xref: /dpdk/drivers/common/cpt/cpt_ucode.h (revision f69ed1044230c218c9afd8f1b47b6fe6aa1eeec5)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8 
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12 
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17 
18 static uint8_t zuc_d[32] = {
19 	0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20 	0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21 	0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22 	0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24 
25 static __rte_always_inline int
26 cpt_is_algo_supported(struct rte_crypto_sym_xform *xform)
27 {
28 	/*
29 	 * Microcode only supports the following combination.
30 	 * Encryption followed by authentication
31 	 * Authentication followed by decryption
32 	 */
33 	if (xform->next) {
34 		if ((xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
35 		    (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
36 		    (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)) {
37 			/* Unsupported as of now by microcode */
38 			CPT_LOG_DP_ERR("Unsupported combination");
39 			return -1;
40 		}
41 		if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
42 		    (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
43 		    (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT)) {
44 			/* For GMAC auth there is no cipher operation */
45 			if (xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM ||
46 			    xform->next->auth.algo !=
47 			    RTE_CRYPTO_AUTH_AES_GMAC) {
48 				/* Unsupported as of now by microcode */
49 				CPT_LOG_DP_ERR("Unsupported combination");
50 				return -1;
51 			}
52 		}
53 	}
54 	return 0;
55 }
56 
57 static __rte_always_inline void
58 gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
59 {
60 	int i, base;
61 
62 	for (i = 0; i < 4; i++) {
63 		base = 4 * i;
64 		keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
65 			(ck[base + 2] << 8) | (ck[base + 3]);
66 		keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
67 	}
68 }
69 
70 static __rte_always_inline void
71 cpt_fc_salt_update(void *ctx,
72 		   uint8_t *salt)
73 {
74 	struct cpt_ctx *cpt_ctx = ctx;
75 	memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4);
76 }
77 
78 static __rte_always_inline int
79 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
80 {
81 	switch (key_len) {
82 	case CPT_BYTE_16:
83 	case CPT_BYTE_24:
84 	case CPT_BYTE_32:
85 		return 0;
86 	default:
87 		return -1;
88 	}
89 }
90 
91 static __rte_always_inline int
92 cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
93 {
94 	int fc_type = 0;
95 	switch (type) {
96 	case PASSTHROUGH:
97 		fc_type = FC_GEN;
98 		break;
99 	case DES3_CBC:
100 	case DES3_ECB:
101 		fc_type = FC_GEN;
102 		break;
103 	case AES_CBC:
104 	case AES_ECB:
105 	case AES_CFB:
106 	case AES_CTR:
107 	case AES_GCM:
108 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
109 			return -1;
110 		fc_type = FC_GEN;
111 		break;
112 	case AES_XTS:
113 		key_len = key_len / 2;
114 		if (unlikely(key_len == CPT_BYTE_24)) {
115 			CPT_LOG_DP_ERR("Invalid AES key len for XTS");
116 			return -1;
117 		}
118 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
119 			return -1;
120 		fc_type = FC_GEN;
121 		break;
122 	case ZUC_EEA3:
123 	case SNOW3G_UEA2:
124 		if (unlikely(key_len != 16))
125 			return -1;
126 		/* No support for AEAD yet */
127 		if (unlikely(ctx->hash_type))
128 			return -1;
129 		fc_type = ZUC_SNOW3G;
130 		break;
131 	case KASUMI_F8_CBC:
132 	case KASUMI_F8_ECB:
133 		if (unlikely(key_len != 16))
134 			return -1;
135 		/* No support for AEAD yet */
136 		if (unlikely(ctx->hash_type))
137 			return -1;
138 		fc_type = KASUMI;
139 		break;
140 	default:
141 		return -1;
142 	}
143 
144 	ctx->fc_type = fc_type;
145 	return 0;
146 }
147 
148 static __rte_always_inline void
149 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
150 {
151 	cpt_ctx->enc_cipher = 0;
152 	fctx->enc.enc_cipher = 0;
153 }
154 
155 static __rte_always_inline void
156 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
157 {
158 	mc_aes_type_t aes_key_type = 0;
159 	switch (key_len) {
160 	case CPT_BYTE_16:
161 		aes_key_type = AES_128_BIT;
162 		break;
163 	case CPT_BYTE_24:
164 		aes_key_type = AES_192_BIT;
165 		break;
166 	case CPT_BYTE_32:
167 		aes_key_type = AES_256_BIT;
168 		break;
169 	default:
170 		/* This should not happen */
171 		CPT_LOG_DP_ERR("Invalid AES key len");
172 		return;
173 	}
174 	fctx->enc.aes_key = aes_key_type;
175 }
176 
177 static __rte_always_inline void
178 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
179 		uint16_t key_len)
180 {
181 	uint32_t keyx[4];
182 	cpt_ctx->snow3g = 1;
183 	gen_key_snow3g(key, keyx);
184 	memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
185 	cpt_ctx->zsk_flags = 0;
186 }
187 
188 static __rte_always_inline void
189 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
190 		uint16_t key_len)
191 {
192 	cpt_ctx->snow3g = 0;
193 	memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
194 	memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
195 	cpt_ctx->zsk_flags = 0;
196 }
197 
198 static __rte_always_inline void
199 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
200 		uint16_t key_len)
201 {
202 	cpt_ctx->k_ecb = 1;
203 	memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
204 	cpt_ctx->zsk_flags = 0;
205 }
206 
207 static __rte_always_inline void
208 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
209 		uint16_t key_len)
210 {
211 	memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
212 	cpt_ctx->zsk_flags = 0;
213 }
214 
215 static __rte_always_inline int
216 cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, const uint8_t *key,
217 		    uint16_t key_len, uint8_t *salt)
218 {
219 	struct cpt_ctx *cpt_ctx = ctx;
220 	mc_fc_context_t *fctx = &cpt_ctx->fctx;
221 	int ret;
222 
223 	ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
224 	if (unlikely(ret))
225 		return -1;
226 
227 	if (cpt_ctx->fc_type == FC_GEN) {
228 		/*
229 		 * We need to always say IV is from DPTR as user can
230 		 * sometimes iverride IV per operation.
231 		 */
232 		fctx->enc.iv_source = CPT_FROM_DPTR;
233 
234 		if (cpt_ctx->auth_key_len > 64)
235 			return -1;
236 	}
237 
238 	switch (type) {
239 	case PASSTHROUGH:
240 		cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
241 		goto success;
242 	case DES3_CBC:
243 		/* CPT performs DES using 3DES with the 8B DES-key
244 		 * replicated 2 more times to match the 24B 3DES-key.
245 		 * Eg. If org. key is "0x0a 0x0b", then new key is
246 		 * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
247 		 */
248 		if (key_len == 8) {
249 			/* Skipping the first 8B as it will be copied
250 			 * in the regular code flow
251 			 */
252 			memcpy(fctx->enc.encr_key+key_len, key, key_len);
253 			memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
254 		}
255 		break;
256 	case DES3_ECB:
257 		/* For DES3_ECB IV need to be from CTX. */
258 		fctx->enc.iv_source = CPT_FROM_CTX;
259 		break;
260 	case AES_CBC:
261 	case AES_ECB:
262 	case AES_CFB:
263 	case AES_CTR:
264 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
265 		break;
266 	case AES_GCM:
267 		/* Even though iv source is from dptr,
268 		 * aes_gcm salt is taken from ctx
269 		 */
270 		if (salt) {
271 			memcpy(fctx->enc.encr_iv, salt, 4);
272 			/* Assuming it was just salt update
273 			 * and nothing else
274 			 */
275 			if (!key)
276 				goto success;
277 		}
278 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
279 		break;
280 	case AES_XTS:
281 		key_len = key_len / 2;
282 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
283 
284 		/* Copy key2 for XTS into ipad */
285 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
286 		memcpy(fctx->hmac.ipad, &key[key_len], key_len);
287 		break;
288 	case SNOW3G_UEA2:
289 		cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
290 		goto success;
291 	case ZUC_EEA3:
292 		cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
293 		goto success;
294 	case KASUMI_F8_ECB:
295 		cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
296 		goto success;
297 	case KASUMI_F8_CBC:
298 		cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
299 		goto success;
300 	default:
301 		return -1;
302 	}
303 
304 	/* Only for FC_GEN case */
305 
306 	/* For GMAC auth, cipher must be NULL */
307 	if (cpt_ctx->hash_type != GMAC_TYPE)
308 		fctx->enc.enc_cipher = type;
309 
310 	memcpy(fctx->enc.encr_key, key, key_len);
311 
312 success:
313 	cpt_ctx->enc_cipher = type;
314 
315 	return 0;
316 }
317 
318 static __rte_always_inline uint32_t
319 fill_sg_comp(sg_comp_t *list,
320 	     uint32_t i,
321 	     phys_addr_t dma_addr,
322 	     uint32_t size)
323 {
324 	sg_comp_t *to = &list[i>>2];
325 
326 	to->u.s.len[i%4] = rte_cpu_to_be_16(size);
327 	to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
328 	i++;
329 	return i;
330 }
331 
332 static __rte_always_inline uint32_t
333 fill_sg_comp_from_buf(sg_comp_t *list,
334 		      uint32_t i,
335 		      buf_ptr_t *from)
336 {
337 	sg_comp_t *to = &list[i>>2];
338 
339 	to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
340 	to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
341 	i++;
342 	return i;
343 }
344 
345 static __rte_always_inline uint32_t
346 fill_sg_comp_from_buf_min(sg_comp_t *list,
347 			  uint32_t i,
348 			  buf_ptr_t *from,
349 			  uint32_t *psize)
350 {
351 	sg_comp_t *to = &list[i >> 2];
352 	uint32_t size = *psize;
353 	uint32_t e_len;
354 
355 	e_len = (size > from->size) ? from->size : size;
356 	to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
357 	to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
358 	*psize -= e_len;
359 	i++;
360 	return i;
361 }
362 
363 /*
364  * This fills the MC expected SGIO list
365  * from IOV given by user.
366  */
367 static __rte_always_inline uint32_t
368 fill_sg_comp_from_iov(sg_comp_t *list,
369 		      uint32_t i,
370 		      iov_ptr_t *from, uint32_t from_offset,
371 		      uint32_t *psize, buf_ptr_t *extra_buf,
372 		      uint32_t extra_offset)
373 {
374 	int32_t j;
375 	uint32_t extra_len = extra_buf ? extra_buf->size : 0;
376 	uint32_t size = *psize;
377 	buf_ptr_t *bufs;
378 
379 	bufs = from->bufs;
380 	for (j = 0; (j < from->buf_cnt) && size; j++) {
381 		phys_addr_t e_dma_addr;
382 		uint32_t e_len;
383 		sg_comp_t *to = &list[i >> 2];
384 
385 		if (unlikely(from_offset)) {
386 			if (from_offset >= bufs[j].size) {
387 				from_offset -= bufs[j].size;
388 				continue;
389 			}
390 			e_dma_addr = bufs[j].dma_addr + from_offset;
391 			e_len = (size > (bufs[j].size - from_offset)) ?
392 				(bufs[j].size - from_offset) : size;
393 			from_offset = 0;
394 		} else {
395 			e_dma_addr = bufs[j].dma_addr;
396 			e_len = (size > bufs[j].size) ?
