xref: /dpdk/drivers/common/cpt/cpt_ucode.h (revision fdf7471cccb8be023037c218d1402c0549eb2c8e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8 
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12 
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17 
18 static uint8_t zuc_d[32] = {
19 	0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20 	0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21 	0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22 	0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24 
25 static __rte_always_inline int
26 cpt_is_algo_supported(struct rte_crypto_sym_xform *xform)
27 {
28 	/*
29 	 * Microcode only supports the following combination.
30 	 * Encryption followed by authentication
31 	 * Authentication followed by decryption
32 	 */
33 	if (xform->next) {
34 		if ((xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
35 		    (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
36 		    (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)) {
37 			/* Unsupported as of now by microcode */
38 			CPT_LOG_DP_ERR("Unsupported combination");
39 			return -1;
40 		}
41 		if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
42 		    (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
43 		    (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT)) {
44 			/* For GMAC auth there is no cipher operation */
45 			if (xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM ||
46 			    xform->next->auth.algo !=
47 			    RTE_CRYPTO_AUTH_AES_GMAC) {
48 				/* Unsupported as of now by microcode */
49 				CPT_LOG_DP_ERR("Unsupported combination");
50 				return -1;
51 			}
52 		}
53 	}
54 	return 0;
55 }
56 
57 static __rte_always_inline void
58 gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
59 {
60 	int i, base;
61 
62 	for (i = 0; i < 4; i++) {
63 		base = 4 * i;
64 		keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
65 			(ck[base + 2] << 8) | (ck[base + 3]);
66 		keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
67 	}
68 }
69 
70 static __rte_always_inline void
71 cpt_fc_salt_update(void *ctx,
72 		   uint8_t *salt)
73 {
74 	struct cpt_ctx *cpt_ctx = ctx;
75 	memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4);
76 }
77 
78 static __rte_always_inline int
79 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
80 {
81 	switch (key_len) {
82 	case CPT_BYTE_16:
83 	case CPT_BYTE_24:
84 	case CPT_BYTE_32:
85 		return 0;
86 	default:
87 		return -1;
88 	}
89 }
90 
91 static __rte_always_inline int
92 cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
93 {
94 	int fc_type = 0;
95 	switch (type) {
96 	case PASSTHROUGH:
97 		fc_type = FC_GEN;
98 		break;
99 	case DES3_CBC:
100 	case DES3_ECB:
101 		fc_type = FC_GEN;
102 		break;
103 	case AES_CBC:
104 	case AES_ECB:
105 	case AES_CFB:
106 	case AES_CTR:
107 	case AES_GCM:
108 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
109 			return -1;
110 		fc_type = FC_GEN;
111 		break;
112 	case AES_XTS:
113 		key_len = key_len / 2;
114 		if (unlikely(key_len == CPT_BYTE_24)) {
115 			CPT_LOG_DP_ERR("Invalid AES key len for XTS");
116 			return -1;
117 		}
118 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
119 			return -1;
120 		fc_type = FC_GEN;
121 		break;
122 	case ZUC_EEA3:
123 	case SNOW3G_UEA2:
124 		if (unlikely(key_len != 16))
125 			return -1;
126 		/* No support for AEAD yet */
127 		if (unlikely(ctx->hash_type))
128 			return -1;
129 		fc_type = ZUC_SNOW3G;
130 		break;
131 	case KASUMI_F8_CBC:
132 	case KASUMI_F8_ECB:
133 		if (unlikely(key_len != 16))
134 			return -1;
135 		/* No support for AEAD yet */
136 		if (unlikely(ctx->hash_type))
137 			return -1;
138 		fc_type = KASUMI;
139 		break;
140 	default:
141 		return -1;
142 	}
143 
144 	ctx->fc_type = fc_type;
145 	return 0;
146 }
147 
148 static __rte_always_inline void
149 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
150 {
151 	cpt_ctx->enc_cipher = 0;
152 	CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
153 }
154 
155 static __rte_always_inline void
156 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
157 {
158 	mc_aes_type_t aes_key_type = 0;
159 	switch (key_len) {
160 	case CPT_BYTE_16:
161 		aes_key_type = AES_128_BIT;
162 		break;
163 	case CPT_BYTE_24:
164 		aes_key_type = AES_192_BIT;
165 		break;
166 	case CPT_BYTE_32:
167 		aes_key_type = AES_256_BIT;
168 		break;
169 	default:
170 		/* This should not happen */
171 		CPT_LOG_DP_ERR("Invalid AES key len");
172 		return;
173 	}
174 	CPT_P_ENC_CTRL(fctx).aes_key = aes_key_type;
175 }
176 
177 static __rte_always_inline void
178 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
179 		uint16_t key_len)
180 {
181 	uint32_t keyx[4];
182 	cpt_ctx->snow3g = 1;
183 	gen_key_snow3g(key, keyx);
184 	memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
185 	cpt_ctx->zsk_flags = 0;
186 }
187 
188 static __rte_always_inline void
189 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
190 		uint16_t key_len)
191 {
192 	cpt_ctx->snow3g = 0;
193 	memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
194 	memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
195 	cpt_ctx->zsk_flags = 0;
196 }
197 
198 static __rte_always_inline void
199 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
200 		uint16_t key_len)
201 {
202 	cpt_ctx->k_ecb = 1;
203 	memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
204 	cpt_ctx->zsk_flags = 0;
205 }
206 
207 static __rte_always_inline void
208 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
209 		uint16_t key_len)
210 {
211 	memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
212 	cpt_ctx->zsk_flags = 0;
213 }
214 
215 static __rte_always_inline int
216 cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, const uint8_t *key,
217 		    uint16_t key_len, uint8_t *salt)
218 {
219 	struct cpt_ctx *cpt_ctx = ctx;
220 	mc_fc_context_t *fctx = &cpt_ctx->fctx;
221 	uint64_t *ctrl_flags = NULL;
222 	int ret;
223 
224 	ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
225 	if (unlikely(ret))
226 		return -1;
227 
228 	if (cpt_ctx->fc_type == FC_GEN) {
229 		ctrl_flags = (uint64_t *)&(fctx->enc.enc_ctrl.flags);
230 		*ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
231 		/*
232 		 * We need to always say IV is from DPTR as user can
233 		 * sometimes iverride IV per operation.
234 		 */
235 		CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_DPTR;
236 	}
237 
238 	switch (type) {
239 	case PASSTHROUGH:
240 		cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
241 		goto fc_success;
242 	case DES3_CBC:
243 		/* CPT performs DES using 3DES with the 8B DES-key
244 		 * replicated 2 more times to match the 24B 3DES-key.
245 		 * Eg. If org. key is "0x0a 0x0b", then new key is
246 		 * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
247 		 */
248 		if (key_len == 8) {
249 			/* Skipping the first 8B as it will be copied
250 			 * in the regular code flow
251 			 */
252 			memcpy(fctx->enc.encr_key+key_len, key, key_len);
253 			memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
254 		}
255 		break;
256 	case DES3_ECB:
257 		/* For DES3_ECB IV need to be from CTX. */
258 		CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_CTX;
259 		break;
260 	case AES_CBC:
261 	case AES_ECB:
262 	case AES_CFB:
263 	case AES_CTR:
264 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
265 		break;
266 	case AES_GCM:
267 		/* Even though iv source is from dptr,
268 		 * aes_gcm salt is taken from ctx
269 		 */
270 		if (salt) {
271 			memcpy(fctx->enc.encr_iv, salt, 4);
272 			/* Assuming it was just salt update
273 			 * and nothing else
274 			 */
275 			if (!key)
276 				goto fc_success;
277 		}
278 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
279 		break;
280 	case AES_XTS:
281 		key_len = key_len / 2;
282 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
283 
284 		/* Copy key2 for XTS into ipad */
285 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
286 		memcpy(fctx->hmac.ipad, &key[key_len], key_len);
287 		break;
288 	case SNOW3G_UEA2:
289 		cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
290 		goto success;
291 	case ZUC_EEA3:
292 		cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
293 		goto success;
294 	case KASUMI_F8_ECB:
295 		cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
296 		goto success;
297 	case KASUMI_F8_CBC:
298 		cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
299 		goto success;
300 	default:
301 		break;
302 	}
303 
304 	/* Only for FC_GEN case */
305 
306 	/* For GMAC auth, cipher must be NULL */
307 	if (cpt_ctx->hash_type != GMAC_TYPE)
308 		CPT_P_ENC_CTRL(fctx).enc_cipher = type;
309 
310 	memcpy(fctx->enc.encr_key, key, key_len);
311 
312 fc_success:
313 	if (ctrl_flags != NULL)
314 		*ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
315 
316 success:
317 	cpt_ctx->enc_cipher = type;
318 
319 	return 0;
320 }
321 
322 static __rte_always_inline uint32_t
323 fill_sg_comp(sg_comp_t *list,
324 	     uint32_t i,
325 	     phys_addr_t dma_addr,
326 	     uint32_t size)
327 {
328 	sg_comp_t *to = &list[i>>2];
329 
330 	to->u.s.len[i%4] = rte_cpu_to_be_16(size);
331 	to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
332 	i++;
333 	return i;
334 }
335 
336 static __rte_always_inline uint32_t
337 fill_sg_comp_from_buf(sg_comp_t *list,
338 		      uint32_t i,
339 		      buf_ptr_t *from)
340 {
341 	sg_comp_t *to = &list[i>>2];
342 
343 	to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
344 	to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
345 	i++;
346 	return i;
347 }
348 
349 static __rte_always_inline uint32_t
350 fill_sg_comp_from_buf_min(sg_comp_t *list,
351 			  uint32_t i,
352 			  buf_ptr_t *from,
353 			  uint32_t *psize)
354 {
355 	sg_comp_t *to = &list[i >> 2];
356 	uint32_t size = *psize;
357 	uint32_t e_len;
358 
359 	e_len = (size > from->size) ? from->size : size;
360 	to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
361 	to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
362 	*psize -= e_len;
363 	i++;
364 	return i;
365 }
366 
367 /*
368  * This fills the MC expected SGIO list
369  * from IOV given by user.
370  */
371 static __rte_always_inline uint32_t
372 fill_sg_comp_from_iov(sg_comp_t *list,
373 		      uint32_t i,
374 		      iov_ptr_t *from, uint32_t from_offset,
375 		      uint32_t *psize, buf_ptr_t *extra_buf,
376 		      uint32_t extra_offset)
377 {
378 	int32_t j;
379 	uint32_t extra_len = extra_buf ? extra_buf->size : 0;
380 	uint32_t size = *psize - extra_len;
381 	buf_ptr_t *bufs;
382 
383 	bufs = from->bufs;
384 	for (j = 0; (j < from->buf_cnt) && size; j++) {
385 		phys_addr_t e_dma_addr;
386 		uint32_t e_len;
387 		sg_comp_t *to = &list[i >> 2];
388 
389 		if (!bufs[j].size)
390 			continue;
391 
392 		if (unlikely(from_offset)) {
393 			if (from_offset >= bufs[j].size) {
394 				from_offset -= bufs[j].size;
395 				continue;
396 			}
397 			e_dma_addr = bufs[j].dma_addr + from_offset;
398 			e_len = (size > (bufs[j].size - from_offset)) ?
399 				(bufs[j].size - from_offset) : size;
400 			from_offset = 0;
401 		} else {
402 			e_dma_addr = bufs[j].dma_addr;
403 			e_len = (size > bufs[j].size) ?
