xref: /dpdk/drivers/common/iavf/virtchnl.h (revision c9902a15bd005b6d4fe072cf7b60fe4ee679155f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2021 Intel Corporation
3  */
4 
5 #ifndef _VIRTCHNL_H_
6 #define _VIRTCHNL_H_
7 
8 /* Description:
9  * This header file describes the Virtual Function (VF) - Physical Function
10  * (PF) communication protocol used by the drivers for all devices starting
11  * from our 40G product line
12  *
13  * Admin queue buffer usage:
14  * desc->opcode is always aqc_opc_send_msg_to_pf
15  * flags, retval, datalen, and data addr are all used normally.
16  * The Firmware copies the cookie fields when sending messages between the
17  * PF and VF, but uses all other fields internally. Due to this limitation,
18  * we must send all messages as "indirect", i.e. using an external buffer.
19  *
20  * All the VSI indexes are relative to the VF. Each VF can have maximum of
21  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
22  * have a maximum of sixteen queues for all of its VSIs.
23  *
24  * The PF is required to return a status code in v_retval for all messages
25  * except RESET_VF, which does not require any response. The returned value
26  * is of virtchnl_status_code type, defined in the shared type.h.
27  *
28  * In general, VF driver initialization should roughly follow the order of
29  * these opcodes. The VF driver must first validate the API version of the
30  * PF driver, then request a reset, then get resources, then configure
31  * queues and interrupts. After these operations are complete, the VF
32  * driver may start its queues, optionally add MAC and VLAN filters, and
33  * process traffic.
34  */
35 
36 /* START GENERIC DEFINES
37  * Need to ensure the following enums and defines hold the same meaning and
38  * value in current and future projects
39  */
40 
41 /* Error Codes */
42 enum virtchnl_status_code {
43 	VIRTCHNL_STATUS_SUCCESS				= 0,
44 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
45 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
46 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
47 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
48 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
49 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
50 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
51 };
52 
53 /* Backward compatibility */
54 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
55 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
56 
57 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
58 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
59 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
60 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
61 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
62 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
63 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
64 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
65 
66 enum virtchnl_link_speed {
67 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
68 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
69 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
70 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
71 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
72 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
76 };
77 
78 /* for hsplit_0 field of Rx HMC context */
79 /* deprecated with IAVF 1.0 */
80 enum virtchnl_rx_hsplit {
81 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
82 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
83 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
84 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
85 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
86 };
87 
88 enum virtchnl_bw_limit_type {
89 	VIRTCHNL_BW_SHAPER = 0,
90 };
91 
92 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS	6
93 /* END GENERIC DEFINES */
94 
95 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
96  * of the virtchnl_msg structure.
97  */
98 enum virtchnl_ops {
99 /* The PF sends status change events to VFs using
100  * the VIRTCHNL_OP_EVENT opcode.
101  * VFs send requests to the PF using the other ops.
102  * Use of "advanced opcode" features must be negotiated as part of capabilities
103  * exchange and are not considered part of base mode feature set.
104  */
105 	VIRTCHNL_OP_UNKNOWN = 0,
106 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
107 	VIRTCHNL_OP_RESET_VF = 2,
108 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
109 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
110 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
111 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
112 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
113 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
114 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
115 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
116 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
117 	VIRTCHNL_OP_ADD_VLAN = 12,
118 	VIRTCHNL_OP_DEL_VLAN = 13,
119 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
120 	VIRTCHNL_OP_GET_STATS = 15,
121 	VIRTCHNL_OP_RSVD = 16,
122 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
123 	/* opcode 19 is reserved */
124 	/* opcodes 20, 21, and 22 are reserved */
125 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
126 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
127 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
128 	VIRTCHNL_OP_SET_RSS_HENA = 26,
129 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
130 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
131 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
132 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
133 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
134 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
135 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
136 	/* opcodes 34, 35, 36, and 37 are reserved */
137 	VIRTCHNL_OP_DCF_CONFIG_BW = 37,
138 	VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38,
139 	VIRTCHNL_OP_DCF_CMD_DESC = 39,
140 	VIRTCHNL_OP_DCF_CMD_BUFF = 40,
141 	VIRTCHNL_OP_DCF_DISABLE = 41,
142 	VIRTCHNL_OP_DCF_GET_VSI_MAP = 42,
143 	VIRTCHNL_OP_DCF_GET_PKG_INFO = 43,
144 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
145 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
146 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
147 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
148 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
149 	VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
150 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
151 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
152 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
153 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
154 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
155 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
156 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
157 	VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
158 	VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
159 	VIRTCHNL_OP_GET_QOS_CAPS = 66,
160 	VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67,
161 	VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
162 	VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
163 	VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
164 	VIRTCHNL_OP_MAX,
165 };
166 
167 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
168 {
169 	switch (v_opcode) {
170 	case VIRTCHNL_OP_UNKNOWN:
171 		return "VIRTCHNL_OP_UNKNOWN";
172 	case VIRTCHNL_OP_VERSION:
173 		return "VIRTCHNL_OP_VERSION";
174 	case VIRTCHNL_OP_RESET_VF:
175 		return "VIRTCHNL_OP_RESET_VF";
176 	case VIRTCHNL_OP_GET_VF_RESOURCES:
177 		return "VIRTCHNL_OP_GET_VF_RESOURCES";
178 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
179 		return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
180 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
181 		return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
182 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
183 		return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
184 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
185 		return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
186 	case VIRTCHNL_OP_ENABLE_QUEUES:
187 		return "VIRTCHNL_OP_ENABLE_QUEUES";
188 	case VIRTCHNL_OP_DISABLE_QUEUES:
189 		return "VIRTCHNL_OP_DISABLE_QUEUES";
190 	case VIRTCHNL_OP_ADD_ETH_ADDR:
191 		return "VIRTCHNL_OP_ADD_ETH_ADDR";
192 	case VIRTCHNL_OP_DEL_ETH_ADDR:
193 		return "VIRTCHNL_OP_DEL_ETH_ADDR";
194 	case VIRTCHNL_OP_ADD_VLAN:
195 		return "VIRTCHNL_OP_ADD_VLAN";
196 	case VIRTCHNL_OP_DEL_VLAN:
197 		return "VIRTCHNL_OP_DEL_VLAN";
198 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
199 		return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
200 	case VIRTCHNL_OP_GET_STATS:
201 		return "VIRTCHNL_OP_GET_STATS";
202 	case VIRTCHNL_OP_RSVD:
203 		return "VIRTCHNL_OP_RSVD";
204 	case VIRTCHNL_OP_EVENT:
205 		return "VIRTCHNL_OP_EVENT";
206 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
207 		return "VIRTCHNL_OP_CONFIG_RSS_KEY";
208 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
209 		return "VIRTCHNL_OP_CONFIG_RSS_LUT";
210 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
211 		return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
212 	case VIRTCHNL_OP_SET_RSS_HENA:
213 		return "VIRTCHNL_OP_SET_RSS_HENA";
214 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
215 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
216 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
217 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
218 	case VIRTCHNL_OP_REQUEST_QUEUES:
219 		return "VIRTCHNL_OP_REQUEST_QUEUES";
220 	case VIRTCHNL_OP_ENABLE_CHANNELS:
221 		return "VIRTCHNL_OP_ENABLE_CHANNELS";
222 	case VIRTCHNL_OP_DISABLE_CHANNELS:
223 		return "VIRTCHNL_OP_DISABLE_CHANNELS";
224 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
225 		return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
226 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
227 		return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
228 	case VIRTCHNL_OP_DCF_CMD_DESC:
229 		return "VIRTCHNL_OP_DCF_CMD_DESC";
230 	case VIRTCHNL_OP_DCF_CMD_BUFF:
231 		return "VIRTCHHNL_OP_DCF_CMD_BUFF";
232 	case VIRTCHNL_OP_DCF_DISABLE:
233 		return "VIRTCHNL_OP_DCF_DISABLE";
234 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
235 		return "VIRTCHNL_OP_DCF_GET_VSI_MAP";
236 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
237 		return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS";
238 	case VIRTCHNL_OP_ADD_RSS_CFG:
239 		return "VIRTCHNL_OP_ADD_RSS_CFG";
240 	case VIRTCHNL_OP_DEL_RSS_CFG:
241 		return "VIRTCHNL_OP_DEL_RSS_CFG";
242 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
243 		return "VIRTCHNL_OP_ADD_FDIR_FILTER";
244 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
245 		return "VIRTCHNL_OP_DEL_FDIR_FILTER";
246 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
247 		return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
248 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
249 		return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
250 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
251 		return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
252 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
253 		return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
254 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
255 		return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
256 	case VIRTCHNL_OP_ADD_VLAN_V2:
257 		return "VIRTCHNL_OP_ADD_VLAN_V2";
258 	case VIRTCHNL_OP_DEL_VLAN_V2:
259 		return "VIRTCHNL_OP_DEL_VLAN_V2";
260 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
261 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
262 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
263 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
264 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
265 		return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
266 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
267 		return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
268 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
269 		return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
270 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
271 		return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
272 	case VIRTCHNL_OP_MAX:
273 		return "VIRTCHNL_OP_MAX";
274 	default:
275 		return "Unsupported (update virtchnl.h)";
276 	}
277 }
278 
279 /* These macros are used to generate compilation errors if a structure/union
280  * is not exactly the correct length. It gives a divide by zero error if the
281  * structure/union is not of the correct size, otherwise it creates an enum
282  * that is never used.
