xref: /dpdk/drivers/common/iavf/virtchnl.h (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2021 Intel Corporation
3  */
4 
5 #ifndef _VIRTCHNL_H_
6 #define _VIRTCHNL_H_
7 
8 /* Description:
9  * This header file describes the VF-PF communication protocol used
10  * by the drivers for all devices starting from our 40G product line
11  *
12  * Admin queue buffer usage:
13  * desc->opcode is always aqc_opc_send_msg_to_pf
14  * flags, retval, datalen, and data addr are all used normally.
15  * The Firmware copies the cookie fields when sending messages between the
16  * PF and VF, but uses all other fields internally. Due to this limitation,
17  * we must send all messages as "indirect", i.e. using an external buffer.
18  *
19  * All the VSI indexes are relative to the VF. Each VF can have maximum of
20  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
21  * have a maximum of sixteen queues for all of its VSIs.
22  *
23  * The PF is required to return a status code in v_retval for all messages
24  * except RESET_VF, which does not require any response. The return value
25  * is of status_code type, defined in the shared type.h.
26  *
27  * In general, VF driver initialization should roughly follow the order of
28  * these opcodes. The VF driver must first validate the API version of the
29  * PF driver, then request a reset, then get resources, then configure
30  * queues and interrupts. After these operations are complete, the VF
31  * driver may start its queues, optionally add MAC and VLAN filters, and
32  * process traffic.
33  */
34 
35 /* START GENERIC DEFINES
36  * Need to ensure the following enums and defines hold the same meaning and
37  * value in current and future projects
38  */
39 
40 /* Error Codes */
41 enum virtchnl_status_code {
42 	VIRTCHNL_STATUS_SUCCESS				= 0,
43 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
44 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
45 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
46 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
47 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
48 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
49 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
50 };
51 
52 /* Backward compatibility */
53 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
54 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
55 
56 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
57 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
58 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
59 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
60 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
61 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
62 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
63 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
64 
65 enum virtchnl_link_speed {
66 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
67 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
68 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
69 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
70 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
71 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
72 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
75 };
76 
77 /* for hsplit_0 field of Rx HMC context */
78 /* deprecated with IAVF 1.0 */
79 enum virtchnl_rx_hsplit {
80 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
81 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
82 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
83 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
84 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
85 };
86 
87 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS	6
88 /* END GENERIC DEFINES */
89 
90 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
91  * of the virtchnl_msg structure.
92  */
93 enum virtchnl_ops {
94 /* The PF sends status change events to VFs using
95  * the VIRTCHNL_OP_EVENT opcode.
96  * VFs send requests to the PF using the other ops.
97  * Use of "advanced opcode" features must be negotiated as part of capabilities
98  * exchange and are not considered part of base mode feature set.
99  */
100 	VIRTCHNL_OP_UNKNOWN = 0,
101 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
102 	VIRTCHNL_OP_RESET_VF = 2,
103 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
104 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
105 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
106 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
107 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
108 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
109 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
110 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
111 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
112 	VIRTCHNL_OP_ADD_VLAN = 12,
113 	VIRTCHNL_OP_DEL_VLAN = 13,
114 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
115 	VIRTCHNL_OP_GET_STATS = 15,
116 	VIRTCHNL_OP_RSVD = 16,
117 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
118 	/* opcode 19 is reserved */
119 	/* opcodes 20, 21, and 22 are reserved */
120 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
121 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
122 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
123 	VIRTCHNL_OP_SET_RSS_HENA = 26,
124 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
125 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
126 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
127 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
128 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
129 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
130 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
131 	/* opcodes 34, 35, 36, and 37 are reserved */
132 	VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38,
133 	VIRTCHNL_OP_DCF_CMD_DESC = 39,
134 	VIRTCHNL_OP_DCF_CMD_BUFF = 40,
135 	VIRTCHNL_OP_DCF_DISABLE = 41,
136 	VIRTCHNL_OP_DCF_GET_VSI_MAP = 42,
137 	VIRTCHNL_OP_DCF_GET_PKG_INFO = 43,
138 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
139 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
140 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
141 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
142 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
143 	VIRTCHNL_OP_QUERY_FDIR_FILTER = 49,
144 	VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
145 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
146 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
147 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
148 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
149 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
150 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
151 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
152 	VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
153 	VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
154 	VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
155 	VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
156 	VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
157 	VIRTCHNL_OP_MAX,
158 };
159 
160 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
161 {
162 	switch (v_opcode) {
163 	case VIRTCHNL_OP_UNKNOWN:
164 		return "VIRTCHNL_OP_UNKNOWN";
165 	case VIRTCHNL_OP_VERSION:
166 		return "VIRTCHNL_OP_VERSION";
167 	case VIRTCHNL_OP_RESET_VF:
168 		return "VIRTCHNL_OP_RESET_VF";
169 	case VIRTCHNL_OP_GET_VF_RESOURCES:
170 		return "VIRTCHNL_OP_GET_VF_RESOURCES";
171 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
172 		return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
173 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
174 		return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
175 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
176 		return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
177 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
178 		return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
179 	case VIRTCHNL_OP_ENABLE_QUEUES:
180 		return "VIRTCHNL_OP_ENABLE_QUEUES";
181 	case VIRTCHNL_OP_DISABLE_QUEUES:
182 		return "VIRTCHNL_OP_DISABLE_QUEUES";
183 	case VIRTCHNL_OP_ADD_ETH_ADDR:
184 		return "VIRTCHNL_OP_ADD_ETH_ADDR";
185 	case VIRTCHNL_OP_DEL_ETH_ADDR:
186 		return "VIRTCHNL_OP_DEL_ETH_ADDR";
187 	case VIRTCHNL_OP_ADD_VLAN:
188 		return "VIRTCHNL_OP_ADD_VLAN";
189 	case VIRTCHNL_OP_DEL_VLAN:
190 		return "VIRTCHNL_OP_DEL_VLAN";
191 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
192 		return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
193 	case VIRTCHNL_OP_GET_STATS:
194 		return "VIRTCHNL_OP_GET_STATS";
195 	case VIRTCHNL_OP_RSVD:
196 		return "VIRTCHNL_OP_RSVD";
197 	case VIRTCHNL_OP_EVENT:
198 		return "VIRTCHNL_OP_EVENT";
199 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
200 		return "VIRTCHNL_OP_CONFIG_RSS_KEY";
201 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
202 		return "VIRTCHNL_OP_CONFIG_RSS_LUT";
203 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
204 		return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
205 	case VIRTCHNL_OP_SET_RSS_HENA:
206 		return "VIRTCHNL_OP_SET_RSS_HENA";
207 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
208 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
209 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
210 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
211 	case VIRTCHNL_OP_REQUEST_QUEUES:
212 		return "VIRTCHNL_OP_REQUEST_QUEUES";
213 	case VIRTCHNL_OP_ENABLE_CHANNELS:
214 		return "VIRTCHNL_OP_ENABLE_CHANNELS";
215 	case VIRTCHNL_OP_DISABLE_CHANNELS:
216 		return "VIRTCHNL_OP_DISABLE_CHANNELS";
217 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
218 		return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
219 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
220 		return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
221 	case VIRTCHNL_OP_DCF_CMD_DESC:
222 		return "VIRTCHNL_OP_DCF_CMD_DESC";
223 	case VIRTCHNL_OP_DCF_CMD_BUFF:
224 		return "VIRTCHHNL_OP_DCF_CMD_BUFF";
225 	case VIRTCHNL_OP_DCF_DISABLE:
226 		return "VIRTCHNL_OP_DCF_DISABLE";
227 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
228 		return "VIRTCHNL_OP_DCF_GET_VSI_MAP";
229 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
230 		return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS";
231 	case VIRTCHNL_OP_ADD_RSS_CFG:
232 		return "VIRTCHNL_OP_ADD_RSS_CFG";
233 	case VIRTCHNL_OP_DEL_RSS_CFG:
234 		return "VIRTCHNL_OP_DEL_RSS_CFG";
235 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
236 		return "VIRTCHNL_OP_ADD_FDIR_FILTER";
237 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
238 		return "VIRTCHNL_OP_DEL_FDIR_FILTER";
239 	case VIRTCHNL_OP_QUERY_FDIR_FILTER:
240 		return "VIRTCHNL_OP_QUERY_FDIR_FILTER";
241 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
242 		return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
243 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
244 		return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
245 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
246 		return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
247 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
248 		return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
249 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
250 		return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
251 	case VIRTCHNL_OP_ADD_VLAN_V2:
252 		return "VIRTCHNL_OP_ADD_VLAN_V2";
253 	case VIRTCHNL_OP_DEL_VLAN_V2:
254 		return "VIRTCHNL_OP_DEL_VLAN_V2";
255 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
256 		return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
257 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
258 		return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
259 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
260 		return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
261 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
262 		return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
263 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
264 		return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
265 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
266 		return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
267 	case VIRTCHNL_OP_MAX:
268 		return "VIRTCHNL_OP_MAX";
269 	default:
270 		return "Unsupported (update virtchnl.h)";
271 	}
272 }
273 
274 /* These macros are used to generate compilation errors if a structure/union
275  * is not exactly the correct length. It gives a divide by zero error if the
276  * structure/union is not of the correct size, otherwise it creates an enum
277  * that is never used.
