_FAMILY_HUNTINGTON:
1375 			/*
1376 			 * Packed stream firmware variant maintains a
1377 			 * non-standard algorithm for hash computation.
1378 			 * It implies explicit XORing together
1379 			 * source + destination IP addresses (or last
1380 			 * four bytes in the case of IPv6) and using the
1381 			 * resulting value as the input to a Toeplitz hash.
1382 			 */
1383 			encp->enc_rx_scale_hash_alg_mask =
1384 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1385 			break;
1386 
1387 		default:
1388 			rc = EINVAL;
1389 			goto fail3;
1390 		}
1391 
1392 		/* Port numbers cannot contribute to the hash value */
1393 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1394 	} else {
1395 		/*
1396 		 * Maximum number of exclusive RSS contexts.
1397 		 * EF10 hardware supports 64 in total, but 6 are reserved
1398 		 * for shared contexts. They are a global resource so
1399 		 * not all may be available.
1400 		 */
1401 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1402 
1403 		encp->enc_rx_scale_hash_alg_mask =
1404 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1405 
1406 		/*
1407 		 * It is possible to use port numbers as
1408 		 * the input data for hash computation.
1409 		 */
1410 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1411 	}
1412 
1413 	if (CAP_FLAGS3(req, RSS_SELECTABLE_TABLE_SIZE))
1414 		encp->enc_rx_scale_tbl_entry_count_is_selectable = B_TRUE;
1415 	else
1416 		encp->enc_rx_scale_tbl_entry_count_is_selectable = B_FALSE;
1417 #endif /* EFSYS_OPT_RX_SCALE */
1418 
1419 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1420 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1421 		encp->enc_filter_action_flag_supported = B_TRUE;
1422 	else
1423 		encp->enc_filter_action_flag_supported = B_FALSE;
1424 
1425 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1426 		encp->enc_filter_action_mark_supported = B_TRUE;
1427 	else
1428 		encp->enc_filter_action_mark_supported = B_FALSE;
1429 
1430 	/* Get maximum supported value for "MARK" filter action */
1431 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1432 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1433 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1434 	else
1435 		encp->enc_filter_action_mark_max = 0;
1436 
1437 #if EFSYS_OPT_MAE
1438 	/*
1439 	 * Check support for EF100 Match Action Engine (MAE).
1440 	 * MAE hardware is present on Riverhead boards (from R2),
1441 	 * and on Keystone, and requires support in firmware.
1442 	 *
1443 	 * MAE control operations require MAE control privilege,
1444 	 * which is not available for VFs.
1445 	 *
1446 	 * Privileges can change dynamically at runtime: we assume
1447 	 * MAE support requires the privilege is granted initially,
1448 	 * and ignore later dynamic changes.
1449 	 */
1450 	if (CAP_FLAGS3(req, MAE_SUPPORTED)) {
1451 		encp->enc_mae_supported = B_TRUE;
1452 		if (EFX_MCDI_HAVE_PRIVILEGE(encp->enc_privilege_mask, MAE))
1453 			encp->enc_mae_admin = B_TRUE;
1454 		else
1455 			encp->enc_mae_admin = B_FALSE;
1456 	} else {
1457 		encp->enc_mae_supported = B_FALSE;
1458 		encp->enc_mae_admin = B_FALSE;
1459 	}
1460 
1461 	/*
1462 	 * Check support for MAE action set v2 features.
1463 	 * These provide support for packet edits.
1464 	 */
1465 	if (CAP_FLAGS3(req, MAE_ACTION_SET_ALLOC_V2_SUPPORTED))
1466 		encp->enc_mae_aset_v2_supported = B_TRUE;
1467 	else
1468 		encp->enc_mae_aset_v2_supported = B_FALSE;
1469 #else
1470 	encp->enc_mae_supported = B_FALSE;
1471 	encp->enc_mae_admin = B_FALSE;
1472 #endif /* EFSYS_OPT_MAE */
1473 
1474 #if EFSYS_OPT_RX_SCALE
1475 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V9_OUT_LEN) {
1476 		encp->enc_rx_scale_indirection_max_nqueues =
1477 		    MCDI_OUT_DWORD(req,
1478 			GET_CAPABILITIES_V9_OUT_RSS_MAX_INDIRECTION_QUEUES);
1479 		encp->enc_rx_scale_tbl_min_nentries =
1480 		    MCDI_OUT_DWORD(req,
1481 			GET_CAPABILITIES_V9_OUT_RSS_MIN_INDIRECTION_TABLE_SIZE);
1482 		encp->enc_rx_scale_tbl_max_nentries =
1483 		    MCDI_OUT_DWORD(req,
1484 			GET_CAPABILITIES_V9_OUT_RSS_MAX_INDIRECTION_TABLE_SIZE);
1485 
1486 		if (CAP_FLAGS3(req, RSS_EVEN_SPREADING)) {
1487 #define	RSS_MAX_EVEN_SPREADING_QUEUES				\
1488 	GET_CAPABILITIES_V9_OUT_RSS_MAX_EVEN_SPREADING_QUEUES
1489 			/*
1490 			 * The even spreading mode distributes traffic across
1491 			 * the specified number of queues without the need to
1492 			 * allocate precious indirection entry pool resources.
1493 			 */
1494 			encp->enc_rx_scale_even_spread_max_nqueues =
1495 			    MCDI_OUT_DWORD(req, RSS_MAX_EVEN_SPREADING_QUEUES);
1496 #undef RSS_MAX_EVEN_SPREADING_QUEUES
1497 		} else {
1498 			/* There is no support for the even spread contexts. */
1499 			encp->enc_rx_scale_even_spread_max_nqueues = 0;
1500 		}
1501 	} else {
1502 		encp->enc_rx_scale_indirection_max_nqueues = EFX_MAXRSS;
1503 		encp->enc_rx_scale_tbl_min_nentries = EFX_RSS_TBL_SIZE;
1504 		encp->enc_rx_scale_tbl_max_nentries = EFX_RSS_TBL_SIZE;
1505 
1506 		/*
1507 		 * Assume that there is no support
1508 		 * for the even spread contexts.
