xref: /dpdk/drivers/common/cpt/cpt_ucode.h (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8 
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12 
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17 
18 static uint8_t zuc_d[32] = {
19 	0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20 	0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21 	0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22 	0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24 
25 static __rte_always_inline void
26 gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
27 {
28 	int i, base;
29 
30 	for (i = 0; i < 4; i++) {
31 		base = 4 * i;
32 		keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
33 			(ck[base + 2] << 8) | (ck[base + 3]);
34 		keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
35 	}
36 }
37 
38 static __rte_always_inline int
39 cpt_mac_len_verify(struct rte_crypto_auth_xform *auth)
40 {
41 	uint16_t mac_len = auth->digest_length;
42 	int ret;
43 
44 	switch (auth->algo) {
45 	case RTE_CRYPTO_AUTH_MD5:
46 	case RTE_CRYPTO_AUTH_MD5_HMAC:
47 		ret = (mac_len == 16) ? 0 : -1;
48 		break;
49 	case RTE_CRYPTO_AUTH_SHA1:
50 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
51 		ret = (mac_len == 20) ? 0 : -1;
52 		break;
53 	case RTE_CRYPTO_AUTH_SHA224:
54 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
55 		ret = (mac_len == 28) ? 0 : -1;
56 		break;
57 	case RTE_CRYPTO_AUTH_SHA256:
58 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
59 		ret = (mac_len == 32) ? 0 : -1;
60 		break;
61 	case RTE_CRYPTO_AUTH_SHA384:
62 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
63 		ret = (mac_len == 48) ? 0 : -1;
64 		break;
65 	case RTE_CRYPTO_AUTH_SHA512:
66 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
67 		ret = (mac_len == 64) ? 0 : -1;
68 		break;
69 	case RTE_CRYPTO_AUTH_NULL:
70 		ret = 0;
71 		break;
72 	default:
73 		ret = -1;
74 	}
75 
76 	return ret;
77 }
78 
79 static __rte_always_inline void
80 cpt_fc_salt_update(struct cpt_ctx *cpt_ctx,
81 		   uint8_t *salt)
82 {
83 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
84 	memcpy(fctx->enc.encr_iv, salt, 4);
85 }
86 
87 static __rte_always_inline int
88 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
89 {
90 	switch (key_len) {
91 	case 16:
92 	case 24:
93 	case 32:
94 		return 0;
95 	default:
96 		return -1;
97 	}
98 }
99 
100 static __rte_always_inline int
101 cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
102 {
103 	int fc_type = 0;
104 	switch (type) {
105 	case PASSTHROUGH:
106 		fc_type = FC_GEN;
107 		break;
108 	case DES3_CBC:
109 	case DES3_ECB:
110 		fc_type = FC_GEN;
111 		break;
112 	case AES_CBC:
113 	case AES_ECB:
114 	case AES_CFB:
115 	case AES_CTR:
116 	case AES_GCM:
117 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
118 			return -1;
119 		fc_type = FC_GEN;
120 		break;
121 	case CHACHA20:
122 		fc_type = FC_GEN;
123 		break;
124 	case AES_XTS:
125 		key_len = key_len / 2;
126 		if (unlikely(key_len == 24)) {
127 			CPT_LOG_DP_ERR("Invalid AES key len for XTS");
128 			return -1;
129 		}
130 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
131 			return -1;
132 		fc_type = FC_GEN;
133 		break;
134 	case ZUC_EEA3:
135 	case SNOW3G_UEA2:
136 		if (unlikely(key_len != 16))
137 			return -1;
138 		/* No support for AEAD yet */
139 		if (unlikely(ctx->hash_type))
140 			return -1;
141 		fc_type = ZUC_SNOW3G;
142 		break;
143 	case KASUMI_F8_CBC:
144 	case KASUMI_F8_ECB:
145 		if (unlikely(key_len != 16))
146 			return -1;
147 		/* No support for AEAD yet */
148 		if (unlikely(ctx->hash_type))
149 			return -1;
150 		fc_type = KASUMI;
151 		break;
152 	default:
153 		return -1;
154 	}
155 
156 	ctx->fc_type = fc_type;
157 	return 0;
158 }
159 
160 static __rte_always_inline void
161 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
162 {
163 	cpt_ctx->enc_cipher = 0;
164 	fctx->enc.enc_cipher = 0;
165 }
166 
167 static __rte_always_inline void
168 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
169 {
170 	mc_aes_type_t aes_key_type = 0;
171 	switch (key_len) {
172 	case 16:
173 		aes_key_type = AES_128_BIT;
174 		break;
175 	case 24:
176 		aes_key_type = AES_192_BIT;
177 		break;
178 	case 32:
179 		aes_key_type = AES_256_BIT;
180 		break;
181 	default:
182 		/* This should not happen */
183 		CPT_LOG_DP_ERR("Invalid AES key len");
184 		return;
185 	}
186 	fctx->enc.aes_key = aes_key_type;
187 }
188 
189 static __rte_always_inline void
190 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
191 		uint16_t key_len)
192 {
193 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
194 	uint32_t keyx[4];
195 
196 	cpt_ctx->snow3g = 1;
197 	gen_key_snow3g(key, keyx);
198 	memcpy(zs_ctx->ci_key, keyx, key_len);
199 	cpt_ctx->zsk_flags = 0;
200 }
201 
202 static __rte_always_inline void
203 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
204 		uint16_t key_len)
205 {
206 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
207 
208 	cpt_ctx->snow3g = 0;
209 	memcpy(zs_ctx->ci_key, key, key_len);
210 	memcpy(zs_ctx->zuc_const, zuc_d, 32);
211 	cpt_ctx->zsk_flags = 0;
212 }
213 
214 static __rte_always_inline void
215 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
216 		uint16_t key_len)
217 {
218 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
219 
220 	cpt_ctx->k_ecb = 1;
221 	memcpy(k_ctx->ci_key, key, key_len);
222 	cpt_ctx->zsk_flags = 0;
223 }
224 
225 static __rte_always_inline void
226 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
227 		uint16_t key_len)
228 {
229 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
230 
231 	memcpy(k_ctx->ci_key, key, key_len);
232 	cpt_ctx->zsk_flags = 0;
233 }
234 
235 static __rte_always_inline int
236 cpt_fc_ciph_set_key(struct cpt_ctx *cpt_ctx, cipher_type_t type,
237 		    const uint8_t *key, uint16_t key_len, uint8_t *salt)
238 {
239 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
240 	int ret;
241 
242 	ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
243 	if (unlikely(ret))
244 		return -1;
245 
246 	if (cpt_ctx->fc_type == FC_GEN) {
247 		/*
248 		 * We need to always say IV is from DPTR as user can
249 		 * sometimes iverride IV per operation.
250 		 */
251 		fctx->enc.iv_source = CPT_FROM_DPTR;
252 
253 		if (cpt_ctx->auth_key_len > 64)
254 			return -1;
255 	}
256 
257 	switch (type) {
258 	case PASSTHROUGH:
259 		cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
260 		goto success;
261 	case DES3_CBC:
262 		/* CPT performs DES using 3DES with the 8B DES-key
263 		 * replicated 2 more times to match the 24B 3DES-key.
264 		 * Eg. If org. key is "0x0a 0x0b", then new key is
265 		 * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
266 		 */
267 		if (key_len == 8) {
268 			/* Skipping the first 8B as it will be copied
269 			 * in the regular code flow
270 			 */
271 			memcpy(fctx->enc.encr_key+key_len, key, key_len);
272 			memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
273 		}
274 		break;
275 	case DES3_ECB:
276 		/* For DES3_ECB IV need to be from CTX. */
277 		fctx->enc.iv_source = CPT_FROM_CTX;
278 		break;
279 	case AES_CBC:
280 	case AES_ECB:
281 	case AES_CFB:
282 	case AES_CTR:
283 	case CHACHA20:
284 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
285 		break;
286 	case AES_GCM:
287 		/* Even though iv source is from dptr,
288 		 * aes_gcm salt is taken from ctx
289 		 */
290 		if (salt) {
291 			memcpy(fctx->enc.encr_iv, salt, 4);
292 			/* Assuming it was just salt update
293 			 * and nothing else
294 			 */
295 			if (!key)
296 				goto success;
297 		}
298 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
299 		break;
300 	case AES_XTS:
301 		key_len = key_len / 2;
302 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
303 
304 		/* Copy key2 for XTS into ipad */
305 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
306 		memcpy(fctx->hmac.ipad, &key[key_len], key_len);
307 		break;
308 	case SNOW3G_UEA2:
309 		cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
310 		goto success;
311 	case ZUC_EEA3:
312 		cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
313 		goto success;
314 	case KASUMI_F8_ECB:
315 		cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
316 		goto success;
317 	case KASUMI_F8_CBC:
318 		cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
319 		goto success;
320 	default:
321 		return -1;
322 	}
323 
324 	/* Only for FC_GEN case */
325 
326 	/* For GMAC auth, cipher must be NULL */
327 	if (cpt_ctx->hash_type != GMAC_TYPE)
328 		fctx->enc.enc_cipher = type;
329 
330 	memcpy(fctx->enc.encr_key, key, key_len);
331 
332 success:
333 	cpt_ctx->enc_cipher = type;
334 
335 	return 0;
336 }
337 
338 static __rte_always_inline uint32_t
339 fill_sg_comp(sg_comp_t *list,
340 	     uint32_t i,
341 	     phys_addr_t dma_addr,
342 	     uint32_t size)
343 {
344 	sg_comp_t *to = &list[i>>2];
345 
346 	to->u.s.len[i%4] = rte_cpu_to_be_16(size);
347 	to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
348 	i++;
349 	return i;
350 }
351 
352 static __rte_always_inline uint32_t
353 fill_sg_comp_from_buf(sg_comp_t *list,
354 		      uint32_t i,
355 		      buf_ptr_t *from)
356 {
357 	sg_comp_t *to = &list[i>>2];
358 
359 	to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
360 	to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
361 	i++;
362 	return i;
363 }
364 
365 static __rte_always_inline uint32_t
366 fill_sg_comp_from_buf_min(sg_comp_t *list,
367 			  uint32_t i,
368 			  buf_ptr_t *from,
369 			  uint32_t *psize)
370 {
371 	sg_comp_t *to = &list[i >> 2];
372 	uint32_t size = *psize;
373 	uint32_t e_len;
374 
375 	e_len = (size > from->size) ? from->size : size;
376 	to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
377 	to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
378 	*psize -= e_len;
379 	i++;
380 	return i;
381 }
382 
383 /*
384  * This fills the MC expected SGIO list
385  * from IOV given by user.
386  */
387 static __rte_always_inline uint32_t
388 fill_sg_comp_from_iov(sg_comp_t *list,
389 		      uint32_t i,
390 		      iov_ptr_t *from, uint32_t from_offset,
391 		      uint32_t *psize, buf_ptr_t *extra_buf,
392 		      uint32_t extra_offset)
393 {
394 	int32_t j;
395 	uint32_t extra_len = extra_buf ? extra_buf->size : 0;
396 	uint32_t size = *psize;
397 	buf_ptr_t *bufs;
398 
399 	bufs = from->bufs;
400 	for (j = 0; (j < from->buf_cnt) && size; j++) {
401 		phys_addr_t e_dma_addr;
402 		uint32_t e_len;
403 		sg_comp_t *to = &list[i >> 2];
404 
405 		if (unlikely(from_offset)) {
406 			if (from_offset >= bufs[j].size) {
407 				from_offset -= bufs[j].size;
408 				continue;
409 			}
410 			e_dma_addr = bufs[j].dma_addr + from_offset;
411 			e_len = (size > (bufs[j].size - from_offset)) ?
412 				(bufs[j].size - from_offset) : size;
413 			from_offset = 0;
414 		} else {
415 			e_dma_addr = bufs[j].dma_addr;
416 			e_len = (size > bufs[j].size) ?
