xref: /dpdk/drivers/common/iavf/virtchnl.h (revision 9e991f217fc8719e38a812dc280dba5f84db9f59)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2019
3  */
4 
5 #ifndef _VIRTCHNL_H_
6 #define _VIRTCHNL_H_
7 
8 /* Description:
9  * This header file describes the VF-PF communication protocol used
10  * by the drivers for all devices starting from our 40G product line
11  *
12  * Admin queue buffer usage:
13  * desc->opcode is always aqc_opc_send_msg_to_pf
14  * flags, retval, datalen, and data addr are all used normally.
15  * The Firmware copies the cookie fields when sending messages between the
16  * PF and VF, but uses all other fields internally. Due to this limitation,
17  * we must send all messages as "indirect", i.e. using an external buffer.
18  *
19  * All the VSI indexes are relative to the VF. Each VF can have maximum of
20  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
21  * have a maximum of sixteen queues for all of its VSIs.
22  *
23  * The PF is required to return a status code in v_retval for all messages
24  * except RESET_VF, which does not require any response. The return value
25  * is of status_code type, defined in the shared type.h.
26  *
27  * In general, VF driver initialization should roughly follow the order of
28  * these opcodes. The VF driver must first validate the API version of the
29  * PF driver, then request a reset, then get resources, then configure
30  * queues and interrupts. After these operations are complete, the VF
31  * driver may start its queues, optionally add MAC and VLAN filters, and
32  * process traffic.
33  */
34 
35 /* START GENERIC DEFINES
36  * Need to ensure the following enums and defines hold the same meaning and
37  * value in current and future projects
38  */
39 
40 /* Error Codes */
41 enum virtchnl_status_code {
42 	VIRTCHNL_STATUS_SUCCESS				= 0,
43 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
44 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
45 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
46 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
47 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
48 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
49 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
50 };
51 
52 /* Backward compatibility */
53 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
54 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
55 
56 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
57 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
58 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
59 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
60 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
61 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
62 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
63 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
64 
65 enum virtchnl_link_speed {
66 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
67 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
68 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
69 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
70 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
71 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
72 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
75 };
76 
77 /* for hsplit_0 field of Rx HMC context */
78 /* deprecated with IAVF 1.0 */
79 enum virtchnl_rx_hsplit {
80 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
81 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
82 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
83 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
84 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
85 };
86 
87 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS	6
88 /* END GENERIC DEFINES */
89 
90 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
91  * of the virtchnl_msg structure.
92  */
93 enum virtchnl_ops {
94 /* The PF sends status change events to VFs using
95  * the VIRTCHNL_OP_EVENT opcode.
96  * VFs send requests to the PF using the other ops.
97  * Use of "advanced opcode" features must be negotiated as part of capabilities
98  * exchange and are not considered part of base mode feature set.
99  */
100 	VIRTCHNL_OP_UNKNOWN = 0,
101 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
102 	VIRTCHNL_OP_RESET_VF = 2,
103 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
104 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
105 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
106 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
107 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
108 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
109 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
110 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
111 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
112 	VIRTCHNL_OP_ADD_VLAN = 12,
113 	VIRTCHNL_OP_DEL_VLAN = 13,
114 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
115 	VIRTCHNL_OP_GET_STATS = 15,
116 	VIRTCHNL_OP_RSVD = 16,
117 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
118 	/* opcode 19 is reserved */
119 	/* opcodes 20, 21, and 22 are reserved */
120 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
121 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
122 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
123 	VIRTCHNL_OP_SET_RSS_HENA = 26,
124 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
125 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
126 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
127 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
128 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
129 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
130 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
131 	/* opcodes 34, 35, 36, 37 and 38 are reserved */
132 };
133 
134 /* These macros are used to generate compilation errors if a structure/union
135  * is not exactly the correct length. It gives a divide by zero error if the
136  * structure/union is not of the correct size, otherwise it creates an enum
137  * that is never used.
138  */
139 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
140 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
141 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
142 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
143 
144 /* Virtual channel message descriptor. This overlays the admin queue
145  * descriptor. All other data is passed in external buffers.