404 				bufs[j].size : size;
405 		}
406 
407 		to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
408 		to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
409 
410 		if (extra_len && (e_len >= extra_offset)) {
411 			/* Break the data at given offset */
412 			uint32_t next_len = e_len - extra_offset;
413 			phys_addr_t next_dma = e_dma_addr + extra_offset;
414 
415 			if (!extra_offset) {
416 				i--;
417 			} else {
418 				e_len = extra_offset;
419 				size -= e_len;
420 				to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
421 			}
422 
423 			/* Insert extra data ptr */
424 			if (extra_len) {
425 				i++;
426 				to = &list[i >> 2];
427 				to->u.s.len[i % 4] =
428 					rte_cpu_to_be_16(extra_buf->size);
429 				to->ptr[i % 4] =
430 					rte_cpu_to_be_64(extra_buf->dma_addr);
431 
432 				/* size already decremented by extra len */
433 			}
434 
435 			/* insert the rest of the data */
436 			if (next_len) {
437 				i++;
438 				to = &list[i >> 2];
439 				to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
440 				to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
441 				size -= next_len;
442 			}
443 			extra_len = 0;
444 
445 		} else {
446 			size -= e_len;
447 		}
448 		if (extra_offset)
449 			extra_offset -= size;
450 		i++;
451 	}
452 
453 	*psize = size;
454 	return (uint32_t)i;
455 }
456 
457 static __rte_always_inline void
458 cpt_digest_gen_prep(uint32_t flags,
459 		    uint64_t d_lens,
460 		    digest_params_t *params,
461 		    void *op,
462 		    void **prep_req)
463 {
464 	struct cpt_request_info *req;
465 	uint32_t size, i;
466 	uint16_t data_len, mac_len, key_len;
467 	auth_type_t hash_type;
468 	buf_ptr_t *meta_p;
469 	struct cpt_ctx *ctx;
470 	sg_comp_t *gather_comp;
471 	sg_comp_t *scatter_comp;
472 	uint8_t *in_buffer;
473 	uint32_t g_size_bytes, s_size_bytes;
474 	uint64_t dptr_dma, rptr_dma;
475 	vq_cmd_word0_t vq_cmd_w0;
476 	vq_cmd_word3_t vq_cmd_w3;
477 	void *c_vaddr, *m_vaddr;
478 	uint64_t c_dma, m_dma;
479 	opcode_info_t opcode;
480 
481 	ctx = params->ctx_buf.vaddr;
482 	meta_p = &params->meta_buf;
483 
484 	m_vaddr = meta_p->vaddr;
485 	m_dma = meta_p->dma_addr;
486 
487 	/*
488 	 * Save initial space that followed app data for completion code &
489 	 * alternate completion code to fall in same cache line as app data
490 	 */
491 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
492 	m_dma += COMPLETION_CODE_SIZE;
493 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
494 		(uint8_t *)m_vaddr;
495 	c_vaddr = (uint8_t *)m_vaddr + size;
496 	c_dma = m_dma + size;
497 	size += sizeof(cpt_res_s_t);
498 
499 	m_vaddr = (uint8_t *)m_vaddr + size;
500 	m_dma += size;
501 
502 	req = m_vaddr;
503 
504 	size = sizeof(struct cpt_request_info);
505 	m_vaddr = (uint8_t *)m_vaddr + size;
506 	m_dma += size;
507 
508 	hash_type = ctx->hash_type;
509 	mac_len = ctx->mac_len;
510 	key_len = ctx->auth_key_len;
511 	data_len = AUTH_DLEN(d_lens);
512 
513 	/*GP op header */
514 	vq_cmd_w0.u64 = 0;
515 	vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
516 	if (ctx->hmac) {
517 		opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
518 		vq_cmd_w0.s.param1 = key_len;
519 		vq_cmd_w0.s.dlen = data_len + ROUNDUP8(key_len);
520 	} else {
521 		opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
522 		vq_cmd_w0.s.param1 = 0;
523 		vq_cmd_w0.s.dlen = data_len;
524 	}
525 
526 	opcode.s.minor = 0;
527 
528 	/* Null auth only case enters the if */
529 	if (unlikely(!hash_type && !ctx->enc_cipher)) {
530 		opcode.s.major = CPT_MAJOR_OP_MISC;
531 		/* Minor op is passthrough */
532 		opcode.s.minor = 0x03;
533 		/* Send out completion code only */
534 		vq_cmd_w0.s.param2 = 0x1;
535 	}
536 
537 	vq_cmd_w0.s.opcode = opcode.flags;
538 
539 	/* DPTR has SG list */
540 	in_buffer = m_vaddr;
541 	dptr_dma = m_dma;
542 
543 	((uint16_t *)in_buffer)[0] = 0;
544 	((uint16_t *)in_buffer)[1] = 0;
545 
546 	/* TODO Add error check if space will be sufficient */
547 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
548 
549 	/*
550 	 * Input gather list
551 	 */
552 
553 	i = 0;
554 
555 	if (ctx->hmac) {
556 		uint64_t k_dma = params->ctx_buf.dma_addr +
557 			offsetof(struct cpt_ctx, auth_key);
558 		/* Key */
559 		i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
560 	}
561 
562 	/* input data */
563 	size = data_len;
564 	if (size) {
565 		i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
566 					  0, &size, NULL, 0);
567 		if (unlikely(size)) {
568 			CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
569 					 " by %dB", size);
570 			return;
571 		}
572 	} else {
573 		/*
574 		 * Looks like we need to support zero data
575 		 * gather ptr in case of hash & hmac
576 		 */
577 		i++;
578 	}
579 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
580 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
581 
582 	/*
583 	 * Output Gather list
584 	 */
585 
586 	i = 0;
587 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
588 
589 	if (flags & VALID_MAC_BUF) {
590 		if (unlikely(params->mac_buf.size < mac_len)) {
591 			CPT_LOG_DP_ERR("Insufficient MAC size");
592 			return;
593 		}
594 
595 		size = mac_len;
596 		i = fill_sg_comp_from_buf_min(scatter_comp, i,
597 					      &params->mac_buf, &size);
598 	} else {
599 		size = mac_len;
600 		i = fill_sg_comp_from_iov(scatter_comp, i,
601 					  params->src_iov, data_len,
602 					  &size, NULL, 0);
603 		if (unlikely(size)) {
604 			CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
605 				       " %dB", size);
606 			return;
607 		}
608 	}
609 
610 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
611 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
612 
613 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
614 
615 	/* This is DPTR len incase of SG mode */
616 	vq_cmd_w0.s.dlen = size;
617 
618 	m_vaddr = (uint8_t *)m_vaddr + size;
619 	m_dma += size;
620 
621 	/* cpt alternate completion address saved earlier */
622 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
623 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
624 	rptr_dma = c_dma - 8;
625 
626 	req->ist.ei1 = dptr_dma;
627 	req->ist.ei2 = rptr_dma;
628 
629 	/* vq command w3 */
630 	vq_cmd_w3.u64 = 0;
631 
632 	/* 16 byte aligned cpt res address */
633 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
634 	*req->completion_addr = COMPLETION_CODE_INIT;
635 	req->comp_baddr  = c_dma;
636 
637 	/* Fill microcode part of instruction */
638 	req->ist.ei0 = vq_cmd_w0.u64;
639 	req->ist.ei3 = vq_cmd_w3.u64;
640 
641 	req->op = op;
642 
643 	*prep_req = req;
644 	return;
645 }
646 
647 static __rte_always_inline void
648 cpt_enc_hmac_prep(uint32_t flags,
649 		  uint64_t d_offs,
650 		  uint64_t d_lens,
651 		  fc_params_t *fc_params,
652 		  void *op,
653 		  void **prep_req)
654 {
655 	uint32_t iv_offset = 0;
656 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
657 	struct cpt_ctx *cpt_ctx;
658 	uint32_t cipher_type, hash_type;
659 	uint32_t mac_len, size;
660 	uint8_t iv_len = 16;
661 	struct cpt_request_info *req;
662 	buf_ptr_t *meta_p, *aad_buf = NULL;
663 	uint32_t encr_offset, auth_offset;
664 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
665 	uint32_t passthrough_len = 0;
666 	void *m_vaddr, *offset_vaddr;
667 	uint64_t m_dma, offset_dma, ctx_dma;
668 	vq_cmd_word0_t vq_cmd_w0;
669 	vq_cmd_word3_t vq_cmd_w3;
670 	void *c_vaddr;
671 	uint64_t c_dma;
672 	opcode_info_t opcode;
673 
674 	meta_p = &fc_params->meta_buf;
675 	m_vaddr = meta_p->vaddr;
676 	m_dma = meta_p->dma_addr;
677 
678 	encr_offset = ENCR_OFFSET(d_offs);
679 	auth_offset = AUTH_OFFSET(d_offs);
680 	encr_data_len = ENCR_DLEN(d_lens);
681 	auth_data_len = AUTH_DLEN(d_lens);
682 	if (unlikely(flags & VALID_AAD_BUF)) {
683 		/*
684 		 * We dont support both aad
685 		 * and auth data separately
686 		 */
687 		auth_data_len = 0;
688 		auth_offset = 0;
689 		aad_len = fc_params->aad_buf.size;
690 		aad_buf = &fc_params->aad_buf;
691 	}
692 	cpt_ctx = fc_params->ctx_buf.vaddr;
693 	cipher_type = cpt_ctx->enc_cipher;
694 	hash_type = cpt_ctx->hash_type;
695 	mac_len = cpt_ctx->mac_len;
696 
697 	/*
698 	 * Save initial space that followed app data for completion code &
699 	 * alternate completion code to fall in same cache line as app data
700 	 */
701 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
702 	m_dma += COMPLETION_CODE_SIZE;
703 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
704 		(uint8_t *)m_vaddr;
705 
706 	c_vaddr = (uint8_t *)m_vaddr + size;
707 	c_dma = m_dma + size;
708 	size += sizeof(cpt_res_s_t);
709 
710 	m_vaddr = (uint8_t *)m_vaddr + size;
711 	m_dma += size;
712 
713 	/* start cpt request info struct at 8 byte boundary */
714 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
715 		(uint8_t *)m_vaddr;
716 
717 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
718 
719 	size += sizeof(struct cpt_request_info);
720 	m_vaddr = (uint8_t *)m_vaddr + size;
721 	m_dma += size;
722 
723 	if (hash_type == GMAC_TYPE)
724 		encr_data_len = 0;
725 
726 	if (unlikely(!(flags & VALID_IV_BUF))) {
727 		iv_len = 0;
728 		iv_offset = ENCR_IV_OFFSET(d_offs);
729 	}
730 
731 	if (unlikely(flags & VALID_AAD_BUF)) {
732 		/*
733 		 * When AAD is given, data above encr_offset is pass through
734 		 * Since AAD is given as separate pointer and not as offset,
735 		 * this is a special case as we need to fragment input data
736 		 * into passthrough + encr_data and then insert AAD in between.
737 		 */
738 		if (hash_type != GMAC_TYPE) {
739 			passthrough_len = encr_offset;
740 			auth_offset = passthrough_len + iv_len;
741 			encr_offset = passthrough_len + aad_len + iv_len;
742 			auth_data_len = aad_len + encr_data_len;
743 		} else {
744 			passthrough_len = 16 + aad_len;
745 			auth_offset = passthrough_len + iv_len;
746 			auth_data_len = aad_len;
747 		}
748 	} else {
749 		encr_offset += iv_len;
750 		auth_offset += iv_len;
751 	}
752 
753 	/* Encryption */
754 	opcode.s.major = CPT_MAJOR_OP_FC;
755 	opcode.s.minor = 0;
756 
757 	auth_dlen = auth_offset + auth_data_len;
758 	enc_dlen = encr_data_len + encr_offset;
759 	if (unlikely(encr_data_len & 0xf)) {
760 		if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
761 			enc_dlen = ROUNDUP8(encr_data_len) + encr_offset;
762 		else if (likely((cipher_type == AES_CBC) ||
763 				(cipher_type == AES_ECB)))
764 			enc_dlen = ROUNDUP16(encr_data_len) + encr_offset;
765 	}
766 
767 	if (unlikely(hash_type == GMAC_TYPE)) {
768 		encr_offset = auth_dlen;
769 		enc_dlen = 0;
770 	}
771 
772 	if (unlikely(auth_dlen > enc_dlen)) {
773 		inputlen = auth_dlen;
774 		outputlen = auth_dlen + mac_len;
775 	} else {
776 		inputlen = enc_dlen;
777 		outputlen = enc_dlen + mac_len;
778 	}
779 
780 	/* GP op header */
781 	vq_cmd_w0.u64 = 0;
782 	vq_cmd_w0.s.param1 = encr_data_len;
783 	vq_cmd_w0.s.param2 = auth_data_len;
784 	/*
785 	 * In 83XX since we have a limitation of
786 	 * IV & Offset control word not part of instruction
787 	 * and need to be part of Data Buffer, we check if
788 	 * head room is there and then only do the Direct mode processing
789 	 */
790 	if (likely((flags & SINGLE_BUF_INPLACE) &&
791 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
792 		void *dm_vaddr = fc_params->bufs[0].vaddr;
793 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
794 		/*
795 		 * This flag indicates that there is 24 bytes head room and
796 		 * 8 bytes tail room available, so that we get to do
797 		 * DIRECT MODE with limitation
798 		 */
799 
800 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
801 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
802 
803 		/* DPTR */
804 		req->ist.ei1 = offset_dma;
805 		/* RPTR should just exclude offset control word */
806 		req->ist.ei2 = dm_dma_addr - iv_len;
807 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
808 						    + outputlen - iv_len);
809 
810 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
811 
812 		vq_cmd_w0.s.opcode = opcode.flags;
813 
814 		if (likely(iv_len)) {
815 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
816 						      + OFF_CTRL_LEN);
817 			uint64_t *src = fc_params->iv_buf;
818 			dest[0] = src[0];
819 			dest[1] = src[1];
820 		}
821 
822 		*(uint64_t *)offset_vaddr =
823 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
824 				((uint64_t)iv_offset << 8) |
825 				((uint64_t)auth_offset));
826 
827 	} else {
828 		uint32_t i, g_size_bytes, s_size_bytes;
829 		uint64_t dptr_dma, rptr_dma;
830 		sg_comp_t *gather_comp;
831 		sg_comp_t *scatter_comp;
832 		uint8_t *in_buffer;
833 
834 		/* This falls under strict SG mode */
835 		offset_vaddr = m_vaddr;
836 		offset_dma = m_dma;
837 		size = OFF_CTRL_LEN + iv_len;
838 
839 		m_vaddr = (uint8_t *)m_vaddr + size;
840 		m_dma += size;
841 
842 		opcode.s.major |= CPT_DMA_MODE;
843 
844 		vq_cmd_w0.s.opcode = opcode.flags;
845 
846 		if (likely(iv_len)) {
847 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
848 						      + OFF_CTRL_LEN);
849 			uint64_t *src = fc_params->iv_buf;
850 			dest[0] = src[0];
851 			dest[1] = src[1];
852 		}
853 
854 		*(uint64_t *)offset_vaddr =
855 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
856 				((uint64_t)iv_offset << 8) |
857 				((uint64_t)auth_offset));
858 
859 		/* DPTR has SG list */
860 		in_buffer = m_vaddr;
861 		dptr_dma = m_dma;
862 
863 		((uint16_t *)in_buffer)[0] = 0;
864 		((uint16_t *)in_buffer)[1] = 0;
865 
866 		/* TODO Add error check if space will be sufficient */
867 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
868 
869 		/*
870 		 * Input Gather List
871 		 */
872 
873 		i = 0;
874 
875 		/* Offset control word that includes iv */
876 		i = fill_sg_comp(gather_comp, i, offset_dma,