417 				bufs[j].size : size;
418 		}
419 
420 		to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
421 		to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
422 
423 		if (extra_len && (e_len >= extra_offset)) {
424 			/* Break the data at given offset */
425 			uint32_t next_len = e_len - extra_offset;
426 			phys_addr_t next_dma = e_dma_addr + extra_offset;
427 
428 			if (!extra_offset) {
429 				i--;
430 			} else {
431 				e_len = extra_offset;
432 				size -= e_len;
433 				to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
434 			}
435 
436 			extra_len = RTE_MIN(extra_len, size);
437 			/* Insert extra data ptr */
438 			if (extra_len) {
439 				i++;
440 				to = &list[i >> 2];
441 				to->u.s.len[i % 4] =
442 					rte_cpu_to_be_16(extra_len);
443 				to->ptr[i % 4] =
444 					rte_cpu_to_be_64(extra_buf->dma_addr);
445 				size -= extra_len;
446 			}
447 
448 			next_len = RTE_MIN(next_len, size);
449 			/* insert the rest of the data */
450 			if (next_len) {
451 				i++;
452 				to = &list[i >> 2];
453 				to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
454 				to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
455 				size -= next_len;
456 			}
457 			extra_len = 0;
458 
459 		} else {
460 			size -= e_len;
461 		}
462 		if (extra_offset)
463 			extra_offset -= size;
464 		i++;
465 	}
466 
467 	*psize = size;
468 	return (uint32_t)i;
469 }
470 
471 static __rte_always_inline void
472 cpt_digest_gen_prep(uint32_t flags,
473 		    uint64_t d_lens,
474 		    digest_params_t *params,
475 		    void *op,
476 		    void **prep_req)
477 {
478 	struct cpt_request_info *req;
479 	uint32_t size, i;
480 	uint16_t data_len, mac_len, key_len;
481 	auth_type_t hash_type;
482 	buf_ptr_t *meta_p;
483 	struct cpt_ctx *ctx;
484 	sg_comp_t *gather_comp;
485 	sg_comp_t *scatter_comp;
486 	uint8_t *in_buffer;
487 	uint32_t g_size_bytes, s_size_bytes;
488 	uint64_t dptr_dma, rptr_dma;
489 	vq_cmd_word0_t vq_cmd_w0;
490 	void *c_vaddr, *m_vaddr;
491 	uint64_t c_dma, m_dma;
492 
493 	ctx = params->ctx_buf.vaddr;
494 	meta_p = &params->meta_buf;
495 
496 	m_vaddr = meta_p->vaddr;
497 	m_dma = meta_p->dma_addr;
498 
499 	/*
500 	 * Save initial space that followed app data for completion code &
501 	 * alternate completion code to fall in same cache line as app data
502 	 */
503 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
504 	m_dma += COMPLETION_CODE_SIZE;
505 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
506 		(uint8_t *)m_vaddr;
507 	c_vaddr = (uint8_t *)m_vaddr + size;
508 	c_dma = m_dma + size;
509 	size += sizeof(cpt_res_s_t);
510 
511 	m_vaddr = (uint8_t *)m_vaddr + size;
512 	m_dma += size;
513 
514 	req = m_vaddr;
515 
516 	size = sizeof(struct cpt_request_info);
517 	m_vaddr = (uint8_t *)m_vaddr + size;
518 	m_dma += size;
519 
520 	hash_type = ctx->hash_type;
521 	mac_len = ctx->mac_len;
522 	key_len = ctx->auth_key_len;
523 	data_len = AUTH_DLEN(d_lens);
524 
525 	/*GP op header */
526 	vq_cmd_w0.s.opcode.minor = 0;
527 	vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
528 	if (ctx->hmac) {
529 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
530 		vq_cmd_w0.s.param1 = key_len;
531 		vq_cmd_w0.s.dlen = data_len + RTE_ALIGN_CEIL(key_len, 8);
532 	} else {
533 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
534 		vq_cmd_w0.s.param1 = 0;
535 		vq_cmd_w0.s.dlen = data_len;
536 	}
537 
538 	/* Null auth only case enters the if */
539 	if (unlikely(!hash_type && !ctx->enc_cipher)) {
540 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_MISC;
541 		/* Minor op is passthrough */
542 		vq_cmd_w0.s.opcode.minor = 0x03;
543 		/* Send out completion code only */
544 		vq_cmd_w0.s.param2 = 0x1;
545 	}
546 
547 	/* DPTR has SG list */
548 	in_buffer = m_vaddr;
549 	dptr_dma = m_dma;
550 
551 	((uint16_t *)in_buffer)[0] = 0;
552 	((uint16_t *)in_buffer)[1] = 0;
553 
554 	/* TODO Add error check if space will be sufficient */
555 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
556 
557 	/*
558 	 * Input gather list
559 	 */
560 
561 	i = 0;
562 
563 	if (ctx->hmac) {
564 		uint64_t k_dma = ctx->auth_key_iova;
565 		/* Key */
566 		i = fill_sg_comp(gather_comp, i, k_dma,
567 				 RTE_ALIGN_CEIL(key_len, 8));
568 	}
569 
570 	/* input data */
571 	size = data_len;
572 	if (size) {
573 		i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
574 					  0, &size, NULL, 0);
575 		if (unlikely(size)) {
576 			CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
577 					 " by %dB", size);
578 			return;
579 		}
580 	} else {
581 		/*
582 		 * Looks like we need to support zero data
583 		 * gather ptr in case of hash & hmac
584 		 */
585 		i++;
586 	}
587 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
588 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
589 
590 	/*
591 	 * Output Gather list
592 	 */
593 
594 	i = 0;
595 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
596 
597 	if (flags & VALID_MAC_BUF) {
598 		if (unlikely(params->mac_buf.size < mac_len)) {
599 			CPT_LOG_DP_ERR("Insufficient MAC size");
600 			return;
601 		}
602 
603 		size = mac_len;
604 		i = fill_sg_comp_from_buf_min(scatter_comp, i,
605 					      &params->mac_buf, &size);
606 	} else {
607 		size = mac_len;
608 		i = fill_sg_comp_from_iov(scatter_comp, i,
609 					  params->src_iov, data_len,
610 					  &size, NULL, 0);
611 		if (unlikely(size)) {
612 			CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
613 				       " %dB", size);
614 			return;
615 		}
616 	}
617 
618 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
619 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
620 
621 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
622 
623 	/* This is DPTR len incase of SG mode */
624 	vq_cmd_w0.s.dlen = size;
625 
626 	m_vaddr = (uint8_t *)m_vaddr + size;
627 	m_dma += size;
628 
629 	/* cpt alternate completion address saved earlier */
630 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
631 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
632 	rptr_dma = c_dma - 8;
633 
634 	req->ist.ei1 = dptr_dma;
635 	req->ist.ei2 = rptr_dma;
636 
637 	/* 16 byte aligned cpt res address */
638 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
639 	*req->completion_addr = COMPLETION_CODE_INIT;
640 	req->comp_baddr  = c_dma;
641 
642 	/* Fill microcode part of instruction */
643 	req->ist.ei0 = vq_cmd_w0.u64;
644 
645 	req->op = op;
646 
647 	*prep_req = req;
648 	return;
649 }
650 
651 static __rte_always_inline void
652 cpt_enc_hmac_prep(uint32_t flags,
653 		  uint64_t d_offs,
654 		  uint64_t d_lens,
655 		  fc_params_t *fc_params,
656 		  void *op,
657 		  void **prep_req)
658 {
659 	uint32_t iv_offset = 0;
660 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
661 	struct cpt_ctx *cpt_ctx;
662 	uint32_t cipher_type, hash_type;
663 	uint32_t mac_len, size;
664 	uint8_t iv_len = 16;
665 	struct cpt_request_info *req;
666 	buf_ptr_t *meta_p, *aad_buf = NULL;
667 	uint32_t encr_offset, auth_offset;
668 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
669 	uint32_t passthrough_len = 0;
670 	void *m_vaddr, *offset_vaddr;
671 	uint64_t m_dma, offset_dma;
672 	vq_cmd_word0_t vq_cmd_w0;
673 	void *c_vaddr;
674 	uint64_t c_dma;
675 
676 	meta_p = &fc_params->meta_buf;
677 	m_vaddr = meta_p->vaddr;
678 	m_dma = meta_p->dma_addr;
679 
680 	encr_offset = ENCR_OFFSET(d_offs);
681 	auth_offset = AUTH_OFFSET(d_offs);
682 	encr_data_len = ENCR_DLEN(d_lens);
683 	auth_data_len = AUTH_DLEN(d_lens);
684 	if (unlikely(flags & VALID_AAD_BUF)) {
685 		/*
686 		 * We dont support both aad
687 		 * and auth data separately
688 		 */
689 		auth_data_len = 0;
690 		auth_offset = 0;
691 		aad_len = fc_params->aad_buf.size;
692 		aad_buf = &fc_params->aad_buf;
693 	}
694 	cpt_ctx = fc_params->ctx_buf.vaddr;
695 	cipher_type = cpt_ctx->enc_cipher;
696 	hash_type = cpt_ctx->hash_type;
697 	mac_len = cpt_ctx->mac_len;
698 
699 	/*
700 	 * Save initial space that followed app data for completion code &
701 	 * alternate completion code to fall in same cache line as app data
702 	 */
703 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
704 	m_dma += COMPLETION_CODE_SIZE;
705 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
706 		(uint8_t *)m_vaddr;
707 
708 	c_vaddr = (uint8_t *)m_vaddr + size;
709 	c_dma = m_dma + size;
710 	size += sizeof(cpt_res_s_t);
711 
712 	m_vaddr = (uint8_t *)m_vaddr + size;
713 	m_dma += size;
714 
715 	/* start cpt request info struct at 8 byte boundary */
716 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
717 		(uint8_t *)m_vaddr;
718 
719 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
720 
721 	size += sizeof(struct cpt_request_info);
722 	m_vaddr = (uint8_t *)m_vaddr + size;
723 	m_dma += size;
724 
725 	if (unlikely(!(flags & VALID_IV_BUF))) {
726 		iv_len = 0;
727 		iv_offset = ENCR_IV_OFFSET(d_offs);
728 	}
729 
730 	if (unlikely(flags & VALID_AAD_BUF)) {
731 		/*
732 		 * When AAD is given, data above encr_offset is pass through
733 		 * Since AAD is given as separate pointer and not as offset,
734 		 * this is a special case as we need to fragment input data
735 		 * into passthrough + encr_data and then insert AAD in between.