1509 		 */
1510 		encp->enc_rx_scale_even_spread_max_nqueues = 0;
1511 	}
1512 #endif /* EFSYS_OPT_RX_SCALE */
1513 
1514 #undef CAP_FLAGS1
1515 #undef CAP_FLAGS2
1516 #undef CAP_FLAGS3
1517 
1518 	return (0);
1519 
1520 #if EFSYS_OPT_RX_SCALE
1521 fail3:
1522 	EFSYS_PROBE(fail3);
1523 #endif /* EFSYS_OPT_RX_SCALE */
1524 fail2:
1525 	EFSYS_PROBE(fail2);
1526 fail1:
1527 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1528 
1529 	return (rc);
1530 }
1531 
1532 
1533 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1534 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1535 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1536 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1537 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1538 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1539 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1540 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1541 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1542 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1543 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1544 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1545 
1546 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1547 
1548 
1549 	__checkReturn		efx_rc_t
1550 ef10_get_privilege_mask(
1551 	__in			efx_nic_t *enp,
1552 	__out			uint32_t *maskp)
1553 {
1554 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1555 	uint32_t mask;
1556 	efx_rc_t rc;
1557 
1558 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1559 					    &mask)) != 0) {
1560 		if (rc != ENOTSUP)
1561 			goto fail1;
1562 
1563 		/* Fallback for old firmware without privilege mask support */
1564 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1565 			/* Assume PF has admin privilege */
1566 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1567 		} else {
1568 			/* VF is always unprivileged by default */
1569 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1570 		}
1571 	}
1572 
1573 	*maskp = mask;
1574 
1575 	return (0);
1576 
1577 fail1:
1578 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1579 
1580 	return (rc);
1581 }
1582 
1583 
1584 #define	EFX_EXT_PORT_MAX	4
1585 #define	EFX_EXT_PORT_NA		0xFF
1586 
1587 /*
1588  * Table of mapping schemes from port number to external number.
1589  *
1590  * Each port number ultimately corresponds to a connector: either as part of
1591  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1592  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1593  * "Salina"). In general:
1594  *
1595  * Port number (0-based)
1596  *     |
1597  *   port mapping (n:1)
1598  *     |
1599  *     v
1600  * External port number (1-based)
1601  *     |
1602  *   fixed (1:1) or cable assembly (1:m)
1603  *     |
1604  *     v
1605  * Connector
1606  *
1607  * The external numbering refers to the cages or magjacks on the board,
1608  * as visibly annotated on the board or back panel. This table describes
1609  * how to determine which external cage/magjack corresponds to the port
1610  * numbers used by the driver.
1611  *
1612  * The count of consecutive port numbers that map to each external number,
1613  * is determined by the chip family and the current port mode.
1614  *
1615  * For the Huntington family, the current port mode cannot be discovered,
1616  * but a single mapping is used by all modes for a given chip variant,
1617  * so the mapping used is instead the last match in the table to the full
1618  * set of port modes to which the NIC can be configured. Therefore the
1619  * ordering of entries in the mapping table is significant.
1620  */
1621 static struct ef10_external_port_map_s {
1622 	efx_family_t	family;
1623 	uint32_t	modes_mask;
1624 	uint8_t		base_port[EFX_EXT_PORT_MAX];
1625 }	__ef10_external_port_mappings[] = {
1626 	/*
1627 	 * Modes used by Huntington family controllers where each port
1628 	 * number maps to a separate cage.
1629 	 * SFN7x22F (Torino):
1630 	 *	port 0 -> cage 1
1631 	 *	port 1 -> cage 2
1632 	 * SFN7xx4F (Pavia):
1633 	 *	port 0 -> cage 1
1634 	 *	port 1 -> cage 2
1635 	 *	port 2 -> cage 3
1636 	 *	port 3 -> cage 4
1637 	 */
1638 	{
1639 		EFX_FAMILY_HUNTINGTON,
1640 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1641 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1642 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1643 		{ 0, 1, 2, 3 }
1644 	},
1645 	/*
1646 	 * Modes which for Huntington identify a chip variant where 2
1647 	 * adjacent port numbers map to each cage.
1648 	 * SFN7x42Q (Monza):
1649 	 *	port 0 -> cage 1
1650 	 *	port 1 -> cage 1
1651 	 *	port 2 -> cage 2
1652 	 *	port 3 -> cage 2
1653 	 */
1654 	{
1655 		EFX_FAMILY_HUNTINGTON,
1656 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1657 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1658 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1659 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1660 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1661 	},
1662 	/*
1663 	 * Modes that on Medford allocate each port number to a separate
1664 	 * cage.
1665 	 *	port 0 -> cage 1
1666 	 *	port 1 -> cage 2
1667 	 *	port 2 -> cage 3
1668 	 *	port 3 -> cage 4
1669 	 */
1670 	{
1671 		EFX_FAMILY_MEDFORD,
1672 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1673 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1674 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1675 		{ 0, 1, 2, 3 }
1676 	},
1677 	/*
1678 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1679 	 * cage.
1680 	 *	port 0 -> cage 1
1681 	 *	port 1 -> cage 1
1682 	 *	port 2 -> cage 2
1683 	 *	port 3 -> cage 2
1684 	 */
1685 	{
1686 		EFX_FAMILY_MEDFORD,
1687 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1688 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1689 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1690 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1691 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1692 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1693 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1694 	},
1695 	/*
1696 	 * Modes that on Medford allocate 4 adjacent port numbers to
1697 	 * cage 1.
1698 	 *	port 0 -> cage 1
1699 	 *	port 1 -> cage 1
1700 	 *	port 2 -> cage 1
1701 	 *	port 3 -> cage 1
1702 	 */
1703 	{
1704 		EFX_FAMILY_MEDFORD,
1705 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1706 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1707 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1708 	},
1709 	/*
1710 	 * Modes that on Medford allocate 4 adjacent port numbers to
1711 	 * cage 2.