877 				 OFF_CTRL_LEN + iv_len);
878 
879 		/* Add input data */
880 		size = inputlen - iv_len;
881 		if (likely(size)) {
882 			uint32_t aad_offset = aad_len ? passthrough_len : 0;
883 
884 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
885 				i = fill_sg_comp_from_buf_min(gather_comp, i,
886 							      fc_params->bufs,
887 							      &size);
888 			} else {
889 				i = fill_sg_comp_from_iov(gather_comp, i,
890 							  fc_params->src_iov,
891 							  0, &size,
892 							  aad_buf, aad_offset);
893 			}
894 
895 			if (unlikely(size)) {
896 				CPT_LOG_DP_ERR("Insufficient buffer space,"
897 					       " size %d needed", size);
898 				return;
899 			}
900 		}
901 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
902 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
903 
904 		/*
905 		 * Output Scatter list
906 		 */
907 		i = 0;
908 		scatter_comp =
909 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
910 
911 		/* Add IV */
912 		if (likely(iv_len)) {
913 			i = fill_sg_comp(scatter_comp, i,
914 					 offset_dma + OFF_CTRL_LEN,
915 					 iv_len);
916 		}
917 
918 		/* output data or output data + digest*/
919 		if (unlikely(flags & VALID_MAC_BUF)) {
920 			size = outputlen - iv_len - mac_len;
921 			if (size) {
922 				uint32_t aad_offset =
923 					aad_len ? passthrough_len : 0;
924 
925 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
926 					i = fill_sg_comp_from_buf_min(
927 							scatter_comp,
928 							i,
929 							fc_params->bufs,
930 							&size);
931 				} else {
932 					i = fill_sg_comp_from_iov(scatter_comp,
933 							i,
934 							fc_params->dst_iov,
935 							0,
936 							&size,
937 							aad_buf,
938 							aad_offset);
939 				}
940 				if (unlikely(size)) {
941 					CPT_LOG_DP_ERR("Insufficient buffer"
942 						       " space, size %d needed",
943 						       size);
944 					return;
945 				}
946 			}
947 			/* mac_data */
948 			if (mac_len) {
949 				i = fill_sg_comp_from_buf(scatter_comp, i,
950 							  &fc_params->mac_buf);
951 			}
952 		} else {
953 			/* Output including mac */
954 			size = outputlen - iv_len;
955 			if (likely(size)) {
956 				uint32_t aad_offset =
957 					aad_len ? passthrough_len : 0;
958 
959 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
960 					i = fill_sg_comp_from_buf_min(
961 							scatter_comp,
962 							i,
963 							fc_params->bufs,
964 							&size);
965 				} else {
966 					i = fill_sg_comp_from_iov(scatter_comp,
967 							i,
968 							fc_params->dst_iov,
969 							0,
970 							&size,
971 							aad_buf,
972 							aad_offset);
973 				}
974 				if (unlikely(size)) {
975 					CPT_LOG_DP_ERR("Insufficient buffer"
976 						       " space, size %d needed",
977 						       size);
978 					return;
979 				}
980 			}
981 		}
982 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
983 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
984 
985 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
986 
987 		/* This is DPTR len incase of SG mode */
988 		vq_cmd_w0.s.dlen = size;
989 
990 		m_vaddr = (uint8_t *)m_vaddr + size;
991 		m_dma += size;
992 
993 		/* cpt alternate completion address saved earlier */
994 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
995 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
996 		rptr_dma = c_dma - 8;
997 
998 		req->ist.ei1 = dptr_dma;
999 		req->ist.ei2 = rptr_dma;
1000 	}
1001 
1002 	ctx_dma = fc_params->ctx_buf.dma_addr +
1003 		offsetof(struct cpt_ctx, fctx);
1004 	/* vq command w3 */
1005 	vq_cmd_w3.u64 = 0;
1006 	vq_cmd_w3.s.grp = 0;
1007 	vq_cmd_w3.s.cptr = ctx_dma;
1008 
1009 	/* 16 byte aligned cpt res address */
1010 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1011 	*req->completion_addr = COMPLETION_CODE_INIT;
1012 	req->comp_baddr  = c_dma;
1013 
1014 	/* Fill microcode part of instruction */
1015 	req->ist.ei0 = vq_cmd_w0.u64;
1016 	req->ist.ei3 = vq_cmd_w3.u64;
1017 
1018 	req->op  = op;
1019 
1020 	*prep_req = req;
1021 	return;
1022 }
1023 
1024 static __rte_always_inline void
1025 cpt_dec_hmac_prep(uint32_t flags,
1026 		  uint64_t d_offs,
1027 		  uint64_t d_lens,
1028 		  fc_params_t *fc_params,
1029 		  void *op,
1030 		  void **prep_req)
1031 {
1032 	uint32_t iv_offset = 0, size;
1033 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1034 	struct cpt_ctx *cpt_ctx;
1035 	int32_t hash_type, mac_len;
1036 	uint8_t iv_len = 16;
1037 	struct cpt_request_info *req;
1038 	buf_ptr_t *meta_p, *aad_buf = NULL;
1039 	uint32_t encr_offset, auth_offset;
1040 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
1041 	uint32_t passthrough_len = 0;
1042 	void *m_vaddr, *offset_vaddr;
1043 	uint64_t m_dma, offset_dma, ctx_dma;
1044 	opcode_info_t opcode;
1045 	vq_cmd_word0_t vq_cmd_w0;
1046 	vq_cmd_word3_t vq_cmd_w3;
1047 	void *c_vaddr;
1048 	uint64_t c_dma;
1049 
1050 	meta_p = &fc_params->meta_buf;
1051 	m_vaddr = meta_p->vaddr;
1052 	m_dma = meta_p->dma_addr;
1053 
1054 	encr_offset = ENCR_OFFSET(d_offs);
1055 	auth_offset = AUTH_OFFSET(d_offs);
1056 	encr_data_len = ENCR_DLEN(d_lens);
1057 	auth_data_len = AUTH_DLEN(d_lens);
1058 
1059 	if (unlikely(flags & VALID_AAD_BUF)) {
1060 		/*
1061 		 * We dont support both aad
1062 		 * and auth data separately
1063 		 */
1064 		auth_data_len = 0;
1065 		auth_offset = 0;
1066 		aad_len = fc_params->aad_buf.size;
1067 		aad_buf = &fc_params->aad_buf;
1068 	}
1069 
1070 	cpt_ctx = fc_params->ctx_buf.vaddr;
1071 	hash_type = cpt_ctx->hash_type;
1072 	mac_len = cpt_ctx->mac_len;
1073 
1074 	if (hash_type == GMAC_TYPE)
1075 		encr_data_len = 0;
1076 
1077 	if (unlikely(!(flags & VALID_IV_BUF))) {
1078 		iv_len = 0;
1079 		iv_offset = ENCR_IV_OFFSET(d_offs);
1080 	}
1081 
1082 	if (unlikely(flags & VALID_AAD_BUF)) {
1083 		/*
1084 		 * When AAD is given, data above encr_offset is pass through
1085 		 * Since AAD is given as separate pointer and not as offset,
1086 		 * this is a special case as we need to fragment input data
1087 		 * into passthrough + encr_data and then insert AAD in between.
1088 		 */
1089 		if (hash_type != GMAC_TYPE) {
1090 			passthrough_len = encr_offset;
1091 			auth_offset = passthrough_len + iv_len;
1092 			encr_offset = passthrough_len + aad_len + iv_len;
1093 			auth_data_len = aad_len + encr_data_len;
1094 		} else {
1095 			passthrough_len = 16 + aad_len;
1096 			auth_offset = passthrough_len + iv_len;
1097 			auth_data_len = aad_len;
1098 		}
1099 	} else {
1100 		encr_offset += iv_len;
1101 		auth_offset += iv_len;
1102 	}
1103 
1104 	/*
1105 	 * Save initial space that followed app data for completion code &
1106 	 * alternate completion code to fall in same cache line as app data
1107 	 */
1108 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1109 	m_dma += COMPLETION_CODE_SIZE;
1110 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1111 	       (uint8_t *)m_vaddr;
1112 	c_vaddr = (uint8_t *)m_vaddr + size;
1113 	c_dma = m_dma + size;
1114 	size += sizeof(cpt_res_s_t);
1115 
1116 	m_vaddr = (uint8_t *)m_vaddr + size;
1117 	m_dma += size;
1118 
1119 	/* start cpt request info structure at 8 byte alignment */
1120 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1121 		(uint8_t *)m_vaddr;
1122 
1123 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1124 
1125 	size += sizeof(struct cpt_request_info);
1126 	m_vaddr = (uint8_t *)m_vaddr + size;
1127 	m_dma += size;
1128 
1129 	/* Decryption */
1130 	opcode.s.major = CPT_MAJOR_OP_FC;
1131 	opcode.s.minor = 1;
1132 
1133 	enc_dlen = encr_offset + encr_data_len;
1134 	auth_dlen = auth_offset + auth_data_len;
1135 
1136 	if (auth_dlen > enc_dlen) {
1137 		inputlen = auth_dlen + mac_len;
1138 		outputlen = auth_dlen;
1139 	} else {
1140 		inputlen = enc_dlen + mac_len;
1141 		outputlen = enc_dlen;
1142 	}
1143 
1144 	if (hash_type == GMAC_TYPE)
1145 		encr_offset = inputlen;
1146 
1147 	vq_cmd_w0.u64 = 0;
1148 	vq_cmd_w0.s.param1 = encr_data_len;
1149 	vq_cmd_w0.s.param2 = auth_data_len;
1150 
1151 	/*
1152 	 * In 83XX since we have a limitation of
1153 	 * IV & Offset control word not part of instruction
1154 	 * and need to be part of Data Buffer, we check if
1155 	 * head room is there and then only do the Direct mode processing
1156 	 */
1157 	if (likely((flags & SINGLE_BUF_INPLACE) &&
1158 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
1159 		void *dm_vaddr = fc_params->bufs[0].vaddr;
1160 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1161 		/*
1162 		 * This flag indicates that there is 24 bytes head room and
1163 		 * 8 bytes tail room available, so that we get to do
1164 		 * DIRECT MODE with limitation
1165 		 */
1166 
1167 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1168 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1169 		req->ist.ei1 = offset_dma;
1170 
1171 		/* RPTR should just exclude offset control word */
1172 		req->ist.ei2 = dm_dma_addr - iv_len;
1173 
1174 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1175 					outputlen - iv_len);
1176 		/* since this is decryption,
1177 		 * don't touch the content of
1178 		 * alternate ccode space as it contains
1179 		 * hmac.
1180 		 */
1181 
1182 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1183 
1184 		vq_cmd_w0.s.opcode = opcode.flags;
1185 
1186 		if (likely(iv_len)) {
1187 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1188 						      OFF_CTRL_LEN);
1189 			uint64_t *src = fc_params->iv_buf;
1190 			dest[0] = src[0];
1191 			dest[1] = src[1];
1192 		}
1193 
1194 		*(uint64_t *)offset_vaddr =
1195 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1196 				((uint64_t)iv_offset << 8) |
1197 				((uint64_t)auth_offset));
1198 
1199 	} else {
1200 		uint64_t dptr_dma, rptr_dma;
1201 		uint32_t g_size_bytes, s_size_bytes;
1202 		sg_comp_t *gather_comp;
1203 		sg_comp_t *scatter_comp;
1204 		uint8_t *in_buffer;
1205 		uint8_t i = 0;
1206 
1207 		/* This falls under strict SG mode */
1208 		offset_vaddr = m_vaddr;
1209 		offset_dma = m_dma;
1210 		size = OFF_CTRL_LEN + iv_len;
1211 
1212 		m_vaddr = (uint8_t *)m_vaddr + size;
1213 		m_dma += size;
1214 
1215 		opcode.s.major |= CPT_DMA_MODE;
1216 
1217 		vq_cmd_w0.s.opcode = opcode.flags;
1218 
1219 		if (likely(iv_len)) {
1220 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1221 						      OFF_CTRL_LEN);
1222 			uint64_t *src = fc_params->iv_buf;
1223 			dest[0] = src[0];
1224 			dest[1] = src[1];
1225 		}
1226 
1227 		*(uint64_t *)offset_vaddr =
1228 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1229 				((uint64_t)iv_offset << 8) |
1230 				((uint64_t)auth_offset));
1231 
1232 		/* DPTR has SG list */
1233 		in_buffer = m_vaddr;
1234 		dptr_dma = m_dma;
1235 
1236 		((uint16_t *)in_buffer)[0] = 0;
1237 		((uint16_t *)in_buffer)[1] = 0;
1238 
1239 		/* TODO Add error check if space will be sufficient */
1240 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1241 
1242 		/*
1243 		 * Input Gather List
1244 		 */
1245 		i = 0;
1246 
1247 		/* Offset control word that includes iv */
1248 		i = fill_sg_comp(gather_comp, i, offset_dma,
1249 				 OFF_CTRL_LEN + iv_len);
1250 
1251 		/* Add input data */
1252 		if (flags & VALID_MAC_BUF) {
1253 			size = inputlen - iv_len - mac_len;
1254 			if (size) {
1255 				/* input data only */
1256 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1257 					i = fill_sg_comp_from_buf_min(
1258 							gather_comp, i,
1259 							fc_params->bufs,
1260 							&size);
1261 				} else {
1262 					uint32_t aad_offset = aad_len ?
1263 						passthrough_len : 0;
1264 
1265 					i = fill_sg_comp_from_iov(gather_comp,
1266 							i,
1267 							fc_params->src_iov,
1268 							0, &size,
1269 							aad_buf,
1270 							aad_offset);
1271 				}
1272 				if (unlikely(size)) {
1273 					CPT_LOG_DP_ERR("Insufficient buffer"
1274 						       " space, size %d needed",
1275 						       size);
1276 					return;
1277 				}
1278 			}
1279 
1280 			/* mac data */
1281 			if (mac_len) {
1282 				i = fill_sg_comp_from_buf(gather_comp, i,
1283 							  &fc_params->mac_buf);
1284 			}
1285 		} else {
1286 			/* input data + mac */
1287 			size = inputlen - iv_len;
1288 			if (size) {
1289 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1290 					i = fill_sg_comp_from_buf_min(
1291 							gather_comp, i,
1292 							fc_params->bufs,
1293 							&size);
1294 				} else {
1295 					uint32_t aad_offset = aad_len ?
1296 						passthrough_len : 0;
1297 
1298 					if (unlikely(!fc_params->src_iov)) {
1299 						CPT_LOG_DP_ERR("Bad input args");
1300 						return;
1301 					}
1302 
1303 					i = fill_sg_comp_from_iov(
1304 							gather_comp, i,
1305 							fc_params->src_iov,
1306 							0, &size,
1307 							aad_buf,
1308 							aad_offset);
1309 				}
1310 
1311 				if (unlikely(size)) {
1312 					CPT_LOG_DP_ERR("Insufficient buffer"
1313 						       " space, size %d needed",
1314 						       size);
1315 					return;
1316 				}
1317 			}
1318 		}
1319 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1320 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1321 
1322 		/*
1323 		 * Output Scatter List
1324 		 */
1325 
1326 		i = 0;
1327 		scatter_comp =
1328 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1329 
1330 		/* Add iv */
1331 		if (iv_len) {
1332 			i = fill_sg_comp(scatter_comp, i,
1333 					 offset_dma + OFF_CTRL_LEN,
1334 					 iv_len);
1335 		}
1336 
1337 		/* Add output data */
1338 		size = outputlen - iv_len;
1339 		if (size) {
1340 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1341 				/* handle single buffer here */
1342 				i = fill_sg_comp_from_buf_min(scatter_comp, i,
1343 							      fc_params->bufs,
1344 							      &size);
1345 			} else {
1346 				uint32_t aad_offset = aad_len ?