283  */
284 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
285 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
286 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
287 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
288 
289 /* Virtual channel message descriptor. This overlays the admin queue
290  * descriptor. All other data is passed in external buffers.
291  */
292 
293 struct virtchnl_msg {
294 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
295 
296 	/* avoid confusion with desc->opcode */
297 	enum virtchnl_ops v_opcode;
298 
299 	/* ditto for desc->retval */
300 	enum virtchnl_status_code v_retval;
301 	u32 vfid;			 /* used by PF when sending to VF */
302 };
303 
304 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
305 
306 /* Message descriptions and data structures. */
307 
308 /* VIRTCHNL_OP_VERSION
309  * VF posts its version number to the PF. PF responds with its version number
310  * in the same format, along with a return code.
311  * Reply from PF has its major/minor versions also in param0 and param1.
312  * If there is a major version mismatch, then the VF cannot operate.
313  * If there is a minor version mismatch, then the VF can operate but should
314  * add a warning to the system log.
315  *
316  * This enum element MUST always be specified as == 1, regardless of other
317  * changes in the API. The PF must always respond to this message without
318  * error regardless of version mismatch.
319  */
320 #define VIRTCHNL_VERSION_MAJOR		1
321 #define VIRTCHNL_VERSION_MINOR		1
322 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
323 
324 struct virtchnl_version_info {
325 	u32 major;
326 	u32 minor;
327 };
328 
329 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
330 
331 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
332 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
333 
334 /* VIRTCHNL_OP_RESET_VF
335  * VF sends this request to PF with no parameters
336  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
337  * until reset completion is indicated. The admin queue must be reinitialized
338  * after this operation.
339  *
340  * When reset is complete, PF must ensure that all queues in all VSIs associated
341  * with the VF are stopped, all queue configurations in the HMC are set to 0,
342  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
343  * are cleared.
344  */
345 
346 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
347  * vsi_type should always be 6 for backward compatibility. Add other fields
348  * as needed.
349  */
350 enum virtchnl_vsi_type {
351 	VIRTCHNL_VSI_TYPE_INVALID = 0,
352 	VIRTCHNL_VSI_SRIOV = 6,
353 };
354 
355 /* VIRTCHNL_OP_GET_VF_RESOURCES
356  * Version 1.0 VF sends this request to PF with no parameters
357  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
358  * PF responds with an indirect message containing
359  * virtchnl_vf_resource and one or more
360  * virtchnl_vsi_resource structures.
361  */
362 
363 struct virtchnl_vsi_resource {
364 	u16 vsi_id;
365 	u16 num_queue_pairs;
366 
367 	/* see enum virtchnl_vsi_type */
368 	s32 vsi_type;
369 	u16 qset_handle;
370 	u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
371 };
372 
373 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
374 
375 /* VF capability flags
376  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
377  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
378  */
379 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
380 #define VIRTCHNL_VF_OFFLOAD_IWARP		BIT(1)
381 #define VIRTCHNL_VF_OFFLOAD_RSVD		BIT(2)
382 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
383 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
384 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
385 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
386 /* used to negotiate communicating link speeds in Mbps */
387 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
388 	/* BIT(8) is reserved */
389 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS		BIT(9)
390 #define VIRTCHNL_VF_OFFLOAD_CRC			BIT(10)
391 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
392 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
393 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
394 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
395 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
396 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
397 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
398 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
399 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
400 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2		BIT(24)
401 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
402 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
403 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
404 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
405 #define VIRTCHNL_VF_OFFLOAD_QOS		BIT(29)
406 #define VIRTCHNL_VF_CAP_DCF			BIT(30)
407 	/* BIT(31) is reserved */
408 
409 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
410 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
411 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
412 
413 struct virtchnl_vf_resource {
414 	u16 num_vsis;
415 	u16 num_queue_pairs;
416 	u16 max_vectors;
417 	u16 max_mtu;
418 
419 	u32 vf_cap_flags;
420 	u32 rss_key_size;
421 	u32 rss_lut_size;
422 
423 	struct virtchnl_vsi_resource vsi_res[1];
424 };
425 
426 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
427 
428 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
429  * VF sends this message to set up parameters for one TX queue.
430  * External data buffer contains one instance of virtchnl_txq_info.
431  * PF configures requested queue and returns a status code.
432  */
433 
434 /* Tx queue config info */
435 struct virtchnl_txq_info {
436 	u16 vsi_id;
437 	u16 queue_id;
438 	u16 ring_len;		/* number of descriptors, multiple of 8 */
439 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
440 	u64 dma_ring_addr;
441 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
442 };
443 
444 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
445 
446 /* RX descriptor IDs (range from 0 to 63) */
447 enum virtchnl_rx_desc_ids {
448 	VIRTCHNL_RXDID_0_16B_BASE		= 0,
449 	/* 32B_BASE and FLEX_SPLITQ share desc ids as default descriptors
450 	 * because they can be differentiated based on queue model; e.g. single
451 	 * queue model can only use 32B_BASE and split queue model can only use
452 	 * FLEX_SPLITQ.  Having these as 1 allows them to be used as default
453 	 * descriptors without negotiation.
454 	 */
455 	VIRTCHNL_RXDID_1_32B_BASE		= 1,
456 	VIRTCHNL_RXDID_1_FLEX_SPLITQ		= 1,
457 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC		= 2,
458 	VIRTCHNL_RXDID_3_FLEX_SQ_SW		= 3,
459 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB	= 4,
460 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL	= 5,
461 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2		= 6,
462 	VIRTCHNL_RXDID_7_HW_RSVD		= 7,
463 	/* 9 through 15 are reserved */
464 	VIRTCHNL_RXDID_16_COMMS_GENERIC		= 16,
465 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN	= 17,
466 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4	= 18,
467 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6	= 19,
468 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW	= 20,
469 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP		= 21,
470 	/* 22 through 63 are reserved */
471 };
472 
473 /* RX descriptor ID bitmasks */
474 enum virtchnl_rx_desc_id_bitmasks {
475 	VIRTCHNL_RXDID_0_16B_BASE_M		= BIT(VIRTCHNL_RXDID_0_16B_BASE),
476 	VIRTCHNL_RXDID_1_32B_BASE_M		= BIT(VIRTCHNL_RXDID_1_32B_BASE),
477 	VIRTCHNL_RXDID_1_FLEX_SPLITQ_M		= BIT(VIRTCHNL_RXDID_1_FLEX_SPLITQ),
478 	VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M		= BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
479 	VIRTCHNL_RXDID_3_FLEX_SQ_SW_M		= BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
480 	VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M	= BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
481 	VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M	= BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
482 	VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M	= BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
483 	VIRTCHNL_RXDID_7_HW_RSVD_M		= BIT(VIRTCHNL_RXDID_7_HW_RSVD),
484 	/* 9 through 15 are reserved */
485 	VIRTCHNL_RXDID_16_COMMS_GENERIC_M	= BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
486 	VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M	= BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
487 	VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M	= BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
488 	VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M	= BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
489 	VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M	= BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
490 	VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M	= BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
491 	/* 22 through 63 are reserved */
492 };
493 
494 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
495  * VF sends this message to set up parameters for one RX queue.
496  * External data buffer contains one instance of virtchnl_rxq_info.
497  * PF configures requested queue and returns a status code. The
498  * crc_disable flag disables CRC stripping on the VF. Setting
499  * the crc_disable flag to 1 will disable CRC stripping for each
500  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
501  * offload must have been set prior to sending this info or the PF
502  * will ignore the request. This flag should be set the same for
503  * all of the queues for a VF.
504  */
505 
506 /* Rx queue config info */
507 struct virtchnl_rxq_info {
508 	u16 vsi_id;
509 	u16 queue_id;
510 	u32 ring_len;		/* number of descriptors, multiple of 32 */
511 	u16 hdr_size;
512 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
513 	u32 databuffer_size;
514 	u32 max_pkt_size;
515 	u8 crc_disable;
516 	/* see enum virtchnl_rx_desc_ids;
517 	 * only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported. Note
518 	 * that when the offload is not supported, the descriptor format aligns
519 	 * with VIRTCHNL_RXDID_1_32B_BASE.
520 	 */
521 	u8 rxdid;
522 	u8 pad1[2];
523 	u64 dma_ring_addr;
524 
525 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
526 	s32 rx_split_pos;
527 	u32 pad2;
528 };
529 
530 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
531 
532 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
533  * VF sends this message to set parameters for active TX and RX queues
534  * associated with the specified VSI.
535  * PF configures queues and returns status.
536  * If the number of queues specified is greater than the number of queues
537  * associated with the VSI, an error is returned and no queues are configured.
538  * NOTE: The VF is not required to configure all queues in a single request.
539  * It may send multiple messages. PF drivers must correctly handle all VF
540  * requests.
541  */
542 struct virtchnl_queue_pair_info {
543 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
544 	struct virtchnl_txq_info txq;
545 	struct virtchnl_rxq_info rxq;
546 };
547 
548 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
549 
550 struct virtchnl_vsi_queue_config_info {
551 	u16 vsi_id;
552 	u16 num_queue_pairs;
553 	u32 pad;
554 	struct virtchnl_queue_pair_info qpair[1];
555 };
556 
557 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
558 
559 /* VIRTCHNL_OP_REQUEST_QUEUES
560  * VF sends this message to request the PF to allocate additional queues to
561  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
562  * additional queues must be negotiated.  This is a best effort request as it
563  * is possible the PF does not have enough queues left to support the request.
564  * If the PF cannot support the number requested it will respond with the
565  * maximum number it is able to support.  If the request is successful, PF will
566  * then reset the VF to institute required changes.