278  */
279 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
280 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
281 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
282 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
283 
284 /* Virtual channel message descriptor. This overlays the admin queue
285  * descriptor. All other data is passed in external buffers.
286  */
287 
288 struct virtchnl_msg {
289 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
290 	enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
291 	enum virtchnl_status_code v_retval;  /* ditto for desc->retval */
292 	u32 vfid;			 /* used by PF when sending to VF */
293 };
294 
295 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
296 
297 /* Message descriptions and data structures. */
298 
299 /* VIRTCHNL_OP_VERSION
300  * VF posts its version number to the PF. PF responds with its version number
301  * in the same format, along with a return code.
302  * Reply from PF has its major/minor versions also in param0 and param1.
303  * If there is a major version mismatch, then the VF cannot operate.
304  * If there is a minor version mismatch, then the VF can operate but should
305  * add a warning to the system log.
306  *
307  * This enum element MUST always be specified as == 1, regardless of other
308  * changes in the API. The PF must always respond to this message without
309  * error regardless of version mismatch.
310  */
311 #define VIRTCHNL_VERSION_MAJOR		1
312 #define VIRTCHNL_VERSION_MINOR		1
313 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
314 
315 struct virtchnl_version_info {
316 	u32 major;
317 	u32 minor;
318 };
319 
320 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
321 
322 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
323 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
324 
325 /* VIRTCHNL_OP_RESET_VF
326  * VF sends this request to PF with no parameters
327  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
328  * until reset completion is indicated. The admin queue must be reinitialized
329  * after this operation.
330  *
331  * When reset is complete, PF must ensure that all queues in all VSIs associated
332  * with the VF are stopped, all queue configurations in the HMC are set to 0,
333  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
334  * are cleared.
335  */
336 
337 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
338  * vsi_type should always be 6 for backward compatibility. Add other fields
339  * as needed.
340  */
341 enum virtchnl_vsi_type {
342 	VIRTCHNL_VSI_TYPE_INVALID = 0,
343 	VIRTCHNL_VSI_SRIOV = 6,
344 };
345 
346 /* VIRTCHNL_OP_GET_VF_RESOURCES
347  * Version 1.0 VF sends this request to PF with no parameters
348  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
349  * PF responds with an indirect message containing
350  * virtchnl_vf_resource and one or more
351  * virtchnl_vsi_resource structures.
352  */
353 
354 struct virtchnl_vsi_resource {
355 	u16 vsi_id;
356 	u16 num_queue_pairs;
357 	enum virtchnl_vsi_type vsi_type;
358 	u16 qset_handle;
359 	u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
360 };
361 
362 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
363 
364 /* VF capability flags
365  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
366  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
367  */
368 #define VIRTCHNL_VF_OFFLOAD_L2			0x00000001
369 #define VIRTCHNL_VF_OFFLOAD_IWARP		0x00000002
370 #define VIRTCHNL_VF_OFFLOAD_RSVD		0x00000004
371 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		0x00000008
372 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		0x00000010
373 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		0x00000020
374 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		0x00000040
375 #define VIRTCHNL_VF_OFFLOAD_CRC			0x00000080
376 	/* 0X00000100 is reserved */
377 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS		0x00000200
378 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		0x00008000
379 #define VIRTCHNL_VF_OFFLOAD_VLAN		0x00010000
380 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		0x00020000
381 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	0x00040000
382 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		0X00080000
383 #define VIRTCHNL_VF_OFFLOAD_ENCAP		0X00100000
384 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		0X00200000
385 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	0X00400000
386 #define VIRTCHNL_VF_OFFLOAD_ADQ			0X00800000
387 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2		0X01000000
388 #define VIRTCHNL_VF_OFFLOAD_USO			0X02000000
389 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	0X04000000
390 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		0X08000000
391 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		0X10000000
392 	/* 0X20000000 is reserved */
393 #define VIRTCHNL_VF_CAP_DCF			0X40000000
394 	/* 0X80000000 is reserved */
395 
396 /* Define below the capability flags that are not offloads */
397 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		0x00000080
398 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
399 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
400 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
401 
402 struct virtchnl_vf_resource {
403 	u16 num_vsis;
404 	u16 num_queue_pairs;
405 	u16 max_vectors;
406 	u16 max_mtu;
407 
408 	u32 vf_cap_flags;
409 	u32 rss_key_size;
410 	u32 rss_lut_size;
411 
412 	struct virtchnl_vsi_resource vsi_res[1];
413 };
414 
415 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
416 
417 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
418  * VF sends this message to set up parameters for one TX queue.
419  * External data buffer contains one instance of virtchnl_txq_info.
420  * PF configures requested queue and returns a status code.
421  */
422 
423 /* Tx queue config info */
424 struct virtchnl_txq_info {
425 	u16 vsi_id;
426 	u16 queue_id;
427 	u16 ring_len;		/* number of descriptors, multiple of 8 */
428 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
429 	u64 dma_ring_addr;
430 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
431 };
432 
433 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
434 
435 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
436  * VF sends this message to set up parameters for one RX queue.
437  * External data buffer contains one instance of virtchnl_rxq_info.
438  * PF configures requested queue and returns a status code. The
439  * crc_disable flag disables CRC stripping on the VF. Setting
440  * the crc_disable flag to 1 will disable CRC stripping for each
441  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
442  * offload must have been set prior to sending this info or the PF
443  * will ignore the request. This flag should be set the same for
444  * all of the queues for a VF.
445  */
446 
447 /* Rx queue config info */
448 struct virtchnl_rxq_info {
449 	u16 vsi_id;
450 	u16 queue_id;
451 	u32 ring_len;		/* number of descriptors, multiple of 32 */
452 	u16 hdr_size;
453 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
454 	u32 databuffer_size;
455 	u32 max_pkt_size;
456 	u8 crc_disable;
457 	/* only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported */
458 	u8 rxdid;
459 	u8 pad1[2];
460 	u64 dma_ring_addr;
461 	enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
462 	u32 pad2;
463 };
464 
465 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
466 
467 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
468  * VF sends this message to set parameters for active TX and RX queues
469  * associated with the specified VSI.
470  * PF configures queues and returns status.
471  * If the number of queues specified is greater than the number of queues
472  * associated with the VSI, an error is returned and no queues are configured.
473  * NOTE: The VF is not required to configure all queues in a single request.
474  * It may send multiple messages. PF drivers must correctly handle all VF
475  * requests.
476  */
477 struct virtchnl_queue_pair_info {
478 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
479 	struct virtchnl_txq_info txq;
480 	struct virtchnl_rxq_info rxq;
481 };
482 
483 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
484 
485 struct virtchnl_vsi_queue_config_info {
486 	u16 vsi_id;
487 	u16 num_queue_pairs;
488 	u32 pad;
489 	struct virtchnl_queue_pair_info qpair[1];
490 };
491 
492 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
493 
494 /* VIRTCHNL_OP_REQUEST_QUEUES
495  * VF sends this message to request the PF to allocate additional queues to
496  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
497  * additional queues must be negotiated.  This is a best effort request as it
498  * is possible the PF does not have enough queues left to support the request.
499  * If the PF cannot support the number requested it will respond with the
500  * maximum number it is able to support.  If the request is successful, PF will
501  * then reset the VF to institute required changes.
502  */
503 
504 /* VF resource request */
505 struct virtchnl_vf_res_request {
506 	u16 num_queue_pairs;
507 };
508 
509 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
510  * VF uses this message to map vectors to queues.
511  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
512  * are to be associated with the specified vector.
513  * The "other" causes are always mapped to vector 0. The VF may not request
514  * that vector 0 be used for traffic.
515  * PF configures interrupt mapping and returns status.
516  * NOTE: due to hardware requirements, all active queues (both TX and RX)
517  * should be mapped to interrupts, even if the driver intends to operate
518  * only in polling mode. In this case the interrupt may be disabled, but
519  * the ITR timer will still run to trigger writebacks.