146  */
147 
148 struct virtchnl_msg {
149 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
150 	enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
151 	enum virtchnl_status_code v_retval;  /* ditto for desc->retval */
152 	u32 vfid;			 /* used by PF when sending to VF */
153 };
154 
155 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
156 
157 /* Message descriptions and data structures. */
158 
159 /* VIRTCHNL_OP_VERSION
160  * VF posts its version number to the PF. PF responds with its version number
161  * in the same format, along with a return code.
162  * Reply from PF has its major/minor versions also in param0 and param1.
163  * If there is a major version mismatch, then the VF cannot operate.
164  * If there is a minor version mismatch, then the VF can operate but should
165  * add a warning to the system log.
166  *
167  * This enum element MUST always be specified as == 1, regardless of other
168  * changes in the API. The PF must always respond to this message without
169  * error regardless of version mismatch.
170  */
171 #define VIRTCHNL_VERSION_MAJOR		1
172 #define VIRTCHNL_VERSION_MINOR		1
173 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
174 
175 struct virtchnl_version_info {
176 	u32 major;
177 	u32 minor;
178 };
179 
180 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
181 
182 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
183 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
184 
185 /* VIRTCHNL_OP_RESET_VF
186  * VF sends this request to PF with no parameters
187  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
188  * until reset completion is indicated. The admin queue must be reinitialized
189  * after this operation.
190  *
191  * When reset is complete, PF must ensure that all queues in all VSIs associated
192  * with the VF are stopped, all queue configurations in the HMC are set to 0,
193  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
194  * are cleared.
195  */
196 
197 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
198  * vsi_type should always be 6 for backward compatibility. Add other fields
199  * as needed.
200  */
201 enum virtchnl_vsi_type {
202 	VIRTCHNL_VSI_TYPE_INVALID = 0,
203 	VIRTCHNL_VSI_SRIOV = 6,
204 };
205 
206 /* VIRTCHNL_OP_GET_VF_RESOURCES
207  * Version 1.0 VF sends this request to PF with no parameters
208  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
209  * PF responds with an indirect message containing
210  * virtchnl_vf_resource and one or more
211  * virtchnl_vsi_resource structures.
212  */
213 
214 struct virtchnl_vsi_resource {
215 	u16 vsi_id;
216 	u16 num_queue_pairs;
217 	enum virtchnl_vsi_type vsi_type;
218 	u16 qset_handle;
219 	u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
220 };
221 
222 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
223 
224 /* VF capability flags
225  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
226  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
227  */
228 #define VIRTCHNL_VF_OFFLOAD_L2			0x00000001
229 #define VIRTCHNL_VF_OFFLOAD_IWARP		0x00000002
230 #define VIRTCHNL_VF_OFFLOAD_RSVD		0x00000004
231 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		0x00000008
232 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		0x00000010
233 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		0x00000020
234 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		0x00000040
235 #define VIRTCHNL_VF_OFFLOAD_CRC			0x00000080
236 #define VIRTCHNL_VF_OFFLOAD_VLAN		0x00010000
237 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		0x00020000
238 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	0x00040000
239 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		0X00080000
240 #define VIRTCHNL_VF_OFFLOAD_ENCAP		0X00100000
241 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		0X00200000
242 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	0X00400000
243 #define VIRTCHNL_VF_OFFLOAD_ADQ			0X00800000
244 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2		0X01000000
245 #define VIRTCHNL_VF_OFFLOAD_USO			0X02000000
246 	/* 0X80000000 is reserved */
247 
248 /* Define below the capability flags that are not offloads */
249 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		0x00000080
250 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
251 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
252 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
253 
254 struct virtchnl_vf_resource {
255 	u16 num_vsis;
256 	u16 num_queue_pairs;
257 	u16 max_vectors;
258 	u16 max_mtu;
259 
260 	u32 vf_cap_flags;
261 	u32 rss_key_size;
262 	u32 rss_lut_size;
263 
264 	struct virtchnl_vsi_resource vsi_res[1];
265 };
266 
267 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
268 
269 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
270  * VF sends this message to set up parameters for one TX queue.
271  * External data buffer contains one instance of virtchnl_txq_info.
272  * PF configures requested queue and returns a status code.