567  */
568 
569 /* VF resource request */
570 struct virtchnl_vf_res_request {
571 	u16 num_queue_pairs;
572 };
573 
574 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
575  * VF uses this message to map vectors to queues.
576  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
577  * are to be associated with the specified vector.
578  * The "other" causes are always mapped to vector 0. The VF may not request
579  * that vector 0 be used for traffic.
580  * PF configures interrupt mapping and returns status.
581  * NOTE: due to hardware requirements, all active queues (both TX and RX)
582  * should be mapped to interrupts, even if the driver intends to operate
583  * only in polling mode. In this case the interrupt may be disabled, but
584  * the ITR timer will still run to trigger writebacks.
585  */
586 struct virtchnl_vector_map {
587 	u16 vsi_id;
588 	u16 vector_id;
589 	u16 rxq_map;
590 	u16 txq_map;
591 	u16 rxitr_idx;
592 	u16 txitr_idx;
593 };
594 
595 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
596 
597 struct virtchnl_irq_map_info {
598 	u16 num_vectors;
599 	struct virtchnl_vector_map vecmap[1];
600 };
601 
602 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
603 
604 /* VIRTCHNL_OP_ENABLE_QUEUES
605  * VIRTCHNL_OP_DISABLE_QUEUES
606  * VF sends these message to enable or disable TX/RX queue pairs.
607  * The queues fields are bitmaps indicating which queues to act upon.
608  * (Currently, we only support 16 queues per VF, but we make the field
609  * u32 to allow for expansion.)
610  * PF performs requested action and returns status.
611  * NOTE: The VF is not required to enable/disable all queues in a single
612  * request. It may send multiple messages.
613  * PF drivers must correctly handle all VF requests.
614  */
615 struct virtchnl_queue_select {
616 	u16 vsi_id;
617 	u16 pad;
618 	u32 rx_queues;
619 	u32 tx_queues;
620 };
621 
622 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
623 
624 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION
625  *
626  * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
627  * then this op must be supported.
628  *
629  * VF sends this message in order to query the max RSS queue region
630  * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
631  * This information should be used when configuring the RSS LUT and/or
632  * configuring queue region based filters.
633  *
634  * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
635  * of 6 would inform the VF that the PF supports a maximum RSS queue region
636  * of 64.
637  *
638  * A queue region represents a range of queues that can be used to configure
639  * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
640  * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
641  * to configure the RSS LUT with queue indices from 0 to 15. However, other
642  * filters can be used to direct packets to queues >15 via specifying a queue
643  * base/offset and queue region width.
644  */
645 struct virtchnl_max_rss_qregion {
646 	u16 vport_id;
647 	u16 qregion_width;
648 	u8 pad[4];
649 };
650 
651 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
652 
653 /* VIRTCHNL_OP_ADD_ETH_ADDR
654  * VF sends this message in order to add one or more unicast or multicast
655  * address filters for the specified VSI.
656  * PF adds the filters and returns status.
657  */
658 
659 /* VIRTCHNL_OP_DEL_ETH_ADDR
660  * VF sends this message in order to remove one or more unicast or multicast
661  * filters for the specified VSI.
662  * PF removes the filters and returns status.
663  */
664 
665 /* VIRTCHNL_ETHER_ADDR_LEGACY
666  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
667  * bytes. Moving forward all VF drivers should not set type to
668  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
669  * behavior. The control plane function (i.e. PF) can use a best effort method
670  * of tracking the primary/device unicast in this case, but there is no
671  * guarantee and functionality depends on the implementation of the PF.
672  */
673 
674 /* VIRTCHNL_ETHER_ADDR_PRIMARY
675  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
676  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
677  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
678  * function (i.e. PF) to accurately track and use this MAC address for
679  * displaying on the host and for VM/function reset.
680  */
681 
682 /* VIRTCHNL_ETHER_ADDR_EXTRA
683  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
684  * unicast and/or multicast filters that are being added/deleted via
685  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
686  */
687 struct virtchnl_ether_addr {
688 	u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
689 	u8 type;
690 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
691 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
692 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
693 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
694 	u8 pad;
695 };
696 
697 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
698 
699 struct virtchnl_ether_addr_list {
700 	u16 vsi_id;
701 	u16 num_elements;
702 	struct virtchnl_ether_addr list[1];
703 };
704 
705 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
706 
707 /* VIRTCHNL_OP_ADD_VLAN
708  * VF sends this message to add one or more VLAN tag filters for receives.
709  * PF adds the filters and returns status.
710  * If a port VLAN is configured by the PF, this operation will return an
711  * error to the VF.
712  */
713 
714 /* VIRTCHNL_OP_DEL_VLAN
715  * VF sends this message to remove one or more VLAN tag filters for receives.
716  * PF removes the filters and returns status.
717  * If a port VLAN is configured by the PF, this operation will return an
718  * error to the VF.
719  */
720 
721 struct virtchnl_vlan_filter_list {
722 	u16 vsi_id;
723 	u16 num_elements;
724 	u16 vlan_id[1];
725 };
726 
727 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
728 
729 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
730  * structures and opcodes.
731  *
732  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
733  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
734  *
735  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
736  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
737  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
738  *
739  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
740  * by the PF concurrently. For example, if the PF can support
741  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
742  * would OR the following bits:
743  *
744  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
745  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
746  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
747  *
748  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
749  * and 0x88A8 VLAN ethertypes.
750  *
751  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
752  * by the PF concurrently. For example if the PF can support
753  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
754  * offload it would OR the following bits:
755  *
756  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
757  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
758  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
759  *
760  * The VF would interpret this as VLAN stripping can be supported on either
761  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
762  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
763  * the previously set value.
764  *
765  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
766  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
767  *
768  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
769  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
770  *
771  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
772  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
773  *
774  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
775  * VLAN filtering if the underlying PF supports it.
776  *
777  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
778  * certain VLAN capability can be toggled. For example if the underlying PF/CP
779  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
780  * set this bit along with the supported ethertypes.
781  */
782 enum virtchnl_vlan_support {
783 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
784 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		0x00000001,
785 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		0x00000002,
786 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		0x00000004,
787 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	0x00000100,
788 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	0x00000200,
789 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	0x00000400,
790 	VIRTCHNL_VLAN_PRIO =			0x01000000,
791 	VIRTCHNL_VLAN_FILTER_MASK =		0x10000000,
792 	VIRTCHNL_VLAN_ETHERTYPE_AND =		0x20000000,
793 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		0x40000000,
794 	VIRTCHNL_VLAN_TOGGLE =			0x80000000
795 };
796 
797 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
798  * for filtering, insertion, and stripping capabilities.
799  *
800  * If only outer capabilities are supported (for filtering, insertion, and/or
801  * stripping) then this refers to the outer most or single VLAN from the VF's
802  * perspective.
803  *
804  * If only inner capabilities are supported (for filtering, insertion, and/or
805  * stripping) then this refers to the outer most or single VLAN from the VF's
806  * perspective. Functionally this is the same as if only outer capabilities are
807  * supported. The VF driver is just forced to use the inner fields when
808  * adding/deleting filters and enabling/disabling offloads (if supported).
809  *
810  * If both outer and inner capabilities are supported (for filtering, insertion,
811  * and/or stripping) then outer refers to the outer most or single VLAN and
812  * inner refers to the second VLAN, if it exists, in the packet.
813  *
814  * There is no support for tunneled VLAN offloads, so outer or inner are never
815  * referring to a tunneled packet from the VF's perspective.
816  */
817 struct virtchnl_vlan_supported_caps {
818 	u32 outer;
819 	u32 inner;
820 };
821 
822 /* The PF populates these fields based on the supported VLAN filtering. If a
823  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
824  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
825  * the unsupported fields.
826  *
827  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
828  * VIRTCHNL_VLAN_TOGGLE bit is set.
829  *
830  * The ethertype(s) specified in the ethertype_init field are the ethertypes
831  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
832  * most VLAN from the VF's perspective. If both inner and outer filtering are
833  * allowed then ethertype_init only refers to the outer most VLAN as only
834  * VLAN ethertype supported for inner VLAN filtering is
835  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
836  * when both inner and outer filtering are allowed.
837  *
838  * The max_filters field tells the VF how many VLAN filters it's allowed to have
839  * at any one time. If it exceeds this amount and tries to add another filter,
840  * then the request will be rejected by the PF. To prevent failures, the VF
841  * should keep track of how many VLAN filters it has added and not attempt to
842  * add more than max_filters.
843  */
844 struct virtchnl_vlan_filtering_caps {
845 	struct virtchnl_vlan_supported_caps filtering_support;
846 	u32 ethertype_init;
847 	u16 max_filters;
848 	u8 pad[2];
849 };
850 
851 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
852 
853 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
854  * if the PF supports a different ethertype for stripping and insertion.
855  *
856  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
857  * for stripping affect the ethertype(s) specified for insertion and visa versa
858  * as well. If the VF tries to configure VLAN stripping via
859  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
860  * that will be the ethertype for both stripping and insertion.
861  *
862  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
863  * stripping do not affect the ethertype(s) specified for insertion and visa
864  * versa.
865  */
866 enum virtchnl_vlan_ethertype_match {
867 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
868 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
869 };
870 
871 /* The PF populates these fields based on the supported VLAN offloads. If a
872  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
873  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
874  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
875  *
876  * Also, a VF is only allowed to toggle its VLAN offload setting if the
877  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
878  *
879  * The VF driver needs to be aware of how the tags are stripped by hardware and
880  * inserted by the VF driver based on the level of offload support. The PF will
881  * populate these fields based on where the VLAN tags are expected to be
882  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
883  * interpret these fields. See the definition of the
884  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
885  * enumeration.