1347 					passthrough_len : 0;
1348 
1349 				if (unlikely(!fc_params->dst_iov)) {
1350 					CPT_LOG_DP_ERR("Bad input args");
1351 					return;
1352 				}
1353 
1354 				i = fill_sg_comp_from_iov(scatter_comp, i,
1355 							  fc_params->dst_iov, 0,
1356 							  &size, aad_buf,
1357 							  aad_offset);
1358 			}
1359 
1360 			if (unlikely(size)) {
1361 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1362 					       " size %d needed", size);
1363 				return;
1364 			}
1365 		}
1366 
1367 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1368 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1369 
1370 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1371 
1372 		/* This is DPTR len incase of SG mode */
1373 		vq_cmd_w0.s.dlen = size;
1374 
1375 		m_vaddr = (uint8_t *)m_vaddr + size;
1376 		m_dma += size;
1377 
1378 		/* cpt alternate completion address saved earlier */
1379 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1380 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1381 		rptr_dma = c_dma - 8;
1382 		size += COMPLETION_CODE_SIZE;
1383 
1384 		req->ist.ei1 = dptr_dma;
1385 		req->ist.ei2 = rptr_dma;
1386 	}
1387 
1388 	ctx_dma = fc_params->ctx_buf.dma_addr +
1389 		offsetof(struct cpt_ctx, fctx);
1390 	/* vq command w3 */
1391 	vq_cmd_w3.u64 = 0;
1392 	vq_cmd_w3.s.grp = 0;
1393 	vq_cmd_w3.s.cptr = ctx_dma;
1394 
1395 	/* 16 byte aligned cpt res address */
1396 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1397 	*req->completion_addr = COMPLETION_CODE_INIT;
1398 	req->comp_baddr  = c_dma;
1399 
1400 	/* Fill microcode part of instruction */
1401 	req->ist.ei0 = vq_cmd_w0.u64;
1402 	req->ist.ei3 = vq_cmd_w3.u64;
1403 
1404 	req->op = op;
1405 
1406 	*prep_req = req;
1407 	return;
1408 }
1409 
1410 static __rte_always_inline void
1411 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1412 			uint64_t d_offs,
1413 			uint64_t d_lens,
1414 			fc_params_t *params,
1415 			void *op,
1416 			void **prep_req)
1417 {
1418 	uint32_t size;
1419 	int32_t inputlen, outputlen;
1420 	struct cpt_ctx *cpt_ctx;
1421 	uint32_t mac_len = 0;
1422 	uint8_t snow3g, j;
1423 	struct cpt_request_info *req;
1424 	buf_ptr_t *buf_p;
1425 	uint32_t encr_offset = 0, auth_offset = 0;
1426 	uint32_t encr_data_len = 0, auth_data_len = 0;
1427 	int flags, iv_len = 16;
1428 	void *m_vaddr, *c_vaddr;
1429 	uint64_t m_dma, c_dma, offset_ctrl;
1430 	uint64_t *offset_vaddr, offset_dma;
1431 	uint32_t *iv_s, iv[4];
1432 	vq_cmd_word0_t vq_cmd_w0;
1433 	vq_cmd_word3_t vq_cmd_w3;
1434 	opcode_info_t opcode;
1435 
1436 	buf_p = &params->meta_buf;
1437 	m_vaddr = buf_p->vaddr;
1438 	m_dma = buf_p->dma_addr;
1439 
1440 	cpt_ctx = params->ctx_buf.vaddr;
1441 	flags = cpt_ctx->zsk_flags;
1442 	mac_len = cpt_ctx->mac_len;
1443 	snow3g = cpt_ctx->snow3g;
1444 
1445 	/*
1446 	 * Save initial space that followed app data for completion code &
1447 	 * alternate completion code to fall in same cache line as app data
1448 	 */
1449 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1450 	m_dma += COMPLETION_CODE_SIZE;
1451 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1452 		(uint8_t *)m_vaddr;
1453 
1454 	c_vaddr = (uint8_t *)m_vaddr + size;
1455 	c_dma = m_dma + size;
1456 	size += sizeof(cpt_res_s_t);
1457 
1458 	m_vaddr = (uint8_t *)m_vaddr + size;
1459 	m_dma += size;
1460 
1461 	/* Reserve memory for cpt request info */
1462 	req = m_vaddr;
1463 
1464 	size = sizeof(struct cpt_request_info);
1465 	m_vaddr = (uint8_t *)m_vaddr + size;
1466 	m_dma += size;
1467 
1468 	opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1469 
1470 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1471 
1472 	opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1473 			  (0 << 3) | (flags & 0x7));
1474 
1475 	if (flags == 0x1) {
1476 		/*
1477 		 * Microcode expects offsets in bytes
1478 		 * TODO: Rounding off
1479 		 */
1480 		auth_data_len = AUTH_DLEN(d_lens);
1481 
1482 		/* EIA3 or UIA2 */
1483 		auth_offset = AUTH_OFFSET(d_offs);
1484 		auth_offset = auth_offset / 8;
1485 
1486 		/* consider iv len */
1487 		auth_offset += iv_len;
1488 
1489 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1490 		outputlen = mac_len;
1491 
1492 		offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1493 
1494 	} else {
1495 		/* EEA3 or UEA2 */
1496 		/*
1497 		 * Microcode expects offsets in bytes
1498 		 * TODO: Rounding off
1499 		 */
1500 		encr_data_len = ENCR_DLEN(d_lens);
1501 
1502 		encr_offset = ENCR_OFFSET(d_offs);
1503 		encr_offset = encr_offset / 8;
1504 		/* consider iv len */
1505 		encr_offset += iv_len;
1506 
1507 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1508 		outputlen = inputlen;
1509 
1510 		/* iv offset is 0 */
1511 		offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1512 	}
1513 
1514 	/* IV */
1515 	iv_s = (flags == 0x1) ? params->auth_iv_buf :
1516 		params->iv_buf;
1517 
1518 	if (snow3g) {
1519 		/*
1520 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1521 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1522 		 */
1523 
1524 		for (j = 0; j < 4; j++)
1525 			iv[j] = iv_s[3 - j];
1526 	} else {
1527 		/* ZUC doesn't need a swap */
1528 		for (j = 0; j < 4; j++)
1529 			iv[j] = iv_s[j];
1530 	}
1531 
1532 	/*
1533 	 * GP op header, lengths are expected in bits.
1534 	 */
1535 	vq_cmd_w0.u64 = 0;
1536 	vq_cmd_w0.s.param1 = encr_data_len;
1537 	vq_cmd_w0.s.param2 = auth_data_len;
1538 
1539 	/*
1540 	 * In 83XX since we have a limitation of
1541 	 * IV & Offset control word not part of instruction
1542 	 * and need to be part of Data Buffer, we check if
1543 	 * head room is there and then only do the Direct mode processing
1544 	 */
1545 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1546 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1547 		void *dm_vaddr = params->bufs[0].vaddr;
1548 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1549 		/*
1550 		 * This flag indicates that there is 24 bytes head room and
1551 		 * 8 bytes tail room available, so that we get to do
1552 		 * DIRECT MODE with limitation
1553 		 */
1554 
1555 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1556 					    OFF_CTRL_LEN - iv_len);
1557 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1558 
1559 		/* DPTR */
1560 		req->ist.ei1 = offset_dma;
1561 		/* RPTR should just exclude offset control word */
1562 		req->ist.ei2 = dm_dma_addr - iv_len;
1563 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1564 						    + outputlen - iv_len);
1565 
1566 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1567 
1568 		vq_cmd_w0.s.opcode = opcode.flags;
1569 
1570 		if (likely(iv_len)) {
1571 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1572 						      + OFF_CTRL_LEN);
1573 			memcpy(iv_d, iv, 16);
1574 		}
1575 
1576 		*offset_vaddr = offset_ctrl;
1577 	} else {
1578 		uint32_t i, g_size_bytes, s_size_bytes;
1579 		uint64_t dptr_dma, rptr_dma;
1580 		sg_comp_t *gather_comp;
1581 		sg_comp_t *scatter_comp;
1582 		uint8_t *in_buffer;
1583 		uint32_t *iv_d;
1584 
1585 		/* save space for iv */
1586 		offset_vaddr = m_vaddr;
1587 		offset_dma = m_dma;
1588 
1589 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1590 		m_dma += OFF_CTRL_LEN + iv_len;
1591 
1592 		opcode.s.major |= CPT_DMA_MODE;
1593 
1594 		vq_cmd_w0.s.opcode = opcode.flags;
1595 
1596 		/* DPTR has SG list */
1597 		in_buffer = m_vaddr;
1598 		dptr_dma = m_dma;
1599 
1600 		((uint16_t *)in_buffer)[0] = 0;
1601 		((uint16_t *)in_buffer)[1] = 0;
1602 
1603 		/* TODO Add error check if space will be sufficient */
1604 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1605 
1606 		/*
1607 		 * Input Gather List
1608 		 */
1609 		i = 0;
1610 
1611 		/* Offset control word followed by iv */
1612 
1613 		i = fill_sg_comp(gather_comp, i, offset_dma,
1614 				 OFF_CTRL_LEN + iv_len);
1615 
1616 		/* iv offset is 0 */
1617 		*offset_vaddr = offset_ctrl;
1618 
1619 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1620 		memcpy(iv_d, iv, 16);
1621 
1622 		/* input data */
1623 		size = inputlen - iv_len;
1624 		if (size) {
1625 			i = fill_sg_comp_from_iov(gather_comp, i,
1626 						  params->src_iov,
1627 						  0, &size, NULL, 0);
1628 			if (unlikely(size)) {
1629 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1630 					       " size %d needed", size);
1631 				return;
1632 			}
1633 		}
1634 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1635 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1636 
1637 		/*
1638 		 * Output Scatter List
1639 		 */
1640 
1641 		i = 0;
1642 		scatter_comp =
1643 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1644 
1645 		if (flags == 0x1) {
1646 			/* IV in SLIST only for EEA3 & UEA2 */
1647 			iv_len = 0;
1648 		}
1649 
1650 		if (iv_len) {
1651 			i = fill_sg_comp(scatter_comp, i,
1652 					 offset_dma + OFF_CTRL_LEN, iv_len);
1653 		}
1654 
1655 		/* Add output data */
1656 		if (req_flags & VALID_MAC_BUF) {
1657 			size = outputlen - iv_len - mac_len;
1658 			if (size) {
1659 				i = fill_sg_comp_from_iov(scatter_comp, i,
1660 							  params->dst_iov, 0,
1661 							  &size, NULL, 0);
1662 
1663 				if (unlikely(size)) {
1664 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1665 						       " size %d needed", size);
1666 					return;
1667 				}
1668 			}
1669 
1670 			/* mac data */
1671 			if (mac_len) {
1672 				i = fill_sg_comp_from_buf(scatter_comp, i,
1673 							  &params->mac_buf);
1674 			}
1675 		} else {
1676 			/* Output including mac */
1677 			size = outputlen - iv_len;
1678 			if (size) {
1679 				i = fill_sg_comp_from_iov(scatter_comp, i,
1680 							  params->dst_iov, 0,
1681 							  &size, NULL, 0);
1682 
1683 				if (unlikely(size)) {
1684 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1685 						       " size %d needed", size);
1686 					return;
1687 				}
1688 			}
1689 		}
1690 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1691 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1692 
1693 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1694 
1695 		/* This is DPTR len incase of SG mode */
1696 		vq_cmd_w0.s.dlen = size;
1697 
1698 		m_vaddr = (uint8_t *)m_vaddr + size;
1699 		m_dma += size;
1700 
1701 		/* cpt alternate completion address saved earlier */
1702 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1703 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1704 		rptr_dma = c_dma - 8;
1705 
1706 		req->ist.ei1 = dptr_dma;
1707 		req->ist.ei2 = rptr_dma;
1708 	}
1709 
1710 	/* vq command w3 */
1711 	vq_cmd_w3.u64 = 0;
1712 	vq_cmd_w3.s.grp = 0;
1713 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1714 		offsetof(struct cpt_ctx, zs_ctx);
1715 
1716 	/* 16 byte aligned cpt res address */
1717 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1718 	*req->completion_addr = COMPLETION_CODE_INIT;
1719 	req->comp_baddr  = c_dma;
1720 
1721 	/* Fill microcode part of instruction */
1722 	req->ist.ei0 = vq_cmd_w0.u64;
1723 	req->ist.ei3 = vq_cmd_w3.u64;
1724 
1725 	req->op = op;
1726 
1727 	*prep_req = req;
1728 	return;
1729 }
1730 
1731 static __rte_always_inline void
1732 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1733 			uint64_t d_offs,
1734 			uint64_t d_lens,
1735 			fc_params_t *params,
1736 			void *op,
1737 			void **prep_req)
1738 {
1739 	uint32_t size;
1740 	int32_t inputlen = 0, outputlen;
1741 	struct cpt_ctx *cpt_ctx;
1742 	uint8_t snow3g, iv_len = 16;
1743 	struct cpt_request_info *req;
1744 	buf_ptr_t *buf_p;
1745 	uint32_t encr_offset;
1746 	uint32_t encr_data_len;
1747 	int flags;
1748 	void *m_vaddr, *c_vaddr;
1749 	uint64_t m_dma, c_dma;
1750 	uint64_t *offset_vaddr, offset_dma;
1751 	uint32_t *iv_s, iv[4], j;
1752 	vq_cmd_word0_t vq_cmd_w0;
1753 	vq_cmd_word3_t vq_cmd_w3;
1754 	opcode_info_t opcode;
1755 
1756 	buf_p = &params->meta_buf;
1757 	m_vaddr = buf_p->vaddr;
1758 	m_dma = buf_p->dma_addr;
1759 
1760 	/*
1761 	 * Microcode expects offsets in bytes
1762 	 * TODO: Rounding off
1763 	 */
1764 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1765 	encr_data_len = ENCR_DLEN(d_lens);
1766 
1767 	cpt_ctx = params->ctx_buf.vaddr;
1768 	flags = cpt_ctx->zsk_flags;
1769 	snow3g = cpt_ctx->snow3g;
1770 	/*
1771 	 * Save initial space that followed app data for completion code &
1772 	 * alternate completion code to fall in same cache line as app data
1773 	 */
1774 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1775 	m_dma += COMPLETION_CODE_SIZE;
1776 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1777 		(uint8_t *)m_vaddr;
1778 
1779 	c_vaddr = (uint8_t *)m_vaddr + size;
1780 	c_dma = m_dma + size;
1781 	size += sizeof(cpt_res_s_t);
1782 
1783 	m_vaddr = (uint8_t *)m_vaddr + size;
1784 	m_dma += size;
1785 
1786 	/* Reserve memory for cpt request info */
1787 	req = m_vaddr;
1788 
1789 	size = sizeof(struct cpt_request_info);
1790 	m_vaddr = (uint8_t *)m_vaddr + size;
1791 	m_dma += size;
1792 
1793 	opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1794 
1795 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1796 
1797 	opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1798 			  (0 << 3) | (flags & 0x7));
1799 
1800 	/* consider iv len */
1801 	encr_offset += iv_len;
1802 
1803 	inputlen = encr_offset +
1804 		(RTE_ALIGN(encr_data_len, 8) / 8);
1805 	outputlen = inputlen;
1806 
1807 	/* IV */
1808 	iv_s = params->iv_buf;
1809 	if (snow3g) {
1810 		/*
1811 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1812 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1813 		 */
1814 
1815 		for (j = 0; j < 4; j++)
1816 			iv[j] = iv_s[3 - j];
1817 	} else {
1818 		/* ZUC doesn't need a swap */
1819 		for (j = 0; j < 4; j++)
1820 			iv[j] = iv_s[j];
1821 	}
1822 
1823 	/*
1824 	 * GP op header, lengths are expected in bits.