736 		 */
737 		if (hash_type != GMAC_TYPE) {
738 			passthrough_len = encr_offset;
739 			auth_offset = passthrough_len + iv_len;
740 			encr_offset = passthrough_len + aad_len + iv_len;
741 			auth_data_len = aad_len + encr_data_len;
742 		} else {
743 			passthrough_len = 16 + aad_len;
744 			auth_offset = passthrough_len + iv_len;
745 			auth_data_len = aad_len;
746 		}
747 	} else {
748 		encr_offset += iv_len;
749 		auth_offset += iv_len;
750 	}
751 
752 	/* Encryption */
753 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_FC;
754 	vq_cmd_w0.s.opcode.minor = CPT_FC_MINOR_OP_ENCRYPT;
755 	vq_cmd_w0.s.opcode.minor |= (cpt_ctx->auth_enc <<
756 					CPT_HMAC_FIRST_BIT_POS);
757 
758 	if (hash_type == GMAC_TYPE) {
759 		encr_offset = 0;
760 		encr_data_len = 0;
761 	}
762 
763 	auth_dlen = auth_offset + auth_data_len;
764 	enc_dlen = encr_data_len + encr_offset;
765 	if (unlikely(encr_data_len & 0xf)) {
766 		if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
767 			enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) +
768 					encr_offset;
769 		else if (likely((cipher_type == AES_CBC) ||
770 				(cipher_type == AES_ECB)))
771 			enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) +
772 					encr_offset;
773 	}
774 
775 	if (unlikely(auth_dlen > enc_dlen)) {
776 		inputlen = auth_dlen;
777 		outputlen = auth_dlen + mac_len;
778 	} else {
779 		inputlen = enc_dlen;
780 		outputlen = enc_dlen + mac_len;
781 	}
782 
783 	if (cpt_ctx->auth_enc != 0)
784 		outputlen = enc_dlen;
785 
786 	/* GP op header */
787 	vq_cmd_w0.s.param1 = encr_data_len;
788 	vq_cmd_w0.s.param2 = auth_data_len;
789 	/*
790 	 * In 83XX since we have a limitation of
791 	 * IV & Offset control word not part of instruction
792 	 * and need to be part of Data Buffer, we check if
793 	 * head room is there and then only do the Direct mode processing
794 	 */
795 	if (likely((flags & SINGLE_BUF_INPLACE) &&
796 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
797 		void *dm_vaddr = fc_params->bufs[0].vaddr;
798 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
799 		/*
800 		 * This flag indicates that there is 24 bytes head room and
801 		 * 8 bytes tail room available, so that we get to do
802 		 * DIRECT MODE with limitation
803 		 */
804 
805 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
806 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
807 
808 		/* DPTR */
809 		req->ist.ei1 = offset_dma;
810 		/* RPTR should just exclude offset control word */
811 		req->ist.ei2 = dm_dma_addr - iv_len;
812 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
813 						    + outputlen - iv_len);
814 
815 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
816 
817 		if (likely(iv_len)) {
818 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
819 						      + OFF_CTRL_LEN);
820 			uint64_t *src = fc_params->iv_buf;
821 			dest[0] = src[0];
822 			dest[1] = src[1];
823 		}
824 
825 		*(uint64_t *)offset_vaddr =
826 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
827 				((uint64_t)iv_offset << 8) |
828 				((uint64_t)auth_offset));
829 
830 	} else {
831 		uint32_t i, g_size_bytes, s_size_bytes;
832 		uint64_t dptr_dma, rptr_dma;
833 		sg_comp_t *gather_comp;
834 		sg_comp_t *scatter_comp;
835 		uint8_t *in_buffer;
836 
837 		/* This falls under strict SG mode */
838 		offset_vaddr = m_vaddr;
839 		offset_dma = m_dma;
840 		size = OFF_CTRL_LEN + iv_len;
841 
842 		m_vaddr = (uint8_t *)m_vaddr + size;
843 		m_dma += size;
844 
845 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
846 
847 		if (likely(iv_len)) {
848 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
849 						      + OFF_CTRL_LEN);
850 			uint64_t *src = fc_params->iv_buf;
851 			dest[0] = src[0];
852 			dest[1] = src[1];
853 		}
854 
855 		*(uint64_t *)offset_vaddr =
856 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
857 				((uint64_t)iv_offset << 8) |
858 				((uint64_t)auth_offset));
859 
860 		/* DPTR has SG list */
861 		in_buffer = m_vaddr;
862 		dptr_dma = m_dma;
863 
864 		((uint16_t *)in_buffer)[0] = 0;
865 		((uint16_t *)in_buffer)[1] = 0;
866 
867 		/* TODO Add error check if space will be sufficient */
868 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
869 
870 		/*
871 		 * Input Gather List
872 		 */
873 
874 		i = 0;
875 
876 		/* Offset control word that includes iv */
877 		i = fill_sg_comp(gather_comp, i, offset_dma,
878 				 OFF_CTRL_LEN + iv_len);
879 
880 		/* Add input data */
881 		size = inputlen - iv_len;
882 		if (likely(size)) {
883 			uint32_t aad_offset = aad_len ? passthrough_len : 0;
884 
885 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
886 				i = fill_sg_comp_from_buf_min(gather_comp, i,
887 							      fc_params->bufs,
888 							      &size);
889 			} else {
890 				i = fill_sg_comp_from_iov(gather_comp, i,
891 							  fc_params->src_iov,
892 							  0, &size,
893 							  aad_buf, aad_offset);
894 			}
895 
896 			if (unlikely(size)) {
897 				CPT_LOG_DP_ERR("Insufficient buffer space,"
898 					       " size %d needed", size);
899 				return;
900 			}
901 		}
902 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
903 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
904 
905 		/*
906 		 * Output Scatter list
907 		 */
908 		i = 0;
909 		scatter_comp =
910 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
911 
912 		/* Add IV */
913 		if (likely(iv_len)) {
914 			i = fill_sg_comp(scatter_comp, i,
915 					 offset_dma + OFF_CTRL_LEN,
916 					 iv_len);
917 		}
918 
919 		/* output data or output data + digest*/
920 		if (unlikely(flags & VALID_MAC_BUF)) {
921 			size = outputlen - iv_len - mac_len;
922 			if (size) {
923 				uint32_t aad_offset =
924 					aad_len ? passthrough_len : 0;
925 
926 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
927 					i = fill_sg_comp_from_buf_min(
928 							scatter_comp,
929 							i,
930 							fc_params->bufs,
931 							&size);
932 				} else {
933 					i = fill_sg_comp_from_iov(scatter_comp,
934 							i,
935 							fc_params->dst_iov,
936 							0,
937 							&size,
938 							aad_buf,
939 							aad_offset);
940 				}
941 				if (unlikely(size)) {
942 					CPT_LOG_DP_ERR("Insufficient buffer"
943 						       " space, size %d needed",
944 						       size);
945 					return;
946 				}
947 			}
948 			/* mac_data */
949 			if (mac_len) {
950 				i = fill_sg_comp_from_buf(scatter_comp, i,
951 							  &fc_params->mac_buf);
952 			}
953 		} else {
954 			/* Output including mac */
955 			size = outputlen - iv_len;
956 			if (likely(size)) {
957 				uint32_t aad_offset =
958 					aad_len ? passthrough_len : 0;
959 
960 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
961 					i = fill_sg_comp_from_buf_min(
962 							scatter_comp,
963 							i,
964 							fc_params->bufs,
965 							&size);
966 				} else {
967 					i = fill_sg_comp_from_iov(scatter_comp,
968 							i,
969 							fc_params->dst_iov,
970 							0,
971 							&size,
972 							aad_buf,
973 							aad_offset);
974 				}
975 				if (unlikely(size)) {
976 					CPT_LOG_DP_ERR("Insufficient buffer"
977 						       " space, size %d needed",
978 						       size);
979 					return;
980 				}
981 			}
982 		}
983 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
984 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
985 
986 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
987 
988 		/* This is DPTR len incase of SG mode */
989 		vq_cmd_w0.s.dlen = size;
990 
991 		m_vaddr = (uint8_t *)m_vaddr + size;
992 		m_dma += size;
993 
994 		/* cpt alternate completion address saved earlier */
995 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
996 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
997 		rptr_dma = c_dma - 8;
998 
999 		req->ist.ei1 = dptr_dma;
1000 		req->ist.ei2 = rptr_dma;
1001 	}
1002 
1003 	if (unlikely((encr_offset >> 16) ||
1004 		     (iv_offset >> 8) ||
1005 		     (auth_offset >> 8))) {
1006 		CPT_LOG_DP_ERR("Offset not supported");
1007 		CPT_LOG_DP_ERR("enc_offset: %d", encr_offset);
1008 		CPT_LOG_DP_ERR("iv_offset : %d", iv_offset);
1009 		CPT_LOG_DP_ERR("auth_offset: %d", auth_offset);
1010 		return;
1011 	}
1012 
1013 	/* 16 byte aligned cpt res address */
1014 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1015 	*req->completion_addr = COMPLETION_CODE_INIT;
1016 	req->comp_baddr  = c_dma;
1017 
1018 	/* Fill microcode part of instruction */
1019 	req->ist.ei0 = vq_cmd_w0.u64;
1020 
1021 	req->op  = op;
1022 
1023 	*prep_req = req;
1024 	return;
1025 }
1026 
1027 static __rte_always_inline void
1028 cpt_dec_hmac_prep(uint32_t flags,
1029 		  uint64_t d_offs,
1030 		  uint64_t d_lens,
1031 		  fc_params_t *fc_params,
1032 		  void *op,
1033 		  void **prep_req)
1034 {
1035 	uint32_t iv_offset = 0, size;
1036 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1037 	struct cpt_ctx *cpt_ctx;
1038 	int32_t hash_type, mac_len;
1039 	uint8_t iv_len = 16;
1040 	struct cpt_request_info *req;
1041 	buf_ptr_t *meta_p, *aad_buf = NULL;
1042 	uint32_t encr_offset, auth_offset;
1043 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
1044 	uint32_t passthrough_len = 0;
1045 	void *m_vaddr, *offset_vaddr;
1046 	uint64_t m_dma, offset_dma;
1047 	vq_cmd_word0_t vq_cmd_w0;
1048 	void *c_vaddr;
1049 	uint64_t c_dma;
1050 
1051 	meta_p = &fc_params->meta_buf;
1052 	m_vaddr = meta_p->vaddr;
1053 	m_dma = meta_p->dma_addr;
1054 
1055 	encr_offset = ENCR_OFFSET(d_offs);
1056 	auth_offset = AUTH_OFFSET(d_offs);
1057 	encr_data_len = ENCR_DLEN(d_lens);
1058 	auth_data_len = AUTH_DLEN(d_lens);
1059 
1060 	if (unlikely(flags & VALID_AAD_BUF)) {
1061 		/*
1062 		 * We dont support both aad
1063 		 * and auth data separately
1064 		 */
1065 		auth_data_len = 0;
1066 		auth_offset = 0;
1067 		aad_len = fc_params->aad_buf.size;
1068 		aad_buf = &fc_params->aad_buf;
1069 	}
1070 
1071 	cpt_ctx = fc_params->ctx_buf.vaddr;
1072 	hash_type = cpt_ctx->hash_type;
1073 	mac_len = cpt_ctx->mac_len;
1074 
1075 	if (unlikely(!(flags & VALID_IV_BUF))) {
1076 		iv_len = 0;
1077 		iv_offset = ENCR_IV_OFFSET(d_offs);
1078 	}
1079 
1080 	if (unlikely(flags & VALID_AAD_BUF)) {
1081 		/*
1082 		 * When AAD is given, data above encr_offset is pass through
1083 		 * Since AAD is given as separate pointer and not as offset,
1084 		 * this is a special case as we need to fragment input data
1085 		 * into passthrough + encr_data and then insert AAD in between.
1086 		 */
1087 		if (hash_type != GMAC_TYPE) {
1088 			passthrough_len = encr_offset;
1089 			auth_offset = passthrough_len + iv_len;
1090 			encr_offset = passthrough_len + aad_len + iv_len;
1091 			auth_data_len = aad_len + encr_data_len;
1092 		} else {
1093 			passthrough_len = 16 + aad_len;
1094 			auth_offset = passthrough_len + iv_len;
1095 			auth_data_len = aad_len;
1096 		}
1097 	} else {
1098 		encr_offset += iv_len;
1099 		auth_offset += iv_len;
1100 	}
1101 
1102 	/*
1103 	 * Save initial space that followed app data for completion code &
1104 	 * alternate completion code to fall in same cache line as app data
1105 	 */
1106 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1107 	m_dma += COMPLETION_CODE_SIZE;
1108 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1109 	       (uint8_t *)m_vaddr;
1110 	c_vaddr = (uint8_t *)m_vaddr + size;
1111 	c_dma = m_dma + size;
1112 	size += sizeof(cpt_res_s_t);
1113 
1114 	m_vaddr = (uint8_t *)m_vaddr + size;
1115 	m_dma += size;
1116 
1117 	/* start cpt request info structure at 8 byte alignment */
1118 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1119 		(uint8_t *)m_vaddr;
1120 
1121 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1122 
1123 	size += sizeof(struct cpt_request_info);
1124 	m_vaddr = (uint8_t *)m_vaddr + size;
1125 	m_dma += size;
1126 
1127 	/* Decryption */
1128 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_FC;
1129 	vq_cmd_w0.s.opcode.minor = CPT_FC_MINOR_OP_DECRYPT;
1130 	vq_cmd_w0.s.opcode.minor |= (cpt_ctx->dec_auth <<
1131 					CPT_HMAC_FIRST_BIT_POS);
1132 
1133 	if (hash_type == GMAC_TYPE) {
1134 		encr_offset = 0;
1135 		encr_data_len = 0;
1136 	}
1137 
1138 	enc_dlen = encr_offset + encr_data_len;
1139 	auth_dlen = auth_offset + auth_data_len;
1140 
1141 	if (auth_dlen > enc_dlen) {
1142 		inputlen = auth_dlen + mac_len;
1143 		outputlen = auth_dlen;
1144 	} else {
1145 		inputlen = enc_dlen + mac_len;
1146 		outputlen = enc_dlen;
1147 	}
1148 
1149 	if (cpt_ctx->dec_auth != 0)
1150 		outputlen = inputlen = enc_dlen;
1151 
1152 	vq_cmd_w0.s.param1 = encr_data_len;
1153 	vq_cmd_w0.s.param2 = auth_data_len;
1154 
1155 	/*
1156 	 * In 83XX since we have a limitation of
1157 	 * IV & Offset control word not part of instruction
1158 	 * and need to be part of Data Buffer, we check if
1159 	 * head room is there and then only do the Direct mode processing
1160 	 */
1161 	if (likely((flags & SINGLE_BUF_INPLACE) &&
1162 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
1163 		void *dm_vaddr = fc_params->bufs[0].vaddr;
1164 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1165 		/*
1166 		 * This flag indicates that there is 24 bytes head room and
1167 		 * 8 bytes tail room available, so that we get to do
1168 		 * DIRECT MODE with limitation
1169 		 */
1170 
1171 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1172 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1173 		req->ist.ei1 = offset_dma;
1174 
1175 		/* RPTR should just exclude offset control word */
1176 		req->ist.ei2 = dm_dma_addr - iv_len;
1177 
1178 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1179 					outputlen - iv_len);
1180 		/* since this is decryption,
1181 		 * don't touch the content of
1182 		 * alternate ccode space as it contains
1183 		 * hmac.