397 				bufs[j].size : size;
398 		}
399 
400 		to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
401 		to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
402 
403 		if (extra_len && (e_len >= extra_offset)) {
404 			/* Break the data at given offset */
405 			uint32_t next_len = e_len - extra_offset;
406 			phys_addr_t next_dma = e_dma_addr + extra_offset;
407 
408 			if (!extra_offset) {
409 				i--;
410 			} else {
411 				e_len = extra_offset;
412 				size -= e_len;
413 				to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
414 			}
415 
416 			extra_len = RTE_MIN(extra_len, size);
417 			/* Insert extra data ptr */
418 			if (extra_len) {
419 				i++;
420 				to = &list[i >> 2];
421 				to->u.s.len[i % 4] =
422 					rte_cpu_to_be_16(extra_len);
423 				to->ptr[i % 4] =
424 					rte_cpu_to_be_64(extra_buf->dma_addr);
425 				size -= extra_len;
426 			}
427 
428 			next_len = RTE_MIN(next_len, size);
429 			/* insert the rest of the data */
430 			if (next_len) {
431 				i++;
432 				to = &list[i >> 2];
433 				to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
434 				to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
435 				size -= next_len;
436 			}
437 			extra_len = 0;
438 
439 		} else {
440 			size -= e_len;
441 		}
442 		if (extra_offset)
443 			extra_offset -= size;
444 		i++;
445 	}
446 
447 	*psize = size;
448 	return (uint32_t)i;
449 }
450 
451 static __rte_always_inline void
452 cpt_digest_gen_prep(uint32_t flags,
453 		    uint64_t d_lens,
454 		    digest_params_t *params,
455 		    void *op,
456 		    void **prep_req)
457 {
458 	struct cpt_request_info *req;
459 	uint32_t size, i;
460 	uint16_t data_len, mac_len, key_len;
461 	auth_type_t hash_type;
462 	buf_ptr_t *meta_p;
463 	struct cpt_ctx *ctx;
464 	sg_comp_t *gather_comp;
465 	sg_comp_t *scatter_comp;
466 	uint8_t *in_buffer;
467 	uint32_t g_size_bytes, s_size_bytes;
468 	uint64_t dptr_dma, rptr_dma;
469 	vq_cmd_word0_t vq_cmd_w0;
470 	vq_cmd_word3_t vq_cmd_w3;
471 	void *c_vaddr, *m_vaddr;
472 	uint64_t c_dma, m_dma;
473 	opcode_info_t opcode;
474 
475 	ctx = params->ctx_buf.vaddr;
476 	meta_p = &params->meta_buf;
477 
478 	m_vaddr = meta_p->vaddr;
479 	m_dma = meta_p->dma_addr;
480 
481 	/*
482 	 * Save initial space that followed app data for completion code &
483 	 * alternate completion code to fall in same cache line as app data
484 	 */
485 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
486 	m_dma += COMPLETION_CODE_SIZE;
487 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
488 		(uint8_t *)m_vaddr;
489 	c_vaddr = (uint8_t *)m_vaddr + size;
490 	c_dma = m_dma + size;
491 	size += sizeof(cpt_res_s_t);
492 
493 	m_vaddr = (uint8_t *)m_vaddr + size;
494 	m_dma += size;
495 
496 	req = m_vaddr;
497 
498 	size = sizeof(struct cpt_request_info);
499 	m_vaddr = (uint8_t *)m_vaddr + size;
500 	m_dma += size;
501 
502 	hash_type = ctx->hash_type;
503 	mac_len = ctx->mac_len;
504 	key_len = ctx->auth_key_len;
505 	data_len = AUTH_DLEN(d_lens);
506 
507 	/*GP op header */
508 	vq_cmd_w0.u64 = 0;
509 	vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
510 	if (ctx->hmac) {
511 		opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
512 		vq_cmd_w0.s.param1 = key_len;
513 		vq_cmd_w0.s.dlen = data_len + ROUNDUP8(key_len);
514 	} else {
515 		opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
516 		vq_cmd_w0.s.param1 = 0;
517 		vq_cmd_w0.s.dlen = data_len;
518 	}
519 
520 	opcode.s.minor = 0;
521 
522 	/* Null auth only case enters the if */
523 	if (unlikely(!hash_type && !ctx->enc_cipher)) {
524 		opcode.s.major = CPT_MAJOR_OP_MISC;
525 		/* Minor op is passthrough */
526 		opcode.s.minor = 0x03;
527 		/* Send out completion code only */
528 		vq_cmd_w0.s.param2 = 0x1;
529 	}
530 
531 	vq_cmd_w0.s.opcode = opcode.flags;
532 
533 	/* DPTR has SG list */
534 	in_buffer = m_vaddr;
535 	dptr_dma = m_dma;
536 
537 	((uint16_t *)in_buffer)[0] = 0;
538 	((uint16_t *)in_buffer)[1] = 0;
539 
540 	/* TODO Add error check if space will be sufficient */
541 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
542 
543 	/*
544 	 * Input gather list
545 	 */
546 
547 	i = 0;
548 
549 	if (ctx->hmac) {
550 		uint64_t k_dma = params->ctx_buf.dma_addr +
551 			offsetof(struct cpt_ctx, auth_key);
552 		/* Key */
553 		i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
554 	}
555 
556 	/* input data */
557 	size = data_len;
558 	if (size) {
559 		i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
560 					  0, &size, NULL, 0);
561 		if (unlikely(size)) {
562 			CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
563 					 " by %dB", size);
564 			return;
565 		}
566 	} else {
567 		/*
568 		 * Looks like we need to support zero data
569 		 * gather ptr in case of hash & hmac
570 		 */
571 		i++;
572 	}
573 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
574 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
575 
576 	/*
577 	 * Output Gather list
578 	 */
579 
580 	i = 0;
581 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
582 
583 	if (flags & VALID_MAC_BUF) {
584 		if (unlikely(params->mac_buf.size < mac_len)) {
585 			CPT_LOG_DP_ERR("Insufficient MAC size");
586 			return;
587 		}
588 
589 		size = mac_len;
590 		i = fill_sg_comp_from_buf_min(scatter_comp, i,
591 					      &params->mac_buf, &size);
592 	} else {
593 		size = mac_len;
594 		i = fill_sg_comp_from_iov(scatter_comp, i,
595 					  params->src_iov, data_len,
596 					  &size, NULL, 0);
597 		if (unlikely(size)) {
598 			CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
599 				       " %dB", size);
600 			return;
601 		}
602 	}
603 
604 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
605 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
606 
607 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
608 
609 	/* This is DPTR len incase of SG mode */
610 	vq_cmd_w0.s.dlen = size;
611 
612 	m_vaddr = (uint8_t *)m_vaddr + size;
613 	m_dma += size;
614 
615 	/* cpt alternate completion address saved earlier */
616 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
617 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
618 	rptr_dma = c_dma - 8;
619 
620 	req->ist.ei1 = dptr_dma;
621 	req->ist.ei2 = rptr_dma;
622 
623 	/* vq command w3 */
624 	vq_cmd_w3.u64 = 0;
625 
626 	/* 16 byte aligned cpt res address */
627 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
628 	*req->completion_addr = COMPLETION_CODE_INIT;
629 	req->comp_baddr  = c_dma;
630 
631 	/* Fill microcode part of instruction */
632 	req->ist.ei0 = vq_cmd_w0.u64;
633 	req->ist.ei3 = vq_cmd_w3.u64;
634 
635 	req->op = op;
636 
637 	*prep_req = req;
638 	return;
639 }
640 
641 static __rte_always_inline void
642 cpt_enc_hmac_prep(uint32_t flags,
643 		  uint64_t d_offs,
644 		  uint64_t d_lens,
645 		  fc_params_t *fc_params,
646 		  void *op,
647 		  void **prep_req)
648 {
649 	uint32_t iv_offset = 0;
650 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
651 	struct cpt_ctx *cpt_ctx;
652 	uint32_t cipher_type, hash_type;
653 	uint32_t mac_len, size;
654 	uint8_t iv_len = 16;
655 	struct cpt_request_info *req;
656 	buf_ptr_t *meta_p, *aad_buf = NULL;
657 	uint32_t encr_offset, auth_offset;
658 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
659 	uint32_t passthrough_len = 0;
660 	void *m_vaddr, *offset_vaddr;
661 	uint64_t m_dma, offset_dma, ctx_dma;
662 	vq_cmd_word0_t vq_cmd_w0;
663 	vq_cmd_word3_t vq_cmd_w3;
664 	void *c_vaddr;
665 	uint64_t c_dma;
666 	opcode_info_t opcode;
667 
668 	meta_p = &fc_params->meta_buf;
669 	m_vaddr = meta_p->vaddr;
670 	m_dma = meta_p->dma_addr;
671 
672 	encr_offset = ENCR_OFFSET(d_offs);
673 	auth_offset = AUTH_OFFSET(d_offs);
674 	encr_data_len = ENCR_DLEN(d_lens);
675 	auth_data_len = AUTH_DLEN(d_lens);
676 	if (unlikely(flags & VALID_AAD_BUF)) {
677 		/*
678 		 * We dont support both aad
679 		 * and auth data separately
680 		 */
681 		auth_data_len = 0;
682 		auth_offset = 0;
683 		aad_len = fc_params->aad_buf.size;
684 		aad_buf = &fc_params->aad_buf;
685 	}
686 	cpt_ctx = fc_params->ctx_buf.vaddr;
687 	cipher_type = cpt_ctx->enc_cipher;
688 	hash_type = cpt_ctx->hash_type;
689 	mac_len = cpt_ctx->mac_len;
690 
691 	/*
692 	 * Save initial space that followed app data for completion code &
693 	 * alternate completion code to fall in same cache line as app data
694 	 */
695 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
696 	m_dma += COMPLETION_CODE_SIZE;
697 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
698 		(uint8_t *)m_vaddr;
699 
700 	c_vaddr = (uint8_t *)m_vaddr + size;
701 	c_dma = m_dma + size;
702 	size += sizeof(cpt_res_s_t);
703 
704 	m_vaddr = (uint8_t *)m_vaddr + size;
705 	m_dma += size;
706 
707 	/* start cpt request info struct at 8 byte boundary */
708 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
709 		(uint8_t *)m_vaddr;
710 
711 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
712 
713 	size += sizeof(struct cpt_request_info);
714 	m_vaddr = (uint8_t *)m_vaddr + size;
715 	m_dma += size;
716 
717 	if (hash_type == GMAC_TYPE)
718 		encr_data_len = 0;
719 
720 	if (unlikely(!(flags & VALID_IV_BUF))) {
721 		iv_len = 0;
722 		iv_offset = ENCR_IV_OFFSET(d_offs);
723 	}
724 
725 	if (unlikely(flags & VALID_AAD_BUF)) {
726 		/*
727 		 * When AAD is given, data above encr_offset is pass through
728 		 * Since AAD is given as separate pointer and not as offset,
729 		 * this is a special case as we need to fragment input data
730 		 * into passthrough + encr_data and then insert AAD in between.
731 		 */
732 		if (hash_type != GMAC_TYPE) {
733 			passthrough_len = encr_offset;
734 			auth_offset = passthrough_len + iv_len;
735 			encr_offset = passthrough_len + aad_len + iv_len;
736 			auth_data_len = aad_len + encr_data_len;
737 		} else {
738 			passthrough_len = 16 + aad_len;
739 			auth_offset = passthrough_len + iv_len;
740 			auth_data_len = aad_len;
741 		}
742 	} else {
743 		encr_offset += iv_len;
744 		auth_offset += iv_len;
745 	}
746 
747 	/* Encryption */
748 	opcode.s.major = CPT_MAJOR_OP_FC;
749 	opcode.s.minor = 0;
750 
751 	auth_dlen = auth_offset + auth_data_len;
752 	enc_dlen = encr_data_len + encr_offset;
753 	if (unlikely(encr_data_len & 0xf)) {
754 		if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
755 			enc_dlen = ROUNDUP8(encr_data_len) + encr_offset;
756 		else if (likely((cipher_type == AES_CBC) ||
757 				(cipher_type == AES_ECB)))
758 			enc_dlen = ROUNDUP16(encr_data_len) + encr_offset;
759 	}
760 
761 	if (unlikely(hash_type == GMAC_TYPE)) {
762 		encr_offset = auth_dlen;
763 		enc_dlen = 0;
764 	}
765 
766 	if (unlikely(auth_dlen > enc_dlen)) {
767 		inputlen = auth_dlen;
768 		outputlen = auth_dlen + mac_len;
769 	} else {
770 		inputlen = enc_dlen;
771 		outputlen = enc_dlen + mac_len;
772 	}
773 
774 	/* GP op header */
775 	vq_cmd_w0.u64 = 0;
776 	vq_cmd_w0.s.param1 = encr_data_len;
777 	vq_cmd_w0.s.param2 = auth_data_len;
778 	/*
779 	 * In 83XX since we have a limitation of
780 	 * IV & Offset control word not part of instruction
781 	 * and need to be part of Data Buffer, we check if
782 	 * head room is there and then only do the Direct mode processing
783 	 */
784 	if (likely((flags & SINGLE_BUF_INPLACE) &&
785 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
786 		void *dm_vaddr = fc_params->bufs[0].vaddr;
787 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
788 		/*
789 		 * This flag indicates that there is 24 bytes head room and
790 		 * 8 bytes tail room available, so that we get to do
791 		 * DIRECT MODE with limitation
792 		 */
793 
794 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
795 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
796 
797 		/* DPTR */
798 		req->ist.ei1 = offset_dma;
799 		/* RPTR should just exclude offset control word */
800 		req->ist.ei2 = dm_dma_addr - iv_len;
801 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
802 						    + outputlen - iv_len);
803 
804 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
805 
806 		vq_cmd_w0.s.opcode = opcode.flags;
807 
808 		if (likely(iv_len)) {
809 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
810 						      + OFF_CTRL_LEN);
811 			uint64_t *src = fc_params->iv_buf;
812 			dest[0] = src[0];
813 			dest[1] = src[1];
814 		}
815 
816 		*(uint64_t *)offset_vaddr =
817 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
818 				((uint64_t)iv_offset << 8) |
819 				((uint64_t)auth_offset));
820 
821 	} else {
822 		uint32_t i, g_size_bytes, s_size_bytes;
823 		uint64_t dptr_dma, rptr_dma;
824 		sg_comp_t *gather_comp;
825 		sg_comp_t *scatter_comp;
826 		uint8_t *in_buffer;
827 
828 		/* This falls under strict SG mode */
829 		offset_vaddr = m_vaddr;
830 		offset_dma = m_dma;
831 		size = OFF_CTRL_LEN + iv_len;
832 
833 		m_vaddr = (uint8_t *)m_vaddr + size;
834 		m_dma += size;
835 
836 		opcode.s.major |= CPT_DMA_MODE;
837 
838 		vq_cmd_w0.s.opcode = opcode.flags;
839 
840 		if (likely(iv_len)) {
841 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
842 						      + OFF_CTRL_LEN);
843 			uint64_t *src = fc_params->iv_buf;
844 			dest[0] = src[0];
845 			dest[1] = src[1];
846 		}
847 
848 		*(uint64_t *)offset_vaddr =
849 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
850 				((uint64_t)iv_offset << 8) |
851 				((uint64_t)auth_offset));
852 
853 		/* DPTR has SG list */
854 		in_buffer = m_vaddr;
855 		dptr_dma = m_dma;
856 
857 		((uint16_t *)in_buffer)[0] = 0;
858 		((uint16_t *)in_buffer)[1] = 0;
859 
860 		/* TODO Add error check if space will be sufficient */
861 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
862 
863 		/*
864 		 * Input Gather List
865 		 */
866 
867 		i = 0;
868 
869 		/* Offset control word that includes iv */
