xref: /dpdk/drivers/common/sfc_efx/base/ef10_nic.c (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2012-2019 Solarflare Communications Inc.
5  */
6 
7 #include "efx.h"
8 #include "efx_impl.h"
9 #if EFSYS_OPT_MON_MCDI
10 #include "mcdi_mon.h"
11 #endif
12 
13 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
14 
15 #include "ef10_tlv_layout.h"
16 
17 	__checkReturn	efx_rc_t
18 efx_mcdi_get_port_assignment(
19 	__in		efx_nic_t *enp,
20 	__out		uint32_t *portp)
21 {
22 	efx_mcdi_req_t req;
23 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
24 		MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
25 	efx_rc_t rc;
26 
27 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
28 
29 	req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
30 	req.emr_in_buf = payload;
31 	req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
32 	req.emr_out_buf = payload;
33 	req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
34 
35 	efx_mcdi_execute(enp, &req);
36 
37 	if (req.emr_rc != 0) {
38 		rc = req.emr_rc;
39 		goto fail1;
40 	}
41 
42 	if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
43 		rc = EMSGSIZE;
44 		goto fail2;
45 	}
46 
47 	*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
48 
49 	return (0);
50 
51 fail2:
52 	EFSYS_PROBE(fail2);
53 fail1:
54 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
55 
56 	return (rc);
57 }
58 
59 	__checkReturn	efx_rc_t
60 efx_mcdi_get_port_modes(
61 	__in		efx_nic_t *enp,
62 	__out		uint32_t *modesp,
63 	__out_opt	uint32_t *current_modep,
64 	__out_opt	uint32_t *default_modep)
65 {
66 	efx_mcdi_req_t req;
67 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
68 		MC_CMD_GET_PORT_MODES_OUT_LEN);
69 	efx_rc_t rc;
70 
71 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
72 
73 	req.emr_cmd = MC_CMD_GET_PORT_MODES;
74 	req.emr_in_buf = payload;
75 	req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
76 	req.emr_out_buf = payload;
77 	req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
78 
79 	efx_mcdi_execute(enp, &req);
80 
81 	if (req.emr_rc != 0) {
82 		rc = req.emr_rc;
83 		goto fail1;
84 	}
85 
86 	/*
87 	 * Require only Modes and DefaultMode fields, unless the current mode
88 	 * was requested (CurrentMode field was added for Medford).
89 	 */
90 	if (req.emr_out_length_used <
91 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
92 		rc = EMSGSIZE;
93 		goto fail2;
94 	}
95 	if ((current_modep != NULL) && (req.emr_out_length_used <
96 	    MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
97 		rc = EMSGSIZE;
98 		goto fail3;
99 	}
100 
101 	*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
102 
103 	if (current_modep != NULL) {
104 		*current_modep = MCDI_OUT_DWORD(req,
105 					    GET_PORT_MODES_OUT_CURRENT_MODE);
106 	}
107 
108 	if (default_modep != NULL) {
109 		*default_modep = MCDI_OUT_DWORD(req,
110 					    GET_PORT_MODES_OUT_DEFAULT_MODE);
111 	}
112 
113 	return (0);
114 
115 fail3:
116 	EFSYS_PROBE(fail3);
117 fail2:
118 	EFSYS_PROBE(fail2);
119 fail1:
120 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
121 
122 	return (rc);
123 }
124 
125 	__checkReturn	efx_rc_t
126 ef10_nic_get_port_mode_bandwidth(
127 	__in		efx_nic_t *enp,
128 	__out		uint32_t *bandwidth_mbpsp)
129 {
130 	uint32_t port_modes;
131 	uint32_t current_mode;
132 	efx_port_t *epp = &(enp->en_port);
133 
134 	uint32_t single_lane;
135 	uint32_t dual_lane;
136 	uint32_t quad_lane;
137 	uint32_t bandwidth;
138 	efx_rc_t rc;
139 
140 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
141 				    &current_mode, NULL)) != 0) {
142 		/* No port mode info available. */
143 		goto fail1;
144 	}
145 
146 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
147 		single_lane = 25000;
148 	else
149 		single_lane = 10000;
150 
151 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
152 		dual_lane = 50000;
153 	else
154 		dual_lane = 20000;
155 
156 	if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
157 		quad_lane = 100000;
158 	else
159 		quad_lane = 40000;
160 
161 	switch (current_mode) {
162 	case TLV_PORT_MODE_1x1_NA:			/* mode 0 */
163 		bandwidth = single_lane;
164 		break;
165 	case TLV_PORT_MODE_1x2_NA:			/* mode 10 */
166 	case TLV_PORT_MODE_NA_1x2:			/* mode 11 */
167 		bandwidth = dual_lane;
168 		break;
169 	case TLV_PORT_MODE_1x1_1x1:			/* mode 2 */
170 		bandwidth = single_lane + single_lane;
171 		break;
172 	case TLV_PORT_MODE_4x1_NA:			/* mode 4 */
173 	case TLV_PORT_MODE_NA_4x1:			/* mode 8 */
174 		bandwidth = 4 * single_lane;
175 		break;
176 	case TLV_PORT_MODE_2x1_2x1:			/* mode 5 */
177 		bandwidth = (2 * single_lane) + (2 * single_lane);
178 		break;
179 	case TLV_PORT_MODE_1x2_1x2:			/* mode 12 */
180 		bandwidth = dual_lane + dual_lane;
181 		break;
182 	case TLV_PORT_MODE_1x2_2x1:			/* mode 17 */
183 	case TLV_PORT_MODE_2x1_1x2:			/* mode 18 */
184 		bandwidth = dual_lane + (2 * single_lane);
185 		break;
186 	/* Legacy Medford-only mode. Do not use (see bug63270) */
187 	case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:	/* mode 9 */
188 		bandwidth = 4 * single_lane;
189 		break;
190 	case TLV_PORT_MODE_1x4_NA:			/* mode 1 */
191 	case TLV_PORT_MODE_NA_1x4:			/* mode 22 */
192 		bandwidth = quad_lane;
193 		break;
194 	case TLV_PORT_MODE_2x2_NA:			/* mode 13 */
195 	case TLV_PORT_MODE_NA_2x2:			/* mode 14 */
196 		bandwidth = 2 * dual_lane;
197 		break;
198 	case TLV_PORT_MODE_1x4_2x1:			/* mode 6 */
199 	case TLV_PORT_MODE_2x1_1x4:			/* mode 7 */
200 		bandwidth = quad_lane + (2 * single_lane);
201 		break;
202 	case TLV_PORT_MODE_1x4_1x2:			/* mode 15 */
203 	case TLV_PORT_MODE_1x2_1x4:			/* mode 16 */
204 		bandwidth = quad_lane + dual_lane;
205 		break;
206 	case TLV_PORT_MODE_1x4_1x4:			/* mode 3 */
207 		bandwidth = quad_lane + quad_lane;
208 		break;
209 	default:
210 		rc = EINVAL;
211 		goto fail2;
212 	}
213 
214 	*bandwidth_mbpsp = bandwidth;
215 
216 	return (0);
217 
218 fail2:
219 	EFSYS_PROBE(fail2);
220 fail1:
221 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
222 
223 	return (rc);
224 }
225 
226 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
227 
228 #if EFX_OPTS_EF10()
229 
230 	__checkReturn		efx_rc_t
231 efx_mcdi_vadaptor_alloc(
232 	__in			efx_nic_t *enp,
233 	__in			uint32_t port_id)
234 {
235 	efx_mcdi_req_t req;
236 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
237 		MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
238 	efx_rc_t rc;
239 
240 	req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
241 	req.emr_in_buf = payload;
242 	req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
243 	req.emr_out_buf = payload;
244 	req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
245 
246 	MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
247 	MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
248 	    VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
249 	    enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
250 
251 	efx_mcdi_execute(enp, &req);
252 
253 	if (req.emr_rc != 0) {
254 		rc = req.emr_rc;
255 		goto fail1;
256 	}
257 
258 	return (0);
259 
260 fail1:
261 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
262 
263 	return (rc);
264 }
265 
266 	__checkReturn		efx_rc_t
267 efx_mcdi_vadaptor_free(
268 	__in			efx_nic_t *enp,
269 	__in			uint32_t port_id)
270 {
271 	efx_mcdi_req_t req;
272 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
273 		MC_CMD_VADAPTOR_FREE_OUT_LEN);
274 	efx_rc_t rc;
275 
276 	req.emr_cmd = MC_CMD_VADAPTOR_FREE;
277 	req.emr_in_buf = payload;
278 	req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
279 	req.emr_out_buf = payload;
280 	req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
281 
282 	MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
283 
284 	efx_mcdi_execute(enp, &req);
285 
286 	if (req.emr_rc != 0) {
287 		rc = req.emr_rc;
288 		goto fail1;
289 	}
290 
291 	return (0);
292 
293 fail1:
294 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
295 
296 	return (rc);
297 }
298 
299 #endif	/* EFX_OPTS_EF10() */
300 
301 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
302 
303 	__checkReturn	efx_rc_t
304 efx_mcdi_get_mac_address_pf(
305 	__in			efx_nic_t *enp,
306 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
307 {
308 	efx_mcdi_req_t req;
309 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
310 		MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
311 	efx_rc_t rc;
312 
313 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
314 
315 	req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
316 	req.emr_in_buf = payload;
317 	req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
318 	req.emr_out_buf = payload;
319 	req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
320 
321 	efx_mcdi_execute(enp, &req);
322 
323 	if (req.emr_rc != 0) {
324 		rc = req.emr_rc;
325 		goto fail1;
326 	}
327 
328 	if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
329 		rc = EMSGSIZE;
330 		goto fail2;
331 	}
332 
333 	if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
334 		rc = ENOENT;
335 		goto fail3;
336 	}
337 
338 	if (mac_addrp != NULL) {
339 		uint8_t *addrp;
340 
341 		addrp = MCDI_OUT2(req, uint8_t,
342 		    GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
343 
344 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
345 	}
346 
347 	return (0);
348 
349 fail3:
350 	EFSYS_PROBE(fail3);
351 fail2:
352 	EFSYS_PROBE(fail2);
353 fail1:
354 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
355 
356 	return (rc);
357 }
358 
359 	__checkReturn	efx_rc_t
360 efx_mcdi_get_mac_address_vf(
361 	__in			efx_nic_t *enp,
362 	__out_ecount_opt(6)	uint8_t mac_addrp[6])
363 {
364 	efx_mcdi_req_t req;
365 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
366 		MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
367 	efx_rc_t rc;
368 
369 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
370 
371 	req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
372 	req.emr_in_buf = payload;
373 	req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
374 	req.emr_out_buf = payload;
375 	req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
376 
377 	MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
378 	    EVB_PORT_ID_ASSIGNED);
379 
380 	efx_mcdi_execute(enp, &req);
381 
382 	if (req.emr_rc != 0) {
383 		rc = req.emr_rc;