886  */
887 struct virtchnl_vlan_offload_caps {
888 	struct virtchnl_vlan_supported_caps stripping_support;
889 	struct virtchnl_vlan_supported_caps insertion_support;
890 	u32 ethertype_init;
891 	u8 ethertype_match;
892 	u8 pad[3];
893 };
894 
895 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
896 
897 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
898  * VF sends this message to determine its VLAN capabilities.
899  *
900  * PF will mark which capabilities it supports based on hardware support and
901  * current configuration. For example, if a port VLAN is configured the PF will
902  * not allow outer VLAN filtering, stripping, or insertion to be configured so
903  * it will block these features from the VF.
904  *
905  * The VF will need to cross reference its capabilities with the PFs
906  * capabilities in the response message from the PF to determine the VLAN
907  * support.
908  */
909 struct virtchnl_vlan_caps {
910 	struct virtchnl_vlan_filtering_caps filtering;
911 	struct virtchnl_vlan_offload_caps offloads;
912 };
913 
914 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
915 
916 struct virtchnl_vlan {
917 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
918 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
919 			 * filtering caps
920 			 */
921 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
922 			 * filtering caps. Note that tpid here does not refer to
923 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
924 			 * actual 2-byte VLAN TPID
925 			 */
926 	u8 pad[2];
927 };
928 
929 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
930 
931 struct virtchnl_vlan_filter {
932 	struct virtchnl_vlan inner;
933 	struct virtchnl_vlan outer;
934 	u8 pad[16];
935 };
936 
937 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
938 
939 /* VIRTCHNL_OP_ADD_VLAN_V2
940  * VIRTCHNL_OP_DEL_VLAN_V2
941  *
942  * VF sends these messages to add/del one or more VLAN tag filters for Rx
943  * traffic.
944  *
945  * The PF attempts to add the filters and returns status.
946  *
947  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
948  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
949  */
950 struct virtchnl_vlan_filter_list_v2 {
951 	u16 vport_id;
952 	u16 num_elements;
953 	u8 pad[4];
954 	struct virtchnl_vlan_filter filters[1];
955 };
956 
957 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
958 
959 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
960  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
961  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
962  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
963  *
964  * VF sends this message to enable or disable VLAN stripping or insertion. It
965  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
966  * allowed and whether or not it's allowed to enable/disable the specific
967  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
968  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
969  * messages are allowed.
970  *
971  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
972  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
973  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
974  * case means the outer most or single VLAN from the VF's perspective. This is
975  * because no outer offloads are supported. See the comments above the
976  * virtchnl_vlan_supported_caps structure for more details.
977  *
978  * virtchnl_vlan_caps.offloads.stripping_support.inner =
979  *			VIRTCHNL_VLAN_TOGGLE |
980  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
981  *
982  * virtchnl_vlan_caps.offloads.insertion_support.inner =
983  *			VIRTCHNL_VLAN_TOGGLE |
984  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
985  *
986  * In order to enable inner (again note that in this case inner is the outer
987  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
988  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
989  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
990  *
991  * virtchnl_vlan_setting.inner_ethertype_setting =
992  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
993  *
994  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
995  * initialization.
996  *
997  * The reason that VLAN TPID(s) are not being used for the
998  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
999  * possible a device could support VLAN insertion and/or stripping offload on
1000  * multiple ethertypes concurrently, so this method allows a VF to request
1001  * multiple ethertypes in one message using the virtchnl_vlan_support
1002  * enumeration.
1003  *
1004  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
1005  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
1006  * VLAN insertion and stripping simultaneously. The
1007  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
1008  * populated based on what the PF can support.
1009  *
1010  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1011  *			VIRTCHNL_VLAN_TOGGLE |
1012  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1013  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1014  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1015  *
1016  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1017  *			VIRTCHNL_VLAN_TOGGLE |
1018  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1019  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1020  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1021  *
1022  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
1023  * would populate the virthcnl_vlan_offload_structure in the following manner
1024  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
1025  *
1026  * virtchnl_vlan_setting.outer_ethertype_setting =
1027  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
1028  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
1029  *
1030  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1031  * initialization.
1032  *
1033  * There is also the case where a PF and the underlying hardware can support
1034  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
1035  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
1036  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
1037  * offloads. The ethertypes must match for stripping and insertion.
1038  *
1039  * virtchnl_vlan_caps.offloads.stripping_support.outer =
1040  *			VIRTCHNL_VLAN_TOGGLE |
1041  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1042  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1043  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1044  *
1045  * virtchnl_vlan_caps.offloads.insertion_support.outer =
1046  *			VIRTCHNL_VLAN_TOGGLE |
1047  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1048  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
1049  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
1050  *
1051  * virtchnl_vlan_caps.offloads.ethertype_match =
1052  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
1053  *
1054  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
1055  * populate the virtchnl_vlan_setting structure in the following manner and send
1056  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
1057  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
1058  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
1059  *
1060  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
1061  *
1062  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
1063  * initialization.
1064  *
1065  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
1066  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
1067  *
1068  * VF sends this message to enable or disable VLAN filtering. It also needs to
1069  * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
1070  * whether or not it's allowed to enable/disable filtering via the
1071  * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1072  * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
1073  * filtering messages are allowed.
1074  *
1075  * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
1076  * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
1077  * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
1078  * means that all filtering ethertypes will to be enabled and disabled together
1079  * regardless of the request from the VF. This means that the underlying
1080  * hardware only supports VLAN filtering for all VLAN the specified ethertypes
1081  * or none of them.
1082  *
1083  * virtchnl_vlan_caps.filtering.filtering_support.outer =
1084  *			VIRTCHNL_VLAN_TOGGLE |
1085  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1086  *			VIRTHCNL_VLAN_ETHERTYPE_88A8 |
1087  *			VIRTCHNL_VLAN_ETHERTYPE_9100 |
1088  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1089  *
1090  * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
1091  * VLANs aren't supported by the VF driver), the VF would populate the
1092  * virtchnl_vlan_setting structure in the following manner and send the
1093  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
1094  * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
1095  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
1096  *
1097  * virtchnl_vlan_setting.outer_ethertype_setting =
1098  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1099  *			VIRTCHNL_VLAN_ETHERTYPE_88A8;
1100  *
1101  */
1102 struct virtchnl_vlan_setting {
1103 	u32 outer_ethertype_setting;
1104 	u32 inner_ethertype_setting;
1105 	u16 vport_id;
1106 	u8 pad[6];
1107 };
1108 
1109 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
1110 
1111 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
1112  * VF sends VSI id and flags.
1113  * PF returns status code in retval.
1114  * Note: we assume that broadcast accept mode is always enabled.
1115  */
1116 struct virtchnl_promisc_info {
1117 	u16 vsi_id;
1118 	u16 flags;
1119 };
1120 
1121 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
1122 
1123 #define FLAG_VF_UNICAST_PROMISC	0x00000001
1124 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
1125 
1126 /* VIRTCHNL_OP_GET_STATS
1127  * VF sends this message to request stats for the selected VSI. VF uses
1128  * the virtchnl_queue_select struct to specify the VSI. The queue_id
1129  * field is ignored by the PF.
1130  *
1131  * PF replies with struct virtchnl_eth_stats in an external buffer.
1132  */
1133 
1134 struct virtchnl_eth_stats {
1135 	u64 rx_bytes;			/* received bytes */
1136 	u64 rx_unicast;			/* received unicast pkts */
1137 	u64 rx_multicast;		/* received multicast pkts */
1138 	u64 rx_broadcast;		/* received broadcast pkts */
1139 	u64 rx_discards;
1140 	u64 rx_unknown_protocol;
1141 	u64 tx_bytes;			/* transmitted bytes */
1142 	u64 tx_unicast;			/* transmitted unicast pkts */
1143 	u64 tx_multicast;		/* transmitted multicast pkts */
1144 	u64 tx_broadcast;		/* transmitted broadcast pkts */
1145 	u64 tx_discards;
1146 	u64 tx_errors;
1147 };
1148 
1149 /* VIRTCHNL_OP_CONFIG_RSS_KEY
1150  * VIRTCHNL_OP_CONFIG_RSS_LUT
1151  * VF sends these messages to configure RSS. Only supported if both PF
1152  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1153  * configuration negotiation. If this is the case, then the RSS fields in
1154  * the VF resource struct are valid.
1155  * Both the key and LUT are initialized to 0 by the PF, meaning that
1156  * RSS is effectively disabled until set up by the VF.
1157  */
1158 struct virtchnl_rss_key {
1159 	u16 vsi_id;
1160 	u16 key_len;
1161 	u8 key[1];         /* RSS hash key, packed bytes */
1162 };
1163 
1164 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
1165 
1166 struct virtchnl_rss_lut {
1167 	u16 vsi_id;
1168 	u16 lut_entries;
1169 	u8 lut[1];        /* RSS lookup table */
1170 };
1171 
1172 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
1173 
1174 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
1175  * VIRTCHNL_OP_SET_RSS_HENA
1176  * VF sends these messages to get and set the hash filter enable bits for RSS.
1177  * By default, the PF sets these to all possible traffic types that the
1178  * hardware supports. The VF can query this value if it wants to change the
1179  * traffic types that are hashed by the hardware.