870 		i = fill_sg_comp(gather_comp, i, offset_dma,
871 				 OFF_CTRL_LEN + iv_len);
872 
873 		/* Add input data */
874 		size = inputlen - iv_len;
875 		if (likely(size)) {
876 			uint32_t aad_offset = aad_len ? passthrough_len : 0;
877 
878 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
879 				i = fill_sg_comp_from_buf_min(gather_comp, i,
880 							      fc_params->bufs,
881 							      &size);
882 			} else {
883 				i = fill_sg_comp_from_iov(gather_comp, i,
884 							  fc_params->src_iov,
885 							  0, &size,
886 							  aad_buf, aad_offset);
887 			}
888 
889 			if (unlikely(size)) {
890 				CPT_LOG_DP_ERR("Insufficient buffer space,"
891 					       " size %d needed", size);
892 				return;
893 			}
894 		}
895 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
896 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
897 
898 		/*
899 		 * Output Scatter list
900 		 */
901 		i = 0;
902 		scatter_comp =
903 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
904 
905 		/* Add IV */
906 		if (likely(iv_len)) {
907 			i = fill_sg_comp(scatter_comp, i,
908 					 offset_dma + OFF_CTRL_LEN,
909 					 iv_len);
910 		}
911 
912 		/* output data or output data + digest*/
913 		if (unlikely(flags & VALID_MAC_BUF)) {
914 			size = outputlen - iv_len - mac_len;
915 			if (size) {
916 				uint32_t aad_offset =
917 					aad_len ? passthrough_len : 0;
918 
919 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
920 					i = fill_sg_comp_from_buf_min(
921 							scatter_comp,
922 							i,
923 							fc_params->bufs,
924 							&size);
925 				} else {
926 					i = fill_sg_comp_from_iov(scatter_comp,
927 							i,
928 							fc_params->dst_iov,
929 							0,
930 							&size,
931 							aad_buf,
932 							aad_offset);
933 				}
934 				if (unlikely(size)) {
935 					CPT_LOG_DP_ERR("Insufficient buffer"
936 						       " space, size %d needed",
937 						       size);
938 					return;
939 				}
940 			}
941 			/* mac_data */
942 			if (mac_len) {
943 				i = fill_sg_comp_from_buf(scatter_comp, i,
944 							  &fc_params->mac_buf);
945 			}
946 		} else {
947 			/* Output including mac */
948 			size = outputlen - iv_len;
949 			if (likely(size)) {
950 				uint32_t aad_offset =
951 					aad_len ? passthrough_len : 0;
952 
953 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
954 					i = fill_sg_comp_from_buf_min(
955 							scatter_comp,
956 							i,
957 							fc_params->bufs,
958 							&size);
959 				} else {
960 					i = fill_sg_comp_from_iov(scatter_comp,
961 							i,
962 							fc_params->dst_iov,
963 							0,
964 							&size,
965 							aad_buf,
966 							aad_offset);
967 				}
968 				if (unlikely(size)) {
969 					CPT_LOG_DP_ERR("Insufficient buffer"
970 						       " space, size %d needed",
971 						       size);
972 					return;
973 				}
974 			}
975 		}
976 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
977 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
978 
979 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
980 
981 		/* This is DPTR len incase of SG mode */
982 		vq_cmd_w0.s.dlen = size;
983 
984 		m_vaddr = (uint8_t *)m_vaddr + size;
985 		m_dma += size;
986 
987 		/* cpt alternate completion address saved earlier */
988 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
989 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
990 		rptr_dma = c_dma - 8;
991 
992 		req->ist.ei1 = dptr_dma;
993 		req->ist.ei2 = rptr_dma;
994 	}
995 
996 	ctx_dma = fc_params->ctx_buf.dma_addr +
997 		offsetof(struct cpt_ctx, fctx);
998 	/* vq command w3 */
999 	vq_cmd_w3.u64 = 0;
1000 	vq_cmd_w3.s.grp = 0;
1001 	vq_cmd_w3.s.cptr = ctx_dma;
1002 
1003 	/* 16 byte aligned cpt res address */
1004 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1005 	*req->completion_addr = COMPLETION_CODE_INIT;
1006 	req->comp_baddr  = c_dma;
1007 
1008 	/* Fill microcode part of instruction */
1009 	req->ist.ei0 = vq_cmd_w0.u64;
1010 	req->ist.ei3 = vq_cmd_w3.u64;
1011 
1012 	req->op  = op;
1013 
1014 	*prep_req = req;
1015 	return;
1016 }
1017 
1018 static __rte_always_inline void
1019 cpt_dec_hmac_prep(uint32_t flags,
1020 		  uint64_t d_offs,
1021 		  uint64_t d_lens,
1022 		  fc_params_t *fc_params,
1023 		  void *op,
1024 		  void **prep_req)
1025 {
1026 	uint32_t iv_offset = 0, size;
1027 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1028 	struct cpt_ctx *cpt_ctx;
1029 	int32_t hash_type, mac_len;
1030 	uint8_t iv_len = 16;
1031 	struct cpt_request_info *req;
1032 	buf_ptr_t *meta_p, *aad_buf = NULL;
1033 	uint32_t encr_offset, auth_offset;
1034 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
1035 	uint32_t passthrough_len = 0;
1036 	void *m_vaddr, *offset_vaddr;
1037 	uint64_t m_dma, offset_dma, ctx_dma;
1038 	opcode_info_t opcode;
1039 	vq_cmd_word0_t vq_cmd_w0;
1040 	vq_cmd_word3_t vq_cmd_w3;
1041 	void *c_vaddr;
1042 	uint64_t c_dma;
1043 
1044 	meta_p = &fc_params->meta_buf;
1045 	m_vaddr = meta_p->vaddr;
1046 	m_dma = meta_p->dma_addr;
1047 
1048 	encr_offset = ENCR_OFFSET(d_offs);
1049 	auth_offset = AUTH_OFFSET(d_offs);
1050 	encr_data_len = ENCR_DLEN(d_lens);
1051 	auth_data_len = AUTH_DLEN(d_lens);
1052 
1053 	if (unlikely(flags & VALID_AAD_BUF)) {
1054 		/*
1055 		 * We dont support both aad
1056 		 * and auth data separately
1057 		 */
1058 		auth_data_len = 0;
1059 		auth_offset = 0;
1060 		aad_len = fc_params->aad_buf.size;
1061 		aad_buf = &fc_params->aad_buf;
1062 	}
1063 
1064 	cpt_ctx = fc_params->ctx_buf.vaddr;
1065 	hash_type = cpt_ctx->hash_type;
1066 	mac_len = cpt_ctx->mac_len;
1067 
1068 	if (hash_type == GMAC_TYPE)
1069 		encr_data_len = 0;
1070 
1071 	if (unlikely(!(flags & VALID_IV_BUF))) {
1072 		iv_len = 0;
1073 		iv_offset = ENCR_IV_OFFSET(d_offs);
1074 	}
1075 
1076 	if (unlikely(flags & VALID_AAD_BUF)) {
1077 		/*
1078 		 * When AAD is given, data above encr_offset is pass through
1079 		 * Since AAD is given as separate pointer and not as offset,
1080 		 * this is a special case as we need to fragment input data
1081 		 * into passthrough + encr_data and then insert AAD in between.
1082 		 */
1083 		if (hash_type != GMAC_TYPE) {
1084 			passthrough_len = encr_offset;
1085 			auth_offset = passthrough_len + iv_len;
1086 			encr_offset = passthrough_len + aad_len + iv_len;
1087 			auth_data_len = aad_len + encr_data_len;
1088 		} else {
1089 			passthrough_len = 16 + aad_len;
1090 			auth_offset = passthrough_len + iv_len;
1091 			auth_data_len = aad_len;
1092 		}
1093 	} else {
1094 		encr_offset += iv_len;
1095 		auth_offset += iv_len;
1096 	}
1097 
1098 	/*
1099 	 * Save initial space that followed app data for completion code &
1100 	 * alternate completion code to fall in same cache line as app data
1101 	 */
1102 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1103 	m_dma += COMPLETION_CODE_SIZE;
1104 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1105 	       (uint8_t *)m_vaddr;
1106 	c_vaddr = (uint8_t *)m_vaddr + size;
1107 	c_dma = m_dma + size;
1108 	size += sizeof(cpt_res_s_t);
1109 
1110 	m_vaddr = (uint8_t *)m_vaddr + size;
1111 	m_dma += size;
1112 
1113 	/* start cpt request info structure at 8 byte alignment */
1114 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1115 		(uint8_t *)m_vaddr;
1116 
1117 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1118 
1119 	size += sizeof(struct cpt_request_info);
1120 	m_vaddr = (uint8_t *)m_vaddr + size;
1121 	m_dma += size;
1122 
1123 	/* Decryption */
1124 	opcode.s.major = CPT_MAJOR_OP_FC;
1125 	opcode.s.minor = 1;
1126 
1127 	enc_dlen = encr_offset + encr_data_len;
1128 	auth_dlen = auth_offset + auth_data_len;
1129 
1130 	if (auth_dlen > enc_dlen) {
1131 		inputlen = auth_dlen + mac_len;
1132 		outputlen = auth_dlen;
1133 	} else {
1134 		inputlen = enc_dlen + mac_len;
1135 		outputlen = enc_dlen;
1136 	}
1137 
1138 	if (hash_type == GMAC_TYPE)
1139 		encr_offset = inputlen;
1140 
1141 	vq_cmd_w0.u64 = 0;
1142 	vq_cmd_w0.s.param1 = encr_data_len;
1143 	vq_cmd_w0.s.param2 = auth_data_len;
1144 
1145 	/*
1146 	 * In 83XX since we have a limitation of
1147 	 * IV & Offset control word not part of instruction
1148 	 * and need to be part of Data Buffer, we check if
1149 	 * head room is there and then only do the Direct mode processing
1150 	 */
1151 	if (likely((flags & SINGLE_BUF_INPLACE) &&
1152 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
1153 		void *dm_vaddr = fc_params->bufs[0].vaddr;
1154 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1155 		/*
1156 		 * This flag indicates that there is 24 bytes head room and
1157 		 * 8 bytes tail room available, so that we get to do
1158 		 * DIRECT MODE with limitation
1159 		 */
1160 
1161 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1162 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1163 		req->ist.ei1 = offset_dma;
1164 
1165 		/* RPTR should just exclude offset control word */
1166 		req->ist.ei2 = dm_dma_addr - iv_len;
1167 
1168 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1169 					outputlen - iv_len);
1170 		/* since this is decryption,
1171 		 * don't touch the content of
1172 		 * alternate ccode space as it contains
1173 		 * hmac.
1174 		 */
1175 
1176 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1177 
1178 		vq_cmd_w0.s.opcode = opcode.flags;
1179 
1180 		if (likely(iv_len)) {
1181 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1182 						      OFF_CTRL_LEN);
1183 			uint64_t *src = fc_params->iv_buf;
1184 			dest[0] = src[0];
1185 			dest[1] = src[1];
1186 		}
1187 
1188 		*(uint64_t *)offset_vaddr =
1189 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1190 				((uint64_t)iv_offset << 8) |
1191 				((uint64_t)auth_offset));
1192 
1193 	} else {
1194 		uint64_t dptr_dma, rptr_dma;
1195 		uint32_t g_size_bytes, s_size_bytes;
1196 		sg_comp_t *gather_comp;
1197 		sg_comp_t *scatter_comp;
1198 		uint8_t *in_buffer;
1199 		uint8_t i = 0;
1200 
1201 		/* This falls under strict SG mode */
1202 		offset_vaddr = m_vaddr;
1203 		offset_dma = m_dma;
1204 		size = OFF_CTRL_LEN + iv_len;
1205 
1206 		m_vaddr = (uint8_t *)m_vaddr + size;
1207 		m_dma += size;
1208 
1209 		opcode.s.major |= CPT_DMA_MODE;
1210 
1211 		vq_cmd_w0.s.opcode = opcode.flags;
1212 
1213 		if (likely(iv_len)) {
1214 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1215 						      OFF_CTRL_LEN);
1216 			uint64_t *src = fc_params->iv_buf;
1217 			dest[0] = src[0];
1218 			dest[1] = src[1];
1219 		}
1220 
1221 		*(uint64_t *)offset_vaddr =
1222 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1223 				((uint64_t)iv_offset << 8) |
1224 				((uint64_t)auth_offset));
1225 
1226 		/* DPTR has SG list */
1227 		in_buffer = m_vaddr;
1228 		dptr_dma = m_dma;
1229 
1230 		((uint16_t *)in_buffer)[0] = 0;
1231 		((uint16_t *)in_buffer)[1] = 0;
1232 
1233 		/* TODO Add error check if space will be sufficient */
1234 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1235 
1236 		/*
1237 		 * Input Gather List
1238 		 */
1239 		i = 0;
1240 
1241 		/* Offset control word that includes iv */
1242 		i = fill_sg_comp(gather_comp, i, offset_dma,
1243 				 OFF_CTRL_LEN + iv_len);
1244 
1245 		/* Add input data */
1246 		if (flags & VALID_MAC_BUF) {
1247 			size = inputlen - iv_len - mac_len;
1248 			if (size) {
1249 				/* input data only */
1250 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1251 					i = fill_sg_comp_from_buf_min(
1252 							gather_comp, i,
1253 							fc_params->bufs,
1254 							&size);
1255 				} else {
1256 					uint32_t aad_offset = aad_len ?
1257 						passthrough_len : 0;
1258 
1259 					i = fill_sg_comp_from_iov(gather_comp,
1260 							i,
1261 							fc_params->src_iov,
1262 							0, &size,
1263 							aad_buf,
1264 							aad_offset);
1265 				}
1266 				if (unlikely(size)) {
1267 					CPT_LOG_DP_ERR("Insufficient buffer"
1268 						       " space, size %d needed",
1269 						       size);
1270 					return;
1271 				}
1272 			}
1273 
1274 			/* mac data */
1275 			if (mac_len) {
1276 				i = fill_sg_comp_from_buf(gather_comp, i,
1277 							  &fc_params->mac_buf);
1278 			}
1279 		} else {
1280 			/* input data + mac */
1281 			size = inputlen - iv_len;
1282 			if (size) {
1283 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1284 					i = fill_sg_comp_from_buf_min(
1285 							gather_comp, i,
1286 							fc_params->bufs,
1287 							&size);
1288 				} else {
1289 					uint32_t aad_offset = aad_len ?
1290 						passthrough_len : 0;
1291 
1292 					if (unlikely(!fc_params->src_iov)) {
1293 						CPT_LOG_DP_ERR("Bad input args");
1294 						return;
1295 					}
1296 
1297 					i = fill_sg_comp_from_iov(
1298 							gather_comp, i,
1299 							fc_params->src_iov,
1300 							0, &size,
1301 							aad_buf,
1302 							aad_offset);
1303 				}
1304 
1305 				if (unlikely(size)) {
1306 					CPT_LOG_DP_ERR("Insufficient buffer"
1307 						       " space, size %d needed",
1308 						       size);
1309 					return;
1310 				}
1311 			}
1312 		}
1313 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1314 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1315 
1316 		/*
1317 		 * Output Scatter List
1318 		 */
1319 
1320 		i = 0;
1321 		scatter_comp =
1322 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1323 
1324 		/* Add iv */
1325 		if (iv_len) {
1326 			i = fill_sg_comp(scatter_comp, i,
1327 					 offset_dma + OFF_CTRL_LEN,
1328 					 iv_len);
1329 		}
1330 
1331 		/* Add output data */
1332 		size = outputlen - iv_len;
1333 		if (size) {
1334 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1335 				/* handle single buffer here */
1336 				i = fill_sg_comp_from_buf_min(scatter_comp, i,
1337 							      fc_params->bufs,
1338 							      &size);
1339 			} else {
1340 				uint32_t aad_offset = aad_len ?