384 		goto fail1;
385 	}
386 
387 	if (req.emr_out_length_used <
388 	    MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
389 		rc = EMSGSIZE;
390 		goto fail2;
391 	}
392 
393 	if (MCDI_OUT_DWORD(req,
394 		VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
395 		rc = ENOENT;
396 		goto fail3;
397 	}
398 
399 	if (mac_addrp != NULL) {
400 		uint8_t *addrp;
401 
402 		addrp = MCDI_OUT2(req, uint8_t,
403 		    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
404 
405 		EFX_MAC_ADDR_COPY(mac_addrp, addrp);
406 	}
407 
408 	return (0);
409 
410 fail3:
411 	EFSYS_PROBE(fail3);
412 fail2:
413 	EFSYS_PROBE(fail2);
414 fail1:
415 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
416 
417 	return (rc);
418 }
419 
420 	__checkReturn	efx_rc_t
421 efx_mcdi_get_clock(
422 	__in		efx_nic_t *enp,
423 	__out		uint32_t *sys_freqp,
424 	__out		uint32_t *dpcpu_freqp)
425 {
426 	efx_mcdi_req_t req;
427 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
428 		MC_CMD_GET_CLOCK_OUT_LEN);
429 	efx_rc_t rc;
430 
431 	EFSYS_ASSERT(EFX_FAMILY_IS_EF100(enp) || EFX_FAMILY_IS_EF10(enp));
432 
433 	req.emr_cmd = MC_CMD_GET_CLOCK;
434 	req.emr_in_buf = payload;
435 	req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
436 	req.emr_out_buf = payload;
437 	req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
438 
439 	efx_mcdi_execute(enp, &req);
440 
441 	if (req.emr_rc != 0) {
442 		rc = req.emr_rc;
443 		goto fail1;
444 	}
445 
446 	if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
447 		rc = EMSGSIZE;
448 		goto fail2;
449 	}
450 
451 	*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
452 	if (*sys_freqp == 0) {
453 		rc = EINVAL;
454 		goto fail3;
455 	}
456 	*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
457 	if (*dpcpu_freqp == 0) {
458 		rc = EINVAL;
459 		goto fail4;
460 	}
461 
462 	return (0);
463 
464 fail4:
465 	EFSYS_PROBE(fail4);
466 fail3:
467 	EFSYS_PROBE(fail3);
468 fail2:
469 	EFSYS_PROBE(fail2);
470 fail1:
471 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
472 
473 	return (rc);
474 }
475 
476 	__checkReturn	efx_rc_t
477 efx_mcdi_get_rxdp_config(
478 	__in		efx_nic_t *enp,
479 	__out		uint32_t *end_paddingp)
480 {
481 	efx_mcdi_req_t req;
482 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
483 		MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
484 	uint32_t end_padding;
485 	efx_rc_t rc;
486 
487 	req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
488 	req.emr_in_buf = payload;
489 	req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
490 	req.emr_out_buf = payload;
491 	req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
492 
493 	efx_mcdi_execute(enp, &req);
494 	if (req.emr_rc != 0) {
495 		rc = req.emr_rc;
496 		goto fail1;
497 	}
498 
499 	if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
500 				    GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
501 		/* RX DMA end padding is disabled */
502 		end_padding = 0;
503 	} else {
504 		switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
505 					    GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
506 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
507 			end_padding = 64;
508 			break;
509 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
510 			end_padding = 128;
511 			break;
512 		case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
513 			end_padding = 256;
514 			break;
515 		default:
516 			rc = ENOTSUP;
517 			goto fail2;
518 		}
519 	}
520 
521 	*end_paddingp = end_padding;
522 
523 	return (0);
524 
525 fail2:
526 	EFSYS_PROBE(fail2);
527 fail1:
528 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
529 
530 	return (rc);
531 }
532 
533 	__checkReturn	efx_rc_t
534 efx_mcdi_get_vector_cfg(
535 	__in		efx_nic_t *enp,
536 	__out_opt	uint32_t *vec_basep,
537 	__out_opt	uint32_t *pf_nvecp,
538 	__out_opt	uint32_t *vf_nvecp)
539 {
540 	efx_mcdi_req_t req;
541 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
542 		MC_CMD_GET_VECTOR_CFG_OUT_LEN);
543 	efx_rc_t rc;
544 
545 	req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
546 	req.emr_in_buf = payload;
547 	req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
548 	req.emr_out_buf = payload;
549 	req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
550 
551 	efx_mcdi_execute(enp, &req);
552 
553 	if (req.emr_rc != 0) {
554 		rc = req.emr_rc;
555 		goto fail1;
556 	}
557 
558 	if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
559 		rc = EMSGSIZE;
560 		goto fail2;
561 	}
562 
563 	if (vec_basep != NULL)
564 		*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
565 	if (pf_nvecp != NULL)
566 		*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
567 	if (vf_nvecp != NULL)
568 		*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
569 
570 	return (0);
571 
572 fail2:
573 	EFSYS_PROBE(fail2);
574 fail1:
575 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
576 
577 	return (rc);
578 }
579 
580 	__checkReturn	efx_rc_t
581 efx_mcdi_alloc_vis(
582 	__in		efx_nic_t *enp,
583 	__in		uint32_t min_vi_count,
584 	__in		uint32_t max_vi_count,
585 	__out		uint32_t *vi_basep,
586 	__out		uint32_t *vi_countp,
587 	__out		uint32_t *vi_shiftp)
588 {
589 	efx_mcdi_req_t req;
590 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
591 		MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
592 	efx_rc_t rc;
593 
594 	if (vi_countp == NULL) {
595 		rc = EINVAL;
596 		goto fail1;
597 	}
598 
599 	req.emr_cmd = MC_CMD_ALLOC_VIS;
600 	req.emr_in_buf = payload;
601 	req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
602 	req.emr_out_buf = payload;
603 	req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
604 
605 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
606 	MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
607 
608 	efx_mcdi_execute(enp, &req);
609 
610 	if (req.emr_rc != 0) {
611 		rc = req.emr_rc;
612 		goto fail2;
613 	}
614 
615 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
616 		rc = EMSGSIZE;
617 		goto fail3;
618 	}
619 
620 	*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
621 	*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
622 
623 	/* Report VI_SHIFT if available (always zero for Huntington) */
624 	if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
625 		*vi_shiftp = 0;
626 	else
627 		*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
628 
629 	return (0);
630 
631 fail3:
632 	EFSYS_PROBE(fail3);
633 fail2:
634 	EFSYS_PROBE(fail2);
635 fail1:
636 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
637 
638 	return (rc);
639 }
640 
641 
642 	__checkReturn	efx_rc_t
643 efx_mcdi_free_vis(
644 	__in		efx_nic_t *enp)
645 {
646 	efx_mcdi_req_t req;
647 	efx_rc_t rc;
648 
649 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
650 	EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
651 
652 	req.emr_cmd = MC_CMD_FREE_VIS;
653 	req.emr_in_buf = NULL;
654 	req.emr_in_length = 0;
655 	req.emr_out_buf = NULL;
656 	req.emr_out_length = 0;
657 
658 	efx_mcdi_execute_quiet(enp, &req);
659 
660 	/* Ignore ELREADY (no allocated VIs, so nothing to free) */
661 	if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
662 		rc = req.emr_rc;
663 		goto fail1;
664 	}
665 
666 	return (0);
667 
668 fail1:
669 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
670 
671 	return (rc);
672 }
673 
674 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
675 
676 #if EFX_OPTS_EF10()
677 
678 static	__checkReturn	efx_rc_t
679 efx_mcdi_alloc_piobuf(
680 	__in		efx_nic_t *enp,
681 	__out		efx_piobuf_handle_t *handlep)
682 {
683 	efx_mcdi_req_t req;
684 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
685 		MC_CMD_ALLOC_PIOBUF_OUT_LEN);
686 	efx_rc_t rc;
687 
688 	if (handlep == NULL) {
689 		rc = EINVAL;
690 		goto fail1;
691 	}
692 
693 	req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
694 	req.emr_in_buf = payload;
695 	req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
696 	req.emr_out_buf = payload;
697 	req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
698 
699 	efx_mcdi_execute_quiet(enp, &req);
700 
701 	if (req.emr_rc != 0) {
702 		rc = req.emr_rc;
703 		goto fail2;
704 	}
705 
706 	if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
707 		rc = EMSGSIZE;
708 		goto fail3;
709 	}
710 
711 	*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
712 
713 	return (0);
714 
715 fail3:
716 	EFSYS_PROBE(fail3);
717 fail2:
718 	EFSYS_PROBE(fail2);
719 fail1:
720 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
721 
722 	return (rc);
723 }
724 
725 static	__checkReturn	efx_rc_t
726 efx_mcdi_free_piobuf(
727 	__in		efx_nic_t *enp,
728 	__in		efx_piobuf_handle_t handle)
729 {
730 	efx_mcdi_req_t req;
731 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
732 		MC_CMD_FREE_PIOBUF_OUT_LEN);
733 	efx_rc_t rc;
734 
735 	req.emr_cmd = MC_CMD_FREE_PIOBUF;
736 	req.emr_in_buf = payload;
737 	req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
738 	req.emr_out_buf = payload;
739 	req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
740 
741 	MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
742 
743 	efx_mcdi_execute_quiet(enp, &req);
744 
745 	if (req.emr_rc != 0) {
746 		rc = req.emr_rc;
747 		goto fail1;
748 	}
749 
750 	return (0);
751 
752 fail1:
753 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
754 
755 	return (rc);
756 }
757 
758 static	__checkReturn	efx_rc_t
759 efx_mcdi_link_piobuf(
760 	__in		efx_nic_t *enp,
761 	__in		uint32_t vi_index,
762 	__in		efx_piobuf_handle_t handle)
763 {
764 	efx_mcdi_req_t req;
765 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
766 		MC_CMD_LINK_PIOBUF_OUT_LEN);
767 	efx_rc_t rc;
768 
769 	req.emr_cmd = MC_CMD_LINK_PIOBUF;
770 	req.emr_in_buf = payload;
771 	req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
772 	req.emr_out_buf = payload;
773 	req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
774 
775 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
776 	MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
777 
778 	efx_mcdi_execute(enp, &req);
779 
780 	if (req.emr_rc != 0) {
781 		rc = req.emr_rc;
782 		goto fail1;
783 	}
784 
785 	return (0);
786 
787 fail1:
788 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
789 
790 	return (rc);
791 }
792 
793 static	__checkReturn	efx_rc_t
794 efx_mcdi_unlink_piobuf(