273  */
274 
275 /* Tx queue config info */
276 struct virtchnl_txq_info {
277 	u16 vsi_id;
278 	u16 queue_id;
279 	u16 ring_len;		/* number of descriptors, multiple of 8 */
280 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
281 	u64 dma_ring_addr;
282 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
283 };
284 
285 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
286 
287 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
288  * VF sends this message to set up parameters for one RX queue.
289  * External data buffer contains one instance of virtchnl_rxq_info.
290  * PF configures requested queue and returns a status code. The
291  * crc_disable flag disables CRC stripping on the VF. Setting
292  * the crc_disable flag to 1 will disable CRC stripping for each
293  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
294  * offload must have been set prior to sending this info or the PF
295  * will ignore the request. This flag should be set the same for
296  * all of the queues for a VF.
297  */
298 
299 /* Rx queue config info */
300 struct virtchnl_rxq_info {
301 	u16 vsi_id;
302 	u16 queue_id;
303 	u32 ring_len;		/* number of descriptors, multiple of 32 */
304 	u16 hdr_size;
305 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
306 	u32 databuffer_size;
307 	u32 max_pkt_size;
308 	u8 crc_disable;
309 	u8 pad1[3];
310 	u64 dma_ring_addr;
311 	enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
312 	u32 pad2;
313 };
314 
315 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
316 
317 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
318  * VF sends this message to set parameters for active TX and RX queues
319  * associated with the specified VSI.
320  * PF configures queues and returns status.
321  * If the number of queues specified is greater than the number of queues
322  * associated with the VSI, an error is returned and no queues are configured.
323  * NOTE: The VF is not required to configure all queues in a single request.
324  * It may send multiple messages. PF drivers must correctly handle all VF
325  * requests.
326  */
327 struct virtchnl_queue_pair_info {
328 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
329 	struct virtchnl_txq_info txq;
330 	struct virtchnl_rxq_info rxq;
331 };
332 
333 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
334 
335 struct virtchnl_vsi_queue_config_info {
336 	u16 vsi_id;
337 	u16 num_queue_pairs;
338 	u32 pad;
339 	struct virtchnl_queue_pair_info qpair[1];
340 };
341 
342 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
343 
344 /* VIRTCHNL_OP_REQUEST_QUEUES
345  * VF sends this message to request the PF to allocate additional queues to
346  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
347  * additional queues must be negotiated.  This is a best effort request as it
348  * is possible the PF does not have enough queues left to support the request.
349  * If the PF cannot support the number requested it will respond with the
350  * maximum number it is able to support.  If the request is successful, PF will
351  * then reset the VF to institute required changes.
352  */
353 
354 /* VF resource request */
355 struct virtchnl_vf_res_request {
356 	u16 num_queue_pairs;
357 };
358 
359 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
360  * VF uses this message to map vectors to queues.
361  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
362  * are to be associated with the specified vector.
363  * The "other" causes are always mapped to vector 0. The VF may not request
364  * that vector 0 be used for traffic.
365  * PF configures interrupt mapping and returns status.
366  * NOTE: due to hardware requirements, all active queues (both TX and RX)
367  * should be mapped to interrupts, even if the driver intends to operate
368  * only in polling mode. In this case the interrupt may be disabled, but
369  * the ITR timer will still run to trigger writebacks.
370  */
371 struct virtchnl_vector_map {
372 	u16 vsi_id;
373 	u16 vector_id;
374 	u16 rxq_map;
375 	u16 txq_map;
376 	u16 rxitr_idx;
377 	u16 txitr_idx;
378 };
379 
380 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
381 
382 struct virtchnl_irq_map_info {
383 	u16 num_vectors;
384 	struct virtchnl_vector_map vecmap[1];
385 };
386 
387 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
388 
389 /* VIRTCHNL_OP_ENABLE_QUEUES
390  * VIRTCHNL_OP_DISABLE_QUEUES
391  * VF sends these message to enable or disable TX/RX queue pairs.
392  * The queues fields are bitmaps indicating which queues to act upon.
393  * (Currently, we only support 16 queues per VF, but we make the field
394  * u32 to allow for expansion.)
395  * PF performs requested action and returns status.
396  * NOTE: The VF is not required to enable/disable all queues in a single
397  * request. It may send multiple messages.
398  * PF drivers must correctly handle all VF requests.