1341 					passthrough_len : 0;
1342 
1343 				if (unlikely(!fc_params->dst_iov)) {
1344 					CPT_LOG_DP_ERR("Bad input args");
1345 					return;
1346 				}
1347 
1348 				i = fill_sg_comp_from_iov(scatter_comp, i,
1349 							  fc_params->dst_iov, 0,
1350 							  &size, aad_buf,
1351 							  aad_offset);
1352 			}
1353 
1354 			if (unlikely(size)) {
1355 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1356 					       " size %d needed", size);
1357 				return;
1358 			}
1359 		}
1360 
1361 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1362 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1363 
1364 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1365 
1366 		/* This is DPTR len incase of SG mode */
1367 		vq_cmd_w0.s.dlen = size;
1368 
1369 		m_vaddr = (uint8_t *)m_vaddr + size;
1370 		m_dma += size;
1371 
1372 		/* cpt alternate completion address saved earlier */
1373 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1374 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1375 		rptr_dma = c_dma - 8;
1376 		size += COMPLETION_CODE_SIZE;
1377 
1378 		req->ist.ei1 = dptr_dma;
1379 		req->ist.ei2 = rptr_dma;
1380 	}
1381 
1382 	ctx_dma = fc_params->ctx_buf.dma_addr +
1383 		offsetof(struct cpt_ctx, fctx);
1384 	/* vq command w3 */
1385 	vq_cmd_w3.u64 = 0;
1386 	vq_cmd_w3.s.grp = 0;
1387 	vq_cmd_w3.s.cptr = ctx_dma;
1388 
1389 	/* 16 byte aligned cpt res address */
1390 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1391 	*req->completion_addr = COMPLETION_CODE_INIT;
1392 	req->comp_baddr  = c_dma;
1393 
1394 	/* Fill microcode part of instruction */
1395 	req->ist.ei0 = vq_cmd_w0.u64;
1396 	req->ist.ei3 = vq_cmd_w3.u64;
1397 
1398 	req->op = op;
1399 
1400 	*prep_req = req;
1401 	return;
1402 }
1403 
1404 static __rte_always_inline void
1405 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1406 			uint64_t d_offs,
1407 			uint64_t d_lens,
1408 			fc_params_t *params,
1409 			void *op,
1410 			void **prep_req)
1411 {
1412 	uint32_t size;
1413 	int32_t inputlen, outputlen;
1414 	struct cpt_ctx *cpt_ctx;
1415 	uint32_t mac_len = 0;
1416 	uint8_t snow3g, j;
1417 	struct cpt_request_info *req;
1418 	buf_ptr_t *buf_p;
1419 	uint32_t encr_offset = 0, auth_offset = 0;
1420 	uint32_t encr_data_len = 0, auth_data_len = 0;
1421 	int flags, iv_len = 16;
1422 	void *m_vaddr, *c_vaddr;
1423 	uint64_t m_dma, c_dma, offset_ctrl;
1424 	uint64_t *offset_vaddr, offset_dma;
1425 	uint32_t *iv_s, iv[4];
1426 	vq_cmd_word0_t vq_cmd_w0;
1427 	vq_cmd_word3_t vq_cmd_w3;
1428 	opcode_info_t opcode;
1429 
1430 	buf_p = &params->meta_buf;
1431 	m_vaddr = buf_p->vaddr;
1432 	m_dma = buf_p->dma_addr;
1433 
1434 	cpt_ctx = params->ctx_buf.vaddr;
1435 	flags = cpt_ctx->zsk_flags;
1436 	mac_len = cpt_ctx->mac_len;
1437 	snow3g = cpt_ctx->snow3g;
1438 
1439 	/*
1440 	 * Save initial space that followed app data for completion code &
1441 	 * alternate completion code to fall in same cache line as app data
1442 	 */
1443 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1444 	m_dma += COMPLETION_CODE_SIZE;
1445 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1446 		(uint8_t *)m_vaddr;
1447 
1448 	c_vaddr = (uint8_t *)m_vaddr + size;
1449 	c_dma = m_dma + size;
1450 	size += sizeof(cpt_res_s_t);
1451 
1452 	m_vaddr = (uint8_t *)m_vaddr + size;
1453 	m_dma += size;
1454 
1455 	/* Reserve memory for cpt request info */
1456 	req = m_vaddr;
1457 
1458 	size = sizeof(struct cpt_request_info);
1459 	m_vaddr = (uint8_t *)m_vaddr + size;
1460 	m_dma += size;
1461 
1462 	opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1463 
1464 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1465 
1466 	opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1467 			  (0 << 3) | (flags & 0x7));
1468 
1469 	if (flags == 0x1) {
1470 		/*
1471 		 * Microcode expects offsets in bytes
1472 		 * TODO: Rounding off
1473 		 */
1474 		auth_data_len = AUTH_DLEN(d_lens);
1475 
1476 		/* EIA3 or UIA2 */
1477 		auth_offset = AUTH_OFFSET(d_offs);
1478 		auth_offset = auth_offset / 8;
1479 
1480 		/* consider iv len */
1481 		auth_offset += iv_len;
1482 
1483 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1484 		outputlen = mac_len;
1485 
1486 		offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1487 
1488 	} else {
1489 		/* EEA3 or UEA2 */
1490 		/*
1491 		 * Microcode expects offsets in bytes
1492 		 * TODO: Rounding off
1493 		 */
1494 		encr_data_len = ENCR_DLEN(d_lens);
1495 
1496 		encr_offset = ENCR_OFFSET(d_offs);
1497 		encr_offset = encr_offset / 8;
1498 		/* consider iv len */
1499 		encr_offset += iv_len;
1500 
1501 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1502 		outputlen = inputlen;
1503 
1504 		/* iv offset is 0 */
1505 		offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1506 	}
1507 
1508 	/* IV */
1509 	iv_s = (flags == 0x1) ? params->auth_iv_buf :
1510 		params->iv_buf;
1511 
1512 	if (snow3g) {
1513 		/*
1514 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1515 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1516 		 */
1517 
1518 		for (j = 0; j < 4; j++)
1519 			iv[j] = iv_s[3 - j];
1520 	} else {
1521 		/* ZUC doesn't need a swap */
1522 		for (j = 0; j < 4; j++)
1523 			iv[j] = iv_s[j];
1524 	}
1525 
1526 	/*
1527 	 * GP op header, lengths are expected in bits.
1528 	 */
1529 	vq_cmd_w0.u64 = 0;
1530 	vq_cmd_w0.s.param1 = encr_data_len;
1531 	vq_cmd_w0.s.param2 = auth_data_len;
1532 
1533 	/*
1534 	 * In 83XX since we have a limitation of
1535 	 * IV & Offset control word not part of instruction
1536 	 * and need to be part of Data Buffer, we check if
1537 	 * head room is there and then only do the Direct mode processing
1538 	 */
1539 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1540 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1541 		void *dm_vaddr = params->bufs[0].vaddr;
1542 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1543 		/*
1544 		 * This flag indicates that there is 24 bytes head room and
1545 		 * 8 bytes tail room available, so that we get to do
1546 		 * DIRECT MODE with limitation
1547 		 */
1548 
1549 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1550 					    OFF_CTRL_LEN - iv_len);
1551 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1552 
1553 		/* DPTR */
1554 		req->ist.ei1 = offset_dma;
1555 		/* RPTR should just exclude offset control word */
1556 		req->ist.ei2 = dm_dma_addr - iv_len;
1557 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1558 						    + outputlen - iv_len);
1559 
1560 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1561 
1562 		vq_cmd_w0.s.opcode = opcode.flags;
1563 
1564 		if (likely(iv_len)) {
1565 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1566 						      + OFF_CTRL_LEN);
1567 			memcpy(iv_d, iv, 16);
1568 		}
1569 
1570 		*offset_vaddr = offset_ctrl;
1571 	} else {
1572 		uint32_t i, g_size_bytes, s_size_bytes;
1573 		uint64_t dptr_dma, rptr_dma;
1574 		sg_comp_t *gather_comp;
1575 		sg_comp_t *scatter_comp;
1576 		uint8_t *in_buffer;
1577 		uint32_t *iv_d;
1578 
1579 		/* save space for iv */
1580 		offset_vaddr = m_vaddr;
1581 		offset_dma = m_dma;
1582 
1583 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1584 		m_dma += OFF_CTRL_LEN + iv_len;
1585 
1586 		opcode.s.major |= CPT_DMA_MODE;
1587 
1588 		vq_cmd_w0.s.opcode = opcode.flags;
1589 
1590 		/* DPTR has SG list */
1591 		in_buffer = m_vaddr;
1592 		dptr_dma = m_dma;
1593 
1594 		((uint16_t *)in_buffer)[0] = 0;
1595 		((uint16_t *)in_buffer)[1] = 0;
1596 
1597 		/* TODO Add error check if space will be sufficient */
1598 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1599 
1600 		/*
1601 		 * Input Gather List
1602 		 */
1603 		i = 0;
1604 
1605 		/* Offset control word followed by iv */
1606 
1607 		i = fill_sg_comp(gather_comp, i, offset_dma,
1608 				 OFF_CTRL_LEN + iv_len);
1609 
1610 		/* iv offset is 0 */
1611 		*offset_vaddr = offset_ctrl;
1612 
1613 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1614 		memcpy(iv_d, iv, 16);
1615 
1616 		/* input data */
1617 		size = inputlen - iv_len;
1618 		if (size) {
1619 			i = fill_sg_comp_from_iov(gather_comp, i,
1620 						  params->src_iov,
1621 						  0, &size, NULL, 0);
1622 			if (unlikely(size)) {
1623 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1624 					       " size %d needed", size);
1625 				return;
1626 			}
1627 		}
1628 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1629 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1630 
1631 		/*
1632 		 * Output Scatter List
1633 		 */
1634 
1635 		i = 0;
1636 		scatter_comp =
1637 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1638 
1639 		if (flags == 0x1) {
1640 			/* IV in SLIST only for EEA3 & UEA2 */
1641 			iv_len = 0;
1642 		}
1643 
1644 		if (iv_len) {
1645 			i = fill_sg_comp(scatter_comp, i,
1646 					 offset_dma + OFF_CTRL_LEN, iv_len);
1647 		}
1648 
1649 		/* Add output data */
1650 		if (req_flags & VALID_MAC_BUF) {
1651 			size = outputlen - iv_len - mac_len;
1652 			if (size) {
1653 				i = fill_sg_comp_from_iov(scatter_comp, i,
1654 							  params->dst_iov, 0,
1655 							  &size, NULL, 0);
1656 
1657 				if (unlikely(size)) {
1658 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1659 						       " size %d needed", size);
1660 					return;
1661 				}
1662 			}
1663 
1664 			/* mac data */
1665 			if (mac_len) {
1666 				i = fill_sg_comp_from_buf(scatter_comp, i,
1667 							  &params->mac_buf);
1668 			}
1669 		} else {
1670 			/* Output including mac */
1671 			size = outputlen - iv_len;
1672 			if (size) {
1673 				i = fill_sg_comp_from_iov(scatter_comp, i,
1674 							  params->dst_iov, 0,
1675 							  &size, NULL, 0);
1676 
1677 				if (unlikely(size)) {
1678 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1679 						       " size %d needed", size);
1680 					return;
1681 				}
1682 			}
1683 		}
1684 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1685 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1686 
1687 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1688 
1689 		/* This is DPTR len incase of SG mode */
1690 		vq_cmd_w0.s.dlen = size;
1691 
1692 		m_vaddr = (uint8_t *)m_vaddr + size;
1693 		m_dma += size;
1694 
1695 		/* cpt alternate completion address saved earlier */
1696 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1697 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1698 		rptr_dma = c_dma - 8;
1699 
1700 		req->ist.ei1 = dptr_dma;
1701 		req->ist.ei2 = rptr_dma;
1702 	}
1703 
1704 	/* vq command w3 */
1705 	vq_cmd_w3.u64 = 0;
1706 	vq_cmd_w3.s.grp = 0;
1707 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1708 		offsetof(struct cpt_ctx, zs_ctx);
1709 
1710 	/* 16 byte aligned cpt res address */
1711 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1712 	*req->completion_addr = COMPLETION_CODE_INIT;
1713 	req->comp_baddr  = c_dma;
1714 
1715 	/* Fill microcode part of instruction */
1716 	req->ist.ei0 = vq_cmd_w0.u64;
1717 	req->ist.ei3 = vq_cmd_w3.u64;
1718 
1719 	req->op = op;
1720 
1721 	*prep_req = req;
1722 	return;
1723 }
1724 
1725 static __rte_always_inline void
1726 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1727 			uint64_t d_offs,
1728 			uint64_t d_lens,
1729 			fc_params_t *params,
1730 			void *op,
1731 			void **prep_req)
1732 {
1733 	uint32_t size;
1734 	int32_t inputlen = 0, outputlen;
1735 	struct cpt_ctx *cpt_ctx;
1736 	uint8_t snow3g, iv_len = 16;
1737 	struct cpt_request_info *req;
1738 	buf_ptr_t *buf_p;
1739 	uint32_t encr_offset;
1740 	uint32_t encr_data_len;
1741 	int flags;
1742 	void *m_vaddr, *c_vaddr;
1743 	uint64_t m_dma, c_dma;
1744 	uint64_t *offset_vaddr, offset_dma;
1745 	uint32_t *iv_s, iv[4], j;
1746 	vq_cmd_word0_t vq_cmd_w0;
1747 	vq_cmd_word3_t vq_cmd_w3;
1748 	opcode_info_t opcode;
1749 
1750 	buf_p = &params->meta_buf;
1751 	m_vaddr = buf_p->vaddr;
1752 	m_dma = buf_p->dma_addr;
1753 
1754 	/*
1755 	 * Microcode expects offsets in bytes
1756 	 * TODO: Rounding off
1757 	 */
1758 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1759 	encr_data_len = ENCR_DLEN(d_lens);
1760 
1761 	cpt_ctx = params->ctx_buf.vaddr;
1762 	flags = cpt_ctx->zsk_flags;
1763 	snow3g = cpt_ctx->snow3g;
1764 	/*
1765 	 * Save initial space that followed app data for completion code &
1766 	 * alternate completion code to fall in same cache line as app data
1767 	 */
1768 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1769 	m_dma += COMPLETION_CODE_SIZE;
1770 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1771 		(uint8_t *)m_vaddr;
1772 
1773 	c_vaddr = (uint8_t *)m_vaddr + size;
1774 	c_dma = m_dma + size;
1775 	size += sizeof(cpt_res_s_t);
1776 
1777 	m_vaddr = (uint8_t *)m_vaddr + size;
1778 	m_dma += size;
1779 
1780 	/* Reserve memory for cpt request info */
1781 	req = m_vaddr;
1782 
1783 	size = sizeof(struct cpt_request_info);
1784 	m_vaddr = (uint8_t *)m_vaddr + size;
1785 	m_dma += size;
1786 
1787 	opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1788 
1789 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1790 
1791 	opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1792 			  (0 << 3) | (flags & 0x7));
1793 
1794 	/* consider iv len */
1795 	encr_offset += iv_len;
1796 
1797 	inputlen = encr_offset +
1798 		(RTE_ALIGN(encr_data_len, 8) / 8);
1799 	outputlen = inputlen;
1800 
1801 	/* IV */
1802 	iv_s = params->iv_buf;
1803 	if (snow3g) {
1804 		/*
1805 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1806 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1807 		 */
1808 
1809 		for (j = 0; j < 4; j++)
1810 			iv[j] = iv_s[3 - j];
1811 	} else {
1812 		/* ZUC doesn't need a swap */
1813 		for (j = 0; j < 4; j++)
1814 			iv[j] = iv_s[j];
1815 	}
1816 
1817 	/*
1818 	 * GP op header, lengths are expected in bits.