795 	__in		efx_nic_t *enp,
796 	__in		uint32_t vi_index)
797 {
798 	efx_mcdi_req_t req;
799 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
800 		MC_CMD_UNLINK_PIOBUF_OUT_LEN);
801 	efx_rc_t rc;
802 
803 	req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
804 	req.emr_in_buf = payload;
805 	req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
806 	req.emr_out_buf = payload;
807 	req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
808 
809 	MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
810 
811 	efx_mcdi_execute_quiet(enp, &req);
812 
813 	if (req.emr_rc != 0) {
814 		rc = req.emr_rc;
815 		goto fail1;
816 	}
817 
818 	return (0);
819 
820 fail1:
821 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
822 
823 	return (rc);
824 }
825 
826 static			void
827 ef10_nic_alloc_piobufs(
828 	__in		efx_nic_t *enp,
829 	__in		uint32_t max_piobuf_count)
830 {
831 	efx_piobuf_handle_t *handlep;
832 	unsigned int i;
833 
834 	EFSYS_ASSERT3U(max_piobuf_count, <=,
835 	    EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
836 
837 	enp->en_arch.ef10.ena_piobuf_count = 0;
838 
839 	for (i = 0; i < max_piobuf_count; i++) {
840 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
841 
842 		if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
843 			goto fail1;
844 
845 		enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
846 		enp->en_arch.ef10.ena_piobuf_count++;
847 	}
848 
849 	return;
850 
851 fail1:
852 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
853 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
854 
855 		(void) efx_mcdi_free_piobuf(enp, *handlep);
856 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
857 	}
858 	enp->en_arch.ef10.ena_piobuf_count = 0;
859 }
860 
861 
862 static			void
863 ef10_nic_free_piobufs(
864 	__in		efx_nic_t *enp)
865 {
866 	efx_piobuf_handle_t *handlep;
867 	unsigned int i;
868 
869 	for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
870 		handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
871 
872 		(void) efx_mcdi_free_piobuf(enp, *handlep);
873 		*handlep = EFX_PIOBUF_HANDLE_INVALID;
874 	}
875 	enp->en_arch.ef10.ena_piobuf_count = 0;
876 }
877 
878 /* Sub-allocate a block from a piobuf */
879 	__checkReturn	efx_rc_t
880 ef10_nic_pio_alloc(
881 	__inout		efx_nic_t *enp,
882 	__out		uint32_t *bufnump,
883 	__out		efx_piobuf_handle_t *handlep,
884 	__out		uint32_t *blknump,
885 	__out		uint32_t *offsetp,
886 	__out		size_t *sizep)
887 {
888 	efx_nic_cfg_t *encp = &enp->en_nic_cfg;
889 	efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
890 	uint32_t blk_per_buf;
891 	uint32_t buf, blk;
892 	efx_rc_t rc;
893 
894 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
895 	EFSYS_ASSERT(bufnump);
896 	EFSYS_ASSERT(handlep);
897 	EFSYS_ASSERT(blknump);
898 	EFSYS_ASSERT(offsetp);
899 	EFSYS_ASSERT(sizep);
900 
901 	if ((edcp->edc_pio_alloc_size == 0) ||
902 	    (enp->en_arch.ef10.ena_piobuf_count == 0)) {
903 		rc = ENOMEM;
904 		goto fail1;
905 	}
906 	blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
907 
908 	for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
909 		uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
910 
911 		if (~(*map) == 0)
912 			continue;
913 
914 		EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
915 		for (blk = 0; blk < blk_per_buf; blk++) {
916 			if ((*map & (1u << blk)) == 0) {
917 				*map |= (1u << blk);
918 				goto done;
919 			}
920 		}
921 	}
922 	rc = ENOMEM;
923 	goto fail2;
924 
925 done:
926 	*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
927 	*bufnump = buf;
928 	*blknump = blk;
929 	*sizep = edcp->edc_pio_alloc_size;
930 	*offsetp = blk * (*sizep);
931 
932 	return (0);
933 
934 fail2:
935 	EFSYS_PROBE(fail2);
936 fail1:
937 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
938 
939 	return (rc);
940 }
941 
942 /* Free a piobuf sub-allocated block */
943 	__checkReturn	efx_rc_t
944 ef10_nic_pio_free(
945 	__inout		efx_nic_t *enp,
946 	__in		uint32_t bufnum,
947 	__in		uint32_t blknum)
948 {
949 	uint32_t *map;
950 	efx_rc_t rc;
951 
952 	if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
953 	    (blknum >= (8 * sizeof (*map)))) {
954 		rc = EINVAL;
955 		goto fail1;
956 	}
957 
958 	map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
959 	if ((*map & (1u << blknum)) == 0) {
960 		rc = ENOENT;
961 		goto fail2;
962 	}
963 	*map &= ~(1u << blknum);
964 
965 	return (0);
966 
967 fail2:
968 	EFSYS_PROBE(fail2);
969 fail1:
970 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
971 
972 	return (rc);
973 }
974 
975 	__checkReturn	efx_rc_t
976 ef10_nic_pio_link(
977 	__inout		efx_nic_t *enp,
978 	__in		uint32_t vi_index,
979 	__in		efx_piobuf_handle_t handle)
980 {
981 	return (efx_mcdi_link_piobuf(enp, vi_index, handle));
982 }
983 
984 	__checkReturn	efx_rc_t
985 ef10_nic_pio_unlink(
986 	__inout		efx_nic_t *enp,
987 	__in		uint32_t vi_index)
988 {
989 	return (efx_mcdi_unlink_piobuf(enp, vi_index));
990 }
991 
992 #endif	/* EFX_OPTS_EF10() */
993 
994 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
995 
996 static	__checkReturn	efx_rc_t
997 ef10_mcdi_get_pf_count(
998 	__in		efx_nic_t *enp,
999 	__out		uint32_t *pf_countp)
1000 {
1001 	efx_mcdi_req_t req;
1002 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
1003 		MC_CMD_GET_PF_COUNT_OUT_LEN);
1004 	efx_rc_t rc;
1005 
1006 	req.emr_cmd = MC_CMD_GET_PF_COUNT;
1007 	req.emr_in_buf = payload;
1008 	req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
1009 	req.emr_out_buf = payload;
1010 	req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
1011 
1012 	efx_mcdi_execute(enp, &req);
1013 
1014 	if (req.emr_rc != 0) {
1015 		rc = req.emr_rc;
1016 		goto fail1;
1017 	}
1018 
1019 	if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
1020 		rc = EMSGSIZE;
1021 		goto fail2;
1022 	}
1023 
1024 	*pf_countp = *MCDI_OUT(req, uint8_t,
1025 				MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
1026 
1027 	EFSYS_ASSERT(*pf_countp != 0);
1028 
1029 	return (0);
1030 
1031 fail2:
1032 	EFSYS_PROBE(fail2);
1033 fail1:
1034 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1035 
1036 	return (rc);
1037 }
1038 
1039 static	__checkReturn	efx_rc_t
1040 ef10_get_datapath_caps(
1041 	__in		efx_nic_t *enp)
1042 {
1043 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1044 	efx_mcdi_req_t req;
1045 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
1046 		MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
1047 	efx_rc_t rc;
1048 
1049 	req.emr_cmd = MC_CMD_GET_CAPABILITIES;
1050 	req.emr_in_buf = payload;
1051 	req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
1052 	req.emr_out_buf = payload;
1053 	req.emr_out_length = MC_CMD_GET_CAPABILITIES_V7_OUT_LEN;
1054 
1055 	efx_mcdi_execute_quiet(enp, &req);
1056 
1057 	if (req.emr_rc != 0) {
1058 		rc = req.emr_rc;
1059 		goto fail1;
1060 	}
1061 
1062 	if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
1063 		rc = EMSGSIZE;
1064 		goto fail2;
1065 	}
1066 
1067 #define	CAP_FLAGS1(_req, _flag)						\
1068 	(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) &		\
1069 	(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
1070 
1071 #define	CAP_FLAGS2(_req, _flag)						\
1072 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
1073 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) &	\
1074 	    (1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
1075 
1076 #define	CAP_FLAGS3(_req, _flag)						\
1077 	(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) && \
1078 	    (MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V7_OUT_FLAGS3) &	\
1079 	    (1u << (MC_CMD_GET_CAPABILITIES_V7_OUT_ ## _flag ## _LBN))))
1080 
1081 	/* Check if RXDP firmware inserts 14 byte prefix */
1082 	if (CAP_FLAGS1(req, RX_PREFIX_LEN_14))
1083 		encp->enc_rx_prefix_size = 14;
1084 	else
1085 		encp->enc_rx_prefix_size = 0;
1086 
1087 #if EFSYS_OPT_RX_SCALE
1088 	/* Check if the firmware supports additional RSS modes */
1089 	if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
1090 		encp->enc_rx_scale_additional_modes_supported = B_TRUE;
1091 	else
1092 		encp->enc_rx_scale_additional_modes_supported = B_FALSE;
1093 #endif /* EFSYS_OPT_RX_SCALE */
1094 
1095 	/* Check if the firmware supports TSO */
1096 	if (CAP_FLAGS1(req, TX_TSO))
1097 		encp->enc_fw_assisted_tso_enabled = B_TRUE;
1098 	else
1099 		encp->enc_fw_assisted_tso_enabled = B_FALSE;
1100 
1101 	/* Check if the firmware supports FATSOv2 */
1102 	if (CAP_FLAGS2(req, TX_TSO_V2)) {
1103 		encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
1104 		encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
1105 		    GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
1106 	} else {
1107 		encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
1108 		encp->enc_fw_assisted_tso_v2_n_contexts = 0;
1109 	}
1110 
1111 	/* Check if the firmware supports FATSOv2 encap */
1112 	if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
1113 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
1114 	else
1115 		encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
1116 
1117 	/* Check if TSOv3 is supported */
1118 	if (CAP_FLAGS2(req, TX_TSO_V3))
1119 		encp->enc_tso_v3_enabled = B_TRUE;
1120 	else
1121 		encp->enc_tso_v3_enabled = B_FALSE;
1122 
1123 	/* Check if the firmware has vadapter/vport/vswitch support */
1124 	if (CAP_FLAGS1(req, EVB))
1125 		encp->enc_datapath_cap_evb = B_TRUE;
1126 	else
1127 		encp->enc_datapath_cap_evb = B_FALSE;
1128 
1129 	/* Check if the firmware supports vport reconfiguration */
1130 	if (CAP_FLAGS1(req, VPORT_RECONFIGURE))
1131 		encp->enc_vport_reconfigure_supported = B_TRUE;
1132 	else
1133 		encp->enc_vport_reconfigure_supported = B_FALSE;
1134 
1135 	/* Check if the firmware supports VLAN insertion */
1136 	if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
1137 		encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
1138 	else
1139 		encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
1140 
1141 	/* Check if the firmware supports RX event batching */
1142 	if (CAP_FLAGS1(req, RX_BATCHING))
1143 		encp->enc_rx_batching_enabled = B_TRUE;
1144 	else
1145 		encp->enc_rx_batching_enabled = B_FALSE;
1146 
1147 	/*
1148 	 * Even if batching isn't reported as supported, we may still get
1149 	 * batched events (see bug61153).