1712 	 *	port 0 -> cage 2
1713 	 *	port 1 -> cage 2
1714 	 *	port 2 -> cage 2
1715 	 *	port 3 -> cage 2
1716 	 */
1717 	{
1718 		EFX_FAMILY_MEDFORD,
1719 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1720 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1721 	},
1722 	/*
1723 	 * Modes that on Medford2 allocate each port number to a separate
1724 	 * cage.
1725 	 *	port 0 -> cage 1
1726 	 *	port 1 -> cage 2
1727 	 *	port 2 -> cage 3
1728 	 *	port 3 -> cage 4
1729 	 */
1730 	{
1731 		EFX_FAMILY_MEDFORD2,
1732 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1733 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1734 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1735 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1736 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1737 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1738 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1739 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1740 		{ 0, 1, 2, 3 }
1741 	},
1742 	/*
1743 	 * Modes that on Medford2 allocate 1 port to cage 1 and the rest
1744 	 * to cage 2.
1745 	 *	port 0 -> cage 1
1746 	 *	port 1 -> cage 2
1747 	 *	port 2 -> cage 2
1748 	 */
1749 	{
1750 		EFX_FAMILY_MEDFORD2,
1751 		(1U << TLV_PORT_MODE_1x2_2x1) |			/* mode 17 */
1752 		(1U << TLV_PORT_MODE_1x4_2x1),			/* mode 6 */
1753 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1754 	},
1755 	/*
1756 	 * Modes that on Medford2 allocate 2 adjacent port numbers to cage 1
1757 	 * and the rest to cage 2.
1758 	 *	port 0 -> cage 1
1759 	 *	port 1 -> cage 1
1760 	 *	port 2 -> cage 2
1761 	 *	port 3 -> cage 2
1762 	 */
1763 	{
1764 		EFX_FAMILY_MEDFORD2,
1765 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1766 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1767 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1768 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1769 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1770 	},
1771 	/*
1772 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1773 	 * to cage 1.
1774 	 *	port 0 -> cage 1
1775 	 *	port 1 -> cage 1
1776 	 *	port 2 -> cage 1
1777 	 *	port 3 -> cage 1
1778 	 */
1779 	{
1780 		EFX_FAMILY_MEDFORD2,
1781 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1782 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1783 	},
1784 	/*
1785 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1786 	 * to cage 2.
1787 	 *	port 0 -> cage 2
1788 	 *	port 1 -> cage 2
1789 	 *	port 2 -> cage 2
1790 	 *	port 3 -> cage 2
1791 	 */
1792 	{
1793 		EFX_FAMILY_MEDFORD2,
1794 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1795 		(1U << TLV_PORT_MODE_NA_1x2) |			/* mode 11 */
1796 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1797 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1798 	},
1799 	/*
1800 	 * Modes that on Riverhead allocate each port number to a separate
1801 	 * cage.
1802 	 *	port 0 -> cage 1
1803 	 *	port 1 -> cage 2
1804 	 */
1805 	{
1806 		EFX_FAMILY_RIVERHEAD,
1807 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1808 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1809 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1810 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1811 	},
1812 };
1813 
1814 static	__checkReturn	efx_rc_t
1815 ef10_external_port_mapping(
1816 	__in		efx_nic_t *enp,
1817 	__in		uint32_t port,
1818 	__out		uint8_t *external_portp)
1819 {
1820 	efx_rc_t rc;
1821 	int i;
1822 	uint32_t port_modes;
1823 	uint32_t matches;
1824 	uint32_t current;
1825 	struct ef10_external_port_map_s *mapp = NULL;
1826 	int ext_index = port; /* Default 1-1 mapping */
1827 
1828 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1829 		    NULL)) != 0) {
1830 		/*
1831 		 * No current port mode information (i.e. Huntington)
1832 		 * - infer mapping from available modes
1833 		 */
1834 		if ((rc = efx_mcdi_get_port_modes(enp,
1835 			    &port_modes, NULL, NULL)) != 0) {
1836 			/*
1837 			 * No port mode information available
1838 			 * - use default mapping
1839 			 */
1840 			goto out;
1841 		}
1842 	} else {
1843 		/* Only need to scan the current mode */
1844 		port_modes = 1 << current;
1845 	}
1846 
1847 	/*
1848 	 * Infer the internal port -> external number mapping from
1849 	 * the possible port modes for this NIC.
1850 	 */
1851 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1852 		struct ef10_external_port_map_s *eepmp =
1853 		    &__ef10_external_port_mappings[i];
1854 		if (eepmp->family != enp->en_family)
1855 			continue;
1856 		matches = (eepmp->modes_mask & port_modes);
1857 		if (matches != 0) {
1858 			/*
1859 			 * Some modes match. For some Huntington boards
1860 			 * there will be multiple matches. The mapping on the
1861 			 * last match is used.
1862 			 */
1863 			mapp = eepmp;
1864 			port_modes &= ~matches;
1865 		}
1866 	}
1867 
1868 	if (port_modes != 0) {
1869 		/* Some advertised modes are not supported */
1870 		rc = ENOTSUP;
1871 		goto fail1;
1872 	}
1873 
1874 out:
1875 	if (mapp != NULL) {
1876 		/*
1877 		 * External ports are assigned a sequence of consecutive
1878 		 * port numbers, so find the one with the closest base_port.