1819 	 */
1820 	vq_cmd_w0.u64 = 0;
1821 	vq_cmd_w0.s.param1 = encr_data_len;
1822 
1823 	/*
1824 	 * In 83XX since we have a limitation of
1825 	 * IV & Offset control word not part of instruction
1826 	 * and need to be part of Data Buffer, we check if
1827 	 * head room is there and then only do the Direct mode processing
1828 	 */
1829 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1830 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1831 		void *dm_vaddr = params->bufs[0].vaddr;
1832 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1833 		/*
1834 		 * This flag indicates that there is 24 bytes head room and
1835 		 * 8 bytes tail room available, so that we get to do
1836 		 * DIRECT MODE with limitation
1837 		 */
1838 
1839 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1840 					    OFF_CTRL_LEN - iv_len);
1841 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1842 
1843 		/* DPTR */
1844 		req->ist.ei1 = offset_dma;
1845 		/* RPTR should just exclude offset control word */
1846 		req->ist.ei2 = dm_dma_addr - iv_len;
1847 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1848 						    + outputlen - iv_len);
1849 
1850 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1851 
1852 		vq_cmd_w0.s.opcode = opcode.flags;
1853 
1854 		if (likely(iv_len)) {
1855 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1856 						      + OFF_CTRL_LEN);
1857 			memcpy(iv_d, iv, 16);
1858 		}
1859 
1860 		/* iv offset is 0 */
1861 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1862 	} else {
1863 		uint32_t i, g_size_bytes, s_size_bytes;
1864 		uint64_t dptr_dma, rptr_dma;
1865 		sg_comp_t *gather_comp;
1866 		sg_comp_t *scatter_comp;
1867 		uint8_t *in_buffer;
1868 		uint32_t *iv_d;
1869 
1870 		/* save space for offset and iv... */
1871 		offset_vaddr = m_vaddr;
1872 		offset_dma = m_dma;
1873 
1874 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1875 		m_dma += OFF_CTRL_LEN + iv_len;
1876 
1877 		opcode.s.major |= CPT_DMA_MODE;
1878 
1879 		vq_cmd_w0.s.opcode = opcode.flags;
1880 
1881 		/* DPTR has SG list */
1882 		in_buffer = m_vaddr;
1883 		dptr_dma = m_dma;
1884 
1885 		((uint16_t *)in_buffer)[0] = 0;
1886 		((uint16_t *)in_buffer)[1] = 0;
1887 
1888 		/* TODO Add error check if space will be sufficient */
1889 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1890 
1891 		/*
1892 		 * Input Gather List
1893 		 */
1894 		i = 0;
1895 
1896 		/* Offset control word */
1897 
1898 		/* iv offset is 0 */
1899 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1900 
1901 		i = fill_sg_comp(gather_comp, i, offset_dma,
1902 				 OFF_CTRL_LEN + iv_len);
1903 
1904 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1905 		memcpy(iv_d, iv, 16);
1906 
1907 		/* Add input data */
1908 		size = inputlen - iv_len;
1909 		if (size) {
1910 			i = fill_sg_comp_from_iov(gather_comp, i,
1911 						  params->src_iov,
1912 						  0, &size, NULL, 0);
1913 			if (unlikely(size)) {
1914 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1915 					       " size %d needed", size);
1916 				return;
1917 			}
1918 		}
1919 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1920 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1921 
1922 		/*
1923 		 * Output Scatter List
1924 		 */
1925 
1926 		i = 0;
1927 		scatter_comp =
1928 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1929 
1930 		/* IV */
1931 		i = fill_sg_comp(scatter_comp, i,
1932 				 offset_dma + OFF_CTRL_LEN,
1933 				 iv_len);
1934 
1935 		/* Add output data */
1936 		size = outputlen - iv_len;
1937 		if (size) {
1938 			i = fill_sg_comp_from_iov(scatter_comp, i,
1939 						  params->dst_iov, 0,
1940 						  &size, NULL, 0);
1941 
1942 			if (unlikely(size)) {
1943 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1944 					       " size %d needed", size);
1945 				return;
1946 			}
1947 		}
1948 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1949 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1950 
1951 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1952 
1953 		/* This is DPTR len incase of SG mode */
1954 		vq_cmd_w0.s.dlen = size;
1955 
1956 		m_vaddr = (uint8_t *)m_vaddr + size;
1957 		m_dma += size;
1958 
1959 		/* cpt alternate completion address saved earlier */
1960 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1961 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1962 		rptr_dma = c_dma - 8;
1963 
1964 		req->ist.ei1 = dptr_dma;
1965 		req->ist.ei2 = rptr_dma;
1966 	}
1967 
1968 	/* vq command w3 */
1969 	vq_cmd_w3.u64 = 0;
1970 	vq_cmd_w3.s.grp = 0;
1971 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1972 		offsetof(struct cpt_ctx, zs_ctx);
1973 
1974 	/* 16 byte aligned cpt res address */
1975 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1976 	*req->completion_addr = COMPLETION_CODE_INIT;
1977 	req->comp_baddr  = c_dma;
1978 
1979 	/* Fill microcode part of instruction */
1980 	req->ist.ei0 = vq_cmd_w0.u64;
1981 	req->ist.ei3 = vq_cmd_w3.u64;
1982 
1983 	req->op = op;
1984 
1985 	*prep_req = req;
1986 	return;
1987 }
1988 
1989 static __rte_always_inline void
1990 cpt_kasumi_enc_prep(uint32_t req_flags,
1991 		    uint64_t d_offs,
1992 		    uint64_t d_lens,
1993 		    fc_params_t *params,
1994 		    void *op,
1995 		    void **prep_req)
1996 {
1997 	uint32_t size;
1998 	int32_t inputlen = 0, outputlen = 0;
1999 	struct cpt_ctx *cpt_ctx;
2000 	uint32_t mac_len = 0;
2001 	uint8_t i = 0;
2002 	struct cpt_request_info *req;
2003 	buf_ptr_t *buf_p;
2004 	uint32_t encr_offset, auth_offset;
2005 	uint32_t encr_data_len, auth_data_len;
2006 	int flags;
2007 	uint8_t *iv_s, *iv_d, iv_len = 8;
2008 	uint8_t dir = 0;
2009 	void *m_vaddr, *c_vaddr;
2010 	uint64_t m_dma, c_dma;
2011 	uint64_t *offset_vaddr, offset_dma;
2012 	vq_cmd_word0_t vq_cmd_w0;
2013 	vq_cmd_word3_t vq_cmd_w3;
2014 	opcode_info_t opcode;
2015 	uint8_t *in_buffer;
2016 	uint32_t g_size_bytes, s_size_bytes;
2017 	uint64_t dptr_dma, rptr_dma;
2018 	sg_comp_t *gather_comp;
2019 	sg_comp_t *scatter_comp;
2020 
2021 	buf_p = &params->meta_buf;
2022 	m_vaddr = buf_p->vaddr;
2023 	m_dma = buf_p->dma_addr;
2024 
2025 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2026 	auth_offset = AUTH_OFFSET(d_offs) / 8;
2027 	encr_data_len = ENCR_DLEN(d_lens);
2028 	auth_data_len = AUTH_DLEN(d_lens);
2029 
2030 	cpt_ctx = params->ctx_buf.vaddr;
2031 	flags = cpt_ctx->zsk_flags;
2032 	mac_len = cpt_ctx->mac_len;
2033 
2034 	if (flags == 0x0)
2035 		iv_s = params->iv_buf;
2036 	else
2037 		iv_s = params->auth_iv_buf;
2038 
2039 	dir = iv_s[8] & 0x1;
2040 
2041 	/*
2042 	 * Save initial space that followed app data for completion code &
2043 	 * alternate completion code to fall in same cache line as app data
2044 	 */
2045 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2046 	m_dma += COMPLETION_CODE_SIZE;
2047 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2048 		(uint8_t *)m_vaddr;
2049 
2050 	c_vaddr = (uint8_t *)m_vaddr + size;
2051 	c_dma = m_dma + size;
2052 	size += sizeof(cpt_res_s_t);
2053 
2054 	m_vaddr = (uint8_t *)m_vaddr + size;
2055 	m_dma += size;
2056 
2057 	/* Reserve memory for cpt request info */
2058 	req = m_vaddr;
2059 
2060 	size = sizeof(struct cpt_request_info);
2061 	m_vaddr = (uint8_t *)m_vaddr + size;
2062 	m_dma += size;
2063 
2064 	opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2065 
2066 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2067 	opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2068 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2069 
2070 	/*
2071 	 * GP op header, lengths are expected in bits.
2072 	 */
2073 	vq_cmd_w0.u64 = 0;
2074 	vq_cmd_w0.s.param1 = encr_data_len;
2075 	vq_cmd_w0.s.param2 = auth_data_len;
2076 	vq_cmd_w0.s.opcode = opcode.flags;
2077 
2078 	/* consider iv len */
2079 	if (flags == 0x0) {
2080 		encr_offset += iv_len;
2081 		auth_offset += iv_len;
2082 	}
2083 
2084 	/* save space for offset ctrl and iv */
2085 	offset_vaddr = m_vaddr;
2086 	offset_dma = m_dma;
2087 
2088 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2089 	m_dma += OFF_CTRL_LEN + iv_len;
2090 
2091 	/* DPTR has SG list */
2092 	in_buffer = m_vaddr;
2093 	dptr_dma = m_dma;
2094 
2095 	((uint16_t *)in_buffer)[0] = 0;
2096 	((uint16_t *)in_buffer)[1] = 0;
2097 
2098 	/* TODO Add error check if space will be sufficient */
2099 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2100 
2101 	/*
2102 	 * Input Gather List
2103 	 */
2104 	i = 0;
2105 
2106 	/* Offset control word followed by iv */
2107 
2108 	if (flags == 0x0) {
2109 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2110 		outputlen = inputlen;
2111 		/* iv offset is 0 */
2112 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2113 	} else {
2114 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2115 		outputlen = mac_len;
2116 		/* iv offset is 0 */
2117 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2118 	}
2119 
2120 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2121 
2122 	/* IV */
2123 	iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2124 	memcpy(iv_d, iv_s, iv_len);
2125 
2126 	/* input data */
2127 	size = inputlen - iv_len;
2128 	if (size) {
2129 		i = fill_sg_comp_from_iov(gather_comp, i,
2130 					  params->src_iov, 0,
2131 					  &size, NULL, 0);
2132 
2133 		if (unlikely(size)) {
2134 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2135 				       " size %d needed", size);
2136 			return;
2137 		}
2138 	}
2139 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2140 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2141 
2142 	/*
2143 	 * Output Scatter List
2144 	 */
2145 
2146 	i = 0;
2147 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2148 
2149 	if (flags == 0x1) {
2150 		/* IV in SLIST only for F8 */
2151 		iv_len = 0;
2152 	}
2153 
2154 	/* IV */
2155 	if (iv_len) {
2156 		i = fill_sg_comp(scatter_comp, i,
2157 				 offset_dma + OFF_CTRL_LEN,
2158 				 iv_len);
2159 	}
2160 
2161 	/* Add output data */
2162 	if (req_flags & VALID_MAC_BUF) {
2163 		size = outputlen - iv_len - mac_len;
2164 		if (size) {
2165 			i = fill_sg_comp_from_iov(scatter_comp, i,
2166 						  params->dst_iov, 0,
2167 						  &size, NULL, 0);
2168 
2169 			if (unlikely(size)) {
2170 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2171 					       " size %d needed", size);
2172 				return;
2173 			}
2174 		}
2175 
2176 		/* mac data */
2177 		if (mac_len) {
2178 			i = fill_sg_comp_from_buf(scatter_comp, i,
2179 						  &params->mac_buf);
2180 		}
2181 	} else {
2182 		/* Output including mac */
2183 		size = outputlen - iv_len;
2184 		if (size) {
2185 			i = fill_sg_comp_from_iov(scatter_comp, i,
2186 						  params->dst_iov, 0,
2187 						  &size, NULL, 0);
2188 
2189 			if (unlikely(size)) {
2190 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2191 					       " size %d needed", size);
2192 				return;
2193 			}
2194 		}
2195 	}
2196 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2197 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2198 
2199 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2200 
2201 	/* This is DPTR len incase of SG mode */
2202 	vq_cmd_w0.s.dlen = size;
2203 
2204 	m_vaddr = (uint8_t *)m_vaddr + size;
2205 	m_dma += size;
2206 
2207 	/* cpt alternate completion address saved earlier */
2208 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2209 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2210 	rptr_dma = c_dma - 8;
2211 
2212 	req->ist.ei1 = dptr_dma;
2213 	req->ist.ei2 = rptr_dma;
2214 
2215 	/* vq command w3 */
2216 	vq_cmd_w3.u64 = 0;
2217 	vq_cmd_w3.s.grp = 0;
2218 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2219 		offsetof(struct cpt_ctx, k_ctx);
2220 
2221 	/* 16 byte aligned cpt res address */
2222 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2223 	*req->completion_addr = COMPLETION_CODE_INIT;
2224 	req->comp_baddr  = c_dma;
2225 
2226 	/* Fill microcode part of instruction */
2227 	req->ist.ei0 = vq_cmd_w0.u64;
2228 	req->ist.ei3 = vq_cmd_w3.u64;
2229 
2230 	req->op = op;
2231 
2232 	*prep_req = req;
2233 	return;
2234 }
2235 
2236 static __rte_always_inline void
2237 cpt_kasumi_dec_prep(uint64_t d_offs,
2238 		    uint64_t d_lens,
2239 		    fc_params_t *params,
2240 		    void *op,
2241 		    void **prep_req)
2242 {
2243 	uint32_t size;
2244 	int32_t inputlen = 0, outputlen;
2245 	struct cpt_ctx *cpt_ctx;
2246 	uint8_t i = 0, iv_len = 8;
2247 	struct cpt_request_info *req;
2248 	buf_ptr_t *buf_p;
2249 	uint32_t encr_offset;
2250 	uint32_t encr_data_len;
2251 	int flags;
2252 	uint8_t dir = 0;
2253 	void *m_vaddr, *c_vaddr;
2254 	uint64_t m_dma, c_dma;
2255 	uint64_t *offset_vaddr, offset_dma;
2256 	vq_cmd_word0_t vq_cmd_w0;
2257 	vq_cmd_word3_t vq_cmd_w3;
2258 	opcode_info_t opcode;
2259 	uint8_t *in_buffer;
2260 	uint32_t g_size_bytes, s_size_bytes;
2261 	uint64_t dptr_dma, rptr_dma;
2262 	sg_comp_t *gather_comp;
2263 	sg_comp_t *scatter_comp;
2264 
2265 	buf_p = &params->meta_buf;
2266 	m_vaddr = buf_p->vaddr;
2267 	m_dma = buf_p->dma_addr;
2268 
2269 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2270 	encr_data_len = ENCR_DLEN(d_lens);
2271 
2272 	cpt_ctx = params->ctx_buf.vaddr;
2273 	flags = cpt_ctx->zsk_flags;
2274 	/*
2275 	 * Save initial space that followed app data for completion code &
2276 	 * alternate completion code to fall in same cache line as app data
2277 	 */
2278 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2279 	m_dma += COMPLETION_CODE_SIZE;
2280 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2281 		(uint8_t *)m_vaddr;
2282 
2283 	c_vaddr = (uint8_t *)m_vaddr + size;
2284 	c_dma = m_dma + size;
2285 	size += sizeof(cpt_res_s_t);
2286 
2287 	m_vaddr = (uint8_t *)m_vaddr + size;
2288 	m_dma += size;
2289 
2290 	/* Reserve memory for cpt request info */
2291 	req = m_vaddr;
2292 
2293 	size = sizeof(struct cpt_request_info);
2294 	m_vaddr = (uint8_t *)m_vaddr + size;
2295 	m_dma += size;
2296 
2297 	opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2298 
2299 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2300 	opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2301 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2302 
2303 	/*
2304 	 * GP op header, lengths are expected in bits.