520  */
521 struct virtchnl_vector_map {
522 	u16 vsi_id;
523 	u16 vector_id;
524 	u16 rxq_map;
525 	u16 txq_map;
526 	u16 rxitr_idx;
527 	u16 txitr_idx;
528 };
529 
530 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
531 
532 struct virtchnl_irq_map_info {
533 	u16 num_vectors;
534 	struct virtchnl_vector_map vecmap[1];
535 };
536 
537 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
538 
539 /* VIRTCHNL_OP_ENABLE_QUEUES
540  * VIRTCHNL_OP_DISABLE_QUEUES
541  * VF sends these message to enable or disable TX/RX queue pairs.
542  * The queues fields are bitmaps indicating which queues to act upon.
543  * (Currently, we only support 16 queues per VF, but we make the field
544  * u32 to allow for expansion.)
545  * PF performs requested action and returns status.
546  * NOTE: The VF is not required to enable/disable all queues in a single
547  * request. It may send multiple messages.
548  * PF drivers must correctly handle all VF requests.
549  */
550 struct virtchnl_queue_select {
551 	u16 vsi_id;
552 	u16 pad;
553 	u32 rx_queues;
554 	u32 tx_queues;
555 };
556 
557 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
558 
559 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION
560  *
561  * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
562  * then this op must be supported.
563  *
564  * VF sends this message in order to query the max RSS queue region
565  * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
566  * This information should be used when configuring the RSS LUT and/or
567  * configuring queue region based filters.
568  *
569  * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
570  * of 6 would inform the VF that the PF supports a maximum RSS queue region
571  * of 64.
572  *
573  * A queue region represents a range of queues that can be used to configure
574  * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
575  * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
576  * to configure the RSS LUT with queue indices from 0 to 15. However, other
577  * filters can be used to direct packets to queues >15 via specifying a queue
578  * base/offset and queue region width.
579  */
580 struct virtchnl_max_rss_qregion {
581 	u16 vport_id;
582 	u16 qregion_width;
583 	u8 pad[4];
584 };
585 
586 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
587 
588 /* VIRTCHNL_OP_ADD_ETH_ADDR
589  * VF sends this message in order to add one or more unicast or multicast
590  * address filters for the specified VSI.
591  * PF adds the filters and returns status.
592  */
593 
594 /* VIRTCHNL_OP_DEL_ETH_ADDR
595  * VF sends this message in order to remove one or more unicast or multicast
596  * filters for the specified VSI.
597  * PF removes the filters and returns status.
598  */
599 
600 /* VIRTCHNL_ETHER_ADDR_LEGACY
601  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
602  * bytes. Moving forward all VF drivers should not set type to
603  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
604  * behavior. The control plane function (i.e. PF) can use a best effort method
605  * of tracking the primary/device unicast in this case, but there is no
606  * guarantee and functionality depends on the implementation of the PF.
607  */
608 
609 /* VIRTCHNL_ETHER_ADDR_PRIMARY
610  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
611  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
612  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
613  * function (i.e. PF) to accurately track and use this MAC address for
614  * displaying on the host and for VM/function reset.
615  */
616 
617 /* VIRTCHNL_ETHER_ADDR_EXTRA
618  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
619  * unicast and/or multicast filters that are being added/deleted via
620  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
621  */
622 struct virtchnl_ether_addr {
623 	u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
624 	u8 type;
625 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
626 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
627 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
628 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
629 	u8 pad;
630 };
631 
632 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
633 
634 struct virtchnl_ether_addr_list {
635 	u16 vsi_id;
636 	u16 num_elements;
637 	struct virtchnl_ether_addr list[1];
638 };
639 
640 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
641 
642 /* VIRTCHNL_OP_ADD_VLAN
643  * VF sends this message to add one or more VLAN tag filters for receives.
644  * PF adds the filters and returns status.
645  * If a port VLAN is configured by the PF, this operation will return an
646  * error to the VF.
647  */
648 
649 /* VIRTCHNL_OP_DEL_VLAN
650  * VF sends this message to remove one or more VLAN tag filters for receives.
651  * PF removes the filters and returns status.
652  * If a port VLAN is configured by the PF, this operation will return an
653  * error to the VF.
654  */
655 
656 struct virtchnl_vlan_filter_list {
657 	u16 vsi_id;
658 	u16 num_elements;
659 	u16 vlan_id[1];
660 };
661 
662 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
663 
664 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
665  * structures and opcodes.
666  *
667  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
668  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
669  *
670  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
671  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
672  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
673  *
674  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
675  * by the PF concurrently. For example, if the PF can support
676  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
677  * would OR the following bits:
678  *
679  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
680  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
681  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
682  *
683  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
684  * and 0x88A8 VLAN ethertypes.
685  *
686  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
687  * by the PF concurrently. For example if the PF can support
688  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
689  * offload it would OR the following bits:
690  *
691  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
692  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
693  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
694  *
695  * The VF would interpret this as VLAN stripping can be supported on either
696  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
697  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
698  * the previously set value.
699  *
700  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
701  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
702  *
703  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
704  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
705  *
706  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
707  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
708  *
709  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
710  * VLAN filtering if the underlying PF supports it.
711  *
712  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
713  * certain VLAN capability can be toggled. For example if the underlying PF/CP
714  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
715  * set this bit along with the supported ethertypes.
716  */
717 enum virtchnl_vlan_support {
718 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
719 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		0x00000001,
720 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		0x00000002,
721 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		0x00000004,
722 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	0x00000100,
723 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	0x00000200,
724 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	0x00000400,
725 	VIRTCHNL_VLAN_PRIO =			0x01000000,
726 	VIRTCHNL_VLAN_FILTER_MASK =		0x10000000,
727 	VIRTCHNL_VLAN_ETHERTYPE_AND =		0x20000000,
728 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		0x40000000,
729 	VIRTCHNL_VLAN_TOGGLE =			0x80000000
730 };
731 
732 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
733  * for filtering, insertion, and stripping capabilities.
734  *
735  * If only outer capabilities are supported (for filtering, insertion, and/or
736  * stripping) then this refers to the outer most or single VLAN from the VF's
737  * perspective.
738  *
739  * If only inner capabilities are supported (for filtering, insertion, and/or
740  * stripping) then this refers to the outer most or single VLAN from the VF's
741  * perspective. Functionally this is the same as if only outer capabilities are
742  * supported. The VF driver is just forced to use the inner fields when
743  * adding/deleting filters and enabling/disabling offloads (if supported).
744  *
745  * If both outer and inner capabilities are supported (for filtering, insertion,
746  * and/or stripping) then outer refers to the outer most or single VLAN and
747  * inner refers to the second VLAN, if it exists, in the packet.
748  *
749  * There is no support for tunneled VLAN offloads, so outer or inner are never
750  * referring to a tunneled packet from the VF's perspective.
751  */
752 struct virtchnl_vlan_supported_caps {
753 	u32 outer;
754 	u32 inner;
755 };
756 
757 /* The PF populates these fields based on the supported VLAN filtering. If a
758  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
759  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
760  * the unsupported fields.
761  *
762  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
763  * VIRTCHNL_VLAN_TOGGLE bit is set.
764  *
765  * The ethertype(s) specified in the ethertype_init field are the ethertypes
766  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
767  * most VLAN from the VF's perspective. If both inner and outer filtering are
768  * allowed then ethertype_init only refers to the outer most VLAN as only
769  * VLAN ethertype supported for inner VLAN filtering is
770  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
771  * when both inner and outer filtering are allowed.
772  *
773  * The max_filters field tells the VF how many VLAN filters it's allowed to have
774  * at any one time. If it exceeds this amount and tries to add another filter,
775  * then the request will be rejected by the PF. To prevent failures, the VF
776  * should keep track of how many VLAN filters it has added and not attempt to
777  * add more than max_filters.
778  */
779 struct virtchnl_vlan_filtering_caps {
780 	struct virtchnl_vlan_supported_caps filtering_support;
781 	u32 ethertype_init;
782 	u16 max_filters;
783 	u8 pad[2];
784 };
785 
786 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
787 
788 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
789  * if the PF supports a different ethertype for stripping and insertion.
790  *
791  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
792  * for stripping affect the ethertype(s) specified for insertion and visa versa
793  * as well. If the VF tries to configure VLAN stripping via
794  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
795  * that will be the ethertype for both stripping and insertion.
796  *
797  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
798  * stripping do not affect the ethertype(s) specified for insertion and visa
799  * versa.