1825 	 */
1826 	vq_cmd_w0.u64 = 0;
1827 	vq_cmd_w0.s.param1 = encr_data_len;
1828 
1829 	/*
1830 	 * In 83XX since we have a limitation of
1831 	 * IV & Offset control word not part of instruction
1832 	 * and need to be part of Data Buffer, we check if
1833 	 * head room is there and then only do the Direct mode processing
1834 	 */
1835 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1836 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1837 		void *dm_vaddr = params->bufs[0].vaddr;
1838 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1839 		/*
1840 		 * This flag indicates that there is 24 bytes head room and
1841 		 * 8 bytes tail room available, so that we get to do
1842 		 * DIRECT MODE with limitation
1843 		 */
1844 
1845 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1846 					    OFF_CTRL_LEN - iv_len);
1847 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1848 
1849 		/* DPTR */
1850 		req->ist.ei1 = offset_dma;
1851 		/* RPTR should just exclude offset control word */
1852 		req->ist.ei2 = dm_dma_addr - iv_len;
1853 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1854 						    + outputlen - iv_len);
1855 
1856 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1857 
1858 		vq_cmd_w0.s.opcode = opcode.flags;
1859 
1860 		if (likely(iv_len)) {
1861 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1862 						      + OFF_CTRL_LEN);
1863 			memcpy(iv_d, iv, 16);
1864 		}
1865 
1866 		/* iv offset is 0 */
1867 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1868 	} else {
1869 		uint32_t i, g_size_bytes, s_size_bytes;
1870 		uint64_t dptr_dma, rptr_dma;
1871 		sg_comp_t *gather_comp;
1872 		sg_comp_t *scatter_comp;
1873 		uint8_t *in_buffer;
1874 		uint32_t *iv_d;
1875 
1876 		/* save space for offset and iv... */
1877 		offset_vaddr = m_vaddr;
1878 		offset_dma = m_dma;
1879 
1880 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1881 		m_dma += OFF_CTRL_LEN + iv_len;
1882 
1883 		opcode.s.major |= CPT_DMA_MODE;
1884 
1885 		vq_cmd_w0.s.opcode = opcode.flags;
1886 
1887 		/* DPTR has SG list */
1888 		in_buffer = m_vaddr;
1889 		dptr_dma = m_dma;
1890 
1891 		((uint16_t *)in_buffer)[0] = 0;
1892 		((uint16_t *)in_buffer)[1] = 0;
1893 
1894 		/* TODO Add error check if space will be sufficient */
1895 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1896 
1897 		/*
1898 		 * Input Gather List
1899 		 */
1900 		i = 0;
1901 
1902 		/* Offset control word */
1903 
1904 		/* iv offset is 0 */
1905 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1906 
1907 		i = fill_sg_comp(gather_comp, i, offset_dma,
1908 				 OFF_CTRL_LEN + iv_len);
1909 
1910 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1911 		memcpy(iv_d, iv, 16);
1912 
1913 		/* Add input data */
1914 		size = inputlen - iv_len;
1915 		if (size) {
1916 			i = fill_sg_comp_from_iov(gather_comp, i,
1917 						  params->src_iov,
1918 						  0, &size, NULL, 0);
1919 			if (unlikely(size)) {
1920 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1921 					       " size %d needed", size);
1922 				return;
1923 			}
1924 		}
1925 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1926 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1927 
1928 		/*
1929 		 * Output Scatter List
1930 		 */
1931 
1932 		i = 0;
1933 		scatter_comp =
1934 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1935 
1936 		/* IV */
1937 		i = fill_sg_comp(scatter_comp, i,
1938 				 offset_dma + OFF_CTRL_LEN,
1939 				 iv_len);
1940 
1941 		/* Add output data */
1942 		size = outputlen - iv_len;
1943 		if (size) {
1944 			i = fill_sg_comp_from_iov(scatter_comp, i,
1945 						  params->dst_iov, 0,
1946 						  &size, NULL, 0);
1947 
1948 			if (unlikely(size)) {
1949 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1950 					       " size %d needed", size);
1951 				return;
1952 			}
1953 		}
1954 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1955 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1956 
1957 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1958 
1959 		/* This is DPTR len incase of SG mode */
1960 		vq_cmd_w0.s.dlen = size;
1961 
1962 		m_vaddr = (uint8_t *)m_vaddr + size;
1963 		m_dma += size;
1964 
1965 		/* cpt alternate completion address saved earlier */
1966 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1967 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1968 		rptr_dma = c_dma - 8;
1969 
1970 		req->ist.ei1 = dptr_dma;
1971 		req->ist.ei2 = rptr_dma;
1972 	}
1973 
1974 	/* vq command w3 */
1975 	vq_cmd_w3.u64 = 0;
1976 	vq_cmd_w3.s.grp = 0;
1977 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1978 		offsetof(struct cpt_ctx, zs_ctx);
1979 
1980 	/* 16 byte aligned cpt res address */
1981 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1982 	*req->completion_addr = COMPLETION_CODE_INIT;
1983 	req->comp_baddr  = c_dma;
1984 
1985 	/* Fill microcode part of instruction */
1986 	req->ist.ei0 = vq_cmd_w0.u64;
1987 	req->ist.ei3 = vq_cmd_w3.u64;
1988 
1989 	req->op = op;
1990 
1991 	*prep_req = req;
1992 	return;
1993 }
1994 
1995 static __rte_always_inline void
1996 cpt_kasumi_enc_prep(uint32_t req_flags,
1997 		    uint64_t d_offs,
1998 		    uint64_t d_lens,
1999 		    fc_params_t *params,
2000 		    void *op,
2001 		    void **prep_req)
2002 {
2003 	uint32_t size;
2004 	int32_t inputlen = 0, outputlen = 0;
2005 	struct cpt_ctx *cpt_ctx;
2006 	uint32_t mac_len = 0;
2007 	uint8_t i = 0;
2008 	struct cpt_request_info *req;
2009 	buf_ptr_t *buf_p;
2010 	uint32_t encr_offset, auth_offset;
2011 	uint32_t encr_data_len, auth_data_len;
2012 	int flags;
2013 	uint8_t *iv_s, *iv_d, iv_len = 8;
2014 	uint8_t dir = 0;
2015 	void *m_vaddr, *c_vaddr;
2016 	uint64_t m_dma, c_dma;
2017 	uint64_t *offset_vaddr, offset_dma;
2018 	vq_cmd_word0_t vq_cmd_w0;
2019 	vq_cmd_word3_t vq_cmd_w3;
2020 	opcode_info_t opcode;
2021 	uint8_t *in_buffer;
2022 	uint32_t g_size_bytes, s_size_bytes;
2023 	uint64_t dptr_dma, rptr_dma;
2024 	sg_comp_t *gather_comp;
2025 	sg_comp_t *scatter_comp;
2026 
2027 	buf_p = &params->meta_buf;
2028 	m_vaddr = buf_p->vaddr;
2029 	m_dma = buf_p->dma_addr;
2030 
2031 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2032 	auth_offset = AUTH_OFFSET(d_offs) / 8;
2033 	encr_data_len = ENCR_DLEN(d_lens);
2034 	auth_data_len = AUTH_DLEN(d_lens);
2035 
2036 	cpt_ctx = params->ctx_buf.vaddr;
2037 	flags = cpt_ctx->zsk_flags;
2038 	mac_len = cpt_ctx->mac_len;
2039 
2040 	if (flags == 0x0)
2041 		iv_s = params->iv_buf;
2042 	else
2043 		iv_s = params->auth_iv_buf;
2044 
2045 	dir = iv_s[8] & 0x1;
2046 
2047 	/*
2048 	 * Save initial space that followed app data for completion code &
2049 	 * alternate completion code to fall in same cache line as app data
2050 	 */
2051 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2052 	m_dma += COMPLETION_CODE_SIZE;
2053 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2054 		(uint8_t *)m_vaddr;
2055 
2056 	c_vaddr = (uint8_t *)m_vaddr + size;
2057 	c_dma = m_dma + size;
2058 	size += sizeof(cpt_res_s_t);
2059 
2060 	m_vaddr = (uint8_t *)m_vaddr + size;
2061 	m_dma += size;
2062 
2063 	/* Reserve memory for cpt request info */
2064 	req = m_vaddr;
2065 
2066 	size = sizeof(struct cpt_request_info);
2067 	m_vaddr = (uint8_t *)m_vaddr + size;
2068 	m_dma += size;
2069 
2070 	opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2071 
2072 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2073 	opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2074 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2075 
2076 	/*
2077 	 * GP op header, lengths are expected in bits.
2078 	 */
2079 	vq_cmd_w0.u64 = 0;
2080 	vq_cmd_w0.s.param1 = encr_data_len;
2081 	vq_cmd_w0.s.param2 = auth_data_len;
2082 	vq_cmd_w0.s.opcode = opcode.flags;
2083 
2084 	/* consider iv len */
2085 	if (flags == 0x0) {
2086 		encr_offset += iv_len;
2087 		auth_offset += iv_len;
2088 	}
2089 
2090 	/* save space for offset ctrl and iv */
2091 	offset_vaddr = m_vaddr;
2092 	offset_dma = m_dma;
2093 
2094 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2095 	m_dma += OFF_CTRL_LEN + iv_len;
2096 
2097 	/* DPTR has SG list */
2098 	in_buffer = m_vaddr;
2099 	dptr_dma = m_dma;
2100 
2101 	((uint16_t *)in_buffer)[0] = 0;
2102 	((uint16_t *)in_buffer)[1] = 0;
2103 
2104 	/* TODO Add error check if space will be sufficient */
2105 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2106 
2107 	/*
2108 	 * Input Gather List
2109 	 */
2110 	i = 0;
2111 
2112 	/* Offset control word followed by iv */
2113 
2114 	if (flags == 0x0) {
2115 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2116 		outputlen = inputlen;
2117 		/* iv offset is 0 */
2118 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2119 	} else {
2120 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2121 		outputlen = mac_len;
2122 		/* iv offset is 0 */
2123 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2124 	}
2125 
2126 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2127 
2128 	/* IV */
2129 	iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2130 	memcpy(iv_d, iv_s, iv_len);
2131 
2132 	/* input data */
2133 	size = inputlen - iv_len;
2134 	if (size) {
2135 		i = fill_sg_comp_from_iov(gather_comp, i,
2136 					  params->src_iov, 0,
2137 					  &size, NULL, 0);
2138 
2139 		if (unlikely(size)) {
2140 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2141 				       " size %d needed", size);
2142 			return;
2143 		}
2144 	}
2145 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2146 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2147 
2148 	/*
2149 	 * Output Scatter List
2150 	 */
2151 
2152 	i = 0;
2153 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2154 
2155 	if (flags == 0x1) {
2156 		/* IV in SLIST only for F8 */
2157 		iv_len = 0;
2158 	}
2159 
2160 	/* IV */
2161 	if (iv_len) {
2162 		i = fill_sg_comp(scatter_comp, i,
2163 				 offset_dma + OFF_CTRL_LEN,
2164 				 iv_len);
2165 	}
2166 
2167 	/* Add output data */
2168 	if (req_flags & VALID_MAC_BUF) {
2169 		size = outputlen - iv_len - mac_len;
2170 		if (size) {
2171 			i = fill_sg_comp_from_iov(scatter_comp, i,
2172 						  params->dst_iov, 0,
2173 						  &size, NULL, 0);
2174 
2175 			if (unlikely(size)) {
2176 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2177 					       " size %d needed", size);
2178 				return;
2179 			}
2180 		}
2181 
2182 		/* mac data */
2183 		if (mac_len) {
2184 			i = fill_sg_comp_from_buf(scatter_comp, i,
2185 						  &params->mac_buf);
2186 		}
2187 	} else {
2188 		/* Output including mac */
2189 		size = outputlen - iv_len;
2190 		if (size) {
2191 			i = fill_sg_comp_from_iov(scatter_comp, i,
2192 						  params->dst_iov, 0,
2193 						  &size, NULL, 0);
2194 
2195 			if (unlikely(size)) {
2196 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2197 					       " size %d needed", size);
2198 				return;
2199 			}
2200 		}
2201 	}
2202 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2203 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2204 
2205 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2206 
2207 	/* This is DPTR len incase of SG mode */
2208 	vq_cmd_w0.s.dlen = size;
2209 
2210 	m_vaddr = (uint8_t *)m_vaddr + size;
2211 	m_dma += size;
2212 
2213 	/* cpt alternate completion address saved earlier */
2214 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2215 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2216 	rptr_dma = c_dma - 8;
2217 
2218 	req->ist.ei1 = dptr_dma;
2219 	req->ist.ei2 = rptr_dma;
2220 
2221 	/* vq command w3 */
2222 	vq_cmd_w3.u64 = 0;
2223 	vq_cmd_w3.s.grp = 0;
2224 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2225 		offsetof(struct cpt_ctx, k_ctx);
2226 
2227 	/* 16 byte aligned cpt res address */
2228 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2229 	*req->completion_addr = COMPLETION_CODE_INIT;
2230 	req->comp_baddr  = c_dma;
2231 
2232 	/* Fill microcode part of instruction */
2233 	req->ist.ei0 = vq_cmd_w0.u64;
2234 	req->ist.ei3 = vq_cmd_w3.u64;
2235 
2236 	req->op = op;
2237 
2238 	*prep_req = req;
2239 	return;
2240 }
2241 
2242 static __rte_always_inline void
2243 cpt_kasumi_dec_prep(uint64_t d_offs,
2244 		    uint64_t d_lens,
2245 		    fc_params_t *params,
2246 		    void *op,
2247 		    void **prep_req)
2248 {
2249 	uint32_t size;
2250 	int32_t inputlen = 0, outputlen;
2251 	struct cpt_ctx *cpt_ctx;
2252 	uint8_t i = 0, iv_len = 8;
2253 	struct cpt_request_info *req;
2254 	buf_ptr_t *buf_p;
2255 	uint32_t encr_offset;
2256 	uint32_t encr_data_len;
2257 	int flags;
2258 	uint8_t dir = 0;
2259 	void *m_vaddr, *c_vaddr;
2260 	uint64_t m_dma, c_dma;
2261 	uint64_t *offset_vaddr, offset_dma;
2262 	vq_cmd_word0_t vq_cmd_w0;
2263 	vq_cmd_word3_t vq_cmd_w3;
2264 	opcode_info_t opcode;
2265 	uint8_t *in_buffer;
2266 	uint32_t g_size_bytes, s_size_bytes;
2267 	uint64_t dptr_dma, rptr_dma;
2268 	sg_comp_t *gather_comp;
2269 	sg_comp_t *scatter_comp;
2270 
2271 	buf_p = &params->meta_buf;
2272 	m_vaddr = buf_p->vaddr;
2273 	m_dma = buf_p->dma_addr;
2274 
2275 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2276 	encr_data_len = ENCR_DLEN(d_lens);
2277 
2278 	cpt_ctx = params->ctx_buf.vaddr;
2279 	flags = cpt_ctx->zsk_flags;
2280 	/*
2281 	 * Save initial space that followed app data for completion code &
2282 	 * alternate completion code to fall in same cache line as app data
2283 	 */
2284 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2285 	m_dma += COMPLETION_CODE_SIZE;
2286 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2287 		(uint8_t *)m_vaddr;
2288 
2289 	c_vaddr = (uint8_t *)m_vaddr + size;
2290 	c_dma = m_dma + size;
2291 	size += sizeof(cpt_res_s_t);
2292 
2293 	m_vaddr = (uint8_t *)m_vaddr + size;
2294 	m_dma += size;
2295 
2296 	/* Reserve memory for cpt request info */
2297 	req = m_vaddr;
2298 
2299 	size = sizeof(struct cpt_request_info);
2300 	m_vaddr = (uint8_t *)m_vaddr + size;
2301 	m_dma += size;
2302 
2303 	opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2304 
2305 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2306 	opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2307 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2308 
2309 	/*
2310 	 * GP op header, lengths are expected in bits.