2305 	 */
2306 	vq_cmd_w0.u64 = 0;
2307 	vq_cmd_w0.s.param1 = encr_data_len;
2308 	vq_cmd_w0.s.opcode = opcode.flags;
2309 
2310 	/* consider iv len */
2311 	encr_offset += iv_len;
2312 
2313 	inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2314 	outputlen = inputlen;
2315 
2316 	/* save space for offset ctrl & iv */
2317 	offset_vaddr = m_vaddr;
2318 	offset_dma = m_dma;
2319 
2320 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2321 	m_dma += OFF_CTRL_LEN + iv_len;
2322 
2323 	/* DPTR has SG list */
2324 	in_buffer = m_vaddr;
2325 	dptr_dma = m_dma;
2326 
2327 	((uint16_t *)in_buffer)[0] = 0;
2328 	((uint16_t *)in_buffer)[1] = 0;
2329 
2330 	/* TODO Add error check if space will be sufficient */
2331 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2332 
2333 	/*
2334 	 * Input Gather List
2335 	 */
2336 	i = 0;
2337 
2338 	/* Offset control word followed by iv */
2339 	*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2340 
2341 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2342 
2343 	/* IV */
2344 	memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2345 	       params->iv_buf, iv_len);
2346 
2347 	/* Add input data */
2348 	size = inputlen - iv_len;
2349 	if (size) {
2350 		i = fill_sg_comp_from_iov(gather_comp, i,
2351 					  params->src_iov,
2352 					  0, &size, NULL, 0);
2353 		if (unlikely(size)) {
2354 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2355 				       " size %d needed", size);
2356 			return;
2357 		}
2358 	}
2359 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2360 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2361 
2362 	/*
2363 	 * Output Scatter List
2364 	 */
2365 
2366 	i = 0;
2367 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2368 
2369 	/* IV */
2370 	i = fill_sg_comp(scatter_comp, i,
2371 			 offset_dma + OFF_CTRL_LEN,
2372 			 iv_len);
2373 
2374 	/* Add output data */
2375 	size = outputlen - iv_len;
2376 	if (size) {
2377 		i = fill_sg_comp_from_iov(scatter_comp, i,
2378 					  params->dst_iov, 0,
2379 					  &size, NULL, 0);
2380 		if (unlikely(size)) {
2381 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2382 				       " size %d needed", size);
2383 			return;
2384 		}
2385 	}
2386 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2387 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2388 
2389 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2390 
2391 	/* This is DPTR len incase of SG mode */
2392 	vq_cmd_w0.s.dlen = size;
2393 
2394 	m_vaddr = (uint8_t *)m_vaddr + size;
2395 	m_dma += size;
2396 
2397 	/* cpt alternate completion address saved earlier */
2398 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2399 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2400 	rptr_dma = c_dma - 8;
2401 
2402 	req->ist.ei1 = dptr_dma;
2403 	req->ist.ei2 = rptr_dma;
2404 
2405 	/* vq command w3 */
2406 	vq_cmd_w3.u64 = 0;
2407 	vq_cmd_w3.s.grp = 0;
2408 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2409 		offsetof(struct cpt_ctx, k_ctx);
2410 
2411 	/* 16 byte aligned cpt res address */
2412 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2413 	*req->completion_addr = COMPLETION_CODE_INIT;
2414 	req->comp_baddr  = c_dma;
2415 
2416 	/* Fill microcode part of instruction */
2417 	req->ist.ei0 = vq_cmd_w0.u64;
2418 	req->ist.ei3 = vq_cmd_w3.u64;
2419 
2420 	req->op = op;
2421 
2422 	*prep_req = req;
2423 	return;
2424 }
2425 
2426 static __rte_always_inline void *
2427 cpt_fc_dec_hmac_prep(uint32_t flags,
2428 		     uint64_t d_offs,
2429 		     uint64_t d_lens,
2430 		     fc_params_t *fc_params,
2431 		     void *op)
2432 {
2433 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2434 	uint8_t fc_type;
2435 	void *prep_req = NULL;
2436 
2437 	fc_type = ctx->fc_type;
2438 
2439 	if (likely(fc_type == FC_GEN)) {
2440 		cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2441 				  &prep_req);
2442 	} else if (fc_type == ZUC_SNOW3G) {
2443 		cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2444 					&prep_req);
2445 	} else if (fc_type == KASUMI) {
2446 		cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2447 	}
2448 
2449 	/*
2450 	 * For AUTH_ONLY case,
2451 	 * MC only supports digest generation and verification
2452 	 * should be done in software by memcmp()
2453 	 */
2454 
2455 	return prep_req;
2456 }
2457 
2458 static __rte_always_inline void *__hot
2459 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2460 		     fc_params_t *fc_params, void *op)
2461 {
2462 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2463 	uint8_t fc_type;
2464 	void *prep_req = NULL;
2465 
2466 	fc_type = ctx->fc_type;
2467 
2468 	/* Common api for rest of the ops */
2469 	if (likely(fc_type == FC_GEN)) {
2470 		cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2471 				  &prep_req);
2472 	} else if (fc_type == ZUC_SNOW3G) {
2473 		cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2474 					&prep_req);
2475 	} else if (fc_type == KASUMI) {
2476 		cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2477 				    &prep_req);
2478 	} else if (fc_type == HASH_HMAC) {
2479 		cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2480 	}
2481 
2482 	return prep_req;
2483 }
2484 
2485 static __rte_always_inline int
2486 cpt_fc_auth_set_key(void *ctx, auth_type_t type, const uint8_t *key,
2487 		    uint16_t key_len, uint16_t mac_len)
2488 {
2489 	struct cpt_ctx *cpt_ctx = ctx;
2490 	mc_fc_context_t *fctx = &cpt_ctx->fctx;
2491 
2492 	if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2493 		uint32_t keyx[4];
2494 
2495 		if (key_len != 16)
2496 			return -1;
2497 		/* No support for AEAD yet */
2498 		if (cpt_ctx->enc_cipher)
2499 			return -1;
2500 		/* For ZUC/SNOW3G/Kasumi */
2501 		switch (type) {
2502 		case SNOW3G_UIA2:
2503 			cpt_ctx->snow3g = 1;
2504 			gen_key_snow3g(key, keyx);
2505 			memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
2506 			cpt_ctx->fc_type = ZUC_SNOW3G;
2507 			cpt_ctx->zsk_flags = 0x1;
2508 			break;
2509 		case ZUC_EIA3:
2510 			cpt_ctx->snow3g = 0;
2511 			memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
2512 			memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
2513 			cpt_ctx->fc_type = ZUC_SNOW3G;
2514 			cpt_ctx->zsk_flags = 0x1;
2515 			break;
2516 		case KASUMI_F9_ECB:
2517 			/* Kasumi ECB mode */
2518 			cpt_ctx->k_ecb = 1;
2519 			memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2520 			cpt_ctx->fc_type = KASUMI;
2521 			cpt_ctx->zsk_flags = 0x1;
2522 			break;
2523 		case KASUMI_F9_CBC:
2524 			memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2525 			cpt_ctx->fc_type = KASUMI;
2526 			cpt_ctx->zsk_flags = 0x1;
2527 			break;
2528 		default:
2529 			return -1;
2530 		}
2531 		cpt_ctx->mac_len = 4;
2532 		cpt_ctx->hash_type = type;
2533 		return 0;
2534 	}
2535 
2536 	if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2537 		if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2538 			cpt_ctx->fc_type = HASH_HMAC;
2539 	}
2540 
2541 	if (cpt_ctx->fc_type == FC_GEN && key_len > 64)
2542 		return -1;
2543 
2544 	/* For GMAC auth, cipher must be NULL */
2545 	if (type == GMAC_TYPE)
2546 		fctx->enc.enc_cipher = 0;
2547 
2548 	fctx->enc.hash_type = cpt_ctx->hash_type = type;
2549 	fctx->enc.mac_len = cpt_ctx->mac_len = mac_len;
2550 
2551 	if (key_len) {
2552 		cpt_ctx->hmac = 1;
2553 		memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2554 		memcpy(cpt_ctx->auth_key, key, key_len);
2555 		cpt_ctx->auth_key_len = key_len;
2556 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2557 		memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2558 
2559 		if (key_len <= 64)
2560 			memcpy(fctx->hmac.opad, key, key_len);
2561 		fctx->enc.auth_input_type = 1;
2562 	}
2563 	return 0;
2564 }
2565 
2566 static __rte_always_inline int
2567 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2568 		 struct cpt_sess_misc *sess)
2569 {
2570 	struct rte_crypto_aead_xform *aead_form;
2571 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2572 	auth_type_t auth_type = 0; /* NULL Auth type */
2573 	uint32_t cipher_key_len = 0;
2574 	uint8_t aes_gcm = 0;
2575 	aead_form = &xform->aead;
2576 	void *ctx = SESS_PRIV(sess);
2577 
2578 	if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT &&
2579 	   aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2580 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2581 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2582 	} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT &&
2583 		aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2584 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2585 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2586 	} else {
2587 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2588 		return -1;
2589 	}
2590 	switch (aead_form->algo) {
2591 	case RTE_CRYPTO_AEAD_AES_GCM:
2592 		enc_type = AES_GCM;
2593 		cipher_key_len = 16;
2594 		aes_gcm = 1;
2595 		break;
2596 	case RTE_CRYPTO_AEAD_AES_CCM:
2597 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2598 			       aead_form->algo);
2599 		return -1;
2600 	default:
2601 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2602 			       aead_form->algo);
2603 		return -1;
2604 	}
2605 	if (aead_form->key.length < cipher_key_len) {
2606 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2607 			       (unsigned int long)aead_form->key.length);
2608 		return -1;
2609 	}
2610 	sess->zsk_flag = 0;
2611 	sess->aes_gcm = aes_gcm;
2612 	sess->mac_len = aead_form->digest_length;
2613 	sess->iv_offset = aead_form->iv.offset;
2614 	sess->iv_length = aead_form->iv.length;
2615 	sess->aad_length = aead_form->aad_length;
2616 
2617 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2618 			aead_form->key.length, NULL)))
2619 		return -1;
2620 
2621 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2622 			aead_form->digest_length)))
2623 		return -1;
2624 
2625 	return 0;
2626 }
2627 
2628 static __rte_always_inline int
2629 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2630 		 struct cpt_sess_misc *sess)
2631 {
2632 	struct rte_crypto_cipher_xform *c_form;
2633 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2634 	uint32_t cipher_key_len = 0;
2635 	uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
2636 
2637 	c_form = &xform->cipher;
2638 
2639 	if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2640 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2641 	else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
2642 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2643 	else {
2644 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2645 		return -1;
2646 	}
2647 
2648 	switch (c_form->algo) {
2649 	case RTE_CRYPTO_CIPHER_AES_CBC:
2650 		enc_type = AES_CBC;
2651 		cipher_key_len = 16;
2652 		break;
2653 	case RTE_CRYPTO_CIPHER_3DES_CBC:
2654 		enc_type = DES3_CBC;
2655 		cipher_key_len = 24;
2656 		break;
2657 	case RTE_CRYPTO_CIPHER_DES_CBC:
2658 		/* DES is implemented using 3DES in hardware */
2659 		enc_type = DES3_CBC;
2660 		cipher_key_len = 8;
2661 		break;
2662 	case RTE_CRYPTO_CIPHER_AES_CTR:
2663 		enc_type = AES_CTR;
2664 		cipher_key_len = 16;
2665 		aes_ctr = 1;
2666 		break;
2667 	case RTE_CRYPTO_CIPHER_NULL:
2668 		enc_type = 0;
2669 		is_null = 1;
2670 		break;
2671 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
2672 		enc_type = KASUMI_F8_ECB;
2673 		cipher_key_len = 16;
2674 		zsk_flag = K_F8;
2675 		break;
2676 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2677 		enc_type = SNOW3G_UEA2;
2678 		cipher_key_len = 16;
2679 		zsk_flag = ZS_EA;
2680 		break;
2681 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2682 		enc_type = ZUC_EEA3;
2683 		cipher_key_len = 16;
2684 		zsk_flag = ZS_EA;
2685 		break;
2686 	case RTE_CRYPTO_CIPHER_AES_XTS:
2687 		enc_type = AES_XTS;
2688 		cipher_key_len = 16;
2689 		break;
2690 	case RTE_CRYPTO_CIPHER_3DES_ECB:
2691 		enc_type = DES3_ECB;
2692 		cipher_key_len = 24;
2693 		break;
2694 	case RTE_CRYPTO_CIPHER_AES_ECB:
2695 		enc_type = AES_ECB;
2696 		cipher_key_len = 16;
2697 		break;
2698 	case RTE_CRYPTO_CIPHER_3DES_CTR:
2699 	case RTE_CRYPTO_CIPHER_AES_F8:
2700 	case RTE_CRYPTO_CIPHER_ARC4:
2701 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2702 			       c_form->algo);
2703 		return -1;
2704 	default:
2705 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2706 			       c_form->algo);
2707 		return -1;
2708 	}
2709 
2710 	if (c_form->key.length < cipher_key_len) {
2711 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2712 			       (unsigned long) c_form->key.length);
2713 		return -1;
2714 	}
2715 
2716 	sess->zsk_flag = zsk_flag;
2717 	sess->aes_gcm = 0;
2718 	sess->aes_ctr = aes_ctr;
2719 	sess->iv_offset = c_form->iv.offset;
2720 	sess->iv_length = c_form->iv.length;
2721 	sess->is_null = is_null;
2722 
2723 	if (unlikely(cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type,