1180  */
1181 struct virtchnl_rss_hena {
1182 	u64 hena;
1183 };
1184 
1185 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
1186 
1187 /* Type of RSS algorithm */
1188 enum virtchnl_rss_algorithm {
1189 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1190 	VIRTCHNL_RSS_ALG_XOR_ASYMMETRIC		= 1,
1191 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1192 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1193 };
1194 
1195 /* This is used by PF driver to enforce how many channels can be supported.
1196  * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
1197  * PF driver will allow only max 4 channels
1198  */
1199 #define VIRTCHNL_MAX_ADQ_CHANNELS 4
1200 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
1201 
1202 /* VIRTCHNL_OP_ENABLE_CHANNELS
1203  * VIRTCHNL_OP_DISABLE_CHANNELS
1204  * VF sends these messages to enable or disable channels based on
1205  * the user specified queue count and queue offset for each traffic class.
1206  * This struct encompasses all the information that the PF needs from
1207  * VF to create a channel.
1208  */
1209 struct virtchnl_channel_info {
1210 	u16 count; /* number of queues in a channel */
1211 	u16 offset; /* queues in a channel start from 'offset' */
1212 	u32 pad;
1213 	u64 max_tx_rate;
1214 };
1215 
1216 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1217 
1218 struct virtchnl_tc_info {
1219 	u32	num_tc;
1220 	u32	pad;
1221 	struct	virtchnl_channel_info list[1];
1222 };
1223 
1224 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
1225 
1226 /* VIRTCHNL_ADD_CLOUD_FILTER
1227  * VIRTCHNL_DEL_CLOUD_FILTER
1228  * VF sends these messages to add or delete a cloud filter based on the
1229  * user specified match and action filters. These structures encompass
1230  * all the information that the PF needs from the VF to add/delete a
1231  * cloud filter.
1232  */
1233 
1234 struct virtchnl_l4_spec {
1235 	u8	src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1236 	u8	dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1237 	/* vlan_prio is part of this 16 bit field even from OS perspective
1238 	 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
1239 	 * in future, when decided to offload vlan_prio, pass that information
1240 	 * as part of the "vlan_id" field, Bit14..12
1241 	 */
1242 	__be16	vlan_id;
1243 	__be16	pad; /* reserved for future use */
1244 	__be32	src_ip[4];
1245 	__be32	dst_ip[4];
1246 	__be16	src_port;
1247 	__be16	dst_port;
1248 };
1249 
1250 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1251 
1252 union virtchnl_flow_spec {
1253 	struct	virtchnl_l4_spec tcp_spec;
1254 	u8	buffer[128]; /* reserved for future use */
1255 };
1256 
1257 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1258 
1259 enum virtchnl_action {
1260 	/* action types */
1261 	VIRTCHNL_ACTION_DROP = 0,
1262 	VIRTCHNL_ACTION_TC_REDIRECT,
1263 	VIRTCHNL_ACTION_PASSTHRU,
1264 	VIRTCHNL_ACTION_QUEUE,
1265 	VIRTCHNL_ACTION_Q_REGION,
1266 	VIRTCHNL_ACTION_MARK,
1267 	VIRTCHNL_ACTION_COUNT,
1268 };
1269 
1270 enum virtchnl_flow_type {
1271 	/* flow types */
1272 	VIRTCHNL_TCP_V4_FLOW = 0,
1273 	VIRTCHNL_TCP_V6_FLOW,
1274 	VIRTCHNL_UDP_V4_FLOW,
1275 	VIRTCHNL_UDP_V6_FLOW,
1276 };
1277 
1278 struct virtchnl_filter {
1279 	union	virtchnl_flow_spec data;
1280 	union	virtchnl_flow_spec mask;
1281 
1282 	/* see enum virtchnl_flow_type */
1283 	s32	flow_type;
1284 
1285 	/* see enum virtchnl_action */
1286 	s32	action;
1287 	u32	action_meta;
1288 	u8	field_flags;
1289 };
1290 
1291 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1292 
1293 struct virtchnl_shaper_bw {
1294 	/* Unit is Kbps */
1295 	u32 committed;
1296 	u32 peak;
1297 };
1298 
1299 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
1300 
1301 /* VIRTCHNL_OP_DCF_GET_VSI_MAP
1302  * VF sends this message to get VSI mapping table.
1303  * PF responds with an indirect message containing VF's
1304  * HW VSI IDs.
1305  * The index of vf_vsi array is the logical VF ID, the
1306  * value of vf_vsi array is the VF's HW VSI ID with its
1307  * valid configuration.
1308  */
1309 struct virtchnl_dcf_vsi_map {
1310 	u16 pf_vsi;	/* PF's HW VSI ID */
1311 	u16 num_vfs;	/* The actual number of VFs allocated */
1312 #define VIRTCHNL_DCF_VF_VSI_ID_S	0
1313 #define VIRTCHNL_DCF_VF_VSI_ID_M	(0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S)
1314 #define VIRTCHNL_DCF_VF_VSI_VALID	BIT(15)
1315 	u16 vf_vsi[1];
1316 };
1317 
1318 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map);
1319 
1320 #define PKG_NAME_SIZE	32
1321 #define DSN_SIZE	8
1322 
1323 struct pkg_version {
1324 	u8 major;
1325 	u8 minor;
1326 	u8 update;
1327 	u8 draft;
1328 };
1329 
1330 VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version);
1331 
1332 struct virtchnl_pkg_info {
1333 	struct pkg_version pkg_ver;
1334 	u32 track_id;
1335 	char pkg_name[PKG_NAME_SIZE];
1336 	u8 dsn[DSN_SIZE];
1337 };
1338 
1339 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info);
1340 
1341 /* VIRTCHNL_OP_DCF_VLAN_OFFLOAD
1342  * DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get
1343  * the double VLAN configuration, then DCF sends this message to configure the
1344  * outer or inner VLAN offloads (insertion and strip) for the target VF.
1345  */
1346 struct virtchnl_dcf_vlan_offload {
1347 	u16 vf_id;
1348 	u16 tpid;
1349 	u16 vlan_flags;
1350 #define VIRTCHNL_DCF_VLAN_TYPE_S		0
1351 #define VIRTCHNL_DCF_VLAN_TYPE_M		\
1352 			(0x1 << VIRTCHNL_DCF_VLAN_TYPE_S)
1353 #define VIRTCHNL_DCF_VLAN_TYPE_INNER		0x0
1354 #define VIRTCHNL_DCF_VLAN_TYPE_OUTER		0x1
1355 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_S		1
1356 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_M	\
1357 			(0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S)
1358 #define VIRTCHNL_DCF_VLAN_INSERT_DISABLE	0x1
1359 #define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED	0x2
1360 #define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC	0x3
1361 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_S		4
1362 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_M		\
1363 			(0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S)
1364 #define VIRTCHNL_DCF_VLAN_STRIP_DISABLE		0x1
1365 #define VIRTCHNL_DCF_VLAN_STRIP_ONLY		0x2
1366 #define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC	0x3
1367 	u16 vlan_id;
1368 	u16 pad[4];
1369 };
1370 
1371 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload);
1372 
1373 struct virtchnl_dcf_bw_cfg {
1374 	u8 tc_num;
1375 #define VIRTCHNL_DCF_BW_CIR		BIT(0)
1376 #define VIRTCHNL_DCF_BW_PIR		BIT(1)
1377 	u8 bw_type;
1378 	u8 pad[2];
1379 	enum virtchnl_bw_limit_type type;
1380 	union {
1381 		struct virtchnl_shaper_bw shaper;
1382 		u8 pad2[32];
1383 	};
1384 };
1385 
1386 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_dcf_bw_cfg);
1387 
1388 /* VIRTCHNL_OP_DCF_CONFIG_BW
1389  * VF send this message to set the bandwidth configuration of each
1390  * TC with a specific vf id. The flag node_type is to indicate that
1391  * this message is to configure VSI node or TC node bandwidth.
1392  */
1393 struct virtchnl_dcf_bw_cfg_list {
1394 	u16 vf_id;
1395 	u8 num_elem;
1396 #define VIRTCHNL_DCF_TARGET_TC_BW	0
1397 #define VIRTCHNL_DCF_TARGET_VF_BW	1
1398 	u8 node_type;
1399 	struct virtchnl_dcf_bw_cfg cfg[1];
1400 };
1401 
1402 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_dcf_bw_cfg_list);
1403 
1404 struct virtchnl_supported_rxdids {
1405 	/* see enum virtchnl_rx_desc_id_bitmasks */
1406 	u64 supported_rxdids;
1407 };
1408 
1409 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids);
1410 
1411 /* VIRTCHNL_OP_EVENT
1412  * PF sends this message to inform the VF driver of events that may affect it.
1413  * No direct response is expected from the VF, though it may generate other
1414  * messages in response to this one.
1415  */
1416 enum virtchnl_event_codes {
1417 	VIRTCHNL_EVENT_UNKNOWN = 0,
1418 	VIRTCHNL_EVENT_LINK_CHANGE,
1419 	VIRTCHNL_EVENT_RESET_IMPENDING,
1420 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1421 	VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE,
1422 };
1423 
1424 #define PF_EVENT_SEVERITY_INFO		0
1425 #define PF_EVENT_SEVERITY_ATTENTION	1
1426 #define PF_EVENT_SEVERITY_ACTION_REQUIRED	2
1427 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1428 
1429 struct virtchnl_pf_event {
1430 	/* see enum virtchnl_event_codes */
1431 	s32 event;
1432 	union {
1433 		/* If the PF driver does not support the new speed reporting
1434 		 * capabilities then use link_event else use link_event_adv to
1435 		 * get the speed and link information. The ability to understand
1436 		 * new speeds is indicated by setting the capability flag
1437 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1438 		 * in virtchnl_vf_resource struct and can be used to determine
1439 		 * which link event struct to use below.