1879 		 */
1880 		uint32_t delta = EFX_EXT_PORT_NA;
1881 
1882 		for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
1883 			uint32_t base = mapp->base_port[i];
1884 			if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
1885 				if ((port - base) < delta) {
1886 					delta = (port - base);
1887 					ext_index = i;
1888 				}
1889 			}
1890 		}
1891 	}
1892 	*external_portp = (uint8_t)(ext_index + 1);
1893 
1894 	return (0);
1895 
1896 fail1:
1897 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1898 
1899 	return (rc);
1900 }
1901 
1902 static __checkReturn	efx_rc_t
1903 efx_mcdi_get_nic_addr_caps(
1904 	__in		efx_nic_t *enp)
1905 {
1906 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1907 	uint32_t mapping_type;
1908 	efx_rc_t rc;
1909 
1910 	rc = efx_mcdi_get_nic_addr_info(enp, &mapping_type);
1911 	if (rc != 0) {
1912 		if (rc == ENOTSUP) {
1913 			encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_FLAT;
1914 			goto out;
1915 		}
1916 		goto fail1;
1917 	}
1918 
1919 	switch (mapping_type) {
1920 	case MC_CMD_GET_DESC_ADDR_INFO_OUT_MAPPING_FLAT:
1921 		encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_FLAT;
1922 		break;
1923 	case MC_CMD_GET_DESC_ADDR_INFO_OUT_MAPPING_REGIONED:
1924 		encp->enc_dma_mapping = EFX_NIC_DMA_MAPPING_REGIONED;
1925 		rc = efx_mcdi_get_nic_addr_regions(enp,
1926 		    &enp->en_dma.end_u.endu_region_info);
1927 		if (rc != 0)
1928 			goto fail2;
1929 		break;
1930 	default:
1931 		goto fail3;
1932 	}
1933 
1934 out:
1935 	return (0);
1936 
1937 fail3:
1938 	EFSYS_PROBE(fail3);
1939 fail2:
1940 	EFSYS_PROBE(fail2);
1941 fail1:
1942 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1943 
1944 	return (rc);
1945 }
1946 
1947 	__checkReturn	efx_rc_t
1948 efx_mcdi_nic_board_cfg(
1949 	__in		efx_nic_t *enp)
1950 {
1951 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1952 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1953 	ef10_link_state_t els;
1954 	efx_port_t *epp = &(enp->en_port);
1955 	efx_pcie_interface_t intf;
1956 	uint32_t board_type = 0;
1957 	uint32_t base, nvec;
1958 	uint32_t port;
1959 	uint32_t mask;
1960 	uint32_t pf;
1961 	uint32_t vf;
1962 	uint8_t mac_addr[6] = { 0 };
1963 	efx_rc_t rc;
1964 
1965 	/* Get the (zero-based) MCDI port number */
1966 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1967 		goto fail1;
1968 
1969 	/* EFX MCDI interface uses one-based port numbers */
1970 	emip->emi_port = port + 1;
1971 
1972 	encp->enc_assigned_port = port;
1973 
1974 	if ((rc = ef10_external_port_mapping(enp, port,
1975 		    &encp->enc_external_port)) != 0)
1976 		goto fail2;
1977 
1978 	/*
1979 	 * Get PCIe function number from firmware (used for
1980 	 * per-function privilege and dynamic config info).
1981 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1982 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1983 	 */
1984 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf, &intf)) != 0)
1985 		goto fail3;
1986 
1987 	encp->enc_pf = pf;
1988 	encp->enc_vf = vf;
1989 	encp->enc_intf = intf;
1990 
1991 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1992 		goto fail4;
1993 
1994 	/* MAC address for this function */
1995 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1996 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1997 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1998 		/*
1999 		 * Disable static config checking, ONLY for manufacturing test
2000 		 * and setup at the factory, to allow the static config to be
2001 		 * installed.
2002 		 */
2003 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
2004 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
2005 			/*
2006 			 * If the static config does not include a global MAC
2007 			 * address pool then the board may return a locally
2008 			 * administered MAC address (this should only happen on
2009 			 * incorrectly programmed boards).
2010 			 */
2011 			rc = EINVAL;
2012 		}
2013 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
2014 	} else {
2015 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
2016 	}
2017 	if (rc != 0)
2018 		goto fail5;
2019 
2020 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
2021 
2022 	/*
2023 	 * Get the current privilege mask. Note that this may be modified
2024 	 * dynamically, so for most cases the value is informational only.
2025 	 * If the privilege being discovered can't be granted dynamically,
2026 	 * it's fine to rely on the value. In all other cases, DO NOT use
2027 	 * the privilege mask to check for sufficient privileges, as that
2028 	 * can result in time-of-check/time-of-use bugs.
2029 	 */
2030 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
2031 		goto fail6;
2032 	encp->enc_privilege_mask = mask;
2033 
2034 	/* Board configuration (legacy) */
2035 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
2036 	if (rc != 0) {
2037 		/* Unprivileged functions may not be able to read board cfg */
2038 		if (rc == EACCES)
2039 			board_type = 0;
2040 		else
2041 			goto fail7;
2042 	}
2043 
2044 	encp->enc_board_type = board_type;
2045 
2046 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
2047 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
2048 		goto fail8;
2049 
2050 	/*
2051 	 * Firmware with support for *_FEC capability bits does not
2052 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
2053 	 * Add them here so that drivers understand that they are supported.