1150 	 */
1151 	encp->enc_rx_batch_max = 16;
1152 
1153 	/* Check if the firmware supports disabling scatter on RXQs */
1154 	if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
1155 		encp->enc_rx_disable_scatter_supported = B_TRUE;
1156 	else
1157 		encp->enc_rx_disable_scatter_supported = B_FALSE;
1158 
1159 	/* No limit on maximum number of Rx scatter elements per packet. */
1160 	encp->enc_rx_scatter_max = -1;
1161 
1162 	/* Check if the firmware supports packed stream mode */
1163 	if (CAP_FLAGS1(req, RX_PACKED_STREAM))
1164 		encp->enc_rx_packed_stream_supported = B_TRUE;
1165 	else
1166 		encp->enc_rx_packed_stream_supported = B_FALSE;
1167 
1168 	/*
1169 	 * Check if the firmware supports configurable buffer sizes
1170 	 * for packed stream mode (otherwise buffer size is 1Mbyte)
1171 	 */
1172 	if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
1173 		encp->enc_rx_var_packed_stream_supported = B_TRUE;
1174 	else
1175 		encp->enc_rx_var_packed_stream_supported = B_FALSE;
1176 
1177 	/* Check if the firmware supports equal stride super-buffer mode */
1178 	if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
1179 		encp->enc_rx_es_super_buffer_supported = B_TRUE;
1180 	else
1181 		encp->enc_rx_es_super_buffer_supported = B_FALSE;
1182 
1183 	/* Check if the firmware supports FW subvariant w/o Tx checksumming */
1184 	if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
1185 		encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
1186 	else
1187 		encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
1188 
1189 	/* Check if the firmware supports set mac with running filters */
1190 	if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
1191 		encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
1192 	else
1193 		encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
1194 
1195 	/*
1196 	 * Check if firmware supports the extended MC_CMD_SET_MAC, which allows
1197 	 * specifying which parameters to configure.
1198 	 */
1199 	if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
1200 		encp->enc_enhanced_set_mac_supported = B_TRUE;
1201 	else
1202 		encp->enc_enhanced_set_mac_supported = B_FALSE;
1203 
1204 	/*
1205 	 * Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
1206 	 * us to let the firmware choose the settings to use on an EVQ.
1207 	 */
1208 	if (CAP_FLAGS2(req, INIT_EVQ_V2))
1209 		encp->enc_init_evq_v2_supported = B_TRUE;
1210 	else
1211 		encp->enc_init_evq_v2_supported = B_FALSE;
1212 
1213 	/*
1214 	 * Check if firmware supports extended width event queues, which have
1215 	 * a different event descriptor layout.
1216 	 */
1217 	if (CAP_FLAGS3(req, EXTENDED_WIDTH_EVQS_SUPPORTED))
1218 		encp->enc_init_evq_extended_width_supported = B_TRUE;
1219 	else
1220 		encp->enc_init_evq_extended_width_supported = B_FALSE;
1221 
1222 	/*
1223 	 * Check if the NO_CONT_EV mode for RX events is supported.
1224 	 */
1225 	if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV))
1226 		encp->enc_no_cont_ev_mode_supported = B_TRUE;
1227 	else
1228 		encp->enc_no_cont_ev_mode_supported = B_FALSE;
1229 
1230 	/*
1231 	 * Check if buffer size may and must be specified on INIT_RXQ.
1232 	 * It may be always specified to efx_rx_qcreate(), but will be
1233 	 * just kept libefx internal if MCDI does not support it.
1234 	 */
1235 	if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE))
1236 		encp->enc_init_rxq_with_buffer_size = B_TRUE;
1237 	else
1238 		encp->enc_init_rxq_with_buffer_size = B_FALSE;
1239 
1240 	/*
1241 	 * Check if firmware-verified NVRAM updates must be used.
1242 	 *
1243 	 * The firmware trusted installer requires all NVRAM updates to use
1244 	 * version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
1245 	 * and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
1246 	 * partition and report the result).
1247 	 */
1248 	if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
1249 		encp->enc_nvram_update_verify_result_supported = B_TRUE;
1250 	else
1251 		encp->enc_nvram_update_verify_result_supported = B_FALSE;
1252 
1253 	if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT))
1254 		encp->enc_nvram_update_poll_verify_result_supported = B_TRUE;
1255 	else
1256 		encp->enc_nvram_update_poll_verify_result_supported = B_FALSE;
1257 
1258 	/*
1259 	 * Check if firmware update via the BUNDLE partition is supported
1260 	 */
1261 	if (CAP_FLAGS2(req, BUNDLE_UPDATE))
1262 		encp->enc_nvram_bundle_update_supported = B_TRUE;
1263 	else
1264 		encp->enc_nvram_bundle_update_supported = B_FALSE;
1265 
1266 	/*
1267 	 * Check if firmware provides packet memory and Rx datapath
1268 	 * counters.
1269 	 */
1270 	if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
1271 		encp->enc_pm_and_rxdp_counters = B_TRUE;
1272 	else
1273 		encp->enc_pm_and_rxdp_counters = B_FALSE;
1274 
1275 	/*
1276 	 * Check if the 40G MAC hardware is capable of reporting
1277 	 * statistics for Tx size bins.
1278 	 */
1279 	if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
1280 		encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
1281 	else
1282 		encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
1283 
1284 	/*
1285 	 * Check if firmware supports VXLAN and NVGRE tunnels.
1286 	 * The capability indicates Geneve protocol support as well.
1287 	 */
1288 	if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
1289 		encp->enc_tunnel_encapsulations_supported =
1290 		    (1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
1291 		    (1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
1292 		    (1u << EFX_TUNNEL_PROTOCOL_NVGRE);
1293 
1294 		EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
1295 		    MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
1296 		encp->enc_tunnel_config_udp_entries_max =
1297 		    EFX_TUNNEL_MAXNENTRIES;
1298 	} else {
1299 		encp->enc_tunnel_config_udp_entries_max = 0;
1300 	}
1301 
1302 	/*
1303 	 * Check if firmware reports the VI window mode.
1304 	 * Medford2 has a variable VI window size (8K, 16K or 64K).
1305 	 * Medford and Huntington have a fixed 8K VI window size.
1306 	 */
1307 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
1308 		uint8_t mode =
1309 		    MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
1310 
1311 		switch (mode) {
1312 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
1313 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1314 			break;
1315 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
1316 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
1317 			break;
1318 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
1319 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
1320 			break;
1321 		default:
1322 			encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1323 			break;
1324 		}
1325 	} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
1326 		    (enp->en_family == EFX_FAMILY_MEDFORD)) {
1327 		/* Huntington and Medford have fixed 8K window size */
1328 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
1329 	} else {
1330 		encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
1331 	}
1332 
1333 	/* Check if firmware supports extended MAC stats. */
1334 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
1335 		/* Extended stats buffer supported */
1336 		encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
1337 		    GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
1338 	} else {
1339 		/* Use Siena-compatible legacy MAC stats */
1340 		encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
1341 	}
1342 
1343 	if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
1344 		encp->enc_fec_counters = B_TRUE;
1345 	else
1346 		encp->enc_fec_counters = B_FALSE;
1347 
1348 	/* Check if the firmware provides head-of-line blocking counters */
1349 	if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
1350 		encp->enc_hlb_counters = B_TRUE;
1351 	else
1352 		encp->enc_hlb_counters = B_FALSE;
1353 
1354 #if EFSYS_OPT_RX_SCALE
1355 	if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
1356 		/* Only one exclusive RSS context is available per port. */
1357 		encp->enc_rx_scale_max_exclusive_contexts = 1;
1358 
1359 		switch (enp->en_family) {
1360 		case EFX_FAMILY_MEDFORD2:
1361 			encp->enc_rx_scale_hash_alg_mask =
1362 			    (1U << EFX_RX_HASHALG_TOEPLITZ);
1363 			break;
1364 
1365 		case EFX_FAMILY_MEDFORD:
1366 		case EFX_FAMILY_HUNTINGTON:
1367 			/*
1368 			 * Packed stream firmware variant maintains a
1369 			 * non-standard algorithm for hash computation.
1370 			 * It implies explicit XORing together
1371 			 * source + destination IP addresses (or last
1372 			 * four bytes in the case of IPv6) and using the
1373 			 * resulting value as the input to a Toeplitz hash.
1374 			 */
1375 			encp->enc_rx_scale_hash_alg_mask =
1376 			    (1U << EFX_RX_HASHALG_PACKED_STREAM);
1377 			break;
1378 
1379 		default:
1380 			rc = EINVAL;
1381 			goto fail3;
1382 		}
1383 
1384 		/* Port numbers cannot contribute to the hash value */
1385 		encp->enc_rx_scale_l4_hash_supported = B_FALSE;
1386 	} else {
1387 		/*
1388 		 * Maximum number of exclusive RSS contexts.
1389 		 * EF10 hardware supports 64 in total, but 6 are reserved
1390 		 * for shared contexts. They are a global resource so
1391 		 * not all may be available.
1392 		 */
1393 		encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
1394 
1395 		encp->enc_rx_scale_hash_alg_mask =
1396 		    (1U << EFX_RX_HASHALG_TOEPLITZ);
1397 
1398 		/*
1399 		 * It is possible to use port numbers as
1400 		 * the input data for hash computation.
1401 		 */
1402 		encp->enc_rx_scale_l4_hash_supported = B_TRUE;
1403 	}
1404 #endif /* EFSYS_OPT_RX_SCALE */
1405 
1406 	/* Check if the firmware supports "FLAG" and "MARK" filter actions */
1407 	if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
1408 		encp->enc_filter_action_flag_supported = B_TRUE;
1409 	else
1410 		encp->enc_filter_action_flag_supported = B_FALSE;
1411 
1412 	if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
1413 		encp->enc_filter_action_mark_supported = B_TRUE;
1414 	else
1415 		encp->enc_filter_action_mark_supported = B_FALSE;
1416 
1417 	/* Get maximum supported value for "MARK" filter action */
1418 	if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
1419 		encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
1420 		    GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
1421 	else
1422 		encp->enc_filter_action_mark_max = 0;
1423 
1424 #undef CAP_FLAGS1
1425 #undef CAP_FLAGS2
1426 
1427 	return (0);
1428 
1429 #if EFSYS_OPT_RX_SCALE
1430 fail3:
1431 	EFSYS_PROBE(fail3);
1432 #endif /* EFSYS_OPT_RX_SCALE */
1433 fail2:
1434 	EFSYS_PROBE(fail2);
1435 fail1:
1436 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1437 
1438 	return (rc);
1439 }
1440 
1441 
1442 #define	EF10_LEGACY_PF_PRIVILEGE_MASK					\
1443 	(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN			|	\
1444 	MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK			|	\
1445 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD			|	\
1446 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP			|	\
1447 	MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS		|	\
1448 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING		|	\
1449 	MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST			|	\
1450 	MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST			|	\
1451 	MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST			|	\
1452 	MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST		|	\
1453 	MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
1454 
1455 #define	EF10_LEGACY_VF_PRIVILEGE_MASK	0
1456 
1457 
1458 	__checkReturn		efx_rc_t
1459 ef10_get_privilege_mask(
1460 	__in			efx_nic_t *enp,
1461 	__out			uint32_t *maskp)
1462 {
1463 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1464 	uint32_t mask;
1465 	efx_rc_t rc;
1466 
1467 	if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
1468 					    &mask)) != 0) {
1469 		if (rc != ENOTSUP)
1470 			goto fail1;
1471 
1472 		/* Fallback for old firmware without privilege mask support */
1473 		if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1474 			/* Assume PF has admin privilege */
1475 			mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
1476 		} else {
1477 			/* VF is always unprivileged by default */
1478 			mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
1479 		}
1480 	}
1481 
1482 	*maskp = mask;
1483 
1484 	return (0);
1485 
1486 fail1:
1487 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1488 
1489 	return (rc);
1490 }
1491 
1492 
1493 #define	EFX_EXT_PORT_MAX	4
1494 #define	EFX_EXT_PORT_NA		0xFF
1495 
1496 /*
1497  * Table of mapping schemes from port number to external number.