800  */
801 enum virtchnl_vlan_ethertype_match {
802 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
803 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
804 };
805 
806 /* The PF populates these fields based on the supported VLAN offloads. If a
807  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
808  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
809  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
810  *
811  * Also, a VF is only allowed to toggle its VLAN offload setting if the
812  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
813  *
814  * The VF driver needs to be aware of how the tags are stripped by hardware and
815  * inserted by the VF driver based on the level of offload support. The PF will
816  * populate these fields based on where the VLAN tags are expected to be
817  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
818  * interpret these fields. See the definition of the
819  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
820  * enumeration.
821  */
822 struct virtchnl_vlan_offload_caps {
823 	struct virtchnl_vlan_supported_caps stripping_support;
824 	struct virtchnl_vlan_supported_caps insertion_support;
825 	u32 ethertype_init;
826 	u8 ethertype_match;
827 	u8 pad[3];
828 };
829 
830 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
831 
832 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
833  * VF sends this message to determine its VLAN capabilities.
834  *
835  * PF will mark which capabilities it supports based on hardware support and
836  * current configuration. For example, if a port VLAN is configured the PF will
837  * not allow outer VLAN filtering, stripping, or insertion to be configured so
838  * it will block these features from the VF.
839  *
840  * The VF will need to cross reference its capabilities with the PFs
841  * capabilities in the response message from the PF to determine the VLAN
842  * support.
843  */
844 struct virtchnl_vlan_caps {
845 	struct virtchnl_vlan_filtering_caps filtering;
846 	struct virtchnl_vlan_offload_caps offloads;
847 };
848 
849 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
850 
851 struct virtchnl_vlan {
852 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
853 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
854 			 * filtering caps
855 			 */
856 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
857 			 * filtering caps. Note that tpid here does not refer to
858 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
859 			 * actual 2-byte VLAN TPID
860 			 */
861 	u8 pad[2];
862 };
863 
864 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
865 
866 struct virtchnl_vlan_filter {
867 	struct virtchnl_vlan inner;
868 	struct virtchnl_vlan outer;
869 	u8 pad[16];
870 };
871 
872 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
873 
874 /* VIRTCHNL_OP_ADD_VLAN_V2
875  * VIRTCHNL_OP_DEL_VLAN_V2
876  *
877  * VF sends these messages to add/del one or more VLAN tag filters for Rx
878  * traffic.
879  *
880  * The PF attempts to add the filters and returns status.
881  *
882  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
883  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
884  */
885 struct virtchnl_vlan_filter_list_v2 {
886 	u16 vport_id;
887 	u16 num_elements;
888 	u8 pad[4];
889 	struct virtchnl_vlan_filter filters[1];
890 };
891 
892 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
893 
894 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
895  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
896  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
897  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
898  *
899  * VF sends this message to enable or disable VLAN stripping or insertion. It
900  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
901  * allowed and whether or not it's allowed to enable/disable the specific
902  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
903  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
904  * messages are allowed.
905  *
906  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
907  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
908  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
909  * case means the outer most or single VLAN from the VF's perspective. This is
910  * because no outer offloads are supported. See the comments above the
911  * virtchnl_vlan_supported_caps structure for more details.
912  *
913  * virtchnl_vlan_caps.offloads.stripping_support.inner =
914  *			VIRTCHNL_VLAN_TOGGLE |
915  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
916  *
917  * virtchnl_vlan_caps.offloads.insertion_support.inner =
918  *			VIRTCHNL_VLAN_TOGGLE |
919  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
920  *
921  * In order to enable inner (again note that in this case inner is the outer
922  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
923  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
924  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
925  *
926  * virtchnl_vlan_setting.inner_ethertype_setting =
927  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
928  *
929  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
930  * initialization.
931  *
932  * The reason that VLAN TPID(s) are not being used for the
933  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
934  * possible a device could support VLAN insertion and/or stripping offload on
935  * multiple ethertypes concurrently, so this method allows a VF to request
936  * multiple ethertypes in one message using the virtchnl_vlan_support
937  * enumeration.
938  *
939  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
940  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
941  * VLAN insertion and stripping simultaneously. The
942  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
943  * populated based on what the PF can support.
944  *
945  * virtchnl_vlan_caps.offloads.stripping_support.outer =
946  *			VIRTCHNL_VLAN_TOGGLE |
947  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
948  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
949  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
950  *
951  * virtchnl_vlan_caps.offloads.insertion_support.outer =
952  *			VIRTCHNL_VLAN_TOGGLE |
953  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
954  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
955  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
956  *
957  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
958  * would populate the virthcnl_vlan_offload_structure in the following manner
959  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
960  *
961  * virtchnl_vlan_setting.outer_ethertype_setting =
962  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
963  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
964  *
965  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
966  * initialization.
967  *
968  * There is also the case where a PF and the underlying hardware can support
969  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
970  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
971  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
972  * offloads. The ethertypes must match for stripping and insertion.
973  *
974  * virtchnl_vlan_caps.offloads.stripping_support.outer =
975  *			VIRTCHNL_VLAN_TOGGLE |
976  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
977  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
978  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
979  *
980  * virtchnl_vlan_caps.offloads.insertion_support.outer =
981  *			VIRTCHNL_VLAN_TOGGLE |
982  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
983  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
984  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
985  *
986  * virtchnl_vlan_caps.offloads.ethertype_match =
987  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
988  *
989  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
990  * populate the virtchnl_vlan_setting structure in the following manner and send
991  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
992  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
993  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
994  *
995  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
996  *
997  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
998  * initialization.
999  *
1000  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
1001  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
1002  *
1003  * VF sends this message to enable or disable VLAN filtering. It also needs to
1004  * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
1005  * whether or not it's allowed to enable/disable filtering via the
1006  * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1007  * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
1008  * filtering messages are allowed.
1009  *
1010  * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
1011  * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
1012  * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
1013  * means that all filtering ethertypes will to be enabled and disabled together
1014  * regardless of the request from the VF. This means that the underlying
1015  * hardware only supports VLAN filtering for all VLAN the specified ethertypes
1016  * or none of them.
1017  *
1018  * virtchnl_vlan_caps.filtering.filtering_support.outer =
1019  *			VIRTCHNL_VLAN_TOGGLE |
1020  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1021  *			VIRTHCNL_VLAN_ETHERTYPE_88A8 |
1022  *			VIRTCHNL_VLAN_ETHERTYPE_9100 |
1023  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
1024  *
1025  * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
1026  * VLANs aren't supported by the VF driver), the VF would populate the
1027  * virtchnl_vlan_setting structure in the following manner and send the
1028  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
1029  * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
1030  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
1031  *
1032  * virtchnl_vlan_setting.outer_ethertype_setting =
1033  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
1034  *			VIRTCHNL_VLAN_ETHERTYPE_88A8;
1035  *
1036  */
1037 struct virtchnl_vlan_setting {
1038 	u32 outer_ethertype_setting;
1039 	u32 inner_ethertype_setting;
1040 	u16 vport_id;
1041 	u8 pad[6];
1042 };
1043 
1044 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
1045 
1046 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
1047  * VF sends VSI id and flags.
1048  * PF returns status code in retval.
1049  * Note: we assume that broadcast accept mode is always enabled.
1050  */
1051 struct virtchnl_promisc_info {
1052 	u16 vsi_id;
1053 	u16 flags;
1054 };
1055 
1056 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
1057 
1058 #define FLAG_VF_UNICAST_PROMISC	0x00000001
1059 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
1060 
1061 /* VIRTCHNL_OP_GET_STATS
1062  * VF sends this message to request stats for the selected VSI. VF uses
1063  * the virtchnl_queue_select struct to specify the VSI. The queue_id
1064  * field is ignored by the PF.
1065  *
1066  * PF replies with struct virtchnl_eth_stats in an external buffer.
1067  */
1068 
1069 struct virtchnl_eth_stats {
1070 	u64 rx_bytes;			/* received bytes */
1071 	u64 rx_unicast;			/* received unicast pkts */
1072 	u64 rx_multicast;		/* received multicast pkts */
1073 	u64 rx_broadcast;		/* received broadcast pkts */
1074 	u64 rx_discards;
1075 	u64 rx_unknown_protocol;
1076 	u64 tx_bytes;			/* transmitted bytes */
1077 	u64 tx_unicast;			/* transmitted unicast pkts */
1078 	u64 tx_multicast;		/* transmitted multicast pkts */
1079 	u64 tx_broadcast;		/* transmitted broadcast pkts */
1080 	u64 tx_discards;
1081 	u64 tx_errors;
1082 };
1083 
1084 /* VIRTCHNL_OP_CONFIG_RSS_KEY
1085  * VIRTCHNL_OP_CONFIG_RSS_LUT
1086  * VF sends these messages to configure RSS. Only supported if both PF
1087  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1088  * configuration negotiation. If this is the case, then the RSS fields in
1089  * the VF resource struct are valid.