2054 	 */
2055 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
2056 		epp->ep_phy_cap_mask |=
2057 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
2058 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
2059 		epp->ep_phy_cap_mask |=
2060 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
2061 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
2062 		epp->ep_phy_cap_mask |=
2063 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
2064 
2065 	/* Obtain the default PHY advertised capabilities */
2066 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
2067 		goto fail9;
2068 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
2069 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
2070 
2071 	/* Check capabilities of running datapath firmware */
2072 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
2073 		goto fail10;
2074 
2075 	/* Get interrupt vector limits */
2076 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
2077 		if (EFX_PCI_FUNCTION_IS_PF(encp))
2078 			goto fail11;
2079 
2080 		/* Ignore error (cannot query vector limits from a VF). */
2081 		base = 0;
2082 		nvec = 1024;
2083 	}
2084 	encp->enc_intr_vec_base = base;
2085 	encp->enc_intr_limit = nvec;
2086 
2087 	rc = efx_mcdi_get_nic_addr_caps(enp);
2088 	if (rc != 0)
2089 		goto fail12;
2090 
2091 	return (0);
2092 
2093 fail12:
2094 	EFSYS_PROBE(fail12);
2095 fail11:
2096 	EFSYS_PROBE(fail11);
2097 fail10:
2098 	EFSYS_PROBE(fail10);
2099 fail9:
2100 	EFSYS_PROBE(fail9);
2101 fail8:
2102 	EFSYS_PROBE(fail8);
2103 fail7:
2104 	EFSYS_PROBE(fail7);
2105 fail6:
2106 	EFSYS_PROBE(fail6);
2107 fail5:
2108 	EFSYS_PROBE(fail5);
2109 fail4:
2110 	EFSYS_PROBE(fail4);
2111 fail3:
2112 	EFSYS_PROBE(fail3);
2113 fail2:
2114 	EFSYS_PROBE(fail2);
2115 fail1:
2116 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2117 
2118 	return (rc);
2119 }
2120 
2121 	__checkReturn	efx_rc_t
2122 efx_mcdi_entity_reset(
2123 	__in		efx_nic_t *enp)
2124 {
2125 	efx_mcdi_req_t req;
2126 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
2127 		MC_CMD_ENTITY_RESET_OUT_LEN);
2128 	efx_rc_t rc;
2129 
2130 	req.emr_cmd = MC_CMD_ENTITY_RESET;
2131 	req.emr_in_buf = payload;
2132 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
2133 	req.emr_out_buf = payload;
2134 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
2135 
2136 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
2137 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
2138 
2139 	efx_mcdi_execute(enp, &req);
2140 
2141 	if (req.emr_rc != 0) {
2142 		rc = req.emr_rc;
2143 		goto fail1;
2144 	}
2145 
2146 	return (0);
2147 
2148 fail1:
2149 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2150 
2151 	return (rc);
2152 }
2153 
2154 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2155 
2156 #if EFX_OPTS_EF10()
2157 
2158 static	__checkReturn	efx_rc_t
2159 ef10_set_workaround_bug26807(
2160 	__in		efx_nic_t *enp)
2161 {
2162 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2163 	uint32_t flags;
2164 	efx_rc_t rc;
2165 
2166 	/*
2167 	 * If the bug26807 workaround is enabled, then firmware has enabled
2168 	 * support for chained multicast filters. Firmware will reset (FLR)
2169 	 * functions which have filters in the hardware filter table when the
2170 	 * workaround is enabled/disabled.
2171 	 *
2172 	 * We must recheck if the workaround is enabled after inserting the
2173 	 * first hardware filter, in case it has been changed since this check.
2174 	 */
2175 	rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
2176 	    B_TRUE, &flags);
2177 	if (rc == 0) {
2178 		encp->enc_bug26807_workaround = B_TRUE;
2179 		if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
2180 			/*
2181 			 * Other functions had installed filters before the
2182 			 * workaround was enabled, and they have been reset
2183 			 * by firmware.
2184 			 */
2185 			EFSYS_PROBE(bug26807_workaround_flr_done);
2186 			/* FIXME: bump MC warm boot count ? */
2187 		}
2188 	} else if (rc == EACCES) {
2189 		/*
2190 		 * Unprivileged functions cannot enable the workaround in older
2191 		 * firmware.
2192 		 */
2193 		encp->enc_bug26807_workaround = B_FALSE;
2194 	} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
2195 		encp->enc_bug26807_workaround = B_FALSE;
2196 	} else {
2197 		goto fail1;
2198 	}
2199 
2200 	return (0);
2201 
2202 fail1:
2203 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2204 
2205 	return (rc);
2206 }
2207 
2208 static	__checkReturn	efx_rc_t
2209 ef10_nic_board_cfg(
2210 	__in		efx_nic_t *enp)
2211 {
2212 	const efx_nic_ops_t *enop = enp->en_enop;
2213 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2214 	efx_rc_t rc;
2215 
2216 	if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0)
2217 		goto fail1;
2218 
2219 	/*
2220 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
2221 	 * We only support the 14 byte prefix here.
2222 	 */
2223 	if (encp->enc_rx_prefix_size != 14) {
2224 		rc = ENOTSUP;
2225 		goto fail2;
2226 	}
2227 
2228 	encp->enc_clk_mult = 1; /* not used for EF10 */
2229 
2230 	/* Alignment for WPTR updates */
2231 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
2232 
2233 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
2234 	/* No boundary crossing limits */
2235 	encp->enc_tx_dma_desc_boundary = 0;
2236 
2237 	/*
2238 	 * Maximum number of bytes into the frame the TCP header can start for
2239 	 * firmware assisted TSO to work.
2240 	 */
2241 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
2242 
2243 	/* EF10 TSO engine demands that packet header be contiguous. */
2244 	encp->enc_tx_tso_max_header_ndescs = 1;
2245 
2246 	/* The overall TSO header length is not limited. */
2247 	encp->enc_tx_tso_max_header_length = UINT32_MAX;
2248 
2249 	/*
2250 	 * There are no specific limitations on the number of
2251 	 * TSO payload descriptors.
2252 	 */
2253 	encp->enc_tx_tso_max_payload_ndescs = UINT32_MAX;
2254 
2255 	/* TSO superframe payload length is not limited. */
2256 	encp->enc_tx_tso_max_payload_length = UINT32_MAX;
2257 
2258 	/*
2259 	 * Limitation on the maximum number of outgoing packets per
2260 	 * TSO transaction described in SF-108452-SW.
2261 	 */
2262 	encp->enc_tx_tso_max_nframes = 32767;
2263 
2264 	/*
2265 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
2266 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
2267 	 * resources (allocated to this PCIe function), which is zero until
2268 	 * after we have allocated VIs.
2269 	 */
2270 	encp->enc_evq_limit = 1024;
2271 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
2272 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
2273 
2274 	encp->enc_buftbl_limit = UINT32_MAX;
2275 
2276 	if ((rc = ef10_set_workaround_bug26807(enp)) != 0)
2277 		goto fail3;
2278 
2279 	/* Get remaining controller-specific board config */
2280 	if ((rc = enop->eno_board_cfg(enp)) != 0)
2281 		if (rc != EACCES)
2282 			goto fail4;
2283 
2284 	return (0);
2285 
2286 fail4:
2287 	EFSYS_PROBE(fail4);
2288 fail3:
2289 	EFSYS_PROBE(fail3);
2290 fail2:
2291 	EFSYS_PROBE(fail2);
2292 fail1:
2293 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2294 
2295 	return (rc);
2296 }
2297 
2298 	__checkReturn	efx_rc_t
2299 ef10_nic_probe(
2300 	__in		efx_nic_t *enp)
2301 {
2302 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2303 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2304 	efx_rc_t rc;
2305 
2306 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2307 
2308 	/* Read and clear any assertion state */
2309 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2310 		goto fail1;
2311 
2312 	/* Exit the assertion handler */
2313 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2314 		if (rc != EACCES)
2315 			goto fail2;
2316 
2317 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
2318 		goto fail3;
2319 
2320 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
2321 		goto fail4;
2322 
2323 	/*
2324 	 * Set default driver config limits (based on board config).