1498  *
1499  * Each port number ultimately corresponds to a connector: either as part of
1500  * a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
1501  * the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
1502  * "Salina"). In general:
1503  *
1504  * Port number (0-based)
1505  *     |
1506  *   port mapping (n:1)
1507  *     |
1508  *     v
1509  * External port number (1-based)
1510  *     |
1511  *   fixed (1:1) or cable assembly (1:m)
1512  *     |
1513  *     v
1514  * Connector
1515  *
1516  * The external numbering refers to the cages or magjacks on the board,
1517  * as visibly annotated on the board or back panel. This table describes
1518  * how to determine which external cage/magjack corresponds to the port
1519  * numbers used by the driver.
1520  *
1521  * The count of consecutive port numbers that map to each external number,
1522  * is determined by the chip family and the current port mode.
1523  *
1524  * For the Huntington family, the current port mode cannot be discovered,
1525  * but a single mapping is used by all modes for a given chip variant,
1526  * so the mapping used is instead the last match in the table to the full
1527  * set of port modes to which the NIC can be configured. Therefore the
1528  * ordering of entries in the mapping table is significant.
1529  */
1530 static struct ef10_external_port_map_s {
1531 	efx_family_t	family;
1532 	uint32_t	modes_mask;
1533 	uint8_t		base_port[EFX_EXT_PORT_MAX];
1534 }	__ef10_external_port_mappings[] = {
1535 	/*
1536 	 * Modes used by Huntington family controllers where each port
1537 	 * number maps to a separate cage.
1538 	 * SFN7x22F (Torino):
1539 	 *	port 0 -> cage 1
1540 	 *	port 1 -> cage 2
1541 	 * SFN7xx4F (Pavia):
1542 	 *	port 0 -> cage 1
1543 	 *	port 1 -> cage 2
1544 	 *	port 2 -> cage 3
1545 	 *	port 3 -> cage 4
1546 	 */
1547 	{
1548 		EFX_FAMILY_HUNTINGTON,
1549 		(1U << TLV_PORT_MODE_10G) |			/* mode 0 */
1550 		(1U << TLV_PORT_MODE_10G_10G) |			/* mode 2 */
1551 		(1U << TLV_PORT_MODE_10G_10G_10G_10G),		/* mode 4 */
1552 		{ 0, 1, 2, 3 }
1553 	},
1554 	/*
1555 	 * Modes which for Huntington identify a chip variant where 2
1556 	 * adjacent port numbers map to each cage.
1557 	 * SFN7x42Q (Monza):
1558 	 *	port 0 -> cage 1
1559 	 *	port 1 -> cage 1
1560 	 *	port 2 -> cage 2
1561 	 *	port 3 -> cage 2
1562 	 */
1563 	{
1564 		EFX_FAMILY_HUNTINGTON,
1565 		(1U << TLV_PORT_MODE_40G) |			/* mode 1 */
1566 		(1U << TLV_PORT_MODE_40G_40G) |			/* mode 3 */
1567 		(1U << TLV_PORT_MODE_40G_10G_10G) |		/* mode 6 */
1568 		(1U << TLV_PORT_MODE_10G_10G_40G),		/* mode 7 */
1569 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1570 	},
1571 	/*
1572 	 * Modes that on Medford allocate each port number to a separate
1573 	 * cage.
1574 	 *	port 0 -> cage 1
1575 	 *	port 1 -> cage 2
1576 	 *	port 2 -> cage 3
1577 	 *	port 3 -> cage 4
1578 	 */
1579 	{
1580 		EFX_FAMILY_MEDFORD,
1581 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1582 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1583 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1584 		{ 0, 1, 2, 3 }
1585 	},
1586 	/*
1587 	 * Modes that on Medford allocate 2 adjacent port numbers to each
1588 	 * cage.
1589 	 *	port 0 -> cage 1
1590 	 *	port 1 -> cage 1
1591 	 *	port 2 -> cage 2
1592 	 *	port 3 -> cage 2
1593 	 */
1594 	{
1595 		EFX_FAMILY_MEDFORD,
1596 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1597 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 5 */
1598 		(1U << TLV_PORT_MODE_1x4_2x1) |			/* mode 6 */
1599 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1600 		/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
1601 		(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),	/* mode 9 */
1602 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1603 	},
1604 	/*
1605 	 * Modes that on Medford allocate 4 adjacent port numbers to
1606 	 * cage 1.
1607 	 *	port 0 -> cage 1
1608 	 *	port 1 -> cage 1
1609 	 *	port 2 -> cage 1
1610 	 *	port 3 -> cage 1
1611 	 */
1612 	{
1613 		EFX_FAMILY_MEDFORD,
1614 		/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
1615 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 4 */
1616 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1617 	},
1618 	/*
1619 	 * Modes that on Medford allocate 4 adjacent port numbers to
1620 	 * cage 2.
1621 	 *	port 0 -> cage 2
1622 	 *	port 1 -> cage 2
1623 	 *	port 2 -> cage 2
1624 	 *	port 3 -> cage 2
1625 	 */
1626 	{
1627 		EFX_FAMILY_MEDFORD,
1628 		(1U << TLV_PORT_MODE_NA_4x1),			/* mode 8 */
1629 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1630 	},
1631 	/*
1632 	 * Modes that on Medford2 allocate each port number to a separate
1633 	 * cage.
1634 	 *	port 0 -> cage 1
1635 	 *	port 1 -> cage 2
1636 	 *	port 2 -> cage 3
1637 	 *	port 3 -> cage 4
1638 	 */
1639 	{
1640 		EFX_FAMILY_MEDFORD2,
1641 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1642 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1643 		(1U << TLV_PORT_MODE_1x1_1x1) |			/* mode 2 */
1644 		(1U << TLV_PORT_MODE_1x4_1x4) |			/* mode 3 */
1645 		(1U << TLV_PORT_MODE_1x2_NA) |			/* mode 10 */
1646 		(1U << TLV_PORT_MODE_1x2_1x2) |			/* mode 12 */
1647 		(1U << TLV_PORT_MODE_1x4_1x2) |			/* mode 15 */
1648 		(1U << TLV_PORT_MODE_1x2_1x4),			/* mode 16 */
1649 		{ 0, 1, 2, 3 }
1650 	},
1651 	/*
1652 	 * Modes that on Medford2 allocate 1 port to cage 1 and the rest
1653 	 * to cage 2.
1654 	 *	port 0 -> cage 1
1655 	 *	port 1 -> cage 2
1656 	 *	port 2 -> cage 2
1657 	 */
1658 	{
1659 		EFX_FAMILY_MEDFORD2,
1660 		(1U << TLV_PORT_MODE_1x2_2x1) |			/* mode 17 */
1661 		(1U << TLV_PORT_MODE_1x4_2x1),			/* mode 6 */
1662 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1663 	},
1664 	/*
1665 	 * Modes that on Medford2 allocate 2 adjacent port numbers to cage 1
1666 	 * and the rest to cage 2.
1667 	 *	port 0 -> cage 1
1668 	 *	port 1 -> cage 1
1669 	 *	port 2 -> cage 2
1670 	 *	port 3 -> cage 2
1671 	 */
1672 	{
1673 		EFX_FAMILY_MEDFORD2,
1674 		(1U << TLV_PORT_MODE_2x1_2x1) |			/* mode 4 */
1675 		(1U << TLV_PORT_MODE_2x1_1x4) |			/* mode 7 */
1676 		(1U << TLV_PORT_MODE_2x2_NA) |			/* mode 13 */
1677 		(1U << TLV_PORT_MODE_2x1_1x2),			/* mode 18 */
1678 		{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1679 	},
1680 	/*
1681 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1682 	 * to cage 1.
1683 	 *	port 0 -> cage 1
1684 	 *	port 1 -> cage 1
1685 	 *	port 2 -> cage 1
1686 	 *	port 3 -> cage 1
1687 	 */
1688 	{
1689 		EFX_FAMILY_MEDFORD2,
1690 		(1U << TLV_PORT_MODE_4x1_NA),			/* mode 5 */
1691 		{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1692 	},
1693 	/*
1694 	 * Modes that on Medford2 allocate up to 4 adjacent port numbers
1695 	 * to cage 2.
1696 	 *	port 0 -> cage 2
1697 	 *	port 1 -> cage 2
1698 	 *	port 2 -> cage 2
1699 	 *	port 3 -> cage 2
1700 	 */
1701 	{
1702 		EFX_FAMILY_MEDFORD2,
1703 		(1U << TLV_PORT_MODE_NA_4x1) |			/* mode 8 */
1704 		(1U << TLV_PORT_MODE_NA_1x2) |			/* mode 11 */
1705 		(1U << TLV_PORT_MODE_NA_2x2),			/* mode 14 */
1706 		{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1707 	},
1708 	/*
1709 	 * Modes that on Riverhead allocate each port number to a separate
1710 	 * cage.
1711 	 *	port 0 -> cage 1
1712 	 *	port 1 -> cage 2
1713 	 */
1714 	{
1715 		EFX_FAMILY_RIVERHEAD,
1716 		(1U << TLV_PORT_MODE_1x1_NA) |			/* mode 0 */
1717 		(1U << TLV_PORT_MODE_1x4_NA) |			/* mode 1 */
1718 		(1U << TLV_PORT_MODE_1x1_1x1),			/* mode 2 */
1719 		{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
1720 	},
1721 };
1722 
1723 static	__checkReturn	efx_rc_t
1724 ef10_external_port_mapping(
1725 	__in		efx_nic_t *enp,
1726 	__in		uint32_t port,
1727 	__out		uint8_t *external_portp)
1728 {
1729 	efx_rc_t rc;
1730 	int i;
1731 	uint32_t port_modes;
1732 	uint32_t matches;
1733 	uint32_t current;
1734 	struct ef10_external_port_map_s *mapp = NULL;
1735 	int ext_index = port; /* Default 1-1 mapping */
1736 
1737 	if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
1738 		    NULL)) != 0) {
1739 		/*
1740 		 * No current port mode information (i.e. Huntington)
1741 		 * - infer mapping from available modes
1742 		 */
1743 		if ((rc = efx_mcdi_get_port_modes(enp,
1744 			    &port_modes, NULL, NULL)) != 0) {
1745 			/*
1746 			 * No port mode information available
1747 			 * - use default mapping
1748 			 */
1749 			goto out;
1750 		}
1751 	} else {
1752 		/* Only need to scan the current mode */
1753 		port_modes = 1 << current;
1754 	}
1755 
1756 	/*
1757 	 * Infer the internal port -> external number mapping from
1758 	 * the possible port modes for this NIC.