1184 		 */
1185 
1186 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1187 
1188 		if (likely(iv_len)) {
1189 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1190 						      OFF_CTRL_LEN);
1191 			uint64_t *src = fc_params->iv_buf;
1192 			dest[0] = src[0];
1193 			dest[1] = src[1];
1194 		}
1195 
1196 		if (unlikely((encr_offset >> 16) ||
1197 			     (iv_offset >> 8) ||
1198 			     (auth_offset >> 8))) {
1199 			CPT_LOG_DP_ERR("Offset not supported");
1200 			CPT_LOG_DP_ERR("enc_offset: %d", encr_offset);
1201 			CPT_LOG_DP_ERR("iv_offset : %d", iv_offset);
1202 			CPT_LOG_DP_ERR("auth_offset: %d", auth_offset);
1203 			return;
1204 		}
1205 
1206 		*(uint64_t *)offset_vaddr =
1207 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1208 				((uint64_t)iv_offset << 8) |
1209 				((uint64_t)auth_offset));
1210 
1211 	} else {
1212 		uint64_t dptr_dma, rptr_dma;
1213 		uint32_t g_size_bytes, s_size_bytes;
1214 		sg_comp_t *gather_comp;
1215 		sg_comp_t *scatter_comp;
1216 		uint8_t *in_buffer;
1217 		uint8_t i = 0;
1218 
1219 		/* This falls under strict SG mode */
1220 		offset_vaddr = m_vaddr;
1221 		offset_dma = m_dma;
1222 		size = OFF_CTRL_LEN + iv_len;
1223 
1224 		m_vaddr = (uint8_t *)m_vaddr + size;
1225 		m_dma += size;
1226 
1227 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1228 
1229 		if (likely(iv_len)) {
1230 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1231 						      OFF_CTRL_LEN);
1232 			uint64_t *src = fc_params->iv_buf;
1233 			dest[0] = src[0];
1234 			dest[1] = src[1];
1235 		}
1236 
1237 		if (unlikely((encr_offset >> 16) ||
1238 			     (iv_offset >> 8) ||
1239 			     (auth_offset >> 8))) {
1240 			CPT_LOG_DP_ERR("Offset not supported");
1241 			CPT_LOG_DP_ERR("enc_offset: %d", encr_offset);
1242 			CPT_LOG_DP_ERR("iv_offset : %d", iv_offset);
1243 			CPT_LOG_DP_ERR("auth_offset: %d", auth_offset);
1244 			return;
1245 		}
1246 
1247 		*(uint64_t *)offset_vaddr =
1248 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1249 				((uint64_t)iv_offset << 8) |
1250 				((uint64_t)auth_offset));
1251 
1252 		/* DPTR has SG list */
1253 		in_buffer = m_vaddr;
1254 		dptr_dma = m_dma;
1255 
1256 		((uint16_t *)in_buffer)[0] = 0;
1257 		((uint16_t *)in_buffer)[1] = 0;
1258 
1259 		/* TODO Add error check if space will be sufficient */
1260 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1261 
1262 		/*
1263 		 * Input Gather List
1264 		 */
1265 		i = 0;
1266 
1267 		/* Offset control word that includes iv */
1268 		i = fill_sg_comp(gather_comp, i, offset_dma,
1269 				 OFF_CTRL_LEN + iv_len);
1270 
1271 		/* Add input data */
1272 		if (flags & VALID_MAC_BUF) {
1273 			size = inputlen - iv_len - mac_len;
1274 			if (size) {
1275 				/* input data only */
1276 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1277 					i = fill_sg_comp_from_buf_min(
1278 							gather_comp, i,
1279 							fc_params->bufs,
1280 							&size);
1281 				} else {
1282 					uint32_t aad_offset = aad_len ?
1283 						passthrough_len : 0;
1284 
1285 					i = fill_sg_comp_from_iov(gather_comp,
1286 							i,
1287 							fc_params->src_iov,
1288 							0, &size,
1289 							aad_buf,
1290 							aad_offset);
1291 				}
1292 				if (unlikely(size)) {
1293 					CPT_LOG_DP_ERR("Insufficient buffer"
1294 						       " space, size %d needed",
1295 						       size);
1296 					return;
1297 				}
1298 			}
1299 
1300 			/* mac data */
1301 			if (mac_len) {
1302 				i = fill_sg_comp_from_buf(gather_comp, i,
1303 							  &fc_params->mac_buf);
1304 			}
1305 		} else {
1306 			/* input data + mac */
1307 			size = inputlen - iv_len;
1308 			if (size) {
1309 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1310 					i = fill_sg_comp_from_buf_min(
1311 							gather_comp, i,
1312 							fc_params->bufs,
1313 							&size);
1314 				} else {
1315 					uint32_t aad_offset = aad_len ?
1316 						passthrough_len : 0;
1317 
1318 					if (unlikely(!fc_params->src_iov)) {
1319 						CPT_LOG_DP_ERR("Bad input args");
1320 						return;
1321 					}
1322 
1323 					i = fill_sg_comp_from_iov(
1324 							gather_comp, i,
1325 							fc_params->src_iov,
1326 							0, &size,
1327 							aad_buf,
1328 							aad_offset);
1329 				}
1330 
1331 				if (unlikely(size)) {
1332 					CPT_LOG_DP_ERR("Insufficient buffer"
1333 						       " space, size %d needed",
1334 						       size);
1335 					return;
1336 				}
1337 			}
1338 		}
1339 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1340 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1341 
1342 		/*
1343 		 * Output Scatter List
1344 		 */
1345 
1346 		i = 0;
1347 		scatter_comp =
1348 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1349 
1350 		/* Add iv */
1351 		if (iv_len) {
1352 			i = fill_sg_comp(scatter_comp, i,
1353 					 offset_dma + OFF_CTRL_LEN,
1354 					 iv_len);
1355 		}
1356 
1357 		/* Add output data */
1358 		size = outputlen - iv_len;
1359 		if (size) {
1360 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1361 				/* handle single buffer here */
1362 				i = fill_sg_comp_from_buf_min(scatter_comp, i,
1363 							      fc_params->bufs,
1364 							      &size);
1365 			} else {
1366 				uint32_t aad_offset = aad_len ?
1367 					passthrough_len : 0;
1368 
1369 				if (unlikely(!fc_params->dst_iov)) {
1370 					CPT_LOG_DP_ERR("Bad input args");
1371 					return;
1372 				}
1373 
1374 				i = fill_sg_comp_from_iov(scatter_comp, i,
1375 							  fc_params->dst_iov, 0,
1376 							  &size, aad_buf,
1377 							  aad_offset);
1378 			}
1379 
1380 			if (unlikely(size)) {
1381 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1382 					       " size %d needed", size);
1383 				return;
1384 			}
1385 		}
1386 
1387 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1388 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1389 
1390 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1391 
1392 		/* This is DPTR len incase of SG mode */
1393 		vq_cmd_w0.s.dlen = size;
1394 
1395 		m_vaddr = (uint8_t *)m_vaddr + size;
1396 		m_dma += size;
1397 
1398 		/* cpt alternate completion address saved earlier */
1399 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1400 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1401 		rptr_dma = c_dma - 8;
1402 		size += COMPLETION_CODE_SIZE;
1403 
1404 		req->ist.ei1 = dptr_dma;
1405 		req->ist.ei2 = rptr_dma;
1406 	}
1407 
1408 	/* 16 byte aligned cpt res address */
1409 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1410 	*req->completion_addr = COMPLETION_CODE_INIT;
1411 	req->comp_baddr  = c_dma;
1412 
1413 	/* Fill microcode part of instruction */
1414 	req->ist.ei0 = vq_cmd_w0.u64;
1415 
1416 	req->op = op;
1417 
1418 	*prep_req = req;
1419 	return;
1420 }
1421 
1422 static __rte_always_inline void
1423 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1424 			uint64_t d_offs,
1425 			uint64_t d_lens,
1426 			fc_params_t *params,
1427 			void *op,
1428 			void **prep_req)
1429 {
1430 	uint32_t size;
1431 	int32_t inputlen, outputlen;
1432 	struct cpt_ctx *cpt_ctx;
1433 	uint32_t mac_len = 0;
1434 	uint8_t snow3g, j;
1435 	struct cpt_request_info *req;
1436 	buf_ptr_t *buf_p;
1437 	uint32_t encr_offset = 0, auth_offset = 0;
1438 	uint32_t encr_data_len = 0, auth_data_len = 0;
1439 	int flags, iv_len = 16;
1440 	void *m_vaddr, *c_vaddr;
1441 	uint64_t m_dma, c_dma, offset_ctrl;
1442 	uint64_t *offset_vaddr, offset_dma;
1443 	uint32_t *iv_s, iv[4];
1444 	vq_cmd_word0_t vq_cmd_w0;
1445 
1446 	buf_p = &params->meta_buf;
1447 	m_vaddr = buf_p->vaddr;
1448 	m_dma = buf_p->dma_addr;
1449 
1450 	cpt_ctx = params->ctx_buf.vaddr;
1451 	flags = cpt_ctx->zsk_flags;
1452 	mac_len = cpt_ctx->mac_len;
1453 	snow3g = cpt_ctx->snow3g;
1454 
1455 	/*
1456 	 * Save initial space that followed app data for completion code &
1457 	 * alternate completion code to fall in same cache line as app data
1458 	 */
1459 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1460 	m_dma += COMPLETION_CODE_SIZE;
1461 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1462 		(uint8_t *)m_vaddr;
1463 
1464 	c_vaddr = (uint8_t *)m_vaddr + size;
1465 	c_dma = m_dma + size;
1466 	size += sizeof(cpt_res_s_t);
1467 
1468 	m_vaddr = (uint8_t *)m_vaddr + size;
1469 	m_dma += size;
1470 
1471 	/* Reserve memory for cpt request info */
1472 	req = m_vaddr;
1473 
1474 	size = sizeof(struct cpt_request_info);
1475 	m_vaddr = (uint8_t *)m_vaddr + size;
1476 	m_dma += size;
1477 
1478 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1479 
1480 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1481 
1482 	vq_cmd_w0.s.opcode.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1483 			  (0 << 3) | (flags & 0x7));
1484 
1485 	if (flags == 0x1) {
1486 		/*
1487 		 * Microcode expects offsets in bytes
1488 		 * TODO: Rounding off
1489 		 */
1490 		auth_data_len = AUTH_DLEN(d_lens);
1491 
1492 		/* EIA3 or UIA2 */
1493 		auth_offset = AUTH_OFFSET(d_offs);
1494 		auth_offset = auth_offset / 8;
1495 
1496 		/* consider iv len */
1497 		auth_offset += iv_len;
1498 
1499 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1500 		outputlen = mac_len;
1501 
1502 		offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1503 
1504 	} else {
1505 		/* EEA3 or UEA2 */
1506 		/*
1507 		 * Microcode expects offsets in bytes
1508 		 * TODO: Rounding off
1509 		 */
1510 		encr_data_len = ENCR_DLEN(d_lens);
1511 
1512 		encr_offset = ENCR_OFFSET(d_offs);
1513 		encr_offset = encr_offset / 8;
1514 		/* consider iv len */
1515 		encr_offset += iv_len;
1516 
1517 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1518 		outputlen = inputlen;
1519 
1520 		/* iv offset is 0 */
1521 		offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1522 	}
1523 
1524 	if (unlikely((encr_offset >> 16) ||
1525 		     (auth_offset >> 8))) {
1526 		CPT_LOG_DP_ERR("Offset not supported");
1527 		CPT_LOG_DP_ERR("enc_offset: %d", encr_offset);
1528 		CPT_LOG_DP_ERR("auth_offset: %d", auth_offset);
1529 		return;
1530 	}
1531 
1532 	/* IV */
1533 	iv_s = (flags == 0x1) ? params->auth_iv_buf :
1534 		params->iv_buf;
1535 
1536 	if (snow3g) {
1537 		/*
1538 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1539 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1540 		 */
1541 
1542 		for (j = 0; j < 4; j++)
1543 			iv[j] = iv_s[3 - j];
1544 	} else {
1545 		/* ZUC doesn't need a swap */
1546 		for (j = 0; j < 4; j++)
1547 			iv[j] = iv_s[j];
1548 	}
1549 
1550 	/*
1551 	 * GP op header, lengths are expected in bits.