2325 	 *
2326 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2327 	 * sufficient and small enough to allow multiple functions on the same
2328 	 * port.
2329 	 */
2330 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2331 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2332 
2333 	/* The client driver must configure and enable PIO buffer support */
2334 	edcp->edc_max_piobuf_count = 0;
2335 	edcp->edc_pio_alloc_size = 0;
2336 
2337 #if EFSYS_OPT_MAC_STATS
2338 	/* Wipe the MAC statistics */
2339 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2340 		goto fail5;
2341 #endif
2342 
2343 #if EFSYS_OPT_LOOPBACK
2344 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2345 		goto fail6;
2346 #endif
2347 
2348 #if EFSYS_OPT_MON_STATS
2349 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2350 		/* Unprivileged functions do not have access to sensors */
2351 		if (rc != EACCES)
2352 			goto fail7;
2353 	}
2354 #endif
2355 
2356 	return (0);
2357 
2358 #if EFSYS_OPT_MON_STATS
2359 fail7:
2360 	EFSYS_PROBE(fail7);
2361 #endif
2362 #if EFSYS_OPT_LOOPBACK
2363 fail6:
2364 	EFSYS_PROBE(fail6);
2365 #endif
2366 #if EFSYS_OPT_MAC_STATS
2367 fail5:
2368 	EFSYS_PROBE(fail5);
2369 #endif
2370 fail4:
2371 	EFSYS_PROBE(fail4);
2372 fail3:
2373 	EFSYS_PROBE(fail3);
2374 fail2:
2375 	EFSYS_PROBE(fail2);
2376 fail1:
2377 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2378 
2379 	return (rc);
2380 }
2381 
2382 	__checkReturn	efx_rc_t
2383 ef10_nic_set_drv_limits(
2384 	__inout		efx_nic_t *enp,
2385 	__in		efx_drv_limits_t *edlp)
2386 {
2387 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2388 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2389 	uint32_t min_evq_count, max_evq_count;
2390 	uint32_t min_rxq_count, max_rxq_count;
2391 	uint32_t min_txq_count, max_txq_count;
2392 	efx_rc_t rc;
2393 
2394 	if (edlp == NULL) {
2395 		rc = EINVAL;
2396 		goto fail1;
2397 	}
2398 
2399 	/* Get minimum required and maximum usable VI limits */
2400 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2401 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2402 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2403 
2404 	edcp->edc_min_vi_count =
2405 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2406 
2407 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2408 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2409 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2410 
2411 	edcp->edc_max_vi_count =
2412 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2413 
2414 	/*
2415 	 * Check limits for sub-allocated piobuf blocks.
2416 	 * PIO is optional, so don't fail if the limits are incorrect.
2417 	 */
2418 	if ((encp->enc_piobuf_size == 0) ||
2419 	    (encp->enc_piobuf_limit == 0) ||
2420 	    (edlp->edl_min_pio_alloc_size == 0) ||
2421 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2422 		/* Disable PIO */
2423 		edcp->edc_max_piobuf_count = 0;
2424 		edcp->edc_pio_alloc_size = 0;
2425 	} else {
2426 		uint32_t blk_size, blk_count, blks_per_piobuf;
2427 
2428 		blk_size =
2429 		    MAX(edlp->edl_min_pio_alloc_size,
2430 			    encp->enc_piobuf_min_alloc_size);
2431 
2432 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2433 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2434 
2435 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2436 
2437 		/* A zero max pio alloc count means unlimited */
2438 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2439 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2440 			blk_count = edlp->edl_max_pio_alloc_count;
2441 		}
2442 
2443 		edcp->edc_pio_alloc_size = blk_size;
2444 		edcp->edc_max_piobuf_count =
2445 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2446 	}
2447 
2448 	return (0);
2449 
2450 fail1:
2451 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2452 
2453 	return (rc);
2454 }
2455 
2456 
2457 	__checkReturn	efx_rc_t
2458 ef10_nic_reset(
2459 	__in		efx_nic_t *enp)
2460 {
2461 	efx_rc_t rc;
2462 
2463 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2464 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2465 		goto fail1;
2466 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2467 		goto fail2;
2468 
2469 	if ((rc = efx_mcdi_entity_reset(enp)) != 0)
2470 		goto fail3;
2471 
2472 	/* Clear RX/TX DMA queue errors */
2473 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2474 
2475 	return (0);
2476 
2477 fail3:
2478 	EFSYS_PROBE(fail3);
2479 fail2:
2480 	EFSYS_PROBE(fail2);
2481 fail1:
2482 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2483 
2484 	return (rc);
2485 }
2486 
2487 #endif	/* EFX_OPTS_EF10() */
2488 
2489 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2490 
2491 	__checkReturn	efx_rc_t
2492 ef10_upstream_port_vadaptor_alloc(
2493 	__in		efx_nic_t *enp)
2494 {
2495 	uint32_t retry;
2496 	uint32_t delay_us;
2497 	efx_rc_t rc;
2498 
2499 	/*
2500 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2501 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2502 	 * retry the request several times after waiting a while. The wait time
2503 	 * between retries starts small (10ms) and exponentially increases.
2504 	 * Total wait time is a little over two seconds. Retry logic in the
2505 	 * client driver may mean this whole loop is repeated if it continues to
2506 	 * fail.