1440 		 */
1441 		struct {
1442 			enum virtchnl_link_speed link_speed;
1443 			u8 link_status;
1444 		} link_event;
1445 		struct {
1446 			/* link_speed provided in Mbps */
1447 			u32 link_speed;
1448 			u8 link_status;
1449 		} link_event_adv;
1450 		struct {
1451 			u16 vf_id;
1452 			u16 vsi_id;
1453 		} vf_vsi_map;
1454 	} event_data;
1455 
1456 	int severity;
1457 };
1458 
1459 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1460 
1461 
1462 /* VF reset states - these are written into the RSTAT register:
1463  * VFGEN_RSTAT on the VF
1464  * When the PF initiates a reset, it writes 0
1465  * When the reset is complete, it writes 1
1466  * When the PF detects that the VF has recovered, it writes 2
1467  * VF checks this register periodically to determine if a reset has occurred,
1468  * then polls it to know when the reset is complete.
1469  * If either the PF or VF reads the register while the hardware
1470  * is in a reset state, it will return DEADBEEF, which, when masked
1471  * will result in 3.
1472  */
1473 enum virtchnl_vfr_states {
1474 	VIRTCHNL_VFR_INPROGRESS = 0,
1475 	VIRTCHNL_VFR_COMPLETED,
1476 	VIRTCHNL_VFR_VFACTIVE,
1477 };
1478 
1479 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1480 #define PROTO_HDR_SHIFT			5
1481 #define PROTO_HDR_FIELD_START(proto_hdr_type) \
1482 					(proto_hdr_type << PROTO_HDR_SHIFT)
1483 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1484 
1485 /* VF use these macros to configure each protocol header.
1486  * Specify which protocol headers and protocol header fields base on
1487  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1488  * @param hdr: a struct of virtchnl_proto_hdr
1489  * @param hdr_type: ETH/IPV4/TCP, etc
1490  * @param field: SRC/DST/TEID/SPI, etc
1491  */
1492 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1493 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1494 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1495 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1496 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1497 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1498 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1499 
1500 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1501 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1502 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1503 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1504 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1505 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1506 
1507 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1508 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1509 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1510 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1511 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1512 	((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
1513 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1514 	(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
1515 	 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
1516 
1517 /* Protocol header type within a packet segment. A segment consists of one or
1518  * more protocol headers that make up a logical group of protocol headers. Each
1519  * logical group of protocol headers encapsulates or is encapsulated using/by
1520  * tunneling or encapsulation protocols for network virtualization.
1521  */
1522 enum virtchnl_proto_hdr_type {
1523 	VIRTCHNL_PROTO_HDR_NONE,
1524 	VIRTCHNL_PROTO_HDR_ETH,
1525 	VIRTCHNL_PROTO_HDR_S_VLAN,
1526 	VIRTCHNL_PROTO_HDR_C_VLAN,
1527 	VIRTCHNL_PROTO_HDR_IPV4,
1528 	VIRTCHNL_PROTO_HDR_IPV6,
1529 	VIRTCHNL_PROTO_HDR_TCP,
1530 	VIRTCHNL_PROTO_HDR_UDP,
1531 	VIRTCHNL_PROTO_HDR_SCTP,
1532 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1533 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1534 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1535 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1536 	VIRTCHNL_PROTO_HDR_PPPOE,
1537 	VIRTCHNL_PROTO_HDR_L2TPV3,
1538 	VIRTCHNL_PROTO_HDR_ESP,
1539 	VIRTCHNL_PROTO_HDR_AH,
1540 	VIRTCHNL_PROTO_HDR_PFCP,
1541 	VIRTCHNL_PROTO_HDR_GTPC,
1542 	VIRTCHNL_PROTO_HDR_ECPRI,
1543 	VIRTCHNL_PROTO_HDR_L2TPV2,
1544 	VIRTCHNL_PROTO_HDR_PPP,
1545 	/* IPv4 and IPv6 Fragment header types are only associated to
1546 	 * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
1547 	 * cannot be used independently.
1548 	 */
1549 	VIRTCHNL_PROTO_HDR_IPV4_FRAG,
1550 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
1551 	VIRTCHNL_PROTO_HDR_GRE,
1552 };
1553 
1554 /* Protocol header field within a protocol header. */
1555 enum virtchnl_proto_hdr_field {
1556 	/* ETHER */
1557 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1558 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1559 	VIRTCHNL_PROTO_HDR_ETH_DST,
1560 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1561 	/* S-VLAN */
1562 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1563 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1564 	/* C-VLAN */
1565 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1566 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1567 	/* IPV4 */
1568 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1569 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1570 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1571 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1572 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1573 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1574 	/* IPV6 */
1575 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1576 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1577 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1578 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1579 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1580 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1581 	/* IPV6 Prefix */
1582 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
1583 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
1584 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
1585 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
1586 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
1587 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
1588 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
1589 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
1590 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
1591 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
1592 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
1593 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
1594 	/* TCP */
1595 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1596 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1597 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1598 	VIRTCHNL_PROTO_HDR_TCP_CHKSUM,
1599 	/* UDP */
1600 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1601 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1602 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1603 	VIRTCHNL_PROTO_HDR_UDP_CHKSUM,
1604 	/* SCTP */
1605 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1606 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1607 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1608 	VIRTCHNL_PROTO_HDR_SCTP_CHKSUM,
1609 	/* GTPU_IP */
1610 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1611 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1612 	/* GTPU_EH */
1613 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1614 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1615 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1616 	/* PPPOE */
1617 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1618 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1619 	/* L2TPV3 */
1620 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1621 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1622 	/* ESP */
1623 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1624 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1625 	/* AH */
1626 	VIRTCHNL_PROTO_HDR_AH_SPI =
1627 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1628 	/* PFCP */
1629 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1630 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1631 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1632 	/* GTPC */
1633 	VIRTCHNL_PROTO_HDR_GTPC_TEID =
1634 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
1635 	/* ECPRI */
1636 	VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
1637 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
1638 	VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
1639 	/* IPv4 Dummy Fragment */
1640 	VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
1641 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
1642 	/* IPv6 Extension Fragment */
1643 	VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
1644 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
1645 	/* GTPU_DWN/UP */
1646 	VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI =
1647 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN),
1648 	VIRTCHNL_PROTO_HDR_GTPU_UP_QFI =
1649 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP),
1650 };
1651 
1652 struct virtchnl_proto_hdr {
1653 	/* see enum virtchnl_proto_hdr_type */
1654 	s32 type;
1655 	u32 field_selector; /* a bit mask to select field for header type */
1656 	u8 buffer[64];
1657 	/**
1658 	 * binary buffer in network order for specific header type.
1659 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1660 	 * header is expected to be copied into the buffer.
1661 	 */
1662 };
1663 
1664 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1665 
1666 struct virtchnl_proto_hdrs {
1667 	u8 tunnel_level;
1668 	/**
1669 	 * specify where protocol header start from.
1670 	 * 0 - from the outer layer
1671 	 * 1 - from the first inner layer
1672 	 * 2 - from the second inner layer
1673 	 * ....
1674 	 **/
1675 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1676 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1677 };
1678 
1679 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1680 
1681 struct virtchnl_rss_cfg {
1682 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1683 
1684 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1685 	s32 rss_algorithm;
1686 	u8 reserved[128];                          /* reserve for future */
1687 };
1688 
1689 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1690 
1691 /* action configuration for FDIR */
1692 struct virtchnl_filter_action {
1693 	/* see enum virtchnl_action type */
1694 	s32 type;
1695 	union {
1696 		/* used for queue and qgroup action */
1697 		struct {
1698 			u16 index;
1699 			u8 region;
1700 		} queue;
1701 		/* used for count action */
1702 		struct {
1703 			/* share counter ID with other flow rules */
1704 			u8 shared;
1705 			u32 id; /* counter ID */
1706 		} count;
1707 		/* used for mark action */
1708 		u32 mark_id;
1709 		u8 reserve[32];
1710 	} act_conf;
1711 };
1712 
1713 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1714 
1715 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1716 
1717 struct virtchnl_filter_action_set {
1718 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1719 	int count;
1720 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1721 };
1722 
1723 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1724 
1725 /* pattern and action for FDIR rule */
1726 struct virtchnl_fdir_rule {
1727 	struct virtchnl_proto_hdrs proto_hdrs;
1728 	struct virtchnl_filter_action_set action_set;
1729 };
1730 
1731 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1732 
1733 /* Status returned to VF after VF requests FDIR commands
1734  * VIRTCHNL_FDIR_SUCCESS
1735  * VF FDIR related request is successfully done by PF
1736  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1737  *
1738  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1739  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1740  *
1741  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1742  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1743  *
1744  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1745  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1746  *
1747  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1748  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1749  *
1750  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1751  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1752  * or HW doesn't support.
1753  *
1754  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1755  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1756  * for programming.
1757  *
1758  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1759  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1760  * for example, VF query counter of a rule who has no counter action.
1761  */
1762 enum virtchnl_fdir_prgm_status {
1763 	VIRTCHNL_FDIR_SUCCESS = 0,
1764 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1765 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1766 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1767 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1768 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1769 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1770 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1771 };
1772 
1773 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1774  * VF sends this request to PF by filling out vsi_id,
1775  * validate_only and rule_cfg. PF will return flow_id
1776  * if the request is successfully done and return add_status to VF.