1552 	 */
1553 	vq_cmd_w0.s.param1 = encr_data_len;
1554 	vq_cmd_w0.s.param2 = auth_data_len;
1555 
1556 	/*
1557 	 * In 83XX since we have a limitation of
1558 	 * IV & Offset control word not part of instruction
1559 	 * and need to be part of Data Buffer, we check if
1560 	 * head room is there and then only do the Direct mode processing
1561 	 */
1562 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1563 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1564 		void *dm_vaddr = params->bufs[0].vaddr;
1565 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1566 		/*
1567 		 * This flag indicates that there is 24 bytes head room and
1568 		 * 8 bytes tail room available, so that we get to do
1569 		 * DIRECT MODE with limitation
1570 		 */
1571 
1572 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1573 					    OFF_CTRL_LEN - iv_len);
1574 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1575 
1576 		/* DPTR */
1577 		req->ist.ei1 = offset_dma;
1578 		/* RPTR should just exclude offset control word */
1579 		req->ist.ei2 = dm_dma_addr - iv_len;
1580 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1581 						    + outputlen - iv_len);
1582 
1583 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1584 
1585 		if (likely(iv_len)) {
1586 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1587 						      + OFF_CTRL_LEN);
1588 			memcpy(iv_d, iv, 16);
1589 		}
1590 
1591 		*offset_vaddr = offset_ctrl;
1592 	} else {
1593 		uint32_t i, g_size_bytes, s_size_bytes;
1594 		uint64_t dptr_dma, rptr_dma;
1595 		sg_comp_t *gather_comp;
1596 		sg_comp_t *scatter_comp;
1597 		uint8_t *in_buffer;
1598 		uint32_t *iv_d;
1599 
1600 		/* save space for iv */
1601 		offset_vaddr = m_vaddr;
1602 		offset_dma = m_dma;
1603 
1604 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1605 		m_dma += OFF_CTRL_LEN + iv_len;
1606 
1607 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1608 
1609 		/* DPTR has SG list */
1610 		in_buffer = m_vaddr;
1611 		dptr_dma = m_dma;
1612 
1613 		((uint16_t *)in_buffer)[0] = 0;
1614 		((uint16_t *)in_buffer)[1] = 0;
1615 
1616 		/* TODO Add error check if space will be sufficient */
1617 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1618 
1619 		/*
1620 		 * Input Gather List
1621 		 */
1622 		i = 0;
1623 
1624 		/* Offset control word followed by iv */
1625 
1626 		i = fill_sg_comp(gather_comp, i, offset_dma,
1627 				 OFF_CTRL_LEN + iv_len);
1628 
1629 		/* iv offset is 0 */
1630 		*offset_vaddr = offset_ctrl;
1631 
1632 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1633 		memcpy(iv_d, iv, 16);
1634 
1635 		/* input data */
1636 		size = inputlen - iv_len;
1637 		if (size) {
1638 			i = fill_sg_comp_from_iov(gather_comp, i,
1639 						  params->src_iov,
1640 						  0, &size, NULL, 0);
1641 			if (unlikely(size)) {
1642 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1643 					       " size %d needed", size);
1644 				return;
1645 			}
1646 		}
1647 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1648 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1649 
1650 		/*
1651 		 * Output Scatter List
1652 		 */
1653 
1654 		i = 0;
1655 		scatter_comp =
1656 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1657 
1658 		if (flags == 0x1) {
1659 			/* IV in SLIST only for EEA3 & UEA2 */
1660 			iv_len = 0;
1661 		}
1662 
1663 		if (iv_len) {
1664 			i = fill_sg_comp(scatter_comp, i,
1665 					 offset_dma + OFF_CTRL_LEN, iv_len);
1666 		}
1667 
1668 		/* Add output data */
1669 		if (req_flags & VALID_MAC_BUF) {
1670 			size = outputlen - iv_len - mac_len;
1671 			if (size) {
1672 				i = fill_sg_comp_from_iov(scatter_comp, i,
1673 							  params->dst_iov, 0,
1674 							  &size, NULL, 0);
1675 
1676 				if (unlikely(size)) {
1677 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1678 						       " size %d needed", size);
1679 					return;
1680 				}
1681 			}
1682 
1683 			/* mac data */
1684 			if (mac_len) {
1685 				i = fill_sg_comp_from_buf(scatter_comp, i,
1686 							  &params->mac_buf);
1687 			}
1688 		} else {
1689 			/* Output including mac */
1690 			size = outputlen - iv_len;
1691 			if (size) {
1692 				i = fill_sg_comp_from_iov(scatter_comp, i,
1693 							  params->dst_iov, 0,
1694 							  &size, NULL, 0);
1695 
1696 				if (unlikely(size)) {
1697 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1698 						       " size %d needed", size);
1699 					return;
1700 				}
1701 			}
1702 		}
1703 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1704 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1705 
1706 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1707 
1708 		/* This is DPTR len incase of SG mode */
1709 		vq_cmd_w0.s.dlen = size;
1710 
1711 		m_vaddr = (uint8_t *)m_vaddr + size;
1712 		m_dma += size;
1713 
1714 		/* cpt alternate completion address saved earlier */
1715 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1716 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1717 		rptr_dma = c_dma - 8;
1718 
1719 		req->ist.ei1 = dptr_dma;
1720 		req->ist.ei2 = rptr_dma;
1721 	}
1722 
1723 	/* 16 byte aligned cpt res address */
1724 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1725 	*req->completion_addr = COMPLETION_CODE_INIT;
1726 	req->comp_baddr  = c_dma;
1727 
1728 	/* Fill microcode part of instruction */
1729 	req->ist.ei0 = vq_cmd_w0.u64;
1730 
1731 	req->op = op;
1732 
1733 	*prep_req = req;
1734 	return;
1735 }
1736 
1737 static __rte_always_inline void
1738 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1739 			uint64_t d_offs,
1740 			uint64_t d_lens,
1741 			fc_params_t *params,
1742 			void *op,
1743 			void **prep_req)
1744 {
1745 	uint32_t size;
1746 	int32_t inputlen = 0, outputlen;
1747 	struct cpt_ctx *cpt_ctx;
1748 	uint8_t snow3g, iv_len = 16;
1749 	struct cpt_request_info *req;
1750 	buf_ptr_t *buf_p;
1751 	uint32_t encr_offset;
1752 	uint32_t encr_data_len;
1753 	int flags;
1754 	void *m_vaddr, *c_vaddr;
1755 	uint64_t m_dma, c_dma;
1756 	uint64_t *offset_vaddr, offset_dma;
1757 	uint32_t *iv_s, iv[4], j;
1758 	vq_cmd_word0_t vq_cmd_w0;
1759 
1760 	buf_p = &params->meta_buf;
1761 	m_vaddr = buf_p->vaddr;
1762 	m_dma = buf_p->dma_addr;
1763 
1764 	/*
1765 	 * Microcode expects offsets in bytes
1766 	 * TODO: Rounding off
1767 	 */
1768 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1769 	encr_data_len = ENCR_DLEN(d_lens);
1770 
1771 	cpt_ctx = params->ctx_buf.vaddr;
1772 	flags = cpt_ctx->zsk_flags;
1773 	snow3g = cpt_ctx->snow3g;
1774 	/*
1775 	 * Save initial space that followed app data for completion code &
1776 	 * alternate completion code to fall in same cache line as app data
1777 	 */
1778 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1779 	m_dma += COMPLETION_CODE_SIZE;
1780 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1781 		(uint8_t *)m_vaddr;
1782 
1783 	c_vaddr = (uint8_t *)m_vaddr + size;
1784 	c_dma = m_dma + size;
1785 	size += sizeof(cpt_res_s_t);
1786 
1787 	m_vaddr = (uint8_t *)m_vaddr + size;
1788 	m_dma += size;
1789 
1790 	/* Reserve memory for cpt request info */
1791 	req = m_vaddr;
1792 
1793 	size = sizeof(struct cpt_request_info);
1794 	m_vaddr = (uint8_t *)m_vaddr + size;
1795 	m_dma += size;
1796 
1797 	vq_cmd_w0.u64 = 0;
1798 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1799 
1800 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1801 
1802 	vq_cmd_w0.s.opcode.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1803 			  (0 << 3) | (flags & 0x7));
1804 
1805 	/* consider iv len */
1806 	encr_offset += iv_len;
1807 
1808 	inputlen = encr_offset +
1809 		(RTE_ALIGN(encr_data_len, 8) / 8);
1810 	outputlen = inputlen;
1811 
1812 	/* IV */
1813 	iv_s = params->iv_buf;
1814 	if (snow3g) {
1815 		/*
1816 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1817 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1818 		 */
1819 
1820 		for (j = 0; j < 4; j++)
1821 			iv[j] = iv_s[3 - j];
1822 	} else {
1823 		/* ZUC doesn't need a swap */
1824 		for (j = 0; j < 4; j++)
1825 			iv[j] = iv_s[j];
1826 	}
1827 
1828 	/*
1829 	 * GP op header, lengths are expected in bits.