2507 	 */
2508 	retry = 0;
2509 	delay_us = 10000;
2510 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2511 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2512 		    (rc != ENOENT)) {
2513 			/*
2514 			 * Do not retry alloc for PF, or for other errors on
2515 			 * a VF.
2516 			 */
2517 			goto fail1;
2518 		}
2519 
2520 		/* VF startup before PF is ready. Retry allocation. */
2521 		if (retry > 5) {
2522 			/* Too many attempts */
2523 			rc = EINVAL;
2524 			goto fail2;
2525 		}
2526 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2527 		EFSYS_SLEEP(delay_us);
2528 		retry++;
2529 		if (delay_us < 500000)
2530 			delay_us <<= 2;
2531 	}
2532 
2533 	return (0);
2534 
2535 fail2:
2536 	EFSYS_PROBE(fail2);
2537 fail1:
2538 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2539 
2540 	return (rc);
2541 }
2542 
2543 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2544 
2545 #if EFX_OPTS_EF10()
2546 
2547 	__checkReturn	efx_rc_t
2548 ef10_nic_init(
2549 	__in		efx_nic_t *enp)
2550 {
2551 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2552 	uint32_t min_vi_count, max_vi_count;
2553 	uint32_t vi_count, vi_base, vi_shift;
2554 	uint32_t i;
2555 	uint32_t vi_window_size;
2556 	efx_rc_t rc;
2557 	boolean_t alloc_vadaptor = B_TRUE;
2558 
2559 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2560 
2561 	/* Enable reporting of some events (e.g. link change) */
2562 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2563 		goto fail1;
2564 
2565 	/* Allocate (optional) on-chip PIO buffers */
2566 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2567 
2568 	/*
2569 	 * For best performance, PIO writes should use a write-combined
2570 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2571 	 * aperture of each VI would be a burden to drivers (and not
2572 	 * possible if the host page size is >4Kbyte).
2573 	 *
2574 	 * To avoid this we use a single uncached (UC) mapping for VI
2575 	 * register access, and a single WC mapping for extra VIs used
2576 	 * for PIO writes.
2577 	 *
2578 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2579 	 * each VI that is using a sub-allocated block from the piobuf.
2580 	 */
2581 	min_vi_count = edcp->edc_min_vi_count;
2582 	max_vi_count =
2583 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2584 
2585 	/* Ensure that the previously attached driver's VIs are freed */
2586 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2587 		goto fail2;
2588 
2589 	/*
2590 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2591 	 * fails then retrying the request for fewer VI resources may succeed.
2592 	 */
2593 	vi_count = 0;
2594 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2595 		    &vi_base, &vi_count, &vi_shift)) != 0)
2596 		goto fail3;
2597 
2598 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2599 
2600 	if (vi_count < min_vi_count) {
2601 		rc = ENOMEM;
2602 		goto fail4;
2603 	}
2604 
2605 	enp->en_arch.ef10.ena_vi_base = vi_base;
2606 	enp->en_arch.ef10.ena_vi_count = vi_count;
2607 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2608 
2609 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2610 		/* Not enough extra VIs to map piobufs */
2611 		ef10_nic_free_piobufs(enp);
2612 	}
2613 
2614 	enp->en_arch.ef10.ena_pio_write_vi_base =
2615 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2616 
2617 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2618 	    EFX_VI_WINDOW_SHIFT_INVALID);
2619 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2620 	    EFX_VI_WINDOW_SHIFT_64K);
2621 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2622 
2623 	/* Save UC memory mapping details */
2624 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2625 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2626 		enp->en_arch.ef10.ena_uc_mem_map_size =
2627 		    (vi_window_size *
2628 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2629 	} else {
2630 		enp->en_arch.ef10.ena_uc_mem_map_size =
2631 		    (vi_window_size *
2632 		    enp->en_arch.ef10.ena_vi_count);
2633 	}
2634 
2635 	/* Save WC memory mapping details */
2636 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2637 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2638 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2639 
2640 	enp->en_arch.ef10.ena_wc_mem_map_size =
2641 	    (vi_window_size *
2642 	    enp->en_arch.ef10.ena_piobuf_count);
2643 
2644 	/* Link piobufs to extra VIs in WC mapping */
2645 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2646 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2647 			rc = efx_mcdi_link_piobuf(enp,
2648 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2649 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2650 			if (rc != 0)
2651 				break;
2652 		}
2653 	}
2654 
2655 	/*
2656 	 * For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
2657 	 * during NIC initialization when vSwitch is created and vports are
2658 	 * allocated. Hence, skip vAdaptor allocation for EVB and update vport
2659 	 * id in NIC structure with the one allocated for PF.
2660 	 */
2661 
2662 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2663 #if EFSYS_OPT_EVB
2664 	if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
2665 		/* For EVB use vport allocated on vswitch */
2666 		enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
2667 		alloc_vadaptor = B_FALSE;
2668 	}
2669 #endif
2670 	if (alloc_vadaptor != B_FALSE) {
2671 		/* Allocate a vAdaptor attached to our upstream vPort/pPort */
2672 		if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
2673 			goto fail5;
2674 	}
2675 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2676 
2677 	return (0);
2678 
2679 fail5:
2680 	EFSYS_PROBE(fail5);
2681 fail4:
2682 	EFSYS_PROBE(fail4);
2683 fail3:
2684 	EFSYS_PROBE(fail3);
2685 fail2:
2686 	EFSYS_PROBE(fail2);
2687 
2688 	ef10_nic_free_piobufs(enp);
2689 
2690 fail1:
2691 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2692 
2693 	return (rc);
2694 }
2695 
2696 	__checkReturn	efx_rc_t
2697 ef10_nic_get_vi_pool(
2698 	__in		efx_nic_t *enp,
2699 	__out		uint32_t *vi_countp)
2700 {
2701 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2702 
2703 	/*
2704 	 * Report VIs that the client driver can use.
2705 	 * Do not include VIs used for PIO buffer writes.