1759 	 */
1760 	for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
1761 		struct ef10_external_port_map_s *eepmp =
1762 		    &__ef10_external_port_mappings[i];
1763 		if (eepmp->family != enp->en_family)
1764 			continue;
1765 		matches = (eepmp->modes_mask & port_modes);
1766 		if (matches != 0) {
1767 			/*
1768 			 * Some modes match. For some Huntington boards
1769 			 * there will be multiple matches. The mapping on the
1770 			 * last match is used.
1771 			 */
1772 			mapp = eepmp;
1773 			port_modes &= ~matches;
1774 		}
1775 	}
1776 
1777 	if (port_modes != 0) {
1778 		/* Some advertised modes are not supported */
1779 		rc = ENOTSUP;
1780 		goto fail1;
1781 	}
1782 
1783 out:
1784 	if (mapp != NULL) {
1785 		/*
1786 		 * External ports are assigned a sequence of consecutive
1787 		 * port numbers, so find the one with the closest base_port.
1788 		 */
1789 		uint32_t delta = EFX_EXT_PORT_NA;
1790 
1791 		for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
1792 			uint32_t base = mapp->base_port[i];
1793 			if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
1794 				if ((port - base) < delta) {
1795 					delta = (port - base);
1796 					ext_index = i;
1797 				}
1798 			}
1799 		}
1800 	}
1801 	*external_portp = (uint8_t)(ext_index + 1);
1802 
1803 	return (0);
1804 
1805 fail1:
1806 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1807 
1808 	return (rc);
1809 }
1810 
1811 	__checkReturn	efx_rc_t
1812 efx_mcdi_nic_board_cfg(
1813 	__in		efx_nic_t *enp)
1814 {
1815 	efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
1816 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
1817 	ef10_link_state_t els;
1818 	efx_port_t *epp = &(enp->en_port);
1819 	uint32_t board_type = 0;
1820 	uint32_t base, nvec;
1821 	uint32_t port;
1822 	uint32_t mask;
1823 	uint32_t pf;
1824 	uint32_t vf;
1825 	uint8_t mac_addr[6] = { 0 };
1826 	efx_rc_t rc;
1827 
1828 	/* Get the (zero-based) MCDI port number */
1829 	if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
1830 		goto fail1;
1831 
1832 	/* EFX MCDI interface uses one-based port numbers */
1833 	emip->emi_port = port + 1;
1834 
1835 	encp->enc_assigned_port = port;
1836 
1837 	if ((rc = ef10_external_port_mapping(enp, port,
1838 		    &encp->enc_external_port)) != 0)
1839 		goto fail2;
1840 
1841 	/*
1842 	 * Get PCIe function number from firmware (used for
1843 	 * per-function privilege and dynamic config info).
1844 	 *  - PCIe PF: pf = PF number, vf = 0xffff.
1845 	 *  - PCIe VF: pf = parent PF, vf = VF number.
1846 	 */
1847 	if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
1848 		goto fail3;
1849 
1850 	encp->enc_pf = pf;
1851 	encp->enc_vf = vf;
1852 
1853 	if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
1854 		goto fail4;
1855 
1856 	/* MAC address for this function */
1857 	if (EFX_PCI_FUNCTION_IS_PF(encp)) {
1858 		rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
1859 #if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
1860 		/*
1861 		 * Disable static config checking, ONLY for manufacturing test
1862 		 * and setup at the factory, to allow the static config to be
1863 		 * installed.
1864 		 */
1865 #else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1866 		if ((rc == 0) && (mac_addr[0] & 0x02)) {
1867 			/*
1868 			 * If the static config does not include a global MAC
1869 			 * address pool then the board may return a locally
1870 			 * administered MAC address (this should only happen on
1871 			 * incorrectly programmed boards).
1872 			 */
1873 			rc = EINVAL;
1874 		}
1875 #endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
1876 	} else {
1877 		rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
1878 	}
1879 	if (rc != 0)
1880 		goto fail5;
1881 
1882 	EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
1883 
1884 	/* Board configuration (legacy) */
1885 	rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
1886 	if (rc != 0) {
1887 		/* Unprivileged functions may not be able to read board cfg */
1888 		if (rc == EACCES)
1889 			board_type = 0;
1890 		else
1891 			goto fail6;
1892 	}
1893 
1894 	encp->enc_board_type = board_type;
1895 
1896 	/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
1897 	if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
1898 		goto fail7;
1899 
1900 	/*
1901 	 * Firmware with support for *_FEC capability bits does not
1902 	 * report that the corresponding *_FEC_REQUESTED bits are supported.
1903 	 * Add them here so that drivers understand that they are supported.
1904 	 */
1905 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
1906 		epp->ep_phy_cap_mask |=
1907 		    (1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
1908 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
1909 		epp->ep_phy_cap_mask |=
1910 		    (1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
1911 	if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
1912 		epp->ep_phy_cap_mask |=
1913 		    (1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
1914 
1915 	/* Obtain the default PHY advertised capabilities */
1916 	if ((rc = ef10_phy_get_link(enp, &els)) != 0)
1917 		goto fail8;
1918 	epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
1919 	epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
1920 
1921 	/* Check capabilities of running datapath firmware */
1922 	if ((rc = ef10_get_datapath_caps(enp)) != 0)
1923 		goto fail9;
1924 
1925 	/* Get interrupt vector limits */
1926 	if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
1927 		if (EFX_PCI_FUNCTION_IS_PF(encp))
1928 			goto fail10;
1929 
1930 		/* Ignore error (cannot query vector limits from a VF). */
1931 		base = 0;
1932 		nvec = 1024;
1933 	}
1934 	encp->enc_intr_vec_base = base;
1935 	encp->enc_intr_limit = nvec;
1936 
1937 	/*
1938 	 * Get the current privilege mask. Note that this may be modified
1939 	 * dynamically, so this value is informational only. DO NOT use
1940 	 * the privilege mask to check for sufficient privileges, as that
1941 	 * can result in time-of-check/time-of-use bugs.
1942 	 */
1943 	if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
1944 		goto fail11;
1945 	encp->enc_privilege_mask = mask;
1946 
1947 	return (0);
1948 
1949 fail11:
1950 	EFSYS_PROBE(fail11);
1951 fail10:
1952 	EFSYS_PROBE(fail10);
1953 fail9:
1954 	EFSYS_PROBE(fail9);
1955 fail8:
1956 	EFSYS_PROBE(fail8);
1957 fail7:
1958 	EFSYS_PROBE(fail7);
1959 fail6:
1960 	EFSYS_PROBE(fail6);
1961 fail5:
1962 	EFSYS_PROBE(fail5);
1963 fail4:
1964 	EFSYS_PROBE(fail4);
1965 fail3:
1966 	EFSYS_PROBE(fail3);
1967 fail2:
1968 	EFSYS_PROBE(fail2);
1969 fail1:
1970 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
1971 
1972 	return (rc);
1973 }
1974 
1975 	__checkReturn	efx_rc_t
1976 efx_mcdi_entity_reset(
1977 	__in		efx_nic_t *enp)
1978 {
1979 	efx_mcdi_req_t req;
1980 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
1981 		MC_CMD_ENTITY_RESET_OUT_LEN);
1982 	efx_rc_t rc;
1983 
1984 	req.emr_cmd = MC_CMD_ENTITY_RESET;
1985 	req.emr_in_buf = payload;
1986 	req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
1987 	req.emr_out_buf = payload;
1988 	req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
1989 
1990 	MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
1991 	    ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1992 
1993 	efx_mcdi_execute(enp, &req);
1994 
1995 	if (req.emr_rc != 0) {
1996 		rc = req.emr_rc;
1997 		goto fail1;
1998 	}
1999 
2000 	return (0);
2001 
2002 fail1:
2003 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2004 
2005 	return (rc);
2006 }
2007 
2008 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2009 
2010 #if EFX_OPTS_EF10()
2011 
2012 static	__checkReturn	efx_rc_t
2013 ef10_set_workaround_bug26807(
2014 	__in		efx_nic_t *enp)
2015 {
2016 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2017 	uint32_t flags;
2018 	efx_rc_t rc;
2019 
2020 	/*
2021 	 * If the bug26807 workaround is enabled, then firmware has enabled
2022 	 * support for chained multicast filters. Firmware will reset (FLR)
2023 	 * functions which have filters in the hardware filter table when the
2024 	 * workaround is enabled/disabled.
2025 	 *
2026 	 * We must recheck if the workaround is enabled after inserting the
2027 	 * first hardware filter, in case it has been changed since this check.
2028 	 */
2029 	rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
2030 	    B_TRUE, &flags);
2031 	if (rc == 0) {
2032 		encp->enc_bug26807_workaround = B_TRUE;
2033 		if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
2034 			/*
2035 			 * Other functions had installed filters before the
2036 			 * workaround was enabled, and they have been reset
2037 			 * by firmware.
2038 			 */
2039 			EFSYS_PROBE(bug26807_workaround_flr_done);
2040 			/* FIXME: bump MC warm boot count ? */
2041 		}
2042 	} else if (rc == EACCES) {
2043 		/*
2044 		 * Unprivileged functions cannot enable the workaround in older
2045 		 * firmware.
2046 		 */
2047 		encp->enc_bug26807_workaround = B_FALSE;
2048 	} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
2049 		encp->enc_bug26807_workaround = B_FALSE;
2050 	} else {
2051 		goto fail1;
2052 	}
2053 
2054 	return (0);
2055 
2056 fail1:
2057 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2058 
2059 	return (rc);
2060 }
2061 
2062 static	__checkReturn	efx_rc_t
2063 ef10_nic_board_cfg(
2064 	__in		efx_nic_t *enp)
2065 {
2066 	const efx_nic_ops_t *enop = enp->en_enop;
2067 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2068 	efx_rc_t rc;
2069 
2070 	if ((rc = efx_mcdi_nic_board_cfg(enp)) != 0)
2071 		goto fail1;
2072 
2073 	/*
2074 	 * Huntington RXDP firmware inserts a 0 or 14 byte prefix.
2075 	 * We only support the 14 byte prefix here.
2076 	 */
2077 	if (encp->enc_rx_prefix_size != 14) {
2078 		rc = ENOTSUP;
2079 		goto fail2;
2080 	}
2081 
2082 	encp->enc_clk_mult = 1; /* not used for EF10 */
2083 
2084 	/* Alignment for WPTR updates */
2085 	encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
2086 
2087 	encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
2088 	/* No boundary crossing limits */
2089 	encp->enc_tx_dma_desc_boundary = 0;
2090 
2091 	/*
2092 	 * Maximum number of bytes into the frame the TCP header can start for
2093 	 * firmware assisted TSO to work.