1090  * Both the key and LUT are initialized to 0 by the PF, meaning that
1091  * RSS is effectively disabled until set up by the VF.
1092  */
1093 struct virtchnl_rss_key {
1094 	u16 vsi_id;
1095 	u16 key_len;
1096 	u8 key[1];         /* RSS hash key, packed bytes */
1097 };
1098 
1099 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
1100 
1101 struct virtchnl_rss_lut {
1102 	u16 vsi_id;
1103 	u16 lut_entries;
1104 	u8 lut[1];        /* RSS lookup table */
1105 };
1106 
1107 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
1108 
1109 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
1110  * VIRTCHNL_OP_SET_RSS_HENA
1111  * VF sends these messages to get and set the hash filter enable bits for RSS.
1112  * By default, the PF sets these to all possible traffic types that the
1113  * hardware supports. The VF can query this value if it wants to change the
1114  * traffic types that are hashed by the hardware.
1115  */
1116 struct virtchnl_rss_hena {
1117 	u64 hena;
1118 };
1119 
1120 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
1121 
1122 /* Type of RSS algorithm */
1123 enum virtchnl_rss_algorithm {
1124 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1125 	VIRTCHNL_RSS_ALG_XOR_ASYMMETRIC		= 1,
1126 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1127 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1128 };
1129 
1130 /* This is used by PF driver to enforce how many channels can be supported.
1131  * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
1132  * PF driver will allow only max 4 channels
1133  */
1134 #define VIRTCHNL_MAX_ADQ_CHANNELS 4
1135 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
1136 
1137 /* VIRTCHNL_OP_ENABLE_CHANNELS
1138  * VIRTCHNL_OP_DISABLE_CHANNELS
1139  * VF sends these messages to enable or disable channels based on
1140  * the user specified queue count and queue offset for each traffic class.
1141  * This struct encompasses all the information that the PF needs from
1142  * VF to create a channel.
1143  */
1144 struct virtchnl_channel_info {
1145 	u16 count; /* number of queues in a channel */
1146 	u16 offset; /* queues in a channel start from 'offset' */
1147 	u32 pad;
1148 	u64 max_tx_rate;
1149 };
1150 
1151 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1152 
1153 struct virtchnl_tc_info {
1154 	u32	num_tc;
1155 	u32	pad;
1156 	struct	virtchnl_channel_info list[1];
1157 };
1158 
1159 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
1160 
1161 /* VIRTCHNL_ADD_CLOUD_FILTER
1162  * VIRTCHNL_DEL_CLOUD_FILTER
1163  * VF sends these messages to add or delete a cloud filter based on the
1164  * user specified match and action filters. These structures encompass
1165  * all the information that the PF needs from the VF to add/delete a
1166  * cloud filter.
1167  */
1168 
1169 struct virtchnl_l4_spec {
1170 	u8	src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1171 	u8	dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1172 	/* vlan_prio is part of this 16 bit field even from OS perspective
1173 	 * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
1174 	 * in future, when decided to offload vlan_prio, pass that information
1175 	 * as part of the "vlan_id" field, Bit14..12
1176 	 */
1177 	__be16	vlan_id;
1178 	__be16	pad; /* reserved for future use */
1179 	__be32	src_ip[4];
1180 	__be32	dst_ip[4];
1181 	__be16	src_port;
1182 	__be16	dst_port;
1183 };
1184 
1185 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1186 
1187 union virtchnl_flow_spec {
1188 	struct	virtchnl_l4_spec tcp_spec;
1189 	u8	buffer[128]; /* reserved for future use */
1190 };
1191 
1192 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1193 
1194 enum virtchnl_action {
1195 	/* action types */
1196 	VIRTCHNL_ACTION_DROP = 0,
1197 	VIRTCHNL_ACTION_TC_REDIRECT,
1198 	VIRTCHNL_ACTION_PASSTHRU,
1199 	VIRTCHNL_ACTION_QUEUE,
1200 	VIRTCHNL_ACTION_Q_REGION,
1201 	VIRTCHNL_ACTION_MARK,
1202 	VIRTCHNL_ACTION_COUNT,
1203 };
1204 
1205 enum virtchnl_flow_type {
1206 	/* flow types */
1207 	VIRTCHNL_TCP_V4_FLOW = 0,
1208 	VIRTCHNL_TCP_V6_FLOW,
1209 	VIRTCHNL_UDP_V4_FLOW,
1210 	VIRTCHNL_UDP_V6_FLOW,
1211 };
1212 
1213 struct virtchnl_filter {
1214 	union	virtchnl_flow_spec data;
1215 	union	virtchnl_flow_spec mask;
1216 	enum	virtchnl_flow_type flow_type;
1217 	enum	virtchnl_action action;
1218 	u32	action_meta;
1219 	u8	field_flags;
1220 };
1221 
1222 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1223 
1224 /* VIRTCHNL_OP_DCF_GET_VSI_MAP
1225  * VF sends this message to get VSI mapping table.
1226  * PF responds with an indirect message containing VF's
1227  * HW VSI IDs.
1228  * The index of vf_vsi array is the logical VF ID, the
1229  * value of vf_vsi array is the VF's HW VSI ID with its
1230  * valid configuration.
1231  */
1232 struct virtchnl_dcf_vsi_map {
1233 	u16 pf_vsi;	/* PF's HW VSI ID */
1234 	u16 num_vfs;	/* The actual number of VFs allocated */
1235 #define VIRTCHNL_DCF_VF_VSI_ID_S	0
1236 #define VIRTCHNL_DCF_VF_VSI_ID_M	(0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S)
1237 #define VIRTCHNL_DCF_VF_VSI_VALID	BIT(15)
1238 	u16 vf_vsi[1];
1239 };
1240 
1241 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map);
1242 
1243 #define PKG_NAME_SIZE	32
1244 #define DSN_SIZE	8
1245 
1246 struct pkg_version {
1247 	u8 major;
1248 	u8 minor;
1249 	u8 update;
1250 	u8 draft;
1251 };
1252 
1253 VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version);
1254 
1255 struct virtchnl_pkg_info {
1256 	struct pkg_version pkg_ver;
1257 	u32 track_id;
1258 	char pkg_name[PKG_NAME_SIZE];
1259 	u8 dsn[DSN_SIZE];
1260 };
1261 
1262 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info);
1263 
1264 /* VIRTCHNL_OP_DCF_VLAN_OFFLOAD
1265  * DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get
1266  * the double VLAN configuration, then DCF sends this message to configure the
1267  * outer or inner VLAN offloads (insertion and strip) for the target VF.
1268  */
1269 struct virtchnl_dcf_vlan_offload {
1270 	u16 vf_id;
1271 	u16 tpid;
1272 	u16 vlan_flags;
1273 #define VIRTCHNL_DCF_VLAN_TYPE_S		0
1274 #define VIRTCHNL_DCF_VLAN_TYPE_M		\
1275 			(0x1 << VIRTCHNL_DCF_VLAN_TYPE_S)
1276 #define VIRTCHNL_DCF_VLAN_TYPE_INNER		0x0
1277 #define VIRTCHNL_DCF_VLAN_TYPE_OUTER		0x1
1278 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_S		1
1279 #define VIRTCHNL_DCF_VLAN_INSERT_MODE_M	\
1280 			(0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S)
1281 #define VIRTCHNL_DCF_VLAN_INSERT_DISABLE	0x1
1282 #define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED	0x2
1283 #define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC	0x3
1284 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_S		4
1285 #define VIRTCHNL_DCF_VLAN_STRIP_MODE_M		\
1286 			(0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S)
1287 #define VIRTCHNL_DCF_VLAN_STRIP_DISABLE		0x1
1288 #define VIRTCHNL_DCF_VLAN_STRIP_ONLY		0x2
1289 #define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC	0x3
1290 	u16 vlan_id;
1291 	u16 pad[4];
1292 };
1293 
1294 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload);
1295 
1296 struct virtchnl_supported_rxdids {
1297 	u64 supported_rxdids;
1298 };
1299 
1300 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids);
1301 
1302 /* VIRTCHNL_OP_EVENT
1303  * PF sends this message to inform the VF driver of events that may affect it.
1304  * No direct response is expected from the VF, though it may generate other
1305  * messages in response to this one.