1777  */
1778 struct virtchnl_fdir_add {
1779 	u16 vsi_id;  /* INPUT */
1780 	/*
1781 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1782 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1783 	 */
1784 	u16 validate_only; /* INPUT */
1785 	u32 flow_id;       /* OUTPUT */
1786 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1787 
1788 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1789 	s32 status;
1790 };
1791 
1792 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1793 
1794 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1795  * VF sends this request to PF by filling out vsi_id
1796  * and flow_id. PF will return del_status to VF.
1797  */
1798 struct virtchnl_fdir_del {
1799 	u16 vsi_id;  /* INPUT */
1800 	u16 pad;
1801 	u32 flow_id; /* INPUT */
1802 
1803 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1804 	s32 status;
1805 };
1806 
1807 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1808 
1809 /* VIRTCHNL_OP_GET_QOS_CAPS
1810  * VF sends this message to get its QoS Caps, such as
1811  * TC number, Arbiter and Bandwidth.
1812  */
1813 struct virtchnl_qos_cap_elem {
1814 	u8 tc_num;
1815 	u8 tc_prio;
1816 #define VIRTCHNL_ABITER_STRICT      0
1817 #define VIRTCHNL_ABITER_ETS         2
1818 	u8 arbiter;
1819 #define VIRTCHNL_STRICT_WEIGHT      1
1820 	u8 weight;
1821 	enum virtchnl_bw_limit_type type;
1822 	union {
1823 		struct virtchnl_shaper_bw shaper;
1824 		u8 pad2[32];
1825 	};
1826 };
1827 
1828 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
1829 
1830 struct virtchnl_qos_cap_list {
1831 	u16 vsi_id;
1832 	u16 num_elem;
1833 	struct virtchnl_qos_cap_elem cap[1];
1834 };
1835 
1836 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list);
1837 
1838 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP
1839  * VF sends message virtchnl_queue_tc_mapping to set queue to tc
1840  * mapping for all the Tx and Rx queues with a specified VSI, and
1841  * would get response about bitmap of valid user priorities
1842  * associated with queues.
1843  */
1844 struct virtchnl_queue_tc_mapping {
1845 	u16 vsi_id;
1846 	u16 num_tc;
1847 	u16 num_queue_pairs;
1848 	u8 pad[2];
1849 	union {
1850 		struct {
1851 			u16 start_queue_id;
1852 			u16 queue_count;
1853 		} req;
1854 		struct {
1855 #define VIRTCHNL_USER_PRIO_TYPE_UP	0
1856 #define VIRTCHNL_USER_PRIO_TYPE_DSCP	1
1857 			u16 prio_type;
1858 			u16 valid_prio_bitmap;
1859 		} resp;
1860 	} tc[1];
1861 };
1862 
1863 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping);
1864 
1865 
1866 /* TX and RX queue types are valid in legacy as well as split queue models.
1867  * With Split Queue model, 2 additional types are introduced - TX_COMPLETION
1868  * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW
1869  * posts completions.
1870  */
1871 enum virtchnl_queue_type {
1872 	VIRTCHNL_QUEUE_TYPE_TX			= 0,
1873 	VIRTCHNL_QUEUE_TYPE_RX			= 1,
1874 	VIRTCHNL_QUEUE_TYPE_TX_COMPLETION	= 2,
1875 	VIRTCHNL_QUEUE_TYPE_RX_BUFFER		= 3,
1876 	VIRTCHNL_QUEUE_TYPE_CONFIG_TX		= 4,
1877 	VIRTCHNL_QUEUE_TYPE_CONFIG_RX		= 5
1878 };
1879 
1880 
1881 /* structure to specify a chunk of contiguous queues */
1882 struct virtchnl_queue_chunk {
1883 	/* see enum virtchnl_queue_type */
1884 	s32 type;
1885 	u16 start_queue_id;
1886 	u16 num_queues;
1887 };
1888 
1889 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1890 
1891 /* structure to specify several chunks of contiguous queues */
1892 struct virtchnl_queue_chunks {
1893 	u16 num_chunks;
1894 	u16 rsvd;
1895 	struct virtchnl_queue_chunk chunks[1];
1896 };
1897 
1898 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
1899 
1900 
1901 /* VIRTCHNL_OP_ENABLE_QUEUES_V2
1902  * VIRTCHNL_OP_DISABLE_QUEUES_V2
1903  * VIRTCHNL_OP_DEL_QUEUES
1904  *
1905  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1906  * then all of these ops are available.
1907  *
1908  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1909  * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are
1910  * available.
1911  *
1912  * PF sends these messages to enable, disable or delete queues specified in
1913  * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues
1914  * to be enabled/disabled/deleted. Also applicable to single queue RX or
1915  * TX. CP performs requested action and returns status.
1916  */
1917 struct virtchnl_del_ena_dis_queues {
1918 	u16 vport_id;
1919 	u16 pad;
1920 	struct virtchnl_queue_chunks chunks;
1921 };
1922 
1923 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
1924 
1925 /* Virtchannel interrupt throttling rate index */
1926 enum virtchnl_itr_idx {
1927 	VIRTCHNL_ITR_IDX_0	= 0,
1928 	VIRTCHNL_ITR_IDX_1	= 1,
1929 	VIRTCHNL_ITR_IDX_NO_ITR	= 3,
1930 };
1931 
1932 /* Queue to vector mapping */
1933 struct virtchnl_queue_vector {
1934 	u16 queue_id;
1935 	u16 vector_id;
1936 	u8 pad[4];
1937 
1938 	/* see enum virtchnl_itr_idx */
1939 	s32 itr_idx;
1940 
1941 	/* see enum virtchnl_queue_type */
1942 	s32 queue_type;
1943 };
1944 
1945 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
1946 
1947 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR
1948  * VIRTCHNL_OP_UNMAP_QUEUE_VECTOR
1949  *
1950  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1951  * then all of these ops are available.
1952  *
1953  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1954  * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available.
1955  *
1956  * PF sends this message to map or unmap queues to vectors and ITR index
1957  * registers. External data buffer contains virtchnl_queue_vector_maps structure
1958  * that contains num_qv_maps of virtchnl_queue_vector structures.
1959  * CP maps the requested queue vector maps after validating the queue and vector
1960  * ids and returns a status code.
1961  */
1962 struct virtchnl_queue_vector_maps {
1963 	u16 vport_id;
1964 	u16 num_qv_maps;
1965 	u8 pad[4];
1966 	struct virtchnl_queue_vector qv_maps[1];
1967 };
1968 
1969 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
1970 
1971 
1972 /* Since VF messages are limited by u16 size, precalculate the maximum possible
1973  * values of nested elements in virtchnl structures that virtual channel can
1974  * possibly handle in a single message.