1830 	 */
1831 	vq_cmd_w0.s.param1 = encr_data_len;
1832 
1833 	/*
1834 	 * In 83XX since we have a limitation of
1835 	 * IV & Offset control word not part of instruction
1836 	 * and need to be part of Data Buffer, we check if
1837 	 * head room is there and then only do the Direct mode processing
1838 	 */
1839 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1840 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1841 		void *dm_vaddr = params->bufs[0].vaddr;
1842 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1843 		/*
1844 		 * This flag indicates that there is 24 bytes head room and
1845 		 * 8 bytes tail room available, so that we get to do
1846 		 * DIRECT MODE with limitation
1847 		 */
1848 
1849 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1850 					    OFF_CTRL_LEN - iv_len);
1851 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1852 
1853 		/* DPTR */
1854 		req->ist.ei1 = offset_dma;
1855 		/* RPTR should just exclude offset control word */
1856 		req->ist.ei2 = dm_dma_addr - iv_len;
1857 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1858 						    + outputlen - iv_len);
1859 
1860 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1861 
1862 		if (likely(iv_len)) {
1863 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1864 						      + OFF_CTRL_LEN);
1865 			memcpy(iv_d, iv, 16);
1866 		}
1867 
1868 		/* iv offset is 0 */
1869 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1870 	} else {
1871 		uint32_t i, g_size_bytes, s_size_bytes;
1872 		uint64_t dptr_dma, rptr_dma;
1873 		sg_comp_t *gather_comp;
1874 		sg_comp_t *scatter_comp;
1875 		uint8_t *in_buffer;
1876 		uint32_t *iv_d;
1877 
1878 		/* save space for offset and iv... */
1879 		offset_vaddr = m_vaddr;
1880 		offset_dma = m_dma;
1881 
1882 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1883 		m_dma += OFF_CTRL_LEN + iv_len;
1884 
1885 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1886 
1887 		/* DPTR has SG list */
1888 		in_buffer = m_vaddr;
1889 		dptr_dma = m_dma;
1890 
1891 		((uint16_t *)in_buffer)[0] = 0;
1892 		((uint16_t *)in_buffer)[1] = 0;
1893 
1894 		/* TODO Add error check if space will be sufficient */
1895 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1896 
1897 		/*
1898 		 * Input Gather List
1899 		 */
1900 		i = 0;
1901 
1902 		/* Offset control word */
1903 
1904 		/* iv offset is 0 */
1905 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1906 
1907 		i = fill_sg_comp(gather_comp, i, offset_dma,
1908 				 OFF_CTRL_LEN + iv_len);
1909 
1910 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1911 		memcpy(iv_d, iv, 16);
1912 
1913 		/* Add input data */
1914 		size = inputlen - iv_len;
1915 		if (size) {
1916 			i = fill_sg_comp_from_iov(gather_comp, i,
1917 						  params->src_iov,
1918 						  0, &size, NULL, 0);
1919 			if (unlikely(size)) {
1920 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1921 					       " size %d needed", size);
1922 				return;
1923 			}
1924 		}
1925 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1926 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1927 
1928 		/*
1929 		 * Output Scatter List
1930 		 */
1931 
1932 		i = 0;
1933 		scatter_comp =
1934 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1935 
1936 		/* IV */
1937 		i = fill_sg_comp(scatter_comp, i,
1938 				 offset_dma + OFF_CTRL_LEN,
1939 				 iv_len);
1940 
1941 		/* Add output data */
1942 		size = outputlen - iv_len;
1943 		if (size) {
1944 			i = fill_sg_comp_from_iov(scatter_comp, i,
1945 						  params->dst_iov, 0,
1946 						  &size, NULL, 0);
1947 
1948 			if (unlikely(size)) {
1949 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1950 					       " size %d needed", size);
1951 				return;
1952 			}
1953 		}
1954 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1955 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1956 
1957 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1958 
1959 		/* This is DPTR len incase of SG mode */
1960 		vq_cmd_w0.s.dlen = size;
1961 
1962 		m_vaddr = (uint8_t *)m_vaddr + size;
1963 		m_dma += size;
1964 
1965 		/* cpt alternate completion address saved earlier */
1966 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1967 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1968 		rptr_dma = c_dma - 8;
1969 
1970 		req->ist.ei1 = dptr_dma;
1971 		req->ist.ei2 = rptr_dma;
1972 	}
1973 
1974 	if (unlikely((encr_offset >> 16))) {
1975 		CPT_LOG_DP_ERR("Offset not supported");
1976 		CPT_LOG_DP_ERR("enc_offset: %d", encr_offset);
1977 		return;
1978 	}
1979 
1980 	/* 16 byte aligned cpt res address */
1981 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1982 	*req->completion_addr = COMPLETION_CODE_INIT;
1983 	req->comp_baddr  = c_dma;
1984 
1985 	/* Fill microcode part of instruction */
1986 	req->ist.ei0 = vq_cmd_w0.u64;
1987 
1988 	req->op = op;
1989 
1990 	*prep_req = req;
1991 	return;
1992 }
1993 
1994 static __rte_always_inline void
1995 cpt_kasumi_enc_prep(uint32_t req_flags,
1996 		    uint64_t d_offs,
1997 		    uint64_t d_lens,
1998 		    fc_params_t *params,
1999 		    void *op,
2000 		    void **prep_req)
2001 {
2002 	uint32_t size;
2003 	int32_t inputlen = 0, outputlen = 0;
2004 	struct cpt_ctx *cpt_ctx;
2005 	uint32_t mac_len = 0;
2006 	uint8_t i = 0;
2007 	struct cpt_request_info *req;
2008 	buf_ptr_t *buf_p;
2009 	uint32_t encr_offset, auth_offset;
2010 	uint32_t encr_data_len, auth_data_len;
2011 	int flags;
2012 	uint8_t *iv_s, *iv_d, iv_len = 8;
2013 	uint8_t dir = 0;
2014 	void *m_vaddr, *c_vaddr;
2015 	uint64_t m_dma, c_dma;
2016 	uint64_t *offset_vaddr, offset_dma;
2017 	vq_cmd_word0_t vq_cmd_w0;
2018 	uint8_t *in_buffer;
2019 	uint32_t g_size_bytes, s_size_bytes;
2020 	uint64_t dptr_dma, rptr_dma;
2021 	sg_comp_t *gather_comp;
2022 	sg_comp_t *scatter_comp;
2023 
2024 	buf_p = &params->meta_buf;
2025 	m_vaddr = buf_p->vaddr;
2026 	m_dma = buf_p->dma_addr;
2027 
2028 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2029 	auth_offset = AUTH_OFFSET(d_offs) / 8;
2030 	encr_data_len = ENCR_DLEN(d_lens);
2031 	auth_data_len = AUTH_DLEN(d_lens);
2032 
2033 	cpt_ctx = params->ctx_buf.vaddr;
2034 	flags = cpt_ctx->zsk_flags;
2035 	mac_len = cpt_ctx->mac_len;
2036 
2037 	if (flags == 0x0)
2038 		iv_s = params->iv_buf;
2039 	else
2040 		iv_s = params->auth_iv_buf;
2041 
2042 	dir = iv_s[8] & 0x1;
2043 
2044 	/*
2045 	 * Save initial space that followed app data for completion code &
2046 	 * alternate completion code to fall in same cache line as app data
2047 	 */
2048 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2049 	m_dma += COMPLETION_CODE_SIZE;
2050 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2051 		(uint8_t *)m_vaddr;
2052 
2053 	c_vaddr = (uint8_t *)m_vaddr + size;
2054 	c_dma = m_dma + size;
2055 	size += sizeof(cpt_res_s_t);
2056 
2057 	m_vaddr = (uint8_t *)m_vaddr + size;
2058 	m_dma += size;
2059 
2060 	/* Reserve memory for cpt request info */
2061 	req = m_vaddr;
2062 
2063 	size = sizeof(struct cpt_request_info);
2064 	m_vaddr = (uint8_t *)m_vaddr + size;
2065 	m_dma += size;
2066 
2067 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2068 
2069 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2070 	vq_cmd_w0.s.opcode.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2071 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2072 
2073 	/*
2074 	 * GP op header, lengths are expected in bits.
2075 	 */
2076 	vq_cmd_w0.s.param1 = encr_data_len;
2077 	vq_cmd_w0.s.param2 = auth_data_len;
2078 
2079 	/* consider iv len */
2080 	if (flags == 0x0) {
2081 		encr_offset += iv_len;
2082 		auth_offset += iv_len;
2083 	}
2084 
2085 	/* save space for offset ctrl and iv */
2086 	offset_vaddr = m_vaddr;
2087 	offset_dma = m_dma;
2088 
2089 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2090 	m_dma += OFF_CTRL_LEN + iv_len;
2091 
2092 	/* DPTR has SG list */
2093 	in_buffer = m_vaddr;
2094 	dptr_dma = m_dma;
2095 
2096 	((uint16_t *)in_buffer)[0] = 0;
2097 	((uint16_t *)in_buffer)[1] = 0;
2098 
2099 	/* TODO Add error check if space will be sufficient */
2100 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2101 
2102 	/*
2103 	 * Input Gather List
2104 	 */
2105 	i = 0;
2106 
2107 	/* Offset control word followed by iv */
2108 
2109 	if (flags == 0x0) {
2110 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2111 		outputlen = inputlen;
2112 		/* iv offset is 0 */
2113 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2114 		if (unlikely((encr_offset >> 16))) {
2115 			CPT_LOG_DP_ERR("Offset not supported");
2116 			CPT_LOG_DP_ERR("enc_offset: %d", encr_offset);
2117 			return;
2118 		}
2119 	} else {
2120 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2121 		outputlen = mac_len;
2122 		/* iv offset is 0 */
2123 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2124 		if (unlikely((auth_offset >> 8))) {
2125 			CPT_LOG_DP_ERR("Offset not supported");
2126 			CPT_LOG_DP_ERR("auth_offset: %d", auth_offset);
2127 			return;
2128 		}
2129 	}
2130 
2131 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2132 
2133 	/* IV */
2134 	iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2135 	memcpy(iv_d, iv_s, iv_len);
2136 
2137 	/* input data */
2138 	size = inputlen - iv_len;
2139 	if (size) {
2140 		i = fill_sg_comp_from_iov(gather_comp, i,
2141 					  params->src_iov, 0,
2142 					  &size, NULL, 0);
2143 
2144 		if (unlikely(size)) {
2145 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2146 				       " size %d needed", size);
2147 			return;
2148 		}
2149 	}
2150 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2151 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2152 
2153 	/*
2154 	 * Output Scatter List
2155 	 */
2156 
2157 	i = 0;
2158 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2159 
2160 	if (flags == 0x1) {
2161 		/* IV in SLIST only for F8 */
2162 		iv_len = 0;
2163 	}
2164 
2165 	/* IV */
2166 	if (iv_len) {
2167 		i = fill_sg_comp(scatter_comp, i,
2168 				 offset_dma + OFF_CTRL_LEN,
2169 				 iv_len);
2170 	}
2171 
2172 	/* Add output data */
2173 	if (req_flags & VALID_MAC_BUF) {
2174 		size = outputlen - iv_len - mac_len;
2175 		if (size) {
2176 			i = fill_sg_comp_from_iov(scatter_comp, i,
2177 						  params->dst_iov, 0,
2178 						  &size, NULL, 0);
2179 
2180 			if (unlikely(size)) {
2181 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2182 					       " size %d needed", size);
2183 				return;
2184 			}
2185 		}
2186 
2187 		/* mac data */
2188 		if (mac_len) {
2189 			i = fill_sg_comp_from_buf(scatter_comp, i,
2190 						  &params->mac_buf);
2191 		}
2192 	} else {
2193 		/* Output including mac */
2194 		size = outputlen - iv_len;
2195 		if (size) {
2196 			i = fill_sg_comp_from_iov(scatter_comp, i,
2197 						  params->dst_iov, 0,
2198 						  &size, NULL, 0);
2199 
2200 			if (unlikely(size)) {
2201 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2202 					       " size %d needed", size);
2203 				return;
2204 			}
2205 		}
2206 	}
2207 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2208 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2209 
2210 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2211 
2212 	/* This is DPTR len incase of SG mode */
2213 	vq_cmd_w0.s.dlen = size;
2214 
2215 	m_vaddr = (uint8_t *)m_vaddr + size;
2216 	m_dma += size;
2217 
2218 	/* cpt alternate completion address saved earlier */
2219 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2220 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2221 	rptr_dma = c_dma - 8;
2222 
2223 	req->ist.ei1 = dptr_dma;
2224 	req->ist.ei2 = rptr_dma;
2225 
2226 	/* 16 byte aligned cpt res address */
2227 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2228 	*req->completion_addr = COMPLETION_CODE_INIT;
2229 	req->comp_baddr  = c_dma;
2230 
2231 	/* Fill microcode part of instruction */
2232 	req->ist.ei0 = vq_cmd_w0.u64;
2233 
2234 	req->op = op;
2235 
2236 	*prep_req = req;
2237 	return;
2238 }
2239 
2240 static __rte_always_inline void
2241 cpt_kasumi_dec_prep(uint64_t d_offs,
2242 		    uint64_t d_lens,
2243 		    fc_params_t *params,
2244 		    void *op,
2245 		    void **prep_req)
2246 {
2247 	uint32_t size;
2248 	int32_t inputlen = 0, outputlen;
2249 	struct cpt_ctx *cpt_ctx;
2250 	uint8_t i = 0, iv_len = 8;
2251 	struct cpt_request_info *req;
2252 	buf_ptr_t *buf_p;
2253 	uint32_t encr_offset;
2254 	uint32_t encr_data_len;
2255 	int flags;
2256 	uint8_t dir = 0;
2257 	void *m_vaddr, *c_vaddr;
2258 	uint64_t m_dma, c_dma;
2259 	uint64_t *offset_vaddr, offset_dma;
2260 	vq_cmd_word0_t vq_cmd_w0;
2261 	uint8_t *in_buffer;
2262 	uint32_t g_size_bytes, s_size_bytes;
2263 	uint64_t dptr_dma, rptr_dma;
2264 	sg_comp_t *gather_comp;
2265 	sg_comp_t *scatter_comp;
2266 
2267 	buf_p = &params->meta_buf;
2268 	m_vaddr = buf_p->vaddr;
2269 	m_dma = buf_p->dma_addr;
2270 
2271 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2272 	encr_data_len = ENCR_DLEN(d_lens);
2273 
2274 	cpt_ctx = params->ctx_buf.vaddr;
2275 	flags = cpt_ctx->zsk_flags;
2276 	/*
2277 	 * Save initial space that followed app data for completion code &
2278 	 * alternate completion code to fall in same cache line as app data
2279 	 */
2280 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2281 	m_dma += COMPLETION_CODE_SIZE;
2282 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2283 		(uint8_t *)m_vaddr;
2284 
2285 	c_vaddr = (uint8_t *)m_vaddr + size;
2286 	c_dma = m_dma + size;
2287 	size += sizeof(cpt_res_s_t);
2288 
2289 	m_vaddr = (uint8_t *)m_vaddr + size;
2290 	m_dma += size;
2291 
2292 	/* Reserve memory for cpt request info */
2293 	req = m_vaddr;
2294 
2295 	size = sizeof(struct cpt_request_info);
2296 	m_vaddr = (uint8_t *)m_vaddr + size;
2297 	m_dma += size;
2298 
2299 	vq_cmd_w0.u64 = 0;
2300 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2301 
2302 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2303 	vq_cmd_w0.s.opcode.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2304 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2305 
2306 	/*
2307 	 * GP op header, lengths are expected in bits.