2724 			c_form->key.data, c_form->key.length, NULL)))
2725 		return -1;
2726 
2727 	return 0;
2728 }
2729 
2730 static __rte_always_inline int
2731 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2732 	       struct cpt_sess_misc *sess)
2733 {
2734 	struct rte_crypto_auth_xform *a_form;
2735 	auth_type_t auth_type = 0; /* NULL Auth type */
2736 	uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2737 
2738 	a_form = &xform->auth;
2739 
2740 	if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2741 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2742 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2743 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2744 	else {
2745 		CPT_LOG_DP_ERR("Unknown auth operation");
2746 		return -1;
2747 	}
2748 
2749 	switch (a_form->algo) {
2750 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
2751 		/* Fall through */
2752 	case RTE_CRYPTO_AUTH_SHA1:
2753 		auth_type = SHA1_TYPE;
2754 		break;
2755 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
2756 	case RTE_CRYPTO_AUTH_SHA256:
2757 		auth_type = SHA2_SHA256;
2758 		break;
2759 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
2760 	case RTE_CRYPTO_AUTH_SHA512:
2761 		auth_type = SHA2_SHA512;
2762 		break;
2763 	case RTE_CRYPTO_AUTH_AES_GMAC:
2764 		auth_type = GMAC_TYPE;
2765 		aes_gcm = 1;
2766 		break;
2767 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
2768 	case RTE_CRYPTO_AUTH_SHA224:
2769 		auth_type = SHA2_SHA224;
2770 		break;
2771 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
2772 	case RTE_CRYPTO_AUTH_SHA384:
2773 		auth_type = SHA2_SHA384;
2774 		break;
2775 	case RTE_CRYPTO_AUTH_MD5_HMAC:
2776 	case RTE_CRYPTO_AUTH_MD5:
2777 		auth_type = MD5_TYPE;
2778 		break;
2779 	case RTE_CRYPTO_AUTH_KASUMI_F9:
2780 		auth_type = KASUMI_F9_ECB;
2781 		/*
2782 		 * Indicate that direction needs to be taken out
2783 		 * from end of src
2784 		 */
2785 		zsk_flag = K_F9;
2786 		break;
2787 	case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2788 		auth_type = SNOW3G_UIA2;
2789 		zsk_flag = ZS_IA;
2790 		break;
2791 	case RTE_CRYPTO_AUTH_ZUC_EIA3:
2792 		auth_type = ZUC_EIA3;
2793 		zsk_flag = ZS_IA;
2794 		break;
2795 	case RTE_CRYPTO_AUTH_NULL:
2796 		auth_type = 0;
2797 		is_null = 1;
2798 		break;
2799 	case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2800 	case RTE_CRYPTO_AUTH_AES_CMAC:
2801 	case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2802 		CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2803 			       a_form->algo);
2804 		return -1;
2805 	default:
2806 		CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2807 			       a_form->algo);
2808 		return -1;
2809 	}
2810 
2811 	sess->zsk_flag = zsk_flag;
2812 	sess->aes_gcm = aes_gcm;
2813 	sess->mac_len = a_form->digest_length;
2814 	sess->is_null = is_null;
2815 	if (zsk_flag) {
2816 		sess->auth_iv_offset = a_form->iv.offset;
2817 		sess->auth_iv_length = a_form->iv.length;
2818 	}
2819 	if (unlikely(cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type,
2820 			a_form->key.data, a_form->key.length,
2821 			a_form->digest_length)))
2822 		return -1;
2823 
2824 	return 0;
2825 }
2826 
2827 static __rte_always_inline int
2828 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2829 		 struct cpt_sess_misc *sess)
2830 {
2831 	struct rte_crypto_auth_xform *a_form;
2832 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2833 	auth_type_t auth_type = 0; /* NULL Auth type */
2834 	void *ctx = SESS_PRIV(sess);
2835 
2836 	a_form = &xform->auth;
2837 
2838 	if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2839 		sess->cpt_op |= CPT_OP_ENCODE;
2840 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2841 		sess->cpt_op |= CPT_OP_DECODE;
2842 	else {
2843 		CPT_LOG_DP_ERR("Unknown auth operation");
2844 		return -1;
2845 	}
2846 
2847 	switch (a_form->algo) {
2848 	case RTE_CRYPTO_AUTH_AES_GMAC:
2849 		enc_type = AES_GCM;
2850 		auth_type = GMAC_TYPE;
2851 		break;
2852 	default:
2853 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2854 			       a_form->algo);
2855 		return -1;
2856 	}
2857 
2858 	sess->zsk_flag = 0;
2859 	sess->aes_gcm = 0;
2860 	sess->is_gmac = 1;
2861 	sess->iv_offset = a_form->iv.offset;
2862 	sess->iv_length = a_form->iv.length;
2863 	sess->mac_len = a_form->digest_length;
2864 
2865 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2866 			a_form->key.length, NULL)))
2867 		return -1;
2868 
2869 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2870 			a_form->digest_length)))
2871 		return -1;
2872 
2873 	return 0;
2874 }
2875 
2876 static __rte_always_inline void *
2877 alloc_op_meta(struct rte_mbuf *m_src,
2878 	      buf_ptr_t *buf,
2879 	      int32_t len,
2880 	      struct rte_mempool *cpt_meta_pool)
2881 {
2882 	uint8_t *mdata;
2883 
2884 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2885 	if (likely(m_src && (m_src->nb_segs == 1))) {
2886 		int32_t tailroom;
2887 		phys_addr_t mphys;
2888 
2889 		/* Check if tailroom is sufficient to hold meta data */
2890 		tailroom = rte_pktmbuf_tailroom(m_src);
2891 		if (likely(tailroom > len + 8)) {
2892 			mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2893 			mphys = m_src->buf_physaddr + m_src->buf_len;
2894 			mdata -= len;
2895 			mphys -= len;
2896 			buf->vaddr = mdata;
2897 			buf->dma_addr = mphys;
2898 			buf->size = len;
2899 			/* Indicate that this is a mbuf allocated mdata */
2900 			mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2901 			return mdata;
2902 		}
2903 	}
2904 #else
2905 	RTE_SET_USED(m_src);
2906 #endif
2907 
2908 	if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2909 		return NULL;
2910 
2911 	buf->vaddr = mdata;
2912 	buf->dma_addr = rte_mempool_virt2iova(mdata);
2913 	buf->size = len;
2914 
2915 	return mdata;
2916 }
2917 
2918 /**
2919  * cpt_free_metabuf - free metabuf to mempool.
2920  * @param instance: pointer to instance.
2921  * @param objp: pointer to the metabuf.
2922  */
2923 static __rte_always_inline void
2924 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2925 {
2926 	bool nofree = ((uintptr_t)mdata & 1ull);
2927 
2928 	if (likely(nofree))
2929 		return;
2930 	rte_mempool_put(cpt_meta_pool, mdata);
2931 }
2932 
2933 static __rte_always_inline uint32_t
2934 prepare_iov_from_pkt(struct rte_mbuf *pkt,
2935 		     iov_ptr_t *iovec, uint32_t start_offset)
2936 {
2937 	uint16_t index = 0;
2938 	void *seg_data = NULL;
2939 	phys_addr_t seg_phys;
2940 	int32_t seg_size = 0;
2941 
2942 	if (!pkt) {
2943 		iovec->buf_cnt = 0;
2944 		return 0;
2945 	}
2946 
2947 	if (!start_offset) {
2948 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2949 		seg_phys = rte_pktmbuf_mtophys(pkt);
2950 		seg_size = pkt->data_len;
2951 	} else {
2952 		while (start_offset >= pkt->data_len) {
2953 			start_offset -= pkt->data_len;
2954 			pkt = pkt->next;
2955 		}
2956 
2957 		seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
2958 		seg_phys = rte_pktmbuf_mtophys_offset(pkt, start_offset);
2959 		seg_size = pkt->data_len - start_offset;
2960 		if (!seg_size)
2961 			return 1;
2962 	}
2963 
2964 	/* first seg */
2965 	iovec->bufs[index].vaddr = seg_data;
2966 	iovec->bufs[index].dma_addr = seg_phys;
2967 	iovec->bufs[index].size = seg_size;
2968 	index++;
2969 	pkt = pkt->next;
2970 
2971 	while (unlikely(pkt != NULL)) {
2972 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2973 		seg_phys = rte_pktmbuf_mtophys(pkt);
2974 		seg_size = pkt->data_len;
2975 		if (!seg_size)
2976 			break;
2977 
2978 		iovec->bufs[index].vaddr = seg_data;
2979 		iovec->bufs[index].dma_addr = seg_phys;
2980 		iovec->bufs[index].size = seg_size;
2981 
2982 		index++;
2983 
2984 		pkt = pkt->next;
2985 	}
2986 
2987 	iovec->buf_cnt = index;
2988 	return 0;
2989 }
2990 
2991 static __rte_always_inline uint32_t
2992 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
2993 			     fc_params_t *param,
2994 			     uint32_t *flags)
2995 {
2996 	uint16_t index = 0;
2997 	void *seg_data = NULL;
2998 	phys_addr_t seg_phys;
2999 	uint32_t seg_size = 0;
3000 	iov_ptr_t *iovec;
3001 
3002 	seg_data = rte_pktmbuf_mtod(pkt, void *);
3003 	seg_phys = rte_pktmbuf_mtophys(pkt);
3004 	seg_size = pkt->data_len;
3005 
3006 	/* first seg */
3007 	if (likely(!pkt->next)) {
3008 		uint32_t headroom, tailroom;
3009 
3010 		*flags |= SINGLE_BUF_INPLACE;
3011 		headroom = rte_pktmbuf_headroom(pkt);
3012 		tailroom = rte_pktmbuf_tailroom(pkt);
3013 		if (likely((headroom >= 24) &&
3014 		    (tailroom >= 8))) {
3015 			/* In 83XX this is prerequivisit for Direct mode */
3016 			*flags |= SINGLE_BUF_HEADTAILROOM;
3017 		}
3018 		param->bufs[0].vaddr = seg_data;
3019 		param->bufs[0].dma_addr = seg_phys;
3020 		param->bufs[0].size = seg_size;
3021 		return 0;
3022 	}
3023 	iovec = param->src_iov;
3024 	iovec->bufs[index].vaddr = seg_data;
3025 	iovec->bufs[index].dma_addr = seg_phys;
3026 	iovec->bufs[index].size = seg_size;
3027 	index++;
3028 	pkt = pkt->next;
3029 
3030 	while (unlikely(pkt != NULL)) {
3031 		seg_data = rte_pktmbuf_mtod(pkt, void *);
3032 		seg_phys = rte_pktmbuf_mtophys(pkt);
3033 		seg_size = pkt->data_len;
3034 
3035 		if (!seg_size)
3036 			break;
3037 
3038 		iovec->bufs[index].vaddr = seg_data;
3039 		iovec->bufs[index].dma_addr = seg_phys;
3040 		iovec->bufs[index].size = seg_size;
3041 
3042 		index++;
3043 
3044 		pkt = pkt->next;
3045 	}
3046 
3047 	iovec->buf_cnt = index;
3048 	return 0;
3049 }
3050 
3051 static __rte_always_inline int
3052 fill_fc_params(struct rte_crypto_op *cop,
3053 	       struct cpt_sess_misc *sess_misc,
3054 	       struct cpt_qp_meta_info *m_info,
3055 	       void **mdata_ptr,
3056 	       void **prep_req)
3057 {
3058 	uint32_t space = 0;
3059 	struct rte_crypto_sym_op *sym_op = cop->sym;
3060 	void *mdata = NULL;
3061 	uintptr_t *op;
3062 	uint32_t mc_hash_off;
3063 	uint32_t flags = 0;
3064 	uint64_t d_offs, d_lens;
3065 	struct rte_mbuf *m_src, *m_dst;
3066 	uint8_t cpt_op = sess_misc->cpt_op;
3067 #ifdef CPT_ALWAYS_USE_SG_MODE
3068 	uint8_t inplace = 0;
3069 #else
3070 	uint8_t inplace = 1;
3071 #endif
3072 	fc_params_t fc_params;
3073 	char src[SRC_IOV_SIZE];
3074 	char dst[SRC_IOV_SIZE];
3075 	uint32_t iv_buf[4];
3076 	int ret;
3077 
3078 	if (likely(sess_misc->iv_length)) {
3079 		flags |= VALID_IV_BUF;
3080 		fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3081 				   uint8_t *, sess_misc->iv_offset);
3082 		if (sess_misc->aes_ctr &&
3083 		    unlikely(sess_misc->iv_length != 16)) {
3084 			memcpy((uint8_t *)iv_buf,
3085 				rte_crypto_op_ctod_offset(cop,
3086 				uint8_t *, sess_misc->iv_offset), 12);
3087 			iv_buf[3] = rte_cpu_to_be_32(0x1);
3088 			fc_params.iv_buf = iv_buf;
3089 		}
3090 	}
3091 
3092 	if (sess_misc->zsk_flag) {
3093 		fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3094 					uint8_t *,
3095 					sess_misc->auth_iv_offset);
3096 		if (sess_misc->zsk_flag != ZS_EA)
3097 			inplace = 0;
3098 	}
3099 	m_src = sym_op->m_src;
3100 	m_dst = sym_op->m_dst;
3101 
3102 	if (sess_misc->aes_gcm) {
3103 		uint8_t *salt;
3104 		uint8_t *aad_data;
3105 		uint16_t aad_len;
3106 
3107 		d_offs = sym_op->aead.data.offset;
3108 		d_lens = sym_op->aead.data.length;
3109 		mc_hash_off = sym_op->aead.data.offset +
3110 			      sym_op->aead.data.length;
3111 
3112 		aad_data = sym_op->aead.aad.data;
3113 		aad_len = sess_misc->aad_length;
3114 		if (likely((aad_data + aad_len) ==
3115 			   rte_pktmbuf_mtod_offset(m_src,
3116 				uint8_t *,
3117 				sym_op->aead.data.offset))) {
3118 			d_offs = (d_offs - aad_len) | (d_offs << 16);
3119 			d_lens = (d_lens + aad_len) | (d_lens << 32);
3120 		} else {
3121 			fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3122 			fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3123 			fc_params.aad_buf.size = aad_len;
3124 			flags |= VALID_AAD_BUF;
3125 			inplace = 0;
3126 			d_offs = d_offs << 16;
3127 			d_lens = d_lens << 32;
3128 		}
3129 
3130 		salt = fc_params.iv_buf;
3131 		if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3132 			cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3133 			sess_misc->salt = *(uint32_t *)salt;
3134 		}
3135 		fc_params.iv_buf = salt + 4;
3136 		if (likely(sess_misc->mac_len)) {
3137 			struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3138 					     m_src;
3139 
3140 			if (!m)
3141 				m = m_src;
3142 
3143 			/* hmac immediately following data is best case */
3144 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3145 			    mc_hash_off !=
3146 			    (uint8_t *)sym_op->aead.digest.data)) {
3147 				flags |= VALID_MAC_BUF;
3148 				fc_params.mac_buf.size = sess_misc->mac_len;
3149 				fc_params.mac_buf.vaddr =
3150 				  sym_op->aead.digest.data;
3151 				fc_params.mac_buf.dma_addr =
3152 				 sym_op->aead.digest.phys_addr;
3153 				inplace = 0;
3154 			}
3155 		}
3156 	} else {
3157 		d_offs = sym_op->cipher.data.offset;