399  */
400 struct virtchnl_queue_select {
401 	u16 vsi_id;
402 	u16 pad;
403 	u32 rx_queues;
404 	u32 tx_queues;
405 };
406 
407 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
408 
409 /* VIRTCHNL_OP_ADD_ETH_ADDR
410  * VF sends this message in order to add one or more unicast or multicast
411  * address filters for the specified VSI.
412  * PF adds the filters and returns status.
413  */
414 
415 /* VIRTCHNL_OP_DEL_ETH_ADDR
416  * VF sends this message in order to remove one or more unicast or multicast
417  * filters for the specified VSI.
418  * PF removes the filters and returns status.
419  */
420 
421 struct virtchnl_ether_addr {
422 	u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
423 	u8 pad[2];
424 };
425 
426 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
427 
428 struct virtchnl_ether_addr_list {
429 	u16 vsi_id;
430 	u16 num_elements;
431 	struct virtchnl_ether_addr list[1];
432 };
433 
434 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
435 
436 /* VIRTCHNL_OP_ADD_VLAN
437  * VF sends this message to add one or more VLAN tag filters for receives.
438  * PF adds the filters and returns status.
439  * If a port VLAN is configured by the PF, this operation will return an
440  * error to the VF.
441  */
442 
443 /* VIRTCHNL_OP_DEL_VLAN
444  * VF sends this message to remove one or more VLAN tag filters for receives.
445  * PF removes the filters and returns status.
446  * If a port VLAN is configured by the PF, this operation will return an
447  * error to the VF.
448  */
449 
450 struct virtchnl_vlan_filter_list {
451 	u16 vsi_id;
452 	u16 num_elements;
453 	u16 vlan_id[1];
454 };
455 
456 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
457 
458 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
459  * VF sends VSI id and flags.
460  * PF returns status code in retval.
461  * Note: we assume that broadcast accept mode is always enabled.
462  */
463 struct virtchnl_promisc_info {
464 	u16 vsi_id;
465 	u16 flags;
466 };
467 
468 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
469 
470 #define FLAG_VF_UNICAST_PROMISC	0x00000001
471 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
472 
473 /* VIRTCHNL_OP_GET_STATS
474  * VF sends this message to request stats for the selected VSI. VF uses
475  * the virtchnl_queue_select struct to specify the VSI. The queue_id
476  * field is ignored by the PF.
477  *
478  * PF replies with struct virtchnl_eth_stats in an external buffer.
479  */
480 
481 struct virtchnl_eth_stats {
482 	u64 rx_bytes;			/* received bytes */
483 	u64 rx_unicast;			/* received unicast pkts */
484 	u64 rx_multicast;		/* received multicast pkts */
485 	u64 rx_broadcast;		/* received broadcast pkts */
486 	u64 rx_discards;
487 	u64 rx_unknown_protocol;
488 	u64 tx_bytes;			/* transmitted bytes */
489 	u64 tx_unicast;			/* transmitted unicast pkts */
490 	u64 tx_multicast;		/* transmitted multicast pkts */
491 	u64 tx_broadcast;		/* transmitted broadcast pkts */
492 	u64 tx_discards;
493 	u64 tx_errors;
494 };
495 
496 /* VIRTCHNL_OP_CONFIG_RSS_KEY
497  * VIRTCHNL_OP_CONFIG_RSS_LUT
498  * VF sends these messages to configure RSS. Only supported if both PF
499  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
500  * configuration negotiation. If this is the case, then the RSS fields in
501  * the VF resource struct are valid.
502  * Both the key and LUT are initialized to 0 by the PF, meaning that
503  * RSS is effectively disabled until set up by the VF.
504  */
505 struct virtchnl_rss_key {
506 	u16 vsi_id;
507 	u16 key_len;
508 	u8 key[1];         /* RSS hash key, packed bytes */
509 };
510 
511 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
512 
513 struct virtchnl_rss_lut {
514 	u16 vsi_id;
515 	u16 lut_entries;
516 	u8 lut[1];        /* RSS lookup table */
517 };
518 
519 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
520 
521 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
522  * VIRTCHNL_OP_SET_RSS_HENA
523  * VF sends these messages to get and set the hash filter enable bits for RSS.
524  * By default, the PF sets these to all possible traffic types that the
525  * hardware supports. The VF can query this value if it wants to change the
526  * traffic types that are hashed by the hardware.