2094 	 */
2095 	encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
2096 
2097 	/* EF10 TSO engine demands that packet header be contiguous. */
2098 	encp->enc_tx_tso_max_header_ndescs = 1;
2099 
2100 	/* The overall TSO header length is not limited. */
2101 	encp->enc_tx_tso_max_header_length = UINT32_MAX;
2102 
2103 	/*
2104 	 * There are no specific limitations on the number of
2105 	 * TSO payload descriptors.
2106 	 */
2107 	encp->enc_tx_tso_max_payload_ndescs = UINT32_MAX;
2108 
2109 	/* TSO superframe payload length is not limited. */
2110 	encp->enc_tx_tso_max_payload_length = UINT32_MAX;
2111 
2112 	/*
2113 	 * Limitation on the maximum number of outgoing packets per
2114 	 * TSO transaction described in SF-108452-SW.
2115 	 */
2116 	encp->enc_tx_tso_max_nframes = 32767;
2117 
2118 	/*
2119 	 * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
2120 	 * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
2121 	 * resources (allocated to this PCIe function), which is zero until
2122 	 * after we have allocated VIs.
2123 	 */
2124 	encp->enc_evq_limit = 1024;
2125 	encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
2126 	encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
2127 
2128 	encp->enc_buftbl_limit = UINT32_MAX;
2129 
2130 	if ((rc = ef10_set_workaround_bug26807(enp)) != 0)
2131 		goto fail3;
2132 
2133 	/* Get remaining controller-specific board config */
2134 	if ((rc = enop->eno_board_cfg(enp)) != 0)
2135 		if (rc != EACCES)
2136 			goto fail4;
2137 
2138 	return (0);
2139 
2140 fail4:
2141 	EFSYS_PROBE(fail4);
2142 fail3:
2143 	EFSYS_PROBE(fail3);
2144 fail2:
2145 	EFSYS_PROBE(fail2);
2146 fail1:
2147 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2148 
2149 	return (rc);
2150 }
2151 
2152 	__checkReturn	efx_rc_t
2153 ef10_nic_probe(
2154 	__in		efx_nic_t *enp)
2155 {
2156 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2157 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2158 	efx_rc_t rc;
2159 
2160 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2161 
2162 	/* Read and clear any assertion state */
2163 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2164 		goto fail1;
2165 
2166 	/* Exit the assertion handler */
2167 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2168 		if (rc != EACCES)
2169 			goto fail2;
2170 
2171 	if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
2172 		goto fail3;
2173 
2174 	if ((rc = ef10_nic_board_cfg(enp)) != 0)
2175 		goto fail4;
2176 
2177 	/*
2178 	 * Set default driver config limits (based on board config).
2179 	 *
2180 	 * FIXME: For now allocate a fixed number of VIs which is likely to be
2181 	 * sufficient and small enough to allow multiple functions on the same
2182 	 * port.
2183 	 */
2184 	edcp->edc_min_vi_count = edcp->edc_max_vi_count =
2185 	    MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
2186 
2187 	/* The client driver must configure and enable PIO buffer support */
2188 	edcp->edc_max_piobuf_count = 0;
2189 	edcp->edc_pio_alloc_size = 0;
2190 
2191 #if EFSYS_OPT_MAC_STATS
2192 	/* Wipe the MAC statistics */
2193 	if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
2194 		goto fail5;
2195 #endif
2196 
2197 #if EFSYS_OPT_LOOPBACK
2198 	if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
2199 		goto fail6;
2200 #endif
2201 
2202 #if EFSYS_OPT_MON_STATS
2203 	if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
2204 		/* Unprivileged functions do not have access to sensors */
2205 		if (rc != EACCES)
2206 			goto fail7;
2207 	}
2208 #endif
2209 
2210 	return (0);
2211 
2212 #if EFSYS_OPT_MON_STATS
2213 fail7:
2214 	EFSYS_PROBE(fail7);
2215 #endif
2216 #if EFSYS_OPT_LOOPBACK
2217 fail6:
2218 	EFSYS_PROBE(fail6);
2219 #endif
2220 #if EFSYS_OPT_MAC_STATS
2221 fail5:
2222 	EFSYS_PROBE(fail5);
2223 #endif
2224 fail4:
2225 	EFSYS_PROBE(fail4);
2226 fail3:
2227 	EFSYS_PROBE(fail3);
2228 fail2:
2229 	EFSYS_PROBE(fail2);
2230 fail1:
2231 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2232 
2233 	return (rc);
2234 }
2235 
2236 	__checkReturn	efx_rc_t
2237 ef10_nic_set_drv_limits(
2238 	__inout		efx_nic_t *enp,
2239 	__in		efx_drv_limits_t *edlp)
2240 {
2241 	efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
2242 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2243 	uint32_t min_evq_count, max_evq_count;
2244 	uint32_t min_rxq_count, max_rxq_count;
2245 	uint32_t min_txq_count, max_txq_count;
2246 	efx_rc_t rc;
2247 
2248 	if (edlp == NULL) {
2249 		rc = EINVAL;
2250 		goto fail1;
2251 	}
2252 
2253 	/* Get minimum required and maximum usable VI limits */
2254 	min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
2255 	min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
2256 	min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
2257 
2258 	edcp->edc_min_vi_count =
2259 	    MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
2260 
2261 	max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
2262 	max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
2263 	max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
2264 
2265 	edcp->edc_max_vi_count =
2266 	    MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
2267 
2268 	/*
2269 	 * Check limits for sub-allocated piobuf blocks.
2270 	 * PIO is optional, so don't fail if the limits are incorrect.
2271 	 */
2272 	if ((encp->enc_piobuf_size == 0) ||
2273 	    (encp->enc_piobuf_limit == 0) ||
2274 	    (edlp->edl_min_pio_alloc_size == 0) ||
2275 	    (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
2276 		/* Disable PIO */
2277 		edcp->edc_max_piobuf_count = 0;
2278 		edcp->edc_pio_alloc_size = 0;
2279 	} else {
2280 		uint32_t blk_size, blk_count, blks_per_piobuf;
2281 
2282 		blk_size =
2283 		    MAX(edlp->edl_min_pio_alloc_size,
2284 			    encp->enc_piobuf_min_alloc_size);
2285 
2286 		blks_per_piobuf = encp->enc_piobuf_size / blk_size;
2287 		EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
2288 
2289 		blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
2290 
2291 		/* A zero max pio alloc count means unlimited */
2292 		if ((edlp->edl_max_pio_alloc_count > 0) &&
2293 		    (edlp->edl_max_pio_alloc_count < blk_count)) {
2294 			blk_count = edlp->edl_max_pio_alloc_count;
2295 		}
2296 
2297 		edcp->edc_pio_alloc_size = blk_size;
2298 		edcp->edc_max_piobuf_count =
2299 		    (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
2300 	}
2301 
2302 	return (0);
2303 
2304 fail1:
2305 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2306 
2307 	return (rc);
2308 }
2309 
2310 
2311 	__checkReturn	efx_rc_t
2312 ef10_nic_reset(
2313 	__in		efx_nic_t *enp)
2314 {
2315 	efx_rc_t rc;
2316 
2317 	/* ef10_nic_reset() is called to recover from BADASSERT failures. */
2318 	if ((rc = efx_mcdi_read_assertion(enp)) != 0)
2319 		goto fail1;
2320 	if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
2321 		goto fail2;
2322 
2323 	if ((rc = efx_mcdi_entity_reset(enp)) != 0)
2324 		goto fail3;
2325 
2326 	/* Clear RX/TX DMA queue errors */
2327 	enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
2328 
2329 	return (0);
2330 
2331 fail3:
2332 	EFSYS_PROBE(fail3);
2333 fail2:
2334 	EFSYS_PROBE(fail2);
2335 fail1:
2336 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2337 
2338 	return (rc);
2339 }
2340 
2341 #endif	/* EFX_OPTS_EF10() */
2342 
2343 #if EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10()
2344 
2345 	__checkReturn	efx_rc_t
2346 ef10_upstream_port_vadaptor_alloc(
2347 	__in		efx_nic_t *enp)
2348 {
2349 	uint32_t retry;
2350 	uint32_t delay_us;
2351 	efx_rc_t rc;
2352 
2353 	/*
2354 	 * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
2355 	 * driver has yet to bring up the EVB port. See bug 56147. In this case,
2356 	 * retry the request several times after waiting a while. The wait time
2357 	 * between retries starts small (10ms) and exponentially increases.
2358 	 * Total wait time is a little over two seconds. Retry logic in the
2359 	 * client driver may mean this whole loop is repeated if it continues to
2360 	 * fail.
2361 	 */
2362 	retry = 0;
2363 	delay_us = 10000;
2364 	while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
2365 		if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
2366 		    (rc != ENOENT)) {
2367 			/*
2368 			 * Do not retry alloc for PF, or for other errors on
2369 			 * a VF.
2370 			 */
2371 			goto fail1;
2372 		}
2373 
2374 		/* VF startup before PF is ready. Retry allocation. */
2375 		if (retry > 5) {
2376 			/* Too many attempts */
2377 			rc = EINVAL;
2378 			goto fail2;
2379 		}
2380 		EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
2381 		EFSYS_SLEEP(delay_us);
2382 		retry++;
2383 		if (delay_us < 500000)
2384 			delay_us <<= 2;
2385 	}
2386 
2387 	return (0);
2388 
2389 fail2:
2390 	EFSYS_PROBE(fail2);
2391 fail1:
2392 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2393 
2394 	return (rc);
2395 }
2396 
2397 #endif	/* EFSYS_OPT_RIVERHEAD || EFX_OPTS_EF10() */
2398 
2399 #if EFX_OPTS_EF10()
2400 
2401 	__checkReturn	efx_rc_t
2402 ef10_nic_init(
2403 	__in		efx_nic_t *enp)
2404 {
2405 	efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
2406 	uint32_t min_vi_count, max_vi_count;
2407 	uint32_t vi_count, vi_base, vi_shift;
2408 	uint32_t i;
2409 	uint32_t vi_window_size;
2410 	efx_rc_t rc;
2411 	boolean_t alloc_vadaptor = B_TRUE;
2412 
2413 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2414 
2415 	/* Enable reporting of some events (e.g. link change) */
2416 	if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
2417 		goto fail1;
2418 
2419 	/* Allocate (optional) on-chip PIO buffers */
2420 	ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
2421 
2422 	/*
2423 	 * For best performance, PIO writes should use a write-combined
2424 	 * (WC) memory mapping. Using a separate WC mapping for the PIO
2425 	 * aperture of each VI would be a burden to drivers (and not
2426 	 * possible if the host page size is >4Kbyte).
2427 	 *
2428 	 * To avoid this we use a single uncached (UC) mapping for VI
2429 	 * register access, and a single WC mapping for extra VIs used
2430 	 * for PIO writes.
2431 	 *
2432 	 * Each piobuf must be linked to a VI in the WC mapping, and to
2433 	 * each VI that is using a sub-allocated block from the piobuf.