2311 	 */
2312 	vq_cmd_w0.u64 = 0;
2313 	vq_cmd_w0.s.param1 = encr_data_len;
2314 	vq_cmd_w0.s.opcode = opcode.flags;
2315 
2316 	/* consider iv len */
2317 	encr_offset += iv_len;
2318 
2319 	inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2320 	outputlen = inputlen;
2321 
2322 	/* save space for offset ctrl & iv */
2323 	offset_vaddr = m_vaddr;
2324 	offset_dma = m_dma;
2325 
2326 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2327 	m_dma += OFF_CTRL_LEN + iv_len;
2328 
2329 	/* DPTR has SG list */
2330 	in_buffer = m_vaddr;
2331 	dptr_dma = m_dma;
2332 
2333 	((uint16_t *)in_buffer)[0] = 0;
2334 	((uint16_t *)in_buffer)[1] = 0;
2335 
2336 	/* TODO Add error check if space will be sufficient */
2337 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2338 
2339 	/*
2340 	 * Input Gather List
2341 	 */
2342 	i = 0;
2343 
2344 	/* Offset control word followed by iv */
2345 	*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2346 
2347 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2348 
2349 	/* IV */
2350 	memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2351 	       params->iv_buf, iv_len);
2352 
2353 	/* Add input data */
2354 	size = inputlen - iv_len;
2355 	if (size) {
2356 		i = fill_sg_comp_from_iov(gather_comp, i,
2357 					  params->src_iov,
2358 					  0, &size, NULL, 0);
2359 		if (unlikely(size)) {
2360 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2361 				       " size %d needed", size);
2362 			return;
2363 		}
2364 	}
2365 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2366 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2367 
2368 	/*
2369 	 * Output Scatter List
2370 	 */
2371 
2372 	i = 0;
2373 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2374 
2375 	/* IV */
2376 	i = fill_sg_comp(scatter_comp, i,
2377 			 offset_dma + OFF_CTRL_LEN,
2378 			 iv_len);
2379 
2380 	/* Add output data */
2381 	size = outputlen - iv_len;
2382 	if (size) {
2383 		i = fill_sg_comp_from_iov(scatter_comp, i,
2384 					  params->dst_iov, 0,
2385 					  &size, NULL, 0);
2386 		if (unlikely(size)) {
2387 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2388 				       " size %d needed", size);
2389 			return;
2390 		}
2391 	}
2392 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2393 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2394 
2395 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2396 
2397 	/* This is DPTR len incase of SG mode */
2398 	vq_cmd_w0.s.dlen = size;
2399 
2400 	m_vaddr = (uint8_t *)m_vaddr + size;
2401 	m_dma += size;
2402 
2403 	/* cpt alternate completion address saved earlier */
2404 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2405 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2406 	rptr_dma = c_dma - 8;
2407 
2408 	req->ist.ei1 = dptr_dma;
2409 	req->ist.ei2 = rptr_dma;
2410 
2411 	/* vq command w3 */
2412 	vq_cmd_w3.u64 = 0;
2413 	vq_cmd_w3.s.grp = 0;
2414 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2415 		offsetof(struct cpt_ctx, k_ctx);
2416 
2417 	/* 16 byte aligned cpt res address */
2418 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2419 	*req->completion_addr = COMPLETION_CODE_INIT;
2420 	req->comp_baddr  = c_dma;
2421 
2422 	/* Fill microcode part of instruction */
2423 	req->ist.ei0 = vq_cmd_w0.u64;
2424 	req->ist.ei3 = vq_cmd_w3.u64;
2425 
2426 	req->op = op;
2427 
2428 	*prep_req = req;
2429 	return;
2430 }
2431 
2432 static __rte_always_inline void *
2433 cpt_fc_dec_hmac_prep(uint32_t flags,
2434 		     uint64_t d_offs,
2435 		     uint64_t d_lens,
2436 		     fc_params_t *fc_params,
2437 		     void *op)
2438 {
2439 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2440 	uint8_t fc_type;
2441 	void *prep_req = NULL;
2442 
2443 	fc_type = ctx->fc_type;
2444 
2445 	if (likely(fc_type == FC_GEN)) {
2446 		cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2447 				  &prep_req);
2448 	} else if (fc_type == ZUC_SNOW3G) {
2449 		cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2450 					&prep_req);
2451 	} else if (fc_type == KASUMI) {
2452 		cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2453 	}
2454 
2455 	/*
2456 	 * For AUTH_ONLY case,
2457 	 * MC only supports digest generation and verification
2458 	 * should be done in software by memcmp()
2459 	 */
2460 
2461 	return prep_req;
2462 }
2463 
2464 static __rte_always_inline void *__hot
2465 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2466 		     fc_params_t *fc_params, void *op)
2467 {
2468 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2469 	uint8_t fc_type;
2470 	void *prep_req = NULL;
2471 
2472 	fc_type = ctx->fc_type;
2473 
2474 	/* Common api for rest of the ops */
2475 	if (likely(fc_type == FC_GEN)) {
2476 		cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2477 				  &prep_req);
2478 	} else if (fc_type == ZUC_SNOW3G) {
2479 		cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2480 					&prep_req);
2481 	} else if (fc_type == KASUMI) {
2482 		cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2483 				    &prep_req);
2484 	} else if (fc_type == HASH_HMAC) {
2485 		cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2486 	}
2487 
2488 	return prep_req;
2489 }
2490 
2491 static __rte_always_inline int
2492 cpt_fc_auth_set_key(void *ctx, auth_type_t type, const uint8_t *key,
2493 		    uint16_t key_len, uint16_t mac_len)
2494 {
2495 	struct cpt_ctx *cpt_ctx = ctx;
2496 	mc_fc_context_t *fctx = &cpt_ctx->fctx;
2497 	uint64_t *ctrl_flags = NULL;
2498 
2499 	if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2500 		uint32_t keyx[4];
2501 
2502 		if (key_len != 16)
2503 			return -1;
2504 		/* No support for AEAD yet */
2505 		if (cpt_ctx->enc_cipher)
2506 			return -1;
2507 		/* For ZUC/SNOW3G/Kasumi */
2508 		switch (type) {
2509 		case SNOW3G_UIA2:
2510 			cpt_ctx->snow3g = 1;
2511 			gen_key_snow3g(key, keyx);
2512 			memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
2513 			cpt_ctx->fc_type = ZUC_SNOW3G;
2514 			cpt_ctx->zsk_flags = 0x1;
2515 			break;
2516 		case ZUC_EIA3:
2517 			cpt_ctx->snow3g = 0;
2518 			memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
2519 			memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
2520 			cpt_ctx->fc_type = ZUC_SNOW3G;
2521 			cpt_ctx->zsk_flags = 0x1;
2522 			break;
2523 		case KASUMI_F9_ECB:
2524 			/* Kasumi ECB mode */
2525 			cpt_ctx->k_ecb = 1;
2526 			memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2527 			cpt_ctx->fc_type = KASUMI;
2528 			cpt_ctx->zsk_flags = 0x1;
2529 			break;
2530 		case KASUMI_F9_CBC:
2531 			memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2532 			cpt_ctx->fc_type = KASUMI;
2533 			cpt_ctx->zsk_flags = 0x1;
2534 			break;
2535 		default:
2536 			return -1;
2537 		}
2538 		cpt_ctx->mac_len = 4;
2539 		cpt_ctx->hash_type = type;
2540 		return 0;
2541 	}
2542 
2543 	if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2544 		if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2545 			cpt_ctx->fc_type = HASH_HMAC;
2546 	}
2547 
2548 	ctrl_flags = (uint64_t *)&fctx->enc.enc_ctrl.flags;
2549 	*ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
2550 
2551 	/* For GMAC auth, cipher must be NULL */
2552 	if (type == GMAC_TYPE)
2553 		CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
2554 
2555 	CPT_P_ENC_CTRL(fctx).hash_type = cpt_ctx->hash_type = type;
2556 	CPT_P_ENC_CTRL(fctx).mac_len = cpt_ctx->mac_len = mac_len;
2557 
2558 	if (key_len) {
2559 		cpt_ctx->hmac = 1;
2560 		memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2561 		memcpy(cpt_ctx->auth_key, key, key_len);
2562 		cpt_ctx->auth_key_len = key_len;
2563 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2564 		memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2565 		memcpy(fctx->hmac.opad, key, key_len);
2566 		CPT_P_ENC_CTRL(fctx).auth_input_type = 1;
2567 	}
2568 	*ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
2569 	return 0;
2570 }
2571 
2572 static __rte_always_inline int
2573 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2574 		 struct cpt_sess_misc *sess)
2575 {
2576 	struct rte_crypto_aead_xform *aead_form;
2577 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2578 	auth_type_t auth_type = 0; /* NULL Auth type */
2579 	uint32_t cipher_key_len = 0;
2580 	uint8_t aes_gcm = 0;
2581 	aead_form = &xform->aead;
2582 	void *ctx = SESS_PRIV(sess);
2583 
2584 	if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT &&
2585 	   aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2586 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2587 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2588 	} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT &&
2589 		aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2590 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2591 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2592 	} else {
2593 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2594 		return -1;
2595 	}
2596 	switch (aead_form->algo) {
2597 	case RTE_CRYPTO_AEAD_AES_GCM:
2598 		enc_type = AES_GCM;
2599 		cipher_key_len = 16;
2600 		aes_gcm = 1;
2601 		break;
2602 	case RTE_CRYPTO_AEAD_AES_CCM:
2603 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2604 			       aead_form->algo);
2605 		return -1;
2606 	default:
2607 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2608 			       aead_form->algo);
2609 		return -1;
2610 	}
2611 	if (aead_form->key.length < cipher_key_len) {
2612 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2613 			       (unsigned int long)aead_form->key.length);
2614 		return -1;
2615 	}
2616 	sess->zsk_flag = 0;
2617 	sess->aes_gcm = aes_gcm;
2618 	sess->mac_len = aead_form->digest_length;
2619 	sess->iv_offset = aead_form->iv.offset;
2620 	sess->iv_length = aead_form->iv.length;
2621 	sess->aad_length = aead_form->aad_length;
2622 
2623 	cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2624 			aead_form->key.length, NULL);
2625 
2626 	cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, aead_form->digest_length);
2627 
2628 	return 0;
2629 }
2630 
2631 static __rte_always_inline int
2632 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2633 		 struct cpt_sess_misc *sess)
2634 {
2635 	struct rte_crypto_cipher_xform *c_form;
2636 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2637 	uint32_t cipher_key_len = 0;
2638 	uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
2639 
2640 	c_form = &xform->cipher;
2641 
2642 	if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2643 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2644 	else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
2645 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2646 	else {
2647 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2648 		return -1;
2649 	}
2650 
2651 	switch (c_form->algo) {
2652 	case RTE_CRYPTO_CIPHER_AES_CBC:
2653 		enc_type = AES_CBC;
2654 		cipher_key_len = 16;
2655 		break;
2656 	case RTE_CRYPTO_CIPHER_3DES_CBC:
2657 		enc_type = DES3_CBC;
2658 		cipher_key_len = 24;
2659 		break;
2660 	case RTE_CRYPTO_CIPHER_DES_CBC:
2661 		/* DES is implemented using 3DES in hardware */
2662 		enc_type = DES3_CBC;
2663 		cipher_key_len = 8;
2664 		break;
2665 	case RTE_CRYPTO_CIPHER_AES_CTR:
2666 		enc_type = AES_CTR;
2667 		cipher_key_len = 16;
2668 		aes_ctr = 1;
2669 		break;
2670 	case RTE_CRYPTO_CIPHER_NULL:
2671 		enc_type = 0;
2672 		is_null = 1;
2673 		break;
2674 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
2675 		enc_type = KASUMI_F8_ECB;
2676 		cipher_key_len = 16;
2677 		zsk_flag = K_F8;
2678 		break;
2679 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2680 		enc_type = SNOW3G_UEA2;
2681 		cipher_key_len = 16;
2682 		zsk_flag = ZS_EA;
2683 		break;
2684 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2685 		enc_type = ZUC_EEA3;
2686 		cipher_key_len = 16;
2687 		zsk_flag = ZS_EA;
2688 		break;
2689 	case RTE_CRYPTO_CIPHER_AES_XTS:
2690 		enc_type = AES_XTS;
2691 		cipher_key_len = 16;
2692 		break;
2693 	case RTE_CRYPTO_CIPHER_3DES_ECB:
2694 		enc_type = DES3_ECB;
2695 		cipher_key_len = 24;
2696 		break;
2697 	case RTE_CRYPTO_CIPHER_AES_ECB:
2698 		enc_type = AES_ECB;
2699 		cipher_key_len = 16;
2700 		break;
2701 	case RTE_CRYPTO_CIPHER_3DES_CTR:
2702 	case RTE_CRYPTO_CIPHER_AES_F8:
2703 	case RTE_CRYPTO_CIPHER_ARC4:
2704 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2705 			       c_form->algo);
2706 		return -1;
2707 	default:
2708 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2709 			       c_form->algo);
2710 		return -1;
2711 	}
2712 
2713 	if (c_form->key.length < cipher_key_len) {
2714 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2715 			       (unsigned long) c_form->key.length);
2716 		return -1;
2717 	}
2718 
2719 	sess->zsk_flag = zsk_flag;
2720 	sess->aes_gcm = 0;
2721 	sess->aes_ctr = aes_ctr;
2722 	sess->iv_offset = c_form->iv.offset;
2723 	sess->iv_length = c_form->iv.length;
2724 	sess->is_null = is_null;