1306  */
1307 enum virtchnl_event_codes {
1308 	VIRTCHNL_EVENT_UNKNOWN = 0,
1309 	VIRTCHNL_EVENT_LINK_CHANGE,
1310 	VIRTCHNL_EVENT_RESET_IMPENDING,
1311 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1312 	VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE,
1313 };
1314 
1315 #define PF_EVENT_SEVERITY_INFO		0
1316 #define PF_EVENT_SEVERITY_ATTENTION	1
1317 #define PF_EVENT_SEVERITY_ACTION_REQUIRED	2
1318 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1319 
1320 struct virtchnl_pf_event {
1321 	enum virtchnl_event_codes event;
1322 	union {
1323 		/* If the PF driver does not support the new speed reporting
1324 		 * capabilities then use link_event else use link_event_adv to
1325 		 * get the speed and link information. The ability to understand
1326 		 * new speeds is indicated by setting the capability flag
1327 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1328 		 * in virtchnl_vf_resource struct and can be used to determine
1329 		 * which link event struct to use below.
1330 		 */
1331 		struct {
1332 			enum virtchnl_link_speed link_speed;
1333 			u8 link_status;
1334 		} link_event;
1335 		struct {
1336 			/* link_speed provided in Mbps */
1337 			u32 link_speed;
1338 			u8 link_status;
1339 		} link_event_adv;
1340 		struct {
1341 			u16 vf_id;
1342 			u16 vsi_id;
1343 		} vf_vsi_map;
1344 	} event_data;
1345 
1346 	int severity;
1347 };
1348 
1349 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1350 
1351 
1352 /* VF reset states - these are written into the RSTAT register:
1353  * VFGEN_RSTAT on the VF
1354  * When the PF initiates a reset, it writes 0
1355  * When the reset is complete, it writes 1
1356  * When the PF detects that the VF has recovered, it writes 2
1357  * VF checks this register periodically to determine if a reset has occurred,
1358  * then polls it to know when the reset is complete.
1359  * If either the PF or VF reads the register while the hardware
1360  * is in a reset state, it will return DEADBEEF, which, when masked
1361  * will result in 3.
1362  */
1363 enum virtchnl_vfr_states {
1364 	VIRTCHNL_VFR_INPROGRESS = 0,
1365 	VIRTCHNL_VFR_COMPLETED,
1366 	VIRTCHNL_VFR_VFACTIVE,
1367 };
1368 
1369 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1370 #define PROTO_HDR_SHIFT			5
1371 #define PROTO_HDR_FIELD_START(proto_hdr_type) \
1372 					(proto_hdr_type << PROTO_HDR_SHIFT)
1373 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1374 
1375 /* VF use these macros to configure each protocol header.
1376  * Specify which protocol headers and protocol header fields base on
1377  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1378  * @param hdr: a struct of virtchnl_proto_hdr
1379  * @param hdr_type: ETH/IPV4/TCP, etc
1380  * @param field: SRC/DST/TEID/SPI, etc
1381  */
1382 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1383 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1384 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1385 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1386 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1387 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1388 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1389 
1390 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1391 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1392 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1393 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1394 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1395 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1396 
1397 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1398 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1399 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1400 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1401 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1402 	((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
1403 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1404 	(VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
1405 	 VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
1406 
1407 /* Protocol header type within a packet segment. A segment consists of one or
1408  * more protocol headers that make up a logical group of protocol headers. Each
1409  * logical group of protocol headers encapsulates or is encapsulated using/by
1410  * tunneling or encapsulation protocols for network virtualization.
1411  */
1412 enum virtchnl_proto_hdr_type {
1413 	VIRTCHNL_PROTO_HDR_NONE,
1414 	VIRTCHNL_PROTO_HDR_ETH,
1415 	VIRTCHNL_PROTO_HDR_S_VLAN,
1416 	VIRTCHNL_PROTO_HDR_C_VLAN,
1417 	VIRTCHNL_PROTO_HDR_IPV4,
1418 	VIRTCHNL_PROTO_HDR_IPV6,
1419 	VIRTCHNL_PROTO_HDR_TCP,
1420 	VIRTCHNL_PROTO_HDR_UDP,
1421 	VIRTCHNL_PROTO_HDR_SCTP,
1422 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1423 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1424 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1425 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1426 	VIRTCHNL_PROTO_HDR_PPPOE,
1427 	VIRTCHNL_PROTO_HDR_L2TPV3,
1428 	VIRTCHNL_PROTO_HDR_ESP,
1429 	VIRTCHNL_PROTO_HDR_AH,
1430 	VIRTCHNL_PROTO_HDR_PFCP,
1431 	VIRTCHNL_PROTO_HDR_GTPC,
1432 	VIRTCHNL_PROTO_HDR_ECPRI,
1433 };
1434 
1435 /* Protocol header field within a protocol header. */
1436 enum virtchnl_proto_hdr_field {
1437 	/* ETHER */
1438 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1439 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1440 	VIRTCHNL_PROTO_HDR_ETH_DST,
1441 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1442 	/* S-VLAN */
1443 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1444 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1445 	/* C-VLAN */
1446 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1447 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1448 	/* IPV4 */
1449 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1450 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1451 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1452 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1453 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1454 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1455 	/* IPV6 */
1456 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1457 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1458 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1459 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1460 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1461 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1462 	/* IPV6 Prefix */
1463 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
1464 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
1465 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
1466 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
1467 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
1468 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
1469 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
1470 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
1471 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
1472 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
1473 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
1474 	VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
1475 	/* TCP */
1476 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1477 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1478 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1479 	/* UDP */
1480 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1481 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1482 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1483 	/* SCTP */
1484 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1485 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1486 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1487 	/* GTPU_IP */
1488 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1489 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1490 	/* GTPU_EH */
1491 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1492 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1493 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1494 	/* PPPOE */
1495 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1496 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1497 	/* L2TPV3 */
1498 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1499 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1500 	/* ESP */
1501 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1502 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1503 	/* AH */
1504 	VIRTCHNL_PROTO_HDR_AH_SPI =
1505 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1506 	/* PFCP */
1507 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1508 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1509 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1510 	/* GTPC */
1511 	VIRTCHNL_PROTO_HDR_GTPC_TEID =
1512 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
1513 	/* ECPRI */
1514 	VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
1515 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
1516 	VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
1517 };
1518 
1519 struct virtchnl_proto_hdr {
1520 	enum virtchnl_proto_hdr_type type;
1521 	u32 field_selector; /* a bit mask to select field for header type */
1522 	u8 buffer[64];
1523 	/**
1524 	 * binary buffer in network order for specific header type.
1525 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1526 	 * header is expected to be copied into the buffer.
1527 	 */
1528 };
1529 
1530 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1531 
1532 struct virtchnl_proto_hdrs {
1533 	u8 tunnel_level;
1534 	/**
1535 	 * specify where protocol header start from.
1536 	 * 0 - from the outer layer
1537 	 * 1 - from the first inner layer
1538 	 * 2 - from the second inner layer
1539 	 * ....
1540 	 **/
1541 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1542 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1543 };
1544 
1545 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1546 
1547 struct virtchnl_rss_cfg {
1548 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1549 	enum virtchnl_rss_algorithm rss_algorithm; /* rss algorithm type */
1550 	u8 reserved[128];                          /* reserve for future */
1551 };
1552 
1553 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1554 
1555 /* action configuration for FDIR */
1556 struct virtchnl_filter_action {
1557 	enum virtchnl_action type;
1558 	union {
1559 		/* used for queue and qgroup action */
1560 		struct {
1561 			u16 index;
1562 			u8 region;
1563 		} queue;
1564 		/* used for count action */
1565 		struct {
1566 			/* share counter ID with other flow rules */
1567 			u8 shared;
1568 			u32 id; /* counter ID */
1569 		} count;
1570 		/* used for mark action */
1571 		u32 mark_id;
1572 		u8 reserve[32];
1573 	} act_conf;
1574 };
1575 
1576 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1577 
1578 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1579 
1580 struct virtchnl_filter_action_set {
1581 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1582 	int count;
1583 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1584 };
1585 
1586 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1587 
1588 /* pattern and action for FDIR rule */
1589 struct virtchnl_fdir_rule {
1590 	struct virtchnl_proto_hdrs proto_hdrs;
1591 	struct virtchnl_filter_action_set action_set;
1592 };
1593 
1594 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1595 
1596 /* query information to retrieve fdir rule counters.
1597  * PF will fill out this structure to reset counter.
1598  */
1599 struct virtchnl_fdir_query_info {
1600 	u32 match_packets_valid:1;
1601 	u32 match_bytes_valid:1;
1602 	u32 reserved:30;  /* Reserved, must be zero. */
1603 	u32 pad;
1604 	u64 matched_packets; /* Number of packets for this rule. */
1605 	u64 matched_bytes;   /* Number of bytes through this rule. */
1606 };
1607 
1608 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_fdir_query_info);
1609 
1610 /* Status returned to VF after VF requests FDIR commands
1611  * VIRTCHNL_FDIR_SUCCESS
1612  * VF FDIR related request is successfully done by PF
1613  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1614  *
1615  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1616  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1617  *
1618  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1619  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1620  *
1621  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1622  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1623  *
1624  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1625  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1626  *
1627  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1628  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1629  * or HW doesn't support.