1975  */
1976 enum virtchnl_vector_limits {
1977 	VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX	=
1978 		((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
1979 		sizeof(struct virtchnl_queue_pair_info),
1980 
1981 	VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX		=
1982 		((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
1983 		sizeof(struct virtchnl_vector_map),
1984 
1985 	VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX	=
1986 		((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
1987 		sizeof(struct virtchnl_ether_addr),
1988 
1989 	VIRTCHNL_OP_ADD_DEL_VLAN_MAX		=
1990 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
1991 		sizeof(u16),
1992 
1993 
1994 	VIRTCHNL_OP_ENABLE_CHANNELS_MAX		=
1995 		((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
1996 		sizeof(struct virtchnl_channel_info),
1997 
1998 	VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX	=
1999 		((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
2000 		sizeof(struct virtchnl_queue_chunk),
2001 
2002 	VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX	=
2003 		((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
2004 		sizeof(struct virtchnl_queue_vector),
2005 
2006 	VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX		=
2007 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
2008 		sizeof(struct virtchnl_vlan_filter),
2009 };
2010 
2011 /**
2012  * virtchnl_vc_validate_vf_msg
2013  * @ver: Virtchnl version info
2014  * @v_opcode: Opcode for the message
2015  * @msg: pointer to the msg buffer
2016  * @msglen: msg length
2017  *
2018  * validate msg format against struct for each opcode
2019  */
2020 static inline int
2021 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
2022 			    u8 *msg, u16 msglen)
2023 {
2024 	bool err_msg_format = false;
2025 	u32 valid_len = 0;
2026 
2027 	/* Validate message length. */
2028 	switch (v_opcode) {
2029 	case VIRTCHNL_OP_VERSION:
2030 		valid_len = sizeof(struct virtchnl_version_info);
2031 		break;
2032 	case VIRTCHNL_OP_RESET_VF:
2033 		break;
2034 	case VIRTCHNL_OP_GET_VF_RESOURCES:
2035 		if (VF_IS_V11(ver))
2036 			valid_len = sizeof(u32);
2037 		break;
2038 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
2039 		valid_len = sizeof(struct virtchnl_txq_info);
2040 		break;
2041 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
2042 		valid_len = sizeof(struct virtchnl_rxq_info);
2043 		break;
2044 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
2045 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
2046 		if (msglen >= valid_len) {
2047 			struct virtchnl_vsi_queue_config_info *vqc =
2048 			    (struct virtchnl_vsi_queue_config_info *)msg;
2049 
2050 			if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
2051 			    VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
2052 				err_msg_format = true;
2053 				break;
2054 			}
2055 
2056 			valid_len += (vqc->num_queue_pairs *
2057 				      sizeof(struct
2058 					     virtchnl_queue_pair_info));
2059 		}
2060 		break;
2061 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
2062 		valid_len = sizeof(struct virtchnl_irq_map_info);
2063 		if (msglen >= valid_len) {
2064 			struct virtchnl_irq_map_info *vimi =
2065 			    (struct virtchnl_irq_map_info *)msg;
2066 
2067 			if (vimi->num_vectors == 0 || vimi->num_vectors >
2068 			    VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
2069 				err_msg_format = true;
2070 				break;
2071 			}
2072 
2073 			valid_len += (vimi->num_vectors *
2074 				      sizeof(struct virtchnl_vector_map));
2075 		}
2076 		break;
2077 	case VIRTCHNL_OP_ENABLE_QUEUES:
2078 	case VIRTCHNL_OP_DISABLE_QUEUES:
2079 		valid_len = sizeof(struct virtchnl_queue_select);
2080 		break;
2081 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
2082 		break;
2083 	case VIRTCHNL_OP_ADD_ETH_ADDR:
2084 	case VIRTCHNL_OP_DEL_ETH_ADDR:
2085 		valid_len = sizeof(struct virtchnl_ether_addr_list);
2086 		if (msglen >= valid_len) {
2087 			struct virtchnl_ether_addr_list *veal =
2088 			    (struct virtchnl_ether_addr_list *)msg;
2089 
2090 			if (veal->num_elements == 0 || veal->num_elements >
2091 			    VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
2092 				err_msg_format = true;
2093 				break;
2094 			}
2095 
2096 			valid_len += veal->num_elements *
2097 			    sizeof(struct virtchnl_ether_addr);
2098 		}
2099 		break;
2100 	case VIRTCHNL_OP_ADD_VLAN:
2101 	case VIRTCHNL_OP_DEL_VLAN:
2102 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
2103 		if (msglen >= valid_len) {
2104 			struct virtchnl_vlan_filter_list *vfl =
2105 			    (struct virtchnl_vlan_filter_list *)msg;
2106 
2107 			if (vfl->num_elements == 0 || vfl->num_elements >
2108 			    VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
2109 				err_msg_format = true;
2110 				break;
2111 			}
2112 
2113 			valid_len += vfl->num_elements * sizeof(u16);
2114 		}
2115 		break;
2116 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
2117 		valid_len = sizeof(struct virtchnl_promisc_info);
2118 		break;
2119 	case VIRTCHNL_OP_GET_STATS:
2120 		valid_len = sizeof(struct virtchnl_queue_select);
2121 		break;
2122 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
2123 		valid_len = sizeof(struct virtchnl_rss_key);
2124 		if (msglen >= valid_len) {
2125 			struct virtchnl_rss_key *vrk =
2126 				(struct virtchnl_rss_key *)msg;
2127 
2128 			if (vrk->key_len == 0) {
2129 				/* zero length is allowed as input */
2130 				break;
2131 			}
2132 
2133 			valid_len += vrk->key_len - 1;
2134 		}
2135 		break;
2136 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
2137 		valid_len = sizeof(struct virtchnl_rss_lut);
2138 		if (msglen >= valid_len) {
2139 			struct virtchnl_rss_lut *vrl =
2140 				(struct virtchnl_rss_lut *)msg;
2141 
2142 			if (vrl->lut_entries == 0) {
2143 				/* zero entries is allowed as input */
2144 				break;
2145 			}
2146 
2147 			valid_len += vrl->lut_entries - 1;
2148 		}
2149 		break;
2150 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
2151 		break;
2152 	case VIRTCHNL_OP_SET_RSS_HENA:
2153 		valid_len = sizeof(struct virtchnl_rss_hena);
2154 		break;
2155 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
2156 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
2157 		break;
2158 	case VIRTCHNL_OP_REQUEST_QUEUES:
2159 		valid_len = sizeof(struct virtchnl_vf_res_request);
2160 		break;
2161 	case VIRTCHNL_OP_ENABLE_CHANNELS:
2162 		valid_len = sizeof(struct virtchnl_tc_info);
2163 		if (msglen >= valid_len) {
2164 			struct virtchnl_tc_info *vti =
2165 				(struct virtchnl_tc_info *)msg;
2166 
2167 			if (vti->num_tc == 0 || vti->num_tc >
2168 			    VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
2169 				err_msg_format = true;
2170 				break;
2171 			}
2172 
2173 			valid_len += (vti->num_tc - 1) *
2174 				     sizeof(struct virtchnl_channel_info);
2175 		}
2176 		break;
2177 	case VIRTCHNL_OP_DISABLE_CHANNELS:
2178 		break;
2179 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
2180 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
2181 		valid_len = sizeof(struct virtchnl_filter);
2182 		break;
2183 	case VIRTCHNL_OP_DCF_VLAN_OFFLOAD:
2184 		valid_len = sizeof(struct virtchnl_dcf_vlan_offload);
2185 		break;
2186 	case VIRTCHNL_OP_DCF_CMD_DESC:
2187 	case VIRTCHNL_OP_DCF_CMD_BUFF:
2188 		/* These two opcodes are specific to handle the AdminQ command,
2189 		 * so the validation needs to be done in PF's context.
2190 		 */
2191 		valid_len = msglen;
2192 		break;
2193 	case VIRTCHNL_OP_DCF_DISABLE:
2194 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
2195 	case VIRTCHNL_OP_DCF_GET_PKG_INFO:
2196 		break;
2197 	case VIRTCHNL_OP_DCF_CONFIG_BW:
2198 		valid_len = sizeof(struct virtchnl_dcf_bw_cfg_list);
2199 		if (msglen >= valid_len) {
2200 			struct virtchnl_dcf_bw_cfg_list *cfg_list =
2201 				(struct virtchnl_dcf_bw_cfg_list *)msg;
2202 			if (cfg_list->num_elem == 0) {
2203 				err_msg_format = true;
2204 				break;
2205 			}
2206 			valid_len += (cfg_list->num_elem - 1) *
2207 					 sizeof(struct virtchnl_dcf_bw_cfg);
2208 		}
2209 		break;
2210 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
2211 		break;
2212 	case VIRTCHNL_OP_ADD_RSS_CFG:
2213 	case VIRTCHNL_OP_DEL_RSS_CFG:
2214 		valid_len = sizeof(struct virtchnl_rss_cfg);
2215 		break;
2216 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
2217 		valid_len = sizeof(struct virtchnl_fdir_add);
2218 		break;
2219 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
2220 		valid_len = sizeof(struct virtchnl_fdir_del);
2221 		break;
2222 	case VIRTCHNL_OP_GET_QOS_CAPS:
2223 		break;
2224 	case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP:
2225 		valid_len = sizeof(struct virtchnl_queue_tc_mapping);
2226 		if (msglen >= valid_len) {
2227 			struct virtchnl_queue_tc_mapping *q_tc =
2228 				(struct virtchnl_queue_tc_mapping *)msg;
2229 			if (q_tc->num_tc == 0) {
2230 				err_msg_format = true;
2231 				break;
2232 			}
2233 			valid_len += (q_tc->num_tc - 1) *
2234 					 sizeof(q_tc->tc[0]);
2235 		}
2236 		break;
2237 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
2238 		break;
2239 	case VIRTCHNL_OP_ADD_VLAN_V2:
2240 	case VIRTCHNL_OP_DEL_VLAN_V2:
2241 		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
2242 		if (msglen >= valid_len) {
2243 			struct virtchnl_vlan_filter_list_v2 *vfl =
2244 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
2245 
2246 			if (vfl->num_elements == 0 || vfl->num_elements >
2247 			    VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
2248 				err_msg_format = true;
2249 				break;
2250 			}
2251 
2252 			valid_len += (vfl->num_elements - 1) *
2253 				sizeof(struct virtchnl_vlan_filter);
2254 		}
2255 		break;
2256 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
2257 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
2258 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
2259 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
2260 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
2261 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
2262 		valid_len = sizeof(struct virtchnl_vlan_setting);
2263 		break;
2264 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
2265 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
2266 		valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
2267 		if (msglen >= valid_len) {
2268 			struct virtchnl_del_ena_dis_queues *qs =
2269 				(struct virtchnl_del_ena_dis_queues *)msg;
2270 			if (qs->chunks.num_chunks == 0 ||
2271 			    qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
2272 				err_msg_format = true;
2273 				break;
2274 			}
2275 			valid_len += (qs->chunks.num_chunks - 1) *
2276 				      sizeof(struct virtchnl_queue_chunk);
2277 		}
2278 		break;
2279 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
2280 		valid_len = sizeof(struct virtchnl_queue_vector_maps);
2281 		if (msglen >= valid_len) {
2282 			struct virtchnl_queue_vector_maps *v_qp =
2283 				(struct virtchnl_queue_vector_maps *)msg;
2284 			if (v_qp->num_qv_maps == 0 ||
2285 			    v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
2286 				err_msg_format = true;
2287 				break;
2288 			}
2289 			valid_len += (v_qp->num_qv_maps - 1) *
2290 				      sizeof(struct virtchnl_queue_vector);
2291 		}
2292 		break;
2293 	/* These are always errors coming from the VF. */
2294 	case VIRTCHNL_OP_EVENT:
2295 	case VIRTCHNL_OP_UNKNOWN:
2296 	default:
2297 		return VIRTCHNL_STATUS_ERR_PARAM;
2298 	}
2299 	/* few more checks */
2300 	if (err_msg_format || valid_len != msglen)
2301 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
2302 
2303 	return 0;
2304 }
2305 #endif /* _VIRTCHNL_H_ */
2306