2725 
2726 	cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type, c_form->key.data,
2727 			    c_form->key.length, NULL);
2728 
2729 	return 0;
2730 }
2731 
2732 static __rte_always_inline int
2733 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2734 	       struct cpt_sess_misc *sess)
2735 {
2736 	struct rte_crypto_auth_xform *a_form;
2737 	auth_type_t auth_type = 0; /* NULL Auth type */
2738 	uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2739 
2740 	a_form = &xform->auth;
2741 
2742 	if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2743 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2744 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2745 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2746 	else {
2747 		CPT_LOG_DP_ERR("Unknown auth operation");
2748 		return -1;
2749 	}
2750 
2751 	if (a_form->key.length > 64) {
2752 		CPT_LOG_DP_ERR("Auth key length is big");
2753 		return -1;
2754 	}
2755 
2756 	switch (a_form->algo) {
2757 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
2758 		/* Fall through */
2759 	case RTE_CRYPTO_AUTH_SHA1:
2760 		auth_type = SHA1_TYPE;
2761 		break;
2762 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
2763 	case RTE_CRYPTO_AUTH_SHA256:
2764 		auth_type = SHA2_SHA256;
2765 		break;
2766 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
2767 	case RTE_CRYPTO_AUTH_SHA512:
2768 		auth_type = SHA2_SHA512;
2769 		break;
2770 	case RTE_CRYPTO_AUTH_AES_GMAC:
2771 		auth_type = GMAC_TYPE;
2772 		aes_gcm = 1;
2773 		break;
2774 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
2775 	case RTE_CRYPTO_AUTH_SHA224:
2776 		auth_type = SHA2_SHA224;
2777 		break;
2778 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
2779 	case RTE_CRYPTO_AUTH_SHA384:
2780 		auth_type = SHA2_SHA384;
2781 		break;
2782 	case RTE_CRYPTO_AUTH_MD5_HMAC:
2783 	case RTE_CRYPTO_AUTH_MD5:
2784 		auth_type = MD5_TYPE;
2785 		break;
2786 	case RTE_CRYPTO_AUTH_KASUMI_F9:
2787 		auth_type = KASUMI_F9_ECB;
2788 		/*
2789 		 * Indicate that direction needs to be taken out
2790 		 * from end of src
2791 		 */
2792 		zsk_flag = K_F9;
2793 		break;
2794 	case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2795 		auth_type = SNOW3G_UIA2;
2796 		zsk_flag = ZS_IA;
2797 		break;
2798 	case RTE_CRYPTO_AUTH_ZUC_EIA3:
2799 		auth_type = ZUC_EIA3;
2800 		zsk_flag = ZS_IA;
2801 		break;
2802 	case RTE_CRYPTO_AUTH_NULL:
2803 		auth_type = 0;
2804 		is_null = 1;
2805 		break;
2806 	case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2807 	case RTE_CRYPTO_AUTH_AES_CMAC:
2808 	case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2809 		CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2810 			       a_form->algo);
2811 		return -1;
2812 	default:
2813 		CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2814 			       a_form->algo);
2815 		return -1;
2816 	}
2817 
2818 	sess->zsk_flag = zsk_flag;
2819 	sess->aes_gcm = aes_gcm;
2820 	sess->mac_len = a_form->digest_length;
2821 	sess->is_null = is_null;
2822 	if (zsk_flag) {
2823 		sess->auth_iv_offset = a_form->iv.offset;
2824 		sess->auth_iv_length = a_form->iv.length;
2825 	}
2826 	cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type, a_form->key.data,
2827 			    a_form->key.length, a_form->digest_length);
2828 
2829 	return 0;
2830 }
2831 
2832 static __rte_always_inline int
2833 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2834 		 struct cpt_sess_misc *sess)
2835 {
2836 	struct rte_crypto_auth_xform *a_form;
2837 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2838 	auth_type_t auth_type = 0; /* NULL Auth type */
2839 	void *ctx = SESS_PRIV(sess);
2840 
2841 	a_form = &xform->auth;
2842 
2843 	if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2844 		sess->cpt_op |= CPT_OP_ENCODE;
2845 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2846 		sess->cpt_op |= CPT_OP_DECODE;
2847 	else {
2848 		CPT_LOG_DP_ERR("Unknown auth operation");
2849 		return -1;
2850 	}
2851 
2852 	switch (a_form->algo) {
2853 	case RTE_CRYPTO_AUTH_AES_GMAC:
2854 		enc_type = AES_GCM;
2855 		auth_type = GMAC_TYPE;
2856 		break;
2857 	default:
2858 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2859 			       a_form->algo);
2860 		return -1;
2861 	}
2862 
2863 	sess->zsk_flag = 0;
2864 	sess->aes_gcm = 0;
2865 	sess->is_gmac = 1;
2866 	sess->iv_offset = a_form->iv.offset;
2867 	sess->iv_length = a_form->iv.length;
2868 	sess->mac_len = a_form->digest_length;
2869 
2870 	cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2871 			a_form->key.length, NULL);
2872 	cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, a_form->digest_length);
2873 
2874 	return 0;
2875 }
2876 
2877 static __rte_always_inline void *
2878 alloc_op_meta(struct rte_mbuf *m_src,
2879 	      buf_ptr_t *buf,
2880 	      int32_t len,
2881 	      struct rte_mempool *cpt_meta_pool)
2882 {
2883 	uint8_t *mdata;
2884 
2885 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2886 	if (likely(m_src && (m_src->nb_segs == 1))) {
2887 		int32_t tailroom;
2888 		phys_addr_t mphys;
2889 
2890 		/* Check if tailroom is sufficient to hold meta data */
2891 		tailroom = rte_pktmbuf_tailroom(m_src);
2892 		if (likely(tailroom > len + 8)) {
2893 			mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2894 			mphys = m_src->buf_physaddr + m_src->buf_len;
2895 			mdata -= len;
2896 			mphys -= len;
2897 			buf->vaddr = mdata;
2898 			buf->dma_addr = mphys;
2899 			buf->size = len;
2900 			/* Indicate that this is a mbuf allocated mdata */
2901 			mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2902 			return mdata;
2903 		}
2904 	}
2905 #else
2906 	RTE_SET_USED(m_src);
2907 #endif
2908 
2909 	if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2910 		return NULL;
2911 
2912 	buf->vaddr = mdata;
2913 	buf->dma_addr = rte_mempool_virt2iova(mdata);
2914 	buf->size = len;
2915 
2916 	return mdata;
2917 }
2918 
2919 /**
2920  * cpt_free_metabuf - free metabuf to mempool.
2921  * @param instance: pointer to instance.
2922  * @param objp: pointer to the metabuf.
2923  */
2924 static __rte_always_inline void
2925 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2926 {
2927 	bool nofree = ((uintptr_t)mdata & 1ull);
2928 
2929 	if (likely(nofree))
2930 		return;
2931 	rte_mempool_put(cpt_meta_pool, mdata);
2932 }
2933 
2934 static __rte_always_inline uint32_t
2935 prepare_iov_from_pkt(struct rte_mbuf *pkt,
2936 		     iov_ptr_t *iovec, uint32_t start_offset)
2937 {
2938 	uint16_t index = 0;
2939 	void *seg_data = NULL;
2940 	phys_addr_t seg_phys;
2941 	int32_t seg_size = 0;
2942 
2943 	if (!pkt) {
2944 		iovec->buf_cnt = 0;
2945 		return 0;
2946 	}
2947 
2948 	if (!start_offset) {
2949 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2950 		seg_phys = rte_pktmbuf_mtophys(pkt);
2951 		seg_size = pkt->data_len;
2952 	} else {
2953 		while (start_offset >= pkt->data_len) {
2954 			start_offset -= pkt->data_len;
2955 			pkt = pkt->next;
2956 		}
2957 
2958 		seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
2959 		seg_phys = rte_pktmbuf_mtophys_offset(pkt, start_offset);
2960 		seg_size = pkt->data_len - start_offset;
2961 		if (!seg_size)
2962 			return 1;
2963 	}
2964 
2965 	/* first seg */
2966 	iovec->bufs[index].vaddr = seg_data;
2967 	iovec->bufs[index].dma_addr = seg_phys;
2968 	iovec->bufs[index].size = seg_size;
2969 	index++;
2970 	pkt = pkt->next;
2971 
2972 	while (unlikely(pkt != NULL)) {
2973 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2974 		seg_phys = rte_pktmbuf_mtophys(pkt);
2975 		seg_size = pkt->data_len;
2976 		if (!seg_size)
2977 			break;
2978 
2979 		iovec->bufs[index].vaddr = seg_data;
2980 		iovec->bufs[index].dma_addr = seg_phys;
2981 		iovec->bufs[index].size = seg_size;
2982 
2983 		index++;
2984 
2985 		pkt = pkt->next;
2986 	}
2987 
2988 	iovec->buf_cnt = index;
2989 	return 0;
2990 }
2991 
2992 static __rte_always_inline uint32_t
2993 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
2994 			     fc_params_t *param,
2995 			     uint32_t *flags)
2996 {
2997 	uint16_t index = 0;
2998 	void *seg_data = NULL;
2999 	phys_addr_t seg_phys;
3000 	uint32_t seg_size = 0;
3001 	iov_ptr_t *iovec;
3002 
3003 	seg_data = rte_pktmbuf_mtod(pkt, void *);
3004 	seg_phys = rte_pktmbuf_mtophys(pkt);
3005 	seg_size = pkt->data_len;
3006 
3007 	/* first seg */
3008 	if (likely(!pkt->next)) {
3009 		uint32_t headroom, tailroom;
3010 
3011 		*flags |= SINGLE_BUF_INPLACE;
3012 		headroom = rte_pktmbuf_headroom(pkt);
3013 		tailroom = rte_pktmbuf_tailroom(pkt);
3014 		if (likely((headroom >= 24) &&
3015 		    (tailroom >= 8))) {
3016 			/* In 83XX this is prerequivisit for Direct mode */
3017 			*flags |= SINGLE_BUF_HEADTAILROOM;
3018 		}
3019 		param->bufs[0].vaddr = seg_data;
3020 		param->bufs[0].dma_addr = seg_phys;
3021 		param->bufs[0].size = seg_size;
3022 		return 0;
3023 	}
3024 	iovec = param->src_iov;
3025 	iovec->bufs[index].vaddr = seg_data;
3026 	iovec->bufs[index].dma_addr = seg_phys;
3027 	iovec->bufs[index].size = seg_size;
3028 	index++;
3029 	pkt = pkt->next;
3030 
3031 	while (unlikely(pkt != NULL)) {
3032 		seg_data = rte_pktmbuf_mtod(pkt, void *);
3033 		seg_phys = rte_pktmbuf_mtophys(pkt);
3034 		seg_size = pkt->data_len;
3035 
3036 		if (!seg_size)
3037 			break;
3038 
3039 		iovec->bufs[index].vaddr = seg_data;
3040 		iovec->bufs[index].dma_addr = seg_phys;
3041 		iovec->bufs[index].size = seg_size;
3042 
3043 		index++;
3044 
3045 		pkt = pkt->next;
3046 	}
3047 
3048 	iovec->buf_cnt = index;
3049 	return 0;
3050 }
3051 
3052 static __rte_always_inline int
3053 fill_fc_params(struct rte_crypto_op *cop,
3054 	       struct cpt_sess_misc *sess_misc,
3055 	       struct cpt_qp_meta_info *m_info,
3056 	       void **mdata_ptr,
3057 	       void **prep_req)
3058 {
3059 	uint32_t space = 0;
3060 	struct rte_crypto_sym_op *sym_op = cop->sym;
3061 	void *mdata = NULL;
3062 	uintptr_t *op;
3063 	uint32_t mc_hash_off;
3064 	uint32_t flags = 0;
3065 	uint64_t d_offs, d_lens;
3066 	struct rte_mbuf *m_src, *m_dst;
3067 	uint8_t cpt_op = sess_misc->cpt_op;
3068 #ifdef CPT_ALWAYS_USE_SG_MODE
3069 	uint8_t inplace = 0;
3070 #else
3071 	uint8_t inplace = 1;
3072 #endif
3073 	fc_params_t fc_params;
3074 	char src[SRC_IOV_SIZE];
3075 	char dst[SRC_IOV_SIZE];
3076 	uint32_t iv_buf[4];
3077 	int ret;
3078 
3079 	if (likely(sess_misc->iv_length)) {
3080 		flags |= VALID_IV_BUF;
3081 		fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3082 				   uint8_t *, sess_misc->iv_offset);
3083 		if (sess_misc->aes_ctr &&
3084 		    unlikely(sess_misc->iv_length != 16)) {
3085 			memcpy((uint8_t *)iv_buf,
3086 				rte_crypto_op_ctod_offset(cop,
3087 				uint8_t *, sess_misc->iv_offset), 12);
3088 			iv_buf[3] = rte_cpu_to_be_32(0x1);
3089 			fc_params.iv_buf = iv_buf;
3090 		}
3091 	}
3092 
3093 	if (sess_misc->zsk_flag) {
3094 		fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3095 					uint8_t *,
3096 					sess_misc->auth_iv_offset);
3097 		if (sess_misc->zsk_flag != ZS_EA)
3098 			inplace = 0;
3099 	}
3100 	m_src = sym_op->m_src;
3101 	m_dst = sym_op->m_dst;
3102 
3103 	if (sess_misc->aes_gcm) {
3104 		uint8_t *salt;
3105 		uint8_t *aad_data;
3106 		uint16_t aad_len;
3107 
3108 		d_offs = sym_op->aead.data.offset;
3109 		d_lens = sym_op->aead.data.length;
3110 		mc_hash_off = sym_op->aead.data.offset +
3111 			      sym_op->aead.data.length;
3112 
3113 		aad_data = sym_op->aead.aad.data;
3114 		aad_len = sess_misc->aad_length;
3115 		if (likely((aad_data + aad_len) ==
3116 			   rte_pktmbuf_mtod_offset(m_src,
3117 				uint8_t *,
3118 				sym_op->aead.data.offset))) {
3119 			d_offs = (d_offs - aad_len) | (d_offs << 16);
3120 			d_lens = (d_lens + aad_len) | (d_lens << 32);
3121 		} else {
3122 			fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3123 			fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3124 			fc_params.aad_buf.size = aad_len;
3125 			flags |= VALID_AAD_BUF;
3126 			inplace = 0;
3127 			d_offs = d_offs << 16;
3128 			d_lens = d_lens << 32;
3129 		}
3130 
3131 		salt = fc_params.iv_buf;
3132 		if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3133 			cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3134 			sess_misc->salt = *(uint32_t *)salt;
3135 		}
3136 		fc_params.iv_buf = salt + 4;
3137 		if (likely(sess_misc->mac_len)) {
3138 			struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3139 					     m_src;
3140 
3141 			if (!m)
3142 				m = m_src;
3143 
3144 			/* hmac immediately following data is best case */
3145 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3146 			    mc_hash_off !=
3147 			    (uint8_t *)sym_op->aead.digest.data)) {
3148 				flags |= VALID_MAC_BUF;
3149 				fc_params.mac_buf.size = sess_misc->mac_len;
3150 				fc_params.mac_buf.vaddr =
3151 				  sym_op->aead.digest.data;
3152 				fc_params.mac_buf.dma_addr =
3153 				 sym_op->aead.digest.phys_addr;
3154 				inplace = 0;
3155 			}