1630  *
1631  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1632  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1633  * for programming.
1634  *
1635  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1636  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1637  * for example, VF query counter of a rule who has no counter action.
1638  */
1639 enum virtchnl_fdir_prgm_status {
1640 	VIRTCHNL_FDIR_SUCCESS = 0,
1641 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1642 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1643 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1644 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1645 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1646 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1647 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1648 };
1649 
1650 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1651  * VF sends this request to PF by filling out vsi_id,
1652  * validate_only and rule_cfg. PF will return flow_id
1653  * if the request is successfully done and return add_status to VF.
1654  */
1655 struct virtchnl_fdir_add {
1656 	u16 vsi_id;  /* INPUT */
1657 	/*
1658 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1659 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1660 	 */
1661 	u16 validate_only; /* INPUT */
1662 	u32 flow_id;       /* OUTPUT */
1663 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1664 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1665 };
1666 
1667 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1668 
1669 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1670  * VF sends this request to PF by filling out vsi_id
1671  * and flow_id. PF will return del_status to VF.
1672  */
1673 struct virtchnl_fdir_del {
1674 	u16 vsi_id;  /* INPUT */
1675 	u16 pad;
1676 	u32 flow_id; /* INPUT */
1677 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1678 };
1679 
1680 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1681 
1682 /* VIRTCHNL_OP_QUERY_FDIR_FILTER
1683  * VF sends this request to PF by filling out vsi_id,
1684  * flow_id and reset_counter. PF will return query_info
1685  * and query_status to VF.
1686  */
1687 struct virtchnl_fdir_query {
1688 	u16 vsi_id;   /* INPUT */
1689 	u16 pad1[3];
1690 	u32 flow_id;  /* INPUT */
1691 	u32 reset_counter:1; /* INPUT */
1692 	struct virtchnl_fdir_query_info query_info; /* OUTPUT */
1693 	enum virtchnl_fdir_prgm_status status;  /* OUTPUT */
1694 	u32 pad2;
1695 };
1696 
1697 VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_fdir_query);
1698 
1699 /* TX and RX queue types are valid in legacy as well as split queue models.
1700  * With Split Queue model, 2 additional types are introduced - TX_COMPLETION
1701  * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW
1702  * posts completions.
1703  */
1704 enum virtchnl_queue_type {
1705 	VIRTCHNL_QUEUE_TYPE_TX			= 0,
1706 	VIRTCHNL_QUEUE_TYPE_RX			= 1,
1707 	VIRTCHNL_QUEUE_TYPE_TX_COMPLETION	= 2,
1708 	VIRTCHNL_QUEUE_TYPE_RX_BUFFER		= 3,
1709 	VIRTCHNL_QUEUE_TYPE_CONFIG_TX		= 4,
1710 	VIRTCHNL_QUEUE_TYPE_CONFIG_RX		= 5
1711 };
1712 
1713 
1714 /* structure to specify a chunk of contiguous queues */
1715 struct virtchnl_queue_chunk {
1716 	enum virtchnl_queue_type type;
1717 	u16 start_queue_id;
1718 	u16 num_queues;
1719 };
1720 
1721 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1722 
1723 /* structure to specify several chunks of contiguous queues */
1724 struct virtchnl_queue_chunks {
1725 	u16 num_chunks;
1726 	u16 rsvd;
1727 	struct virtchnl_queue_chunk chunks[1];
1728 };
1729 
1730 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
1731 
1732 
1733 /* VIRTCHNL_OP_ENABLE_QUEUES_V2
1734  * VIRTCHNL_OP_DISABLE_QUEUES_V2
1735  * VIRTCHNL_OP_DEL_QUEUES
1736  *
1737  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1738  * then all of these ops are available.
1739  *
1740  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1741  * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are
1742  * available.
1743  *
1744  * PF sends these messages to enable, disable or delete queues specified in
1745  * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues
1746  * to be enabled/disabled/deleted. Also applicable to single queue RX or
1747  * TX. CP performs requested action and returns status.
1748  */
1749 struct virtchnl_del_ena_dis_queues {
1750 	u16 vport_id;
1751 	u16 pad;
1752 	struct virtchnl_queue_chunks chunks;
1753 };
1754 
1755 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
1756 
1757 /* Virtchannel interrupt throttling rate index */
1758 enum virtchnl_itr_idx {
1759 	VIRTCHNL_ITR_IDX_0	= 0,
1760 	VIRTCHNL_ITR_IDX_1	= 1,
1761 	VIRTCHNL_ITR_IDX_NO_ITR	= 3,
1762 };
1763 
1764 /* Queue to vector mapping */
1765 struct virtchnl_queue_vector {
1766 	u16 queue_id;
1767 	u16 vector_id;
1768 	u8 pad[4];
1769 	enum virtchnl_itr_idx itr_idx;
1770 	enum virtchnl_queue_type queue_type;
1771 };
1772 
1773 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
1774 
1775 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR
1776  * VIRTCHNL_OP_UNMAP_QUEUE_VECTOR
1777  *
1778  * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1779  * then all of these ops are available.
1780  *
1781  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1782  * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available.
1783  *
1784  * PF sends this message to map or unmap queues to vectors and ITR index
1785  * registers. External data buffer contains virtchnl_queue_vector_maps structure
1786  * that contains num_qv_maps of virtchnl_queue_vector structures.
1787  * CP maps the requested queue vector maps after validating the queue and vector
1788  * ids and returns a status code.
1789  */
1790 struct virtchnl_queue_vector_maps {
1791 	u16 vport_id;
1792 	u16 num_qv_maps;
1793 	u8 pad[4];
1794 	struct virtchnl_queue_vector qv_maps[1];
1795 };
1796 
1797 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
1798 
1799 
1800 /* Since VF messages are limited by u16 size, precalculate the maximum possible
1801  * values of nested elements in virtchnl structures that virtual channel can
1802  * possibly handle in a single message.