527  */
528 struct virtchnl_rss_hena {
529 	u64 hena;
530 };
531 
532 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
533 
534 /* This is used by PF driver to enforce how many channels can be supported.
535  * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
536  * PF driver will allow only max 4 channels
537  */
538 #define VIRTCHNL_MAX_ADQ_CHANNELS 4
539 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
540 
541 /* VIRTCHNL_OP_ENABLE_CHANNELS
542  * VIRTCHNL_OP_DISABLE_CHANNELS
543  * VF sends these messages to enable or disable channels based on
544  * the user specified queue count and queue offset for each traffic class.
545  * This struct encompasses all the information that the PF needs from
546  * VF to create a channel.
547  */
548 struct virtchnl_channel_info {
549 	u16 count; /* number of queues in a channel */
550 	u16 offset; /* queues in a channel start from 'offset' */
551 	u32 pad;
552 	u64 max_tx_rate;
553 };
554 
555 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
556 
557 struct virtchnl_tc_info {
558 	u32	num_tc;
559 	u32	pad;
560 	struct	virtchnl_channel_info list[1];
561 };
562 
563 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
564 
565 /* VIRTCHNL_ADD_CLOUD_FILTER
566  * VIRTCHNL_DEL_CLOUD_FILTER
567  * VF sends these messages to add or delete a cloud filter based on the
568  * user specified match and action filters. These structures encompass
569  * all the information that the PF needs from the VF to add/delete a
570  * cloud filter.
571  */
572 
573 struct virtchnl_l4_spec {
574 	u8	src_mac[ETH_ALEN];
575 	u8	dst_mac[ETH_ALEN];
576 	/* vlan_prio is part of this 16 bit field even from OS perspective
577 	 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
578 	 * in future, when decided to offload vlan_prio, pass that information
579 	 * as part of the "vlan_id" field, Bit14..12
580 	 */
581 	__be16	vlan_id;
582 	__be16	pad; /* reserved for future use */
583 	__be32	src_ip[4];
584 	__be32	dst_ip[4];
585 	__be16	src_port;
586 	__be16	dst_port;
587 };
588 
589 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
590 
591 union virtchnl_flow_spec {
592 	struct	virtchnl_l4_spec tcp_spec;
593 	u8	buffer[128]; /* reserved for future use */
594 };
595 
596 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
597 
598 enum virtchnl_action {
599 	/* action types */
600 	VIRTCHNL_ACTION_DROP = 0,
601 	VIRTCHNL_ACTION_TC_REDIRECT,
602 };
603 
604 enum virtchnl_flow_type {
605 	/* flow types */
606 	VIRTCHNL_TCP_V4_FLOW = 0,
607 	VIRTCHNL_TCP_V6_FLOW,
608 	VIRTCHNL_UDP_V4_FLOW,
609 	VIRTCHNL_UDP_V6_FLOW,
610 };
611 
612 struct virtchnl_filter {
613 	union	virtchnl_flow_spec data;
614 	union	virtchnl_flow_spec mask;
615 	enum	virtchnl_flow_type flow_type;
616 	enum	virtchnl_action action;
617 	u32	action_meta;
618 	u8	field_flags;
619 };
620 
621 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
622 
623 /* VIRTCHNL_OP_EVENT
624  * PF sends this message to inform the VF driver of events that may affect it.
625  * No direct response is expected from the VF, though it may generate other
626  * messages in response to this one.
627  */
628 enum virtchnl_event_codes {
629 	VIRTCHNL_EVENT_UNKNOWN = 0,
630 	VIRTCHNL_EVENT_LINK_CHANGE,
631 	VIRTCHNL_EVENT_RESET_IMPENDING,
632 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
633 };
634 
635 #define PF_EVENT_SEVERITY_INFO		0
636 #define PF_EVENT_SEVERITY_ATTENTION	1
637 #define PF_EVENT_SEVERITY_ACTION_REQUIRED	2
638 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
639 
640 struct virtchnl_pf_event {
641 	enum virtchnl_event_codes event;
642 	union {
643 		/* If the PF driver does not support the new speed reporting
644 		 * capabilities then use link_event else use link_event_adv to
645 		 * get the speed and link information. The ability to understand
646 		 * new speeds is indicated by setting the capability flag
647 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
648 		 * in virtchnl_vf_resource struct and can be used to determine
649 		 * which link event struct to use below.