3156 		}
3157 	} else {
3158 		d_offs = sym_op->cipher.data.offset;
3159 		d_lens = sym_op->cipher.data.length;
3160 		mc_hash_off = sym_op->cipher.data.offset +
3161 			      sym_op->cipher.data.length;
3162 		d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3163 		d_lens = (d_lens << 32) | sym_op->auth.data.length;
3164 
3165 		if (mc_hash_off < (sym_op->auth.data.offset +
3166 				   sym_op->auth.data.length)){
3167 			mc_hash_off = (sym_op->auth.data.offset +
3168 				       sym_op->auth.data.length);
3169 		}
3170 		/* for gmac, salt should be updated like in gcm */
3171 		if (unlikely(sess_misc->is_gmac)) {
3172 			uint8_t *salt;
3173 			salt = fc_params.iv_buf;
3174 			if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3175 				cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3176 				sess_misc->salt = *(uint32_t *)salt;
3177 			}
3178 			fc_params.iv_buf = salt + 4;
3179 		}
3180 		if (likely(sess_misc->mac_len)) {
3181 			struct rte_mbuf *m;
3182 
3183 			m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3184 			if (!m)
3185 				m = m_src;
3186 
3187 			/* hmac immediately following data is best case */
3188 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3189 			    mc_hash_off !=
3190 			     (uint8_t *)sym_op->auth.digest.data)) {
3191 				flags |= VALID_MAC_BUF;
3192 				fc_params.mac_buf.size =
3193 					sess_misc->mac_len;
3194 				fc_params.mac_buf.vaddr =
3195 					sym_op->auth.digest.data;
3196 				fc_params.mac_buf.dma_addr =
3197 				sym_op->auth.digest.phys_addr;
3198 				inplace = 0;
3199 			}
3200 		}
3201 	}
3202 	fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3203 	fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3204 
3205 	if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
3206 		inplace = 0;
3207 
3208 	if (likely(!m_dst && inplace)) {
3209 		/* Case of single buffer without AAD buf or
3210 		 * separate mac buf in place and
3211 		 * not air crypto
3212 		 */
3213 		fc_params.dst_iov = fc_params.src_iov = (void *)src;
3214 
3215 		if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3216 							  &fc_params,
3217 							  &flags))) {
3218 			CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3219 			ret = -EINVAL;
3220 			goto err_exit;
3221 		}
3222 
3223 	} else {
3224 		/* Out of place processing */
3225 		fc_params.src_iov = (void *)src;
3226 		fc_params.dst_iov = (void *)dst;
3227 
3228 		/* Store SG I/O in the api for reuse */
3229 		if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3230 			CPT_LOG_DP_ERR("Prepare src iov failed");
3231 			ret = -EINVAL;
3232 			goto err_exit;
3233 		}
3234 
3235 		if (unlikely(m_dst != NULL)) {
3236 			uint32_t pkt_len;
3237 
3238 			/* Try to make room as much as src has */
3239 			pkt_len = rte_pktmbuf_pkt_len(m_dst);
3240 
3241 			if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3242 				pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3243 				if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3244 					CPT_LOG_DP_ERR("Not enough space in "
3245 						       "m_dst %p, need %u"
3246 						       " more",
3247 						       m_dst, pkt_len);
3248 					ret = -EINVAL;
3249 					goto err_exit;
3250 				}
3251 			}
3252 
3253 			if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3254 				CPT_LOG_DP_ERR("Prepare dst iov failed for "
3255 					       "m_dst %p", m_dst);
3256 				ret = -EINVAL;
3257 				goto err_exit;
3258 			}
3259 		} else {
3260 			fc_params.dst_iov = (void *)src;
3261 		}
3262 	}
3263 
3264 	if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3265 		mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3266 				      m_info->lb_mlen, m_info->pool);
3267 	else
3268 		mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3269 				      m_info->sg_mlen, m_info->pool);
3270 
3271 	if (unlikely(mdata == NULL)) {
3272 		CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3273 		ret = -ENOMEM;
3274 		goto err_exit;
3275 	}
3276 
3277 	op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3278 	op[0] = (uintptr_t)mdata;
3279 	op[1] = (uintptr_t)cop;
3280 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3281 	space += 4 * sizeof(uint64_t);
3282 
3283 	fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3284 	fc_params.meta_buf.dma_addr += space;
3285 	fc_params.meta_buf.size -= space;
3286 
3287 	/* Finally prepare the instruction */
3288 	if (cpt_op & CPT_OP_ENCODE)
3289 		*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3290 						 &fc_params, op);
3291 	else
3292 		*prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3293 						 &fc_params, op);
3294 
3295 	if (unlikely(*prep_req == NULL)) {
3296 		CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3297 		ret = -EINVAL;
3298 		goto free_mdata_and_exit;
3299 	}
3300 
3301 	*mdata_ptr = mdata;
3302 
3303 	return 0;
3304 
3305 free_mdata_and_exit:
3306 	free_op_meta(mdata, m_info->pool);
3307 err_exit:
3308 	return ret;
3309 }
3310 
3311 static __rte_always_inline void
3312 compl_auth_verify(struct rte_crypto_op *op,
3313 		      uint8_t *gen_mac,
3314 		      uint64_t mac_len)
3315 {
3316 	uint8_t *mac;
3317 	struct rte_crypto_sym_op *sym_op = op->sym;
3318 
3319 	if (sym_op->auth.digest.data)
3320 		mac = sym_op->auth.digest.data;
3321 	else
3322 		mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3323 					      uint8_t *,
3324 					      sym_op->auth.data.length +
3325 					      sym_op->auth.data.offset);
3326 	if (!mac) {
3327 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3328 		return;
3329 	}
3330 
3331 	if (memcmp(mac, gen_mac, mac_len))
3332 		op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3333 	else
3334 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3335 }
3336 
3337 static __rte_always_inline int
3338 instance_session_cfg(struct rte_crypto_sym_xform *xform, void *sess)
3339 {
3340 	struct rte_crypto_sym_xform *chain;
3341 
3342 	CPT_PMD_INIT_FUNC_TRACE();
3343 
3344 	if (cpt_is_algo_supported(xform))
3345 		goto err;
3346 
3347 	chain = xform;
3348 	while (chain) {
3349 		switch (chain->type) {
3350 		case RTE_CRYPTO_SYM_XFORM_AEAD:
3351 			if (fill_sess_aead(chain, sess))
3352 				goto err;
3353 			break;
3354 		case RTE_CRYPTO_SYM_XFORM_CIPHER:
3355 			if (fill_sess_cipher(chain, sess))
3356 				goto err;
3357 			break;
3358 		case RTE_CRYPTO_SYM_XFORM_AUTH:
3359 			if (chain->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
3360 				if (fill_sess_gmac(chain, sess))
3361 					goto err;
3362 			} else {
3363 				if (fill_sess_auth(chain, sess))
3364 					goto err;
3365 			}
3366 			break;
3367 		default:
3368 			CPT_LOG_DP_ERR("Invalid crypto xform type");
3369 			break;
3370 		}
3371 		chain = chain->next;
3372 	}
3373 
3374 	return 0;
3375 
3376 err:
3377 	return -1;
3378 }
3379 
3380 static __rte_always_inline void
3381 find_kasumif9_direction_and_length(uint8_t *src,
3382 				   uint32_t counter_num_bytes,
3383 				   uint32_t *addr_length_in_bits,
3384 				   uint8_t *addr_direction)
3385 {
3386 	uint8_t found = 0;
3387 	uint32_t pos;
3388 	uint8_t last_byte;
3389 	while (!found && counter_num_bytes > 0) {
3390 		counter_num_bytes--;
3391 		if (src[counter_num_bytes] == 0x00)
3392 			continue;
3393 		pos = rte_bsf32(src[counter_num_bytes]);
3394 		if (pos == 7) {
3395 			if (likely(counter_num_bytes > 0)) {
3396 				last_byte = src[counter_num_bytes - 1];
3397 				*addr_direction  =  last_byte & 0x1;
3398 				*addr_length_in_bits = counter_num_bytes * 8
3399 							- 1;
3400 			}
3401 		} else {
3402 			last_byte = src[counter_num_bytes];
3403 			*addr_direction = (last_byte >> (pos + 1)) & 0x1;
3404 			*addr_length_in_bits = counter_num_bytes * 8
3405 						+ (8 - (pos + 2));
3406 		}
3407 		found = 1;
3408 	}
3409 }
3410 
3411 /*
3412  * This handles all auth only except AES_GMAC
3413  */
3414 static __rte_always_inline int
3415 fill_digest_params(struct rte_crypto_op *cop,
3416 		   struct cpt_sess_misc *sess,
3417 		   struct cpt_qp_meta_info *m_info,
3418 		   void **mdata_ptr,
3419 		   void **prep_req)
3420 {
3421 	uint32_t space = 0;
3422 	struct rte_crypto_sym_op *sym_op = cop->sym;
3423 	void *mdata;
3424 	phys_addr_t mphys;
3425 	uint64_t *op;
3426 	uint32_t auth_range_off;
3427 	uint32_t flags = 0;
3428 	uint64_t d_offs = 0, d_lens;
3429 	struct rte_mbuf *m_src, *m_dst;
3430 	uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3431 	uint16_t mac_len = sess->mac_len;
3432 	fc_params_t params;
3433 	char src[SRC_IOV_SIZE];
3434 	uint8_t iv_buf[16];
3435 	int ret;
3436 
3437 	memset(&params, 0, sizeof(fc_params_t));
3438 
3439 	m_src = sym_op->m_src;
3440 
3441 	/* For just digest lets force mempool alloc */
3442 	mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3443 			      m_info->pool);
3444 	if (mdata == NULL) {
3445 		ret = -ENOMEM;
3446 		goto err_exit;
3447 	}
3448 
3449 	mphys = params.meta_buf.dma_addr;
3450 
3451 	op = mdata;
3452 	op[0] = (uintptr_t)mdata;
3453 	op[1] = (uintptr_t)cop;
3454 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3455 	space += 4 * sizeof(uint64_t);
3456 
3457 	auth_range_off = sym_op->auth.data.offset;
3458 
3459 	flags = VALID_MAC_BUF;
3460 	params.src_iov = (void *)src;
3461 	if (unlikely(sess->zsk_flag)) {
3462 		/*
3463 		 * Since for Zuc, Kasumi, Snow3g offsets are in bits
3464 		 * we will send pass through even for auth only case,
3465 		 * let MC handle it
3466 		 */
3467 		d_offs = auth_range_off;
3468 		auth_range_off = 0;
3469 		params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3470 					uint8_t *, sess->auth_iv_offset);
3471 		if (sess->zsk_flag == K_F9) {
3472 			uint32_t length_in_bits, num_bytes;
3473 			uint8_t *src, direction = 0;
3474 
3475 			memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3476 							uint8_t *), 8);
3477 			/*
3478 			 * This is kasumi f9, take direction from
3479 			 * source buffer
3480 			 */
3481 			length_in_bits = cop->sym->auth.data.length;
3482 			num_bytes = (length_in_bits >> 3);
3483 			src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3484 			find_kasumif9_direction_and_length(src,
3485 						num_bytes,
3486 						&length_in_bits,
3487 						&direction);
3488 			length_in_bits -= 64;
3489 			cop->sym->auth.data.offset += 64;
3490 			d_offs = cop->sym->auth.data.offset;
3491 			auth_range_off = d_offs / 8;
3492 			cop->sym->auth.data.length = length_in_bits;
3493 
3494 			/* Store it at end of auth iv */
3495 			iv_buf[8] = direction;
3496 			params.auth_iv_buf = iv_buf;
3497 		}
3498 	}
3499 
3500 	d_lens = sym_op->auth.data.length;
3501 
3502 	params.ctx_buf.vaddr = SESS_PRIV(sess);
3503 	params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3504 
3505 	if (auth_op == CPT_OP_AUTH_GENERATE) {
3506 		if (sym_op->auth.digest.data) {
3507 			/*
3508 			 * Digest to be generated
3509 			 * in separate buffer
3510 			 */
3511 			params.mac_buf.size =
3512 				sess->mac_len;
3513 			params.mac_buf.vaddr =
3514 				sym_op->auth.digest.data;
3515 			params.mac_buf.dma_addr =
3516 				sym_op->auth.digest.phys_addr;
3517 		} else {
3518 			uint32_t off = sym_op->auth.data.offset +
3519 				sym_op->auth.data.length;
3520 			int32_t dlen, space;
3521 
3522 			m_dst = sym_op->m_dst ?
3523 				sym_op->m_dst : sym_op->m_src;
3524 			dlen = rte_pktmbuf_pkt_len(m_dst);
3525 
3526 			space = off + mac_len - dlen;
3527 			if (space > 0)
3528 				if (!rte_pktmbuf_append(m_dst, space)) {
3529 					CPT_LOG_DP_ERR("Failed to extend "
3530 						       "mbuf by %uB", space);
3531 					ret = -EINVAL;
3532 					goto free_mdata_and_exit;
3533 				}
3534 
3535 			params.mac_buf.vaddr =
3536 				rte_pktmbuf_mtod_offset(m_dst, void *, off);
3537 			params.mac_buf.dma_addr =
3538 				rte_pktmbuf_mtophys_offset(m_dst, off);
3539 			params.mac_buf.size = mac_len;
3540 		}
3541 	} else {
3542 		/* Need space for storing generated mac */
3543 		params.mac_buf.vaddr = (uint8_t *)mdata + space;
3544 		params.mac_buf.dma_addr = mphys + space;
3545 		params.mac_buf.size = mac_len;
3546 		space += RTE_ALIGN_CEIL(mac_len, 8);
3547 		op[2] = (uintptr_t)params.mac_buf.vaddr;
3548 		op[3] = mac_len;
3549 	}
3550 
3551 	params.meta_buf.vaddr = (uint8_t *)mdata + space;
3552 	params.meta_buf.dma_addr = mphys + space;
3553 	params.meta_buf.size -= space;
3554 
3555 	/* Out of place processing */
3556 	params.src_iov = (void *)src;
3557 
3558 	/*Store SG I/O in the api for reuse */
3559 	if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3560 		CPT_LOG_DP_ERR("Prepare src iov failed");
3561 		ret = -EINVAL;
3562 		goto free_mdata_and_exit;
3563 	}
3564 
3565 	*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3566 	if (unlikely(*prep_req == NULL)) {
3567 		ret = -EINVAL;
3568 		goto free_mdata_and_exit;
3569 	}
3570 
3571 	*mdata_ptr = mdata;
3572 
3573 	return 0;
3574 
3575 free_mdata_and_exit:
3576 	free_op_meta(mdata, m_info->pool);
3577 err_exit:
3578 	return ret;
3579 }
3580 
3581 #endif /*_CPT_UCODE_H_ */
3582