2706 	 */
2707 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2708 
2709 	return (0);
2710 }
2711 
2712 	__checkReturn	efx_rc_t
2713 ef10_nic_get_bar_region(
2714 	__in		efx_nic_t *enp,
2715 	__in		efx_nic_region_t region,
2716 	__out		uint32_t *offsetp,
2717 	__out		size_t *sizep)
2718 {
2719 	efx_rc_t rc;
2720 
2721 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2722 
2723 	/*
2724 	 * TODO: Specify host memory mapping alignment and granularity
2725 	 * in efx_drv_limits_t so that they can be taken into account
2726 	 * when allocating extra VIs for PIO writes.
2727 	 */
2728 	switch (region) {
2729 	case EFX_REGION_VI:
2730 		/* UC mapped memory BAR region for VI registers */
2731 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2732 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2733 		break;
2734 
2735 	case EFX_REGION_PIO_WRITE_VI:
2736 		/* WC mapped memory BAR region for piobuf writes */
2737 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2738 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2739 		break;
2740 
2741 	default:
2742 		rc = EINVAL;
2743 		goto fail1;
2744 	}
2745 
2746 	return (0);
2747 
2748 fail1:
2749 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2750 
2751 	return (rc);
2752 }
2753 
2754 	__checkReturn	boolean_t
2755 ef10_nic_hw_unavailable(
2756 	__in		efx_nic_t *enp)
2757 {
2758 	efx_dword_t dword;
2759 
2760 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2761 		return (B_TRUE);
2762 
2763 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2764 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2765 		goto unavail;
2766 
2767 	return (B_FALSE);
2768 
2769 unavail:
2770 	ef10_nic_set_hw_unavailable(enp);
2771 
2772 	return (B_TRUE);
2773 }
2774 
2775 			void
2776 ef10_nic_set_hw_unavailable(
2777 	__in		efx_nic_t *enp)
2778 {
2779 	EFSYS_PROBE(hw_unavail);
2780 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2781 }
2782 
2783 
2784 			void
2785 ef10_nic_fini(
2786 	__in		efx_nic_t *enp)
2787 {
2788 	uint32_t i;
2789 	efx_rc_t rc;
2790 	boolean_t do_vadaptor_free = B_TRUE;
2791 
2792 #if EFSYS_OPT_EVB
2793 	if (enp->en_vswitchp != NULL) {
2794 		/*
2795 		 * For SR-IOV the vAdaptor is freed with the vswitch,
2796 		 * so do not free it here.
2797 		 */
2798 		do_vadaptor_free = B_FALSE;
2799 	}
2800 #endif
2801 	if (do_vadaptor_free != B_FALSE) {
2802 		(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2803 		enp->en_vport_id = EVB_PORT_ID_NULL;
2804 	}
2805 
2806 	/* Unlink piobufs from extra VIs in WC mapping */
2807 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2808 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2809 			rc = efx_mcdi_unlink_piobuf(enp,
2810 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2811 			if (rc != 0)
2812 				break;
2813 		}
2814 	}
2815 
2816 	ef10_nic_free_piobufs(enp);
2817 
2818 	(void) efx_mcdi_free_vis(enp);
2819 	enp->en_arch.ef10.ena_vi_count = 0;
2820 }
2821 
2822 			void
2823 ef10_nic_unprobe(
2824 	__in		efx_nic_t *enp)
2825 {
2826 #if EFSYS_OPT_MON_STATS
2827 	mcdi_mon_cfg_free(enp);
2828 #endif /* EFSYS_OPT_MON_STATS */
2829 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2830 }
2831 
2832 #if EFSYS_OPT_DIAG
2833 
2834 	__checkReturn	efx_rc_t
2835 ef10_nic_register_test(
2836 	__in		efx_nic_t *enp)
2837 {
2838 	efx_rc_t rc;
2839 
2840 	/* FIXME */
2841 	_NOTE(ARGUNUSED(enp))
2842 	_NOTE(CONSTANTCONDITION)
2843 	if (B_FALSE) {
2844 		rc = ENOTSUP;
2845 		goto fail1;
2846 	}
2847 	/* FIXME */
2848 
2849 	return (0);
2850 
2851 fail1:
2852 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2853 
2854 	return (rc);
2855 }
2856 
2857 #endif	/* EFSYS_OPT_DIAG */
2858 
2859 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2860 
2861 	__checkReturn	efx_rc_t
2862 efx_mcdi_get_nic_global(
2863 	__in		efx_nic_t *enp,
2864 	__in		uint32_t key,
2865 	__out		uint32_t *valuep)
2866 {
2867 	efx_mcdi_req_t req;
2868 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2869 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2870 	efx_rc_t rc;
2871 
2872 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2873 	req.emr_in_buf = payload;
2874 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2875 	req.emr_out_buf = payload;
2876 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2877 
2878 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2879 
2880 	efx_mcdi_execute(enp, &req);
2881 
2882 	if (req.emr_rc != 0) {
2883 		rc = req.emr_rc;
2884 		goto fail1;
2885 	}
2886 
2887 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2888 		rc = EMSGSIZE;
2889 		goto fail2;
2890 	}
2891 
2892 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2893 
2894 	return (0);
2895 
2896 fail2:
2897 	EFSYS_PROBE(fail2);
2898 fail1:
2899 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2900 
2901 	return (rc);
2902 }
2903 
2904 	__checkReturn	efx_rc_t
2905 efx_mcdi_set_nic_global(
2906 	__in		efx_nic_t *enp,
2907 	__in		uint32_t key,
2908 	__in		uint32_t value)
2909 {
2910 	efx_mcdi_req_t req;
2911 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2912 	efx_rc_t rc;
2913 
2914 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2915 	req.emr_in_buf = payload;
2916 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2917 	req.emr_out_buf = NULL;
2918 	req.emr_out_length = 0;
2919 
2920 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2921 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2922 
2923 	efx_mcdi_execute(enp, &req);
2924 
2925 	if (req.emr_rc != 0) {
2926 		rc = req.emr_rc;
2927 		goto fail1;
2928 	}
2929 
2930 	return (0);
2931 
2932 fail1:
2933 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2934 
2935 	return (rc);
2936 }
2937 
2938 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2939 
2940 #endif	/* EFX_OPTS_EF10() */
2941