650 		 */
651 		struct {
652 			enum virtchnl_link_speed link_speed;
653 			u8 link_status;
654 		} link_event;
655 		struct {
656 			/* link_speed provided in Mbps */
657 			u32 link_speed;
658 			u8 link_status;
659 		} link_event_adv;
660 	} event_data;
661 
662 	int severity;
663 };
664 
665 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
666 
667 
668 /* Since VF messages are limited by u16 size, precalculate the maximum possible
669  * values of nested elements in virtchnl structures that virtual channel can
670  * possibly handle in a single message.
671  */
672 enum virtchnl_vector_limits {
673 	VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX	=
674 		((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
675 		sizeof(struct virtchnl_queue_pair_info),
676 
677 	VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX		=
678 		((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
679 		sizeof(struct virtchnl_vector_map),
680 
681 	VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX	=
682 		((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
683 		sizeof(struct virtchnl_ether_addr),
684 
685 	VIRTCHNL_OP_ADD_DEL_VLAN_MAX		=
686 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
687 		sizeof(u16),
688 
689 
690 	VIRTCHNL_OP_ENABLE_CHANNELS_MAX		=
691 		((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
692 		sizeof(struct virtchnl_channel_info),
693 };
694 
695 /* VF reset states - these are written into the RSTAT register:
696  * VFGEN_RSTAT on the VF
697  * When the PF initiates a reset, it writes 0
698  * When the reset is complete, it writes 1
699  * When the PF detects that the VF has recovered, it writes 2
700  * VF checks this register periodically to determine if a reset has occurred,
701  * then polls it to know when the reset is complete.
702  * If either the PF or VF reads the register while the hardware
703  * is in a reset state, it will return DEADBEEF, which, when masked
704  * will result in 3.
705  */
706 enum virtchnl_vfr_states {
707 	VIRTCHNL_VFR_INPROGRESS = 0,
708 	VIRTCHNL_VFR_COMPLETED,
709 	VIRTCHNL_VFR_VFACTIVE,
710 };
711 
712 /**
713  * virtchnl_vc_validate_vf_msg
714  * @ver: Virtchnl version info
715  * @v_opcode: Opcode for the message
716  * @msg: pointer to the msg buffer
717  * @msglen: msg length
718  *
719  * validate msg format against struct for each opcode
720  */
721 static inline int
722 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
723 			    u8 *msg, u16 msglen)
724 {
725 	bool err_msg_format = false;
726 	int valid_len = 0;
727 
728 	/* Validate message length. */
729 	switch (v_opcode) {
730 	case VIRTCHNL_OP_VERSION:
731 		valid_len = sizeof(struct virtchnl_version_info);
732 		break;
733 	case VIRTCHNL_OP_RESET_VF:
734 		break;
735 	case VIRTCHNL_OP_GET_VF_RESOURCES:
736 		if (VF_IS_V11(ver))
737 			valid_len = sizeof(u32);
738 		break;
739 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
740 		valid_len = sizeof(struct virtchnl_txq_info);
741 		break;
742 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
743 		valid_len = sizeof(struct virtchnl_rxq_info);
744 		break;
745 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
746 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
747 		if (msglen >= valid_len) {
748 			struct virtchnl_vsi_queue_config_info *vqc =
749 			    (struct virtchnl_vsi_queue_config_info *)msg;
750 
751 			if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
752 			    VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
753 				err_msg_format = true;
754 				break;
755 			}
756 
757 			valid_len += (vqc->num_queue_pairs *
758 				      sizeof(struct
759 					     virtchnl_queue_pair_info));
760 		}
761 		break;
762 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
763 		valid_len = sizeof(struct virtchnl_irq_map_info);
764 		if (msglen >= valid_len) {
765 			struct virtchnl_irq_map_info *vimi =
766 			    (struct virtchnl_irq_map_info *)msg;
767 
768 			if (vimi->num_vectors == 0 || vimi->num_vectors >