3158 		d_lens = sym_op->cipher.data.length;
3159 		mc_hash_off = sym_op->cipher.data.offset +
3160 			      sym_op->cipher.data.length;
3161 		d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3162 		d_lens = (d_lens << 32) | sym_op->auth.data.length;
3163 
3164 		if (mc_hash_off < (sym_op->auth.data.offset +
3165 				   sym_op->auth.data.length)){
3166 			mc_hash_off = (sym_op->auth.data.offset +
3167 				       sym_op->auth.data.length);
3168 		}
3169 		/* for gmac, salt should be updated like in gcm */
3170 		if (unlikely(sess_misc->is_gmac)) {
3171 			uint8_t *salt;
3172 			salt = fc_params.iv_buf;
3173 			if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3174 				cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3175 				sess_misc->salt = *(uint32_t *)salt;
3176 			}
3177 			fc_params.iv_buf = salt + 4;
3178 		}
3179 		if (likely(sess_misc->mac_len)) {
3180 			struct rte_mbuf *m;
3181 
3182 			m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3183 			if (!m)
3184 				m = m_src;
3185 
3186 			/* hmac immediately following data is best case */
3187 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3188 			    mc_hash_off !=
3189 			     (uint8_t *)sym_op->auth.digest.data)) {
3190 				flags |= VALID_MAC_BUF;
3191 				fc_params.mac_buf.size =
3192 					sess_misc->mac_len;
3193 				fc_params.mac_buf.vaddr =
3194 					sym_op->auth.digest.data;
3195 				fc_params.mac_buf.dma_addr =
3196 				sym_op->auth.digest.phys_addr;
3197 				inplace = 0;
3198 			}
3199 		}
3200 	}
3201 	fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3202 	fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3203 
3204 	if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
3205 		inplace = 0;
3206 
3207 	if (likely(!m_dst && inplace)) {
3208 		/* Case of single buffer without AAD buf or
3209 		 * separate mac buf in place and
3210 		 * not air crypto
3211 		 */
3212 		fc_params.dst_iov = fc_params.src_iov = (void *)src;
3213 
3214 		if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3215 							  &fc_params,
3216 							  &flags))) {
3217 			CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3218 			ret = -EINVAL;
3219 			goto err_exit;
3220 		}
3221 
3222 	} else {
3223 		/* Out of place processing */
3224 		fc_params.src_iov = (void *)src;
3225 		fc_params.dst_iov = (void *)dst;
3226 
3227 		/* Store SG I/O in the api for reuse */
3228 		if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3229 			CPT_LOG_DP_ERR("Prepare src iov failed");
3230 			ret = -EINVAL;
3231 			goto err_exit;
3232 		}
3233 
3234 		if (unlikely(m_dst != NULL)) {
3235 			uint32_t pkt_len;
3236 
3237 			/* Try to make room as much as src has */
3238 			pkt_len = rte_pktmbuf_pkt_len(m_dst);
3239 
3240 			if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3241 				pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3242 				if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3243 					CPT_LOG_DP_ERR("Not enough space in "
3244 						       "m_dst %p, need %u"
3245 						       " more",
3246 						       m_dst, pkt_len);
3247 					ret = -EINVAL;
3248 					goto err_exit;
3249 				}
3250 			}
3251 
3252 			if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3253 				CPT_LOG_DP_ERR("Prepare dst iov failed for "
3254 					       "m_dst %p", m_dst);
3255 				ret = -EINVAL;
3256 				goto err_exit;
3257 			}
3258 		} else {
3259 			fc_params.dst_iov = (void *)src;
3260 		}
3261 	}
3262 
3263 	if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3264 		mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3265 				      m_info->lb_mlen, m_info->pool);
3266 	else
3267 		mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3268 				      m_info->sg_mlen, m_info->pool);
3269 
3270 	if (unlikely(mdata == NULL)) {
3271 		CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3272 		ret = -ENOMEM;
3273 		goto err_exit;
3274 	}
3275 
3276 	op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3277 	op[0] = (uintptr_t)mdata;
3278 	op[1] = (uintptr_t)cop;
3279 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3280 	space += 4 * sizeof(uint64_t);
3281 
3282 	fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3283 	fc_params.meta_buf.dma_addr += space;
3284 	fc_params.meta_buf.size -= space;
3285 
3286 	/* Finally prepare the instruction */
3287 	if (cpt_op & CPT_OP_ENCODE)
3288 		*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3289 						 &fc_params, op);
3290 	else
3291 		*prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3292 						 &fc_params, op);
3293 
3294 	if (unlikely(*prep_req == NULL)) {
3295 		CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3296 		ret = -EINVAL;
3297 		goto free_mdata_and_exit;
3298 	}
3299 
3300 	*mdata_ptr = mdata;
3301 
3302 	return 0;
3303 
3304 free_mdata_and_exit:
3305 	free_op_meta(mdata, m_info->pool);
3306 err_exit:
3307 	return ret;
3308 }
3309 
3310 static __rte_always_inline void
3311 compl_auth_verify(struct rte_crypto_op *op,
3312 		      uint8_t *gen_mac,
3313 		      uint64_t mac_len)
3314 {
3315 	uint8_t *mac;
3316 	struct rte_crypto_sym_op *sym_op = op->sym;
3317 
3318 	if (sym_op->auth.digest.data)
3319 		mac = sym_op->auth.digest.data;
3320 	else
3321 		mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3322 					      uint8_t *,
3323 					      sym_op->auth.data.length +
3324 					      sym_op->auth.data.offset);
3325 	if (!mac) {
3326 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3327 		return;
3328 	}
3329 
3330 	if (memcmp(mac, gen_mac, mac_len))
3331 		op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3332 	else
3333 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3334 }
3335 
3336 static __rte_always_inline int
3337 instance_session_cfg(struct rte_crypto_sym_xform *xform, void *sess)
3338 {
3339 	struct rte_crypto_sym_xform *chain;
3340 
3341 	CPT_PMD_INIT_FUNC_TRACE();
3342 
3343 	if (cpt_is_algo_supported(xform))
3344 		goto err;
3345 
3346 	chain = xform;
3347 	while (chain) {
3348 		switch (chain->type) {
3349 		case RTE_CRYPTO_SYM_XFORM_AEAD:
3350 			if (fill_sess_aead(chain, sess))
3351 				goto err;
3352 			break;
3353 		case RTE_CRYPTO_SYM_XFORM_CIPHER:
3354 			if (fill_sess_cipher(chain, sess))
3355 				goto err;
3356 			break;
3357 		case RTE_CRYPTO_SYM_XFORM_AUTH:
3358 			if (chain->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
3359 				if (fill_sess_gmac(chain, sess))
3360 					goto err;
3361 			} else {
3362 				if (fill_sess_auth(chain, sess))
3363 					goto err;
3364 			}
3365 			break;
3366 		default:
3367 			CPT_LOG_DP_ERR("Invalid crypto xform type");
3368 			break;
3369 		}
3370 		chain = chain->next;
3371 	}
3372 
3373 	return 0;
3374 
3375 err:
3376 	return -1;
3377 }
3378 
3379 static __rte_always_inline void
3380 find_kasumif9_direction_and_length(uint8_t *src,
3381 				   uint32_t counter_num_bytes,
3382 				   uint32_t *addr_length_in_bits,
3383 				   uint8_t *addr_direction)
3384 {
3385 	uint8_t found = 0;
3386 	uint32_t pos;
3387 	uint8_t last_byte;
3388 	while (!found && counter_num_bytes > 0) {
3389 		counter_num_bytes--;
3390 		if (src[counter_num_bytes] == 0x00)
3391 			continue;
3392 		pos = rte_bsf32(src[counter_num_bytes]);
3393 		if (pos == 7) {
3394 			if (likely(counter_num_bytes > 0)) {
3395 				last_byte = src[counter_num_bytes - 1];
3396 				*addr_direction  =  last_byte & 0x1;
3397 				*addr_length_in_bits = counter_num_bytes * 8
3398 							- 1;
3399 			}
3400 		} else {
3401 			last_byte = src[counter_num_bytes];
3402 			*addr_direction = (last_byte >> (pos + 1)) & 0x1;
3403 			*addr_length_in_bits = counter_num_bytes * 8
3404 						+ (8 - (pos + 2));
3405 		}
3406 		found = 1;
3407 	}
3408 }
3409 
3410 /*
3411  * This handles all auth only except AES_GMAC
3412  */
3413 static __rte_always_inline int
3414 fill_digest_params(struct rte_crypto_op *cop,
3415 		   struct cpt_sess_misc *sess,
3416 		   struct cpt_qp_meta_info *m_info,
3417 		   void **mdata_ptr,
3418 		   void **prep_req)
3419 {
3420 	uint32_t space = 0;
3421 	struct rte_crypto_sym_op *sym_op = cop->sym;
3422 	void *mdata;
3423 	phys_addr_t mphys;
3424 	uint64_t *op;
3425 	uint32_t auth_range_off;
3426 	uint32_t flags = 0;
3427 	uint64_t d_offs = 0, d_lens;
3428 	struct rte_mbuf *m_src, *m_dst;
3429 	uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3430 	uint16_t mac_len = sess->mac_len;
3431 	fc_params_t params;
3432 	char src[SRC_IOV_SIZE];
3433 	uint8_t iv_buf[16];
3434 	int ret;
3435 
3436 	memset(&params, 0, sizeof(fc_params_t));
3437 
3438 	m_src = sym_op->m_src;
3439 
3440 	/* For just digest lets force mempool alloc */
3441 	mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3442 			      m_info->pool);
3443 	if (mdata == NULL) {
3444 		ret = -ENOMEM;
3445 		goto err_exit;
3446 	}
3447 
3448 	mphys = params.meta_buf.dma_addr;
3449 
3450 	op = mdata;
3451 	op[0] = (uintptr_t)mdata;
3452 	op[1] = (uintptr_t)cop;
3453 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3454 	space += 4 * sizeof(uint64_t);
3455 
3456 	auth_range_off = sym_op->auth.data.offset;
3457 
3458 	flags = VALID_MAC_BUF;
3459 	params.src_iov = (void *)src;
3460 	if (unlikely(sess->zsk_flag)) {
3461 		/*
3462 		 * Since for Zuc, Kasumi, Snow3g offsets are in bits
3463 		 * we will send pass through even for auth only case,
3464 		 * let MC handle it
3465 		 */
3466 		d_offs = auth_range_off;
3467 		auth_range_off = 0;
3468 		params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3469 					uint8_t *, sess->auth_iv_offset);
3470 		if (sess->zsk_flag == K_F9) {
3471 			uint32_t length_in_bits, num_bytes;
3472 			uint8_t *src, direction = 0;
3473 
3474 			memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3475 							uint8_t *), 8);
3476 			/*
3477 			 * This is kasumi f9, take direction from
3478 			 * source buffer
3479 			 */
3480 			length_in_bits = cop->sym->auth.data.length;
3481 			num_bytes = (length_in_bits >> 3);
3482 			src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3483 			find_kasumif9_direction_and_length(src,
3484 						num_bytes,
3485 						&length_in_bits,
3486 						&direction);
3487 			length_in_bits -= 64;
3488 			cop->sym->auth.data.offset += 64;
3489 			d_offs = cop->sym->auth.data.offset;
3490 			auth_range_off = d_offs / 8;
3491 			cop->sym->auth.data.length = length_in_bits;
3492 
3493 			/* Store it at end of auth iv */
3494 			iv_buf[8] = direction;
3495 			params.auth_iv_buf = iv_buf;
3496 		}
3497 	}
3498 
3499 	d_lens = sym_op->auth.data.length;
3500 
3501 	params.ctx_buf.vaddr = SESS_PRIV(sess);
3502 	params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3503 
3504 	if (auth_op == CPT_OP_AUTH_GENERATE) {
3505 		if (sym_op->auth.digest.data) {
3506 			/*
3507 			 * Digest to be generated
3508 			 * in separate buffer
3509 			 */
3510 			params.mac_buf.size =
3511 				sess->mac_len;
3512 			params.mac_buf.vaddr =
3513 				sym_op->auth.digest.data;
3514 			params.mac_buf.dma_addr =
3515 				sym_op->auth.digest.phys_addr;
3516 		} else {
3517 			uint32_t off = sym_op->auth.data.offset +
3518 				sym_op->auth.data.length;
3519 			int32_t dlen, space;
3520 
3521 			m_dst = sym_op->m_dst ?
3522 				sym_op->m_dst : sym_op->m_src;
3523 			dlen = rte_pktmbuf_pkt_len(m_dst);
3524 
3525 			space = off + mac_len - dlen;
3526 			if (space > 0)
3527 				if (!rte_pktmbuf_append(m_dst, space)) {
3528 					CPT_LOG_DP_ERR("Failed to extend "
3529 						       "mbuf by %uB", space);
3530 					ret = -EINVAL;
3531 					goto free_mdata_and_exit;
3532 				}
3533 
3534 			params.mac_buf.vaddr =
3535 				rte_pktmbuf_mtod_offset(m_dst, void *, off);
3536 			params.mac_buf.dma_addr =
3537 				rte_pktmbuf_mtophys_offset(m_dst, off);
3538 			params.mac_buf.size = mac_len;
3539 		}
3540 	} else {
3541 		/* Need space for storing generated mac */
3542 		params.mac_buf.vaddr = (uint8_t *)mdata + space;
3543 		params.mac_buf.dma_addr = mphys + space;
3544 		params.mac_buf.size = mac_len;
3545 		space += RTE_ALIGN_CEIL(mac_len, 8);
3546 		op[2] = (uintptr_t)params.mac_buf.vaddr;
3547 		op[3] = mac_len;
3548 	}
3549 
3550 	params.meta_buf.vaddr = (uint8_t *)mdata + space;
3551 	params.meta_buf.dma_addr = mphys + space;
3552 	params.meta_buf.size -= space;
3553 
3554 	/* Out of place processing */
3555 	params.src_iov = (void *)src;
3556 
3557 	/*Store SG I/O in the api for reuse */
3558 	if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3559 		CPT_LOG_DP_ERR("Prepare src iov failed");
3560 		ret = -EINVAL;
3561 		goto free_mdata_and_exit;
3562 	}
3563 
3564 	*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3565 	if (unlikely(*prep_req == NULL)) {
3566 		ret = -EINVAL;
3567 		goto free_mdata_and_exit;
3568 	}
3569 
3570 	*mdata_ptr = mdata;
3571 
3572 	return 0;
3573 
3574 free_mdata_and_exit:
3575 	free_op_meta(mdata, m_info->pool);
3576 err_exit:
3577 	return ret;
3578 }
3579 
3580 #endif /*_CPT_UCODE_H_ */
3581