2434 	 */
2435 	min_vi_count = edcp->edc_min_vi_count;
2436 	max_vi_count =
2437 	    edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
2438 
2439 	/* Ensure that the previously attached driver's VIs are freed */
2440 	if ((rc = efx_mcdi_free_vis(enp)) != 0)
2441 		goto fail2;
2442 
2443 	/*
2444 	 * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
2445 	 * fails then retrying the request for fewer VI resources may succeed.
2446 	 */
2447 	vi_count = 0;
2448 	if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
2449 		    &vi_base, &vi_count, &vi_shift)) != 0)
2450 		goto fail3;
2451 
2452 	EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
2453 
2454 	if (vi_count < min_vi_count) {
2455 		rc = ENOMEM;
2456 		goto fail4;
2457 	}
2458 
2459 	enp->en_arch.ef10.ena_vi_base = vi_base;
2460 	enp->en_arch.ef10.ena_vi_count = vi_count;
2461 	enp->en_arch.ef10.ena_vi_shift = vi_shift;
2462 
2463 	if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
2464 		/* Not enough extra VIs to map piobufs */
2465 		ef10_nic_free_piobufs(enp);
2466 	}
2467 
2468 	enp->en_arch.ef10.ena_pio_write_vi_base =
2469 	    vi_count - enp->en_arch.ef10.ena_piobuf_count;
2470 
2471 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
2472 	    EFX_VI_WINDOW_SHIFT_INVALID);
2473 	EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
2474 	    EFX_VI_WINDOW_SHIFT_64K);
2475 	vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
2476 
2477 	/* Save UC memory mapping details */
2478 	enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
2479 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2480 		enp->en_arch.ef10.ena_uc_mem_map_size =
2481 		    (vi_window_size *
2482 		    enp->en_arch.ef10.ena_pio_write_vi_base);
2483 	} else {
2484 		enp->en_arch.ef10.ena_uc_mem_map_size =
2485 		    (vi_window_size *
2486 		    enp->en_arch.ef10.ena_vi_count);
2487 	}
2488 
2489 	/* Save WC memory mapping details */
2490 	enp->en_arch.ef10.ena_wc_mem_map_offset =
2491 	    enp->en_arch.ef10.ena_uc_mem_map_offset +
2492 	    enp->en_arch.ef10.ena_uc_mem_map_size;
2493 
2494 	enp->en_arch.ef10.ena_wc_mem_map_size =
2495 	    (vi_window_size *
2496 	    enp->en_arch.ef10.ena_piobuf_count);
2497 
2498 	/* Link piobufs to extra VIs in WC mapping */
2499 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2500 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2501 			rc = efx_mcdi_link_piobuf(enp,
2502 			    enp->en_arch.ef10.ena_pio_write_vi_base + i,
2503 			    enp->en_arch.ef10.ena_piobuf_handle[i]);
2504 			if (rc != 0)
2505 				break;
2506 		}
2507 	}
2508 
2509 	/*
2510 	 * For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
2511 	 * during NIC initialization when vSwitch is created and vports are
2512 	 * allocated. Hence, skip vAdaptor allocation for EVB and update vport
2513 	 * id in NIC structure with the one allocated for PF.
2514 	 */
2515 
2516 	enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
2517 #if EFSYS_OPT_EVB
2518 	if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
2519 		/* For EVB use vport allocated on vswitch */
2520 		enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
2521 		alloc_vadaptor = B_FALSE;
2522 	}
2523 #endif
2524 	if (alloc_vadaptor != B_FALSE) {
2525 		/* Allocate a vAdaptor attached to our upstream vPort/pPort */
2526 		if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
2527 			goto fail5;
2528 	}
2529 	enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
2530 
2531 	return (0);
2532 
2533 fail5:
2534 	EFSYS_PROBE(fail5);
2535 fail4:
2536 	EFSYS_PROBE(fail4);
2537 fail3:
2538 	EFSYS_PROBE(fail3);
2539 fail2:
2540 	EFSYS_PROBE(fail2);
2541 
2542 	ef10_nic_free_piobufs(enp);
2543 
2544 fail1:
2545 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2546 
2547 	return (rc);
2548 }
2549 
2550 	__checkReturn	efx_rc_t
2551 ef10_nic_get_vi_pool(
2552 	__in		efx_nic_t *enp,
2553 	__out		uint32_t *vi_countp)
2554 {
2555 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2556 
2557 	/*
2558 	 * Report VIs that the client driver can use.
2559 	 * Do not include VIs used for PIO buffer writes.
2560 	 */
2561 	*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
2562 
2563 	return (0);
2564 }
2565 
2566 	__checkReturn	efx_rc_t
2567 ef10_nic_get_bar_region(
2568 	__in		efx_nic_t *enp,
2569 	__in		efx_nic_region_t region,
2570 	__out		uint32_t *offsetp,
2571 	__out		size_t *sizep)
2572 {
2573 	efx_rc_t rc;
2574 
2575 	EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
2576 
2577 	/*
2578 	 * TODO: Specify host memory mapping alignment and granularity
2579 	 * in efx_drv_limits_t so that they can be taken into account
2580 	 * when allocating extra VIs for PIO writes.
2581 	 */
2582 	switch (region) {
2583 	case EFX_REGION_VI:
2584 		/* UC mapped memory BAR region for VI registers */
2585 		*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
2586 		*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
2587 		break;
2588 
2589 	case EFX_REGION_PIO_WRITE_VI:
2590 		/* WC mapped memory BAR region for piobuf writes */
2591 		*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
2592 		*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
2593 		break;
2594 
2595 	default:
2596 		rc = EINVAL;
2597 		goto fail1;
2598 	}
2599 
2600 	return (0);
2601 
2602 fail1:
2603 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2604 
2605 	return (rc);
2606 }
2607 
2608 	__checkReturn	boolean_t
2609 ef10_nic_hw_unavailable(
2610 	__in		efx_nic_t *enp)
2611 {
2612 	efx_dword_t dword;
2613 
2614 	if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
2615 		return (B_TRUE);
2616 
2617 	EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
2618 	if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
2619 		goto unavail;
2620 
2621 	return (B_FALSE);
2622 
2623 unavail:
2624 	ef10_nic_set_hw_unavailable(enp);
2625 
2626 	return (B_TRUE);
2627 }
2628 
2629 			void
2630 ef10_nic_set_hw_unavailable(
2631 	__in		efx_nic_t *enp)
2632 {
2633 	EFSYS_PROBE(hw_unavail);
2634 	enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
2635 }
2636 
2637 
2638 			void
2639 ef10_nic_fini(
2640 	__in		efx_nic_t *enp)
2641 {
2642 	uint32_t i;
2643 	efx_rc_t rc;
2644 	boolean_t do_vadaptor_free = B_TRUE;
2645 
2646 #if EFSYS_OPT_EVB
2647 	if (enp->en_vswitchp != NULL) {
2648 		/*
2649 		 * For SR-IOV the vAdaptor is freed with the vswitch,
2650 		 * so do not free it here.
2651 		 */
2652 		do_vadaptor_free = B_FALSE;
2653 	}
2654 #endif
2655 	if (do_vadaptor_free != B_FALSE) {
2656 		(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
2657 		enp->en_vport_id = EVB_PORT_ID_NULL;
2658 	}
2659 
2660 	/* Unlink piobufs from extra VIs in WC mapping */
2661 	if (enp->en_arch.ef10.ena_piobuf_count > 0) {
2662 		for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
2663 			rc = efx_mcdi_unlink_piobuf(enp,
2664 			    enp->en_arch.ef10.ena_pio_write_vi_base + i);
2665 			if (rc != 0)
2666 				break;
2667 		}
2668 	}
2669 
2670 	ef10_nic_free_piobufs(enp);
2671 
2672 	(void) efx_mcdi_free_vis(enp);
2673 	enp->en_arch.ef10.ena_vi_count = 0;
2674 }
2675 
2676 			void
2677 ef10_nic_unprobe(
2678 	__in		efx_nic_t *enp)
2679 {
2680 #if EFSYS_OPT_MON_STATS
2681 	mcdi_mon_cfg_free(enp);
2682 #endif /* EFSYS_OPT_MON_STATS */
2683 	(void) efx_mcdi_drv_attach(enp, B_FALSE);
2684 }
2685 
2686 #if EFSYS_OPT_DIAG
2687 
2688 	__checkReturn	efx_rc_t
2689 ef10_nic_register_test(
2690 	__in		efx_nic_t *enp)
2691 {
2692 	efx_rc_t rc;
2693 
2694 	/* FIXME */
2695 	_NOTE(ARGUNUSED(enp))
2696 	_NOTE(CONSTANTCONDITION)
2697 	if (B_FALSE) {
2698 		rc = ENOTSUP;
2699 		goto fail1;
2700 	}
2701 	/* FIXME */
2702 
2703 	return (0);
2704 
2705 fail1:
2706 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2707 
2708 	return (rc);
2709 }
2710 
2711 #endif	/* EFSYS_OPT_DIAG */
2712 
2713 #if EFSYS_OPT_FW_SUBVARIANT_AWARE
2714 
2715 	__checkReturn	efx_rc_t
2716 efx_mcdi_get_nic_global(
2717 	__in		efx_nic_t *enp,
2718 	__in		uint32_t key,
2719 	__out		uint32_t *valuep)
2720 {
2721 	efx_mcdi_req_t req;
2722 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
2723 		MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
2724 	efx_rc_t rc;
2725 
2726 	req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
2727 	req.emr_in_buf = payload;
2728 	req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
2729 	req.emr_out_buf = payload;
2730 	req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
2731 
2732 	MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
2733 
2734 	efx_mcdi_execute(enp, &req);
2735 
2736 	if (req.emr_rc != 0) {
2737 		rc = req.emr_rc;
2738 		goto fail1;
2739 	}
2740 
2741 	if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
2742 		rc = EMSGSIZE;
2743 		goto fail2;
2744 	}
2745 
2746 	*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
2747 
2748 	return (0);
2749 
2750 fail2:
2751 	EFSYS_PROBE(fail2);
2752 fail1:
2753 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2754 
2755 	return (rc);
2756 }
2757 
2758 	__checkReturn	efx_rc_t
2759 efx_mcdi_set_nic_global(
2760 	__in		efx_nic_t *enp,
2761 	__in		uint32_t key,
2762 	__in		uint32_t value)
2763 {
2764 	efx_mcdi_req_t req;
2765 	EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
2766 	efx_rc_t rc;
2767 
2768 	req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
2769 	req.emr_in_buf = payload;
2770 	req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
2771 	req.emr_out_buf = NULL;
2772 	req.emr_out_length = 0;
2773 
2774 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
2775 	MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
2776 
2777 	efx_mcdi_execute(enp, &req);
2778 
2779 	if (req.emr_rc != 0) {
2780 		rc = req.emr_rc;
2781 		goto fail1;
2782 	}
2783 
2784 	return (0);
2785 
2786 fail1:
2787 	EFSYS_PROBE1(fail1, efx_rc_t, rc);
2788 
2789 	return (rc);
2790 }
2791 
2792 #endif	/* EFSYS_OPT_FW_SUBVARIANT_AWARE */
2793 
2794 #endif	/* EFX_OPTS_EF10() */
2795