2308 	 */
2309 	vq_cmd_w0.s.param1 = encr_data_len;
2310 
2311 	/* consider iv len */
2312 	encr_offset += iv_len;
2313 
2314 	inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2315 	outputlen = inputlen;
2316 
2317 	/* save space for offset ctrl & iv */
2318 	offset_vaddr = m_vaddr;
2319 	offset_dma = m_dma;
2320 
2321 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2322 	m_dma += OFF_CTRL_LEN + iv_len;
2323 
2324 	/* DPTR has SG list */
2325 	in_buffer = m_vaddr;
2326 	dptr_dma = m_dma;
2327 
2328 	((uint16_t *)in_buffer)[0] = 0;
2329 	((uint16_t *)in_buffer)[1] = 0;
2330 
2331 	/* TODO Add error check if space will be sufficient */
2332 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2333 
2334 	/*
2335 	 * Input Gather List
2336 	 */
2337 	i = 0;
2338 
2339 	/* Offset control word followed by iv */
2340 	*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2341 	if (unlikely((encr_offset >> 16))) {
2342 		CPT_LOG_DP_ERR("Offset not supported");
2343 		CPT_LOG_DP_ERR("enc_offset: %d", encr_offset);
2344 		return;
2345 	}
2346 
2347 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2348 
2349 	/* IV */
2350 	memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2351 	       params->iv_buf, iv_len);
2352 
2353 	/* Add input data */
2354 	size = inputlen - iv_len;
2355 	if (size) {
2356 		i = fill_sg_comp_from_iov(gather_comp, i,
2357 					  params->src_iov,
2358 					  0, &size, NULL, 0);
2359 		if (unlikely(size)) {
2360 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2361 				       " size %d needed", size);
2362 			return;
2363 		}
2364 	}
2365 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2366 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2367 
2368 	/*
2369 	 * Output Scatter List
2370 	 */
2371 
2372 	i = 0;
2373 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2374 
2375 	/* IV */
2376 	i = fill_sg_comp(scatter_comp, i,
2377 			 offset_dma + OFF_CTRL_LEN,
2378 			 iv_len);
2379 
2380 	/* Add output data */
2381 	size = outputlen - iv_len;
2382 	if (size) {
2383 		i = fill_sg_comp_from_iov(scatter_comp, i,
2384 					  params->dst_iov, 0,
2385 					  &size, NULL, 0);
2386 		if (unlikely(size)) {
2387 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2388 				       " size %d needed", size);
2389 			return;
2390 		}
2391 	}
2392 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2393 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2394 
2395 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2396 
2397 	/* This is DPTR len incase of SG mode */
2398 	vq_cmd_w0.s.dlen = size;
2399 
2400 	m_vaddr = (uint8_t *)m_vaddr + size;
2401 	m_dma += size;
2402 
2403 	/* cpt alternate completion address saved earlier */
2404 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2405 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2406 	rptr_dma = c_dma - 8;
2407 
2408 	req->ist.ei1 = dptr_dma;
2409 	req->ist.ei2 = rptr_dma;
2410 
2411 	/* 16 byte aligned cpt res address */
2412 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2413 	*req->completion_addr = COMPLETION_CODE_INIT;
2414 	req->comp_baddr  = c_dma;
2415 
2416 	/* Fill microcode part of instruction */
2417 	req->ist.ei0 = vq_cmd_w0.u64;
2418 
2419 	req->op = op;
2420 
2421 	*prep_req = req;
2422 	return;
2423 }
2424 
2425 static __rte_always_inline void *
2426 cpt_fc_dec_hmac_prep(uint32_t flags,
2427 		     uint64_t d_offs,
2428 		     uint64_t d_lens,
2429 		     fc_params_t *fc_params,
2430 		     void *op)
2431 {
2432 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2433 	uint8_t fc_type;
2434 	void *prep_req = NULL;
2435 
2436 	fc_type = ctx->fc_type;
2437 
2438 	if (likely(fc_type == FC_GEN)) {
2439 		cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2440 				  &prep_req);
2441 	} else if (fc_type == ZUC_SNOW3G) {
2442 		cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2443 					&prep_req);
2444 	} else if (fc_type == KASUMI) {
2445 		cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2446 	}
2447 
2448 	/*
2449 	 * For AUTH_ONLY case,
2450 	 * MC only supports digest generation and verification
2451 	 * should be done in software by memcmp()
2452 	 */
2453 
2454 	return prep_req;
2455 }
2456 
2457 static __rte_always_inline void *__rte_hot
2458 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2459 		     fc_params_t *fc_params, void *op)
2460 {
2461 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2462 	uint8_t fc_type;
2463 	void *prep_req = NULL;
2464 
2465 	fc_type = ctx->fc_type;
2466 
2467 	/* Common api for rest of the ops */
2468 	if (likely(fc_type == FC_GEN)) {
2469 		cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2470 				  &prep_req);
2471 	} else if (fc_type == ZUC_SNOW3G) {
2472 		cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2473 					&prep_req);
2474 	} else if (fc_type == KASUMI) {
2475 		cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2476 				    &prep_req);
2477 	} else if (fc_type == HASH_HMAC) {
2478 		cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2479 	}
2480 
2481 	return prep_req;
2482 }
2483 
2484 static __rte_always_inline int
2485 cpt_fc_auth_set_key(struct cpt_ctx *cpt_ctx, auth_type_t type,
2486 		    const uint8_t *key, uint16_t key_len, uint16_t mac_len)
2487 {
2488 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
2489 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
2490 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
2491 
2492 	if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2493 		uint32_t keyx[4];
2494 
2495 		if (key_len != 16)
2496 			return -1;
2497 		/* No support for AEAD yet */
2498 		if (cpt_ctx->enc_cipher)
2499 			return -1;
2500 		/* For ZUC/SNOW3G/Kasumi */
2501 		switch (type) {
2502 		case SNOW3G_UIA2:
2503 			cpt_ctx->snow3g = 1;
2504 			gen_key_snow3g(key, keyx);
2505 			memcpy(zs_ctx->ci_key, keyx, key_len);
2506 			cpt_ctx->fc_type = ZUC_SNOW3G;
2507 			cpt_ctx->zsk_flags = 0x1;
2508 			break;
2509 		case ZUC_EIA3:
2510 			cpt_ctx->snow3g = 0;
2511 			memcpy(zs_ctx->ci_key, key, key_len);
2512 			memcpy(zs_ctx->zuc_const, zuc_d, 32);
2513 			cpt_ctx->fc_type = ZUC_SNOW3G;
2514 			cpt_ctx->zsk_flags = 0x1;
2515 			break;
2516 		case KASUMI_F9_ECB:
2517 			/* Kasumi ECB mode */
2518 			cpt_ctx->k_ecb = 1;
2519 			memcpy(k_ctx->ci_key, key, key_len);
2520 			cpt_ctx->fc_type = KASUMI;
2521 			cpt_ctx->zsk_flags = 0x1;
2522 			break;
2523 		case KASUMI_F9_CBC:
2524 			memcpy(k_ctx->ci_key, key, key_len);
2525 			cpt_ctx->fc_type = KASUMI;
2526 			cpt_ctx->zsk_flags = 0x1;
2527 			break;
2528 		default:
2529 			return -1;
2530 		}
2531 		cpt_ctx->mac_len = 4;
2532 		cpt_ctx->hash_type = type;
2533 		return 0;
2534 	}
2535 
2536 	if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2537 		if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2538 			cpt_ctx->fc_type = HASH_HMAC;
2539 	}
2540 
2541 	if (cpt_ctx->fc_type == FC_GEN && key_len > 64)
2542 		return -1;
2543 
2544 	/* For GMAC auth, cipher must be NULL */
2545 	if (type == GMAC_TYPE)
2546 		fctx->enc.enc_cipher = 0;
2547 
2548 	fctx->enc.hash_type = cpt_ctx->hash_type = type;
2549 	fctx->enc.mac_len = cpt_ctx->mac_len = mac_len;
2550 
2551 	if (key_len) {
2552 		cpt_ctx->hmac = 1;
2553 
2554 		cpt_ctx->auth_key = rte_zmalloc(NULL, key_len, 8);
2555 		if (cpt_ctx->auth_key == NULL)
2556 			return -1;
2557 
2558 		cpt_ctx->auth_key_iova = rte_mem_virt2iova(cpt_ctx->auth_key);
2559 		memcpy(cpt_ctx->auth_key, key, key_len);
2560 		cpt_ctx->auth_key_len = key_len;
2561 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2562 		memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2563 
2564 		if (key_len <= 64)
2565 			memcpy(fctx->hmac.opad, key, key_len);
2566 		fctx->enc.auth_input_type = 1;
2567 	}
2568 	return 0;
2569 }
2570 
2571 static __rte_always_inline int
2572 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2573 		 struct cpt_sess_misc *sess)
2574 {
2575 	struct rte_crypto_aead_xform *aead_form;
2576 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2577 	auth_type_t auth_type = 0; /* NULL Auth type */
2578 	uint32_t cipher_key_len = 0;
2579 	uint8_t aes_gcm = 0;
2580 	aead_form = &xform->aead;
2581 	void *ctx = SESS_PRIV(sess);
2582 
2583 	if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
2584 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2585 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2586 	} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) {
2587 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2588 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2589 	} else {
2590 		CPT_LOG_DP_ERR("Unknown aead operation\n");
2591 		return -1;
2592 	}
2593 	switch (aead_form->algo) {
2594 	case RTE_CRYPTO_AEAD_AES_GCM:
2595 		enc_type = AES_GCM;
2596 		cipher_key_len = 16;
2597 		aes_gcm = 1;
2598 		break;
2599 	case RTE_CRYPTO_AEAD_AES_CCM:
2600 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2601 			       aead_form->algo);
2602 		return -1;
2603 	case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
2604 		enc_type = CHACHA20;
2605 		auth_type = POLY1305;
2606 		cipher_key_len = 32;
2607 		sess->chacha_poly = 1;
2608 		break;
2609 	default:
2610 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2611 			       aead_form->algo);
2612 		return -1;
2613 	}
2614 	if (aead_form->key.length < cipher_key_len) {
2615 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2616 			       (unsigned int long)aead_form->key.length);
2617 		return -1;
2618 	}
2619 	sess->zsk_flag = 0;
2620 	sess->aes_gcm = aes_gcm;
2621 	sess->mac_len = aead_form->digest_length;
2622 	sess->iv_offset = aead_form->iv.offset;
2623 	sess->iv_length = aead_form->iv.length;
2624 	sess->aad_length = aead_form->aad_length;
2625 
2626 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2627 			aead_form->key.length, NULL)))
2628 		return -1;
2629 
2630 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2631 			aead_form->digest_length)))
2632 		return -1;
2633 
2634 	return 0;
2635 }
2636 
2637 static __rte_always_inline int
2638 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2639 		 struct cpt_sess_misc *sess)
2640 {
2641 	struct rte_crypto_cipher_xform *c_form;
2642 	struct cpt_ctx *ctx = SESS_PRIV(sess);
2643 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2644 	uint32_t cipher_key_len = 0;
2645 	uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
2646 
2647 	c_form = &xform->cipher;
2648 
2649 	if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2650 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2651 	else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT) {
2652 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2653 		if (xform->next != NULL &&
2654 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
2655 			/* Perform decryption followed by auth verify */
2656 			ctx->dec_auth = 1;
2657 		}
2658 	} else {
2659 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2660 		return -1;