769 			    VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
770 				err_msg_format = true;
771 				break;
772 			}
773 
774 			valid_len += (vimi->num_vectors *
775 				      sizeof(struct virtchnl_vector_map));
776 		}
777 		break;
778 	case VIRTCHNL_OP_ENABLE_QUEUES:
779 	case VIRTCHNL_OP_DISABLE_QUEUES:
780 		valid_len = sizeof(struct virtchnl_queue_select);
781 		break;
782 	case VIRTCHNL_OP_ADD_ETH_ADDR:
783 	case VIRTCHNL_OP_DEL_ETH_ADDR:
784 		valid_len = sizeof(struct virtchnl_ether_addr_list);
785 		if (msglen >= valid_len) {
786 			struct virtchnl_ether_addr_list *veal =
787 			    (struct virtchnl_ether_addr_list *)msg;
788 
789 			if (veal->num_elements == 0 || veal->num_elements >
790 			    VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
791 				err_msg_format = true;
792 				break;
793 			}
794 
795 			valid_len += veal->num_elements *
796 			    sizeof(struct virtchnl_ether_addr);
797 		}
798 		break;
799 	case VIRTCHNL_OP_ADD_VLAN:
800 	case VIRTCHNL_OP_DEL_VLAN:
801 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
802 		if (msglen >= valid_len) {
803 			struct virtchnl_vlan_filter_list *vfl =
804 			    (struct virtchnl_vlan_filter_list *)msg;
805 
806 			if (vfl->num_elements == 0 || vfl->num_elements >
807 			    VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
808 				err_msg_format = true;
809 				break;
810 			}
811 
812 			valid_len += vfl->num_elements * sizeof(u16);
813 		}
814 		break;
815 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
816 		valid_len = sizeof(struct virtchnl_promisc_info);
817 		break;
818 	case VIRTCHNL_OP_GET_STATS:
819 		valid_len = sizeof(struct virtchnl_queue_select);
820 		break;
821 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
822 		valid_len = sizeof(struct virtchnl_rss_key);
823 		if (msglen >= valid_len) {
824 			struct virtchnl_rss_key *vrk =
825 				(struct virtchnl_rss_key *)msg;
826 
827 			if (vrk->key_len == 0) {
828 				/* zero length is allowed as input */
829 				break;
830 			}
831 
832 			valid_len += vrk->key_len - 1;
833 		}
834 		break;
835 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
836 		valid_len = sizeof(struct virtchnl_rss_lut);
837 		if (msglen >= valid_len) {
838 			struct virtchnl_rss_lut *vrl =
839 				(struct virtchnl_rss_lut *)msg;
840 
841 			if (vrl->lut_entries == 0) {
842 				/* zero entries is allowed as input */
843 				break;
844 			}
845 
846 			valid_len += vrl->lut_entries - 1;
847 		}
848 		break;
849 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
850 		break;
851 	case VIRTCHNL_OP_SET_RSS_HENA:
852 		valid_len = sizeof(struct virtchnl_rss_hena);
853 		break;
854 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
855 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
856 		break;
857 	case VIRTCHNL_OP_REQUEST_QUEUES:
858 		valid_len = sizeof(struct virtchnl_vf_res_request);
859 		break;
860 	case VIRTCHNL_OP_ENABLE_CHANNELS:
861 		valid_len = sizeof(struct virtchnl_tc_info);
862 		if (msglen >= valid_len) {
863 			struct virtchnl_tc_info *vti =
864 				(struct virtchnl_tc_info *)msg;
865 
866 			if (vti->num_tc == 0 || vti->num_tc >
867 			    VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
868 				err_msg_format = true;
869 				break;
870 			}
871 
872 			valid_len += (vti->num_tc - 1) *
873 				     sizeof(struct virtchnl_channel_info);
874 		}
875 		break;
876 	case VIRTCHNL_OP_DISABLE_CHANNELS:
877 		break;
878 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
879 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
880 		valid_len = sizeof(struct virtchnl_filter);
881 		break;
882 	/* These are always errors coming from the VF. */
883 	case VIRTCHNL_OP_EVENT:
884 	case VIRTCHNL_OP_UNKNOWN:
885 	default:
886 		return VIRTCHNL_STATUS_ERR_PARAM;
887 	}
888 	/* few more checks */
889 	if (err_msg_format || valid_len != msglen)
890 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
891 
892 	return 0;
893 }
894 #endif /* _VIRTCHNL_H_ */
895