1803  */
1804 enum virtchnl_vector_limits {
1805 	VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX	=
1806 		((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
1807 		sizeof(struct virtchnl_queue_pair_info),
1808 
1809 	VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX		=
1810 		((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
1811 		sizeof(struct virtchnl_vector_map),
1812 
1813 	VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX	=
1814 		((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
1815 		sizeof(struct virtchnl_ether_addr),
1816 
1817 	VIRTCHNL_OP_ADD_DEL_VLAN_MAX		=
1818 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
1819 		sizeof(u16),
1820 
1821 
1822 	VIRTCHNL_OP_ENABLE_CHANNELS_MAX		=
1823 		((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
1824 		sizeof(struct virtchnl_channel_info),
1825 
1826 	VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX	=
1827 		((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
1828 		sizeof(struct virtchnl_queue_chunk),
1829 
1830 	VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX	=
1831 		((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
1832 		sizeof(struct virtchnl_queue_vector),
1833 
1834 	VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX		=
1835 		((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
1836 		sizeof(struct virtchnl_vlan_filter),
1837 };
1838 
1839 /**
1840  * virtchnl_vc_validate_vf_msg
1841  * @ver: Virtchnl version info
1842  * @v_opcode: Opcode for the message
1843  * @msg: pointer to the msg buffer
1844  * @msglen: msg length
1845  *
1846  * validate msg format against struct for each opcode
1847  */
1848 static inline int
1849 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1850 			    u8 *msg, u16 msglen)
1851 {
1852 	bool err_msg_format = false;
1853 	u32 valid_len = 0;
1854 
1855 	/* Validate message length. */
1856 	switch (v_opcode) {
1857 	case VIRTCHNL_OP_VERSION:
1858 		valid_len = sizeof(struct virtchnl_version_info);
1859 		break;
1860 	case VIRTCHNL_OP_RESET_VF:
1861 		break;
1862 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1863 		if (VF_IS_V11(ver))
1864 			valid_len = sizeof(u32);
1865 		break;
1866 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1867 		valid_len = sizeof(struct virtchnl_txq_info);
1868 		break;
1869 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1870 		valid_len = sizeof(struct virtchnl_rxq_info);
1871 		break;
1872 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1873 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
1874 		if (msglen >= valid_len) {
1875 			struct virtchnl_vsi_queue_config_info *vqc =
1876 			    (struct virtchnl_vsi_queue_config_info *)msg;
1877 
1878 			if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
1879 			    VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
1880 				err_msg_format = true;
1881 				break;
1882 			}
1883 
1884 			valid_len += (vqc->num_queue_pairs *
1885 				      sizeof(struct
1886 					     virtchnl_queue_pair_info));
1887 		}
1888 		break;
1889 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1890 		valid_len = sizeof(struct virtchnl_irq_map_info);
1891 		if (msglen >= valid_len) {
1892 			struct virtchnl_irq_map_info *vimi =
1893 			    (struct virtchnl_irq_map_info *)msg;
1894 
1895 			if (vimi->num_vectors == 0 || vimi->num_vectors >
1896 			    VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
1897 				err_msg_format = true;
1898 				break;
1899 			}
1900 
1901 			valid_len += (vimi->num_vectors *
1902 				      sizeof(struct virtchnl_vector_map));
1903 		}
1904 		break;
1905 	case VIRTCHNL_OP_ENABLE_QUEUES:
1906 	case VIRTCHNL_OP_DISABLE_QUEUES:
1907 		valid_len = sizeof(struct virtchnl_queue_select);
1908 		break;
1909 	case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
1910 		break;
1911 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1912 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1913 		valid_len = sizeof(struct virtchnl_ether_addr_list);
1914 		if (msglen >= valid_len) {
1915 			struct virtchnl_ether_addr_list *veal =
1916 			    (struct virtchnl_ether_addr_list *)msg;
1917 
1918 			if (veal->num_elements == 0 || veal->num_elements >
1919 			    VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
1920 				err_msg_format = true;
1921 				break;
1922 			}
1923 
1924 			valid_len += veal->num_elements *
1925 			    sizeof(struct virtchnl_ether_addr);
1926 		}
1927 		break;
1928 	case VIRTCHNL_OP_ADD_VLAN:
1929 	case VIRTCHNL_OP_DEL_VLAN:
1930 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
1931 		if (msglen >= valid_len) {
1932 			struct virtchnl_vlan_filter_list *vfl =
1933 			    (struct virtchnl_vlan_filter_list *)msg;
1934 
1935 			if (vfl->num_elements == 0 || vfl->num_elements >
1936 			    VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
1937 				err_msg_format = true;
1938 				break;
1939 			}
1940 
1941 			valid_len += vfl->num_elements * sizeof(u16);
1942 		}
1943 		break;
1944 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1945 		valid_len = sizeof(struct virtchnl_promisc_info);
1946 		break;
1947 	case VIRTCHNL_OP_GET_STATS:
1948 		valid_len = sizeof(struct virtchnl_queue_select);
1949 		break;
1950 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1951 		valid_len = sizeof(struct virtchnl_rss_key);
1952 		if (msglen >= valid_len) {
1953 			struct virtchnl_rss_key *vrk =
1954 				(struct virtchnl_rss_key *)msg;
1955 
1956 			if (vrk->key_len == 0) {
1957 				/* zero length is allowed as input */
1958 				break;
1959 			}
1960 
1961 			valid_len += vrk->key_len - 1;
1962 		}
1963 		break;
1964 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1965 		valid_len = sizeof(struct virtchnl_rss_lut);
1966 		if (msglen >= valid_len) {
1967 			struct virtchnl_rss_lut *vrl =
1968 				(struct virtchnl_rss_lut *)msg;
1969 
1970 			if (vrl->lut_entries == 0) {
1971 				/* zero entries is allowed as input */
1972 				break;
1973 			}
1974 
1975 			valid_len += vrl->lut_entries - 1;
1976 		}
1977 		break;
1978 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1979 		break;
1980 	case VIRTCHNL_OP_SET_RSS_HENA:
1981 		valid_len = sizeof(struct virtchnl_rss_hena);
1982 		break;
1983 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1984 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1985 		break;
1986 	case VIRTCHNL_OP_REQUEST_QUEUES:
1987 		valid_len = sizeof(struct virtchnl_vf_res_request);
1988 		break;
1989 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1990 		valid_len = sizeof(struct virtchnl_tc_info);
1991 		if (msglen >= valid_len) {
1992 			struct virtchnl_tc_info *vti =
1993 				(struct virtchnl_tc_info *)msg;
1994 
1995 			if (vti->num_tc == 0 || vti->num_tc >
1996 			    VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
1997 				err_msg_format = true;
1998 				break;
1999 			}
2000 
2001 			valid_len += (vti->num_tc - 1) *
2002 				     sizeof(struct virtchnl_channel_info);
2003 		}
2004 		break;
2005 	case VIRTCHNL_OP_DISABLE_CHANNELS:
2006 		break;
2007 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
2008 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
2009 		valid_len = sizeof(struct virtchnl_filter);
2010 		break;
2011 	case VIRTCHNL_OP_DCF_VLAN_OFFLOAD:
2012 		valid_len = sizeof(struct virtchnl_dcf_vlan_offload);
2013 		break;
2014 	case VIRTCHNL_OP_DCF_CMD_DESC:
2015 	case VIRTCHNL_OP_DCF_CMD_BUFF:
2016 		/* These two opcodes are specific to handle the AdminQ command,
2017 		 * so the validation needs to be done in PF's context.
2018 		 */
2019 		valid_len = msglen;
2020 		break;
2021 	case VIRTCHNL_OP_DCF_DISABLE:
2022 	case VIRTCHNL_OP_DCF_GET_VSI_MAP:
2023 	case VIRTCHNL_OP_DCF_GET_PKG_INFO:
2024 		break;
2025 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
2026 		break;
2027 	case VIRTCHNL_OP_ADD_RSS_CFG:
2028 	case VIRTCHNL_OP_DEL_RSS_CFG:
2029 		valid_len = sizeof(struct virtchnl_rss_cfg);
2030 		break;
2031 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
2032 		valid_len = sizeof(struct virtchnl_fdir_add);
2033 		break;
2034 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
2035 		valid_len = sizeof(struct virtchnl_fdir_del);
2036 		break;
2037 	case VIRTCHNL_OP_QUERY_FDIR_FILTER:
2038 		valid_len = sizeof(struct virtchnl_fdir_query);
2039 		break;
2040 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
2041 		break;
2042 	case VIRTCHNL_OP_ADD_VLAN_V2:
2043 	case VIRTCHNL_OP_DEL_VLAN_V2:
2044 		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
2045 		if (msglen >= valid_len) {
2046 			struct virtchnl_vlan_filter_list_v2 *vfl =
2047 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
2048 
2049 			if (vfl->num_elements == 0 || vfl->num_elements >
2050 			    VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
2051 				err_msg_format = true;
2052 				break;
2053 			}
2054 
2055 			valid_len += (vfl->num_elements - 1) *
2056 				sizeof(struct virtchnl_vlan_filter);
2057 		}
2058 		break;
2059 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
2060 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
2061 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
2062 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
2063 	case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
2064 	case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
2065 		valid_len = sizeof(struct virtchnl_vlan_setting);
2066 		break;
2067 	case VIRTCHNL_OP_ENABLE_QUEUES_V2:
2068 	case VIRTCHNL_OP_DISABLE_QUEUES_V2:
2069 		valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
2070 		if (msglen >= valid_len) {
2071 			struct virtchnl_del_ena_dis_queues *qs =
2072 				(struct virtchnl_del_ena_dis_queues *)msg;
2073 			if (qs->chunks.num_chunks == 0 ||
2074 			    qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
2075 				err_msg_format = true;
2076 				break;
2077 			}
2078 			valid_len += (qs->chunks.num_chunks - 1) *
2079 				      sizeof(struct virtchnl_queue_chunk);
2080 		}
2081 		break;
2082 	case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
2083 		valid_len = sizeof(struct virtchnl_queue_vector_maps);
2084 		if (msglen >= valid_len) {
2085 			struct virtchnl_queue_vector_maps *v_qp =
2086 				(struct virtchnl_queue_vector_maps *)msg;
2087 			if (v_qp->num_qv_maps == 0 ||
2088 			    v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
2089 				err_msg_format = true;
2090 				break;
2091 			}
2092 			valid_len += (v_qp->num_qv_maps - 1) *
2093 				      sizeof(struct virtchnl_queue_vector);
2094 		}
2095 		break;
2096 	/* These are always errors coming from the VF. */
2097 	case VIRTCHNL_OP_EVENT:
2098 	case VIRTCHNL_OP_UNKNOWN:
2099 	default:
2100 		return VIRTCHNL_STATUS_ERR_PARAM;
2101 	}
2102 	/* few more checks */
2103 	if (err_msg_format || valid_len != msglen)
2104 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
2105 
2106 	return 0;
2107 }
2108 #endif /* _VIRTCHNL_H_ */
2109