2661 	}
2662 
2663 	switch (c_form->algo) {
2664 	case RTE_CRYPTO_CIPHER_AES_CBC:
2665 		enc_type = AES_CBC;
2666 		cipher_key_len = 16;
2667 		break;
2668 	case RTE_CRYPTO_CIPHER_3DES_CBC:
2669 		enc_type = DES3_CBC;
2670 		cipher_key_len = 24;
2671 		break;
2672 	case RTE_CRYPTO_CIPHER_DES_CBC:
2673 		/* DES is implemented using 3DES in hardware */
2674 		enc_type = DES3_CBC;
2675 		cipher_key_len = 8;
2676 		break;
2677 	case RTE_CRYPTO_CIPHER_AES_CTR:
2678 		enc_type = AES_CTR;
2679 		cipher_key_len = 16;
2680 		aes_ctr = 1;
2681 		break;
2682 	case RTE_CRYPTO_CIPHER_NULL:
2683 		enc_type = 0;
2684 		is_null = 1;
2685 		break;
2686 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
2687 		enc_type = KASUMI_F8_ECB;
2688 		cipher_key_len = 16;
2689 		zsk_flag = K_F8;
2690 		break;
2691 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2692 		enc_type = SNOW3G_UEA2;
2693 		cipher_key_len = 16;
2694 		zsk_flag = ZS_EA;
2695 		break;
2696 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2697 		enc_type = ZUC_EEA3;
2698 		cipher_key_len = 16;
2699 		zsk_flag = ZS_EA;
2700 		break;
2701 	case RTE_CRYPTO_CIPHER_AES_XTS:
2702 		enc_type = AES_XTS;
2703 		cipher_key_len = 16;
2704 		break;
2705 	case RTE_CRYPTO_CIPHER_3DES_ECB:
2706 		enc_type = DES3_ECB;
2707 		cipher_key_len = 24;
2708 		break;
2709 	case RTE_CRYPTO_CIPHER_AES_ECB:
2710 		enc_type = AES_ECB;
2711 		cipher_key_len = 16;
2712 		break;
2713 	case RTE_CRYPTO_CIPHER_3DES_CTR:
2714 	case RTE_CRYPTO_CIPHER_AES_F8:
2715 	case RTE_CRYPTO_CIPHER_ARC4:
2716 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2717 			       c_form->algo);
2718 		return -1;
2719 	default:
2720 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2721 			       c_form->algo);
2722 		return -1;
2723 	}
2724 
2725 	if (c_form->key.length < cipher_key_len) {
2726 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2727 			       (unsigned long) c_form->key.length);
2728 		return -1;
2729 	}
2730 
2731 	sess->zsk_flag = zsk_flag;
2732 	sess->aes_gcm = 0;
2733 	sess->aes_ctr = aes_ctr;
2734 	sess->iv_offset = c_form->iv.offset;
2735 	sess->iv_length = c_form->iv.length;
2736 	sess->is_null = is_null;
2737 
2738 	if (unlikely(cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type,
2739 			c_form->key.data, c_form->key.length, NULL)))
2740 		return -1;
2741 
2742 	return 0;
2743 }
2744 
2745 static __rte_always_inline int
2746 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2747 	       struct cpt_sess_misc *sess)
2748 {
2749 	struct cpt_ctx *ctx = SESS_PRIV(sess);
2750 	struct rte_crypto_auth_xform *a_form;
2751 	auth_type_t auth_type = 0; /* NULL Auth type */
2752 	uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2753 
2754 	if (xform->next != NULL &&
2755 	    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
2756 	    xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
2757 		/* Perform auth followed by encryption */
2758 		ctx->auth_enc = 1;
2759 	}
2760 
2761 	a_form = &xform->auth;
2762 
2763 	if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2764 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2765 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2766 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2767 	else {
2768 		CPT_LOG_DP_ERR("Unknown auth operation");
2769 		return -1;
2770 	}
2771 
2772 	switch (a_form->algo) {
2773 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
2774 		/* Fall through */
2775 	case RTE_CRYPTO_AUTH_SHA1:
2776 		auth_type = SHA1_TYPE;
2777 		break;
2778 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
2779 	case RTE_CRYPTO_AUTH_SHA256:
2780 		auth_type = SHA2_SHA256;
2781 		break;
2782 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
2783 	case RTE_CRYPTO_AUTH_SHA512:
2784 		auth_type = SHA2_SHA512;
2785 		break;
2786 	case RTE_CRYPTO_AUTH_AES_GMAC:
2787 		auth_type = GMAC_TYPE;
2788 		aes_gcm = 1;
2789 		break;
2790 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
2791 	case RTE_CRYPTO_AUTH_SHA224:
2792 		auth_type = SHA2_SHA224;
2793 		break;
2794 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
2795 	case RTE_CRYPTO_AUTH_SHA384:
2796 		auth_type = SHA2_SHA384;
2797 		break;
2798 	case RTE_CRYPTO_AUTH_MD5_HMAC:
2799 	case RTE_CRYPTO_AUTH_MD5:
2800 		auth_type = MD5_TYPE;
2801 		break;
2802 	case RTE_CRYPTO_AUTH_KASUMI_F9:
2803 		auth_type = KASUMI_F9_ECB;
2804 		/*
2805 		 * Indicate that direction needs to be taken out
2806 		 * from end of src
2807 		 */
2808 		zsk_flag = K_F9;
2809 		break;
2810 	case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2811 		auth_type = SNOW3G_UIA2;
2812 		zsk_flag = ZS_IA;
2813 		break;
2814 	case RTE_CRYPTO_AUTH_ZUC_EIA3:
2815 		auth_type = ZUC_EIA3;
2816 		zsk_flag = ZS_IA;
2817 		break;
2818 	case RTE_CRYPTO_AUTH_NULL:
2819 		auth_type = 0;
2820 		is_null = 1;
2821 		break;
2822 	case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2823 	case RTE_CRYPTO_AUTH_AES_CMAC:
2824 	case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2825 		CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2826 			       a_form->algo);
2827 		return -1;
2828 	default:
2829 		CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2830 			       a_form->algo);
2831 		return -1;
2832 	}
2833 
2834 	sess->zsk_flag = zsk_flag;
2835 	sess->aes_gcm = aes_gcm;
2836 	sess->mac_len = a_form->digest_length;
2837 	sess->is_null = is_null;
2838 	if (zsk_flag) {
2839 		sess->auth_iv_offset = a_form->iv.offset;
2840 		sess->auth_iv_length = a_form->iv.length;
2841 	}
2842 	if (unlikely(cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type,
2843 			a_form->key.data, a_form->key.length,
2844 			a_form->digest_length)))
2845 		return -1;
2846 
2847 	return 0;
2848 }
2849 
2850 static __rte_always_inline int
2851 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2852 		 struct cpt_sess_misc *sess)
2853 {
2854 	struct rte_crypto_auth_xform *a_form;
2855 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2856 	auth_type_t auth_type = 0; /* NULL Auth type */
2857 	void *ctx = SESS_PRIV(sess);
2858 
2859 	a_form = &xform->auth;
2860 
2861 	if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2862 		sess->cpt_op |= CPT_OP_ENCODE;
2863 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2864 		sess->cpt_op |= CPT_OP_DECODE;
2865 	else {
2866 		CPT_LOG_DP_ERR("Unknown auth operation");
2867 		return -1;
2868 	}
2869 
2870 	switch (a_form->algo) {
2871 	case RTE_CRYPTO_AUTH_AES_GMAC:
2872 		enc_type = AES_GCM;
2873 		auth_type = GMAC_TYPE;
2874 		break;
2875 	default:
2876 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2877 			       a_form->algo);
2878 		return -1;
2879 	}
2880 
2881 	sess->zsk_flag = 0;
2882 	sess->aes_gcm = 0;
2883 	sess->is_gmac = 1;
2884 	sess->iv_offset = a_form->iv.offset;
2885 	sess->iv_length = a_form->iv.length;
2886 	sess->mac_len = a_form->digest_length;
2887 
2888 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2889 			a_form->key.length, NULL)))
2890 		return -1;
2891 
2892 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2893 			a_form->digest_length)))
2894 		return -1;
2895 
2896 	return 0;
2897 }
2898 
2899 static __rte_always_inline void *
2900 alloc_op_meta(struct rte_mbuf *m_src,
2901 	      buf_ptr_t *buf,
2902 	      int32_t len,
2903 	      struct rte_mempool *cpt_meta_pool)
2904 {
2905 	uint8_t *mdata;
2906 
2907 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2908 	if (likely(m_src && (m_src->nb_segs == 1))) {
2909 		int32_t tailroom;
2910 		phys_addr_t mphys;
2911 
2912 		/* Check if tailroom is sufficient to hold meta data */
2913 		tailroom = rte_pktmbuf_tailroom(m_src);
2914 		if (likely(tailroom > len + 8)) {
2915 			mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2916 			mphys = m_src->buf_iova + m_src->buf_len;
2917 			mdata -= len;
2918 			mphys -= len;
2919 			buf->vaddr = mdata;
2920 			buf->dma_addr = mphys;
2921 			buf->size = len;
2922 			/* Indicate that this is a mbuf allocated mdata */
2923 			mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2924 			return mdata;
2925 		}
2926 	}
2927 #else
2928 	RTE_SET_USED(m_src);
2929 #endif
2930 
2931 	if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2932 		return NULL;
2933 
2934 	buf->vaddr = mdata;
2935 	buf->dma_addr = rte_mempool_virt2iova(mdata);
2936 	buf->size = len;
2937 
2938 	return mdata;
2939 }
2940 
2941 /**
2942  * cpt_free_metabuf - free metabuf to mempool.
2943  * @param instance: pointer to instance.
2944  * @param objp: pointer to the metabuf.
2945  */
2946 static __rte_always_inline void
2947 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2948 {
2949 	bool nofree = ((uintptr_t)mdata & 1ull);
2950 
2951 	if (likely(nofree))
2952 		return;
2953 	rte_mempool_put(cpt_meta_pool, mdata);
2954 }
2955 
2956 static __rte_always_inline uint32_t
2957 prepare_iov_from_pkt(struct rte_mbuf *pkt,
2958 		     iov_ptr_t *iovec, uint32_t start_offset)
2959 {
2960 	uint16_t index = 0;
2961 	void *seg_data = NULL;
2962 	phys_addr_t seg_phys;
2963 	int32_t seg_size = 0;
2964 
2965 	if (!pkt) {
2966 		iovec->buf_cnt = 0;
2967 		return 0;
2968 	}
2969 
2970 	if (!start_offset) {
2971 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2972 		seg_phys = rte_pktmbuf_iova(pkt);
2973 		seg_size = pkt->data_len;
2974 	} else {
2975 		while (start_offset >= pkt->data_len) {
2976 			start_offset -= pkt->data_len;
2977 			pkt = pkt->next;
2978 		}
2979 
2980 		seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
2981 		seg_phys = rte_pktmbuf_iova_offset(pkt, start_offset);
2982 		seg_size = pkt->data_len - start_offset;
2983 		if (!seg_size)
2984 			return 1;
2985 	}
2986 
2987 	/* first seg */
2988 	iovec->bufs[index].vaddr = seg_data;
2989 	iovec->bufs[index].dma_addr = seg_phys;
2990 	iovec->bufs[index].size = seg_size;
2991 	index++;
2992 	pkt = pkt->next;
2993 
2994 	while (unlikely(pkt != NULL)) {
2995 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2996 		seg_phys = rte_pktmbuf_iova(pkt);
2997 		seg_size = pkt->data_len;
2998 		if (!seg_size)
2999 			break;
3000 
3001 		iovec->bufs[index].vaddr = seg_data;
3002 		iovec->bufs[index].dma_addr = seg_phys;
3003 		iovec->bufs[index].size = seg_size;
3004 
3005 		index++;
3006 
3007 		pkt = pkt->next;
3008 	}
3009 
3010 	iovec->buf_cnt = index;
3011 	return 0;
3012 }
3013 
3014 static __rte_always_inline uint32_t
3015 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
3016 			     fc_params_t *param,
3017 			     uint32_t *flags)
3018 {
3019 	uint16_t index = 0;
3020 	void *seg_data = NULL;
3021 	phys_addr_t seg_phys;
3022 	uint32_t seg_size = 0;
3023 	iov_ptr_t *iovec;
3024 
3025 	seg_data = rte_pktmbuf_mtod(pkt, void *);
3026 	seg_phys = rte_pktmbuf_iova(pkt);
3027 	seg_size = pkt->data_len;
3028 
3029 	/* first seg */
3030 	if (likely(!pkt->next)) {
3031 		uint32_t headroom, tailroom;
3032 
3033 		*flags |= SINGLE_BUF_INPLACE;
3034 		headroom = rte_pktmbuf_headroom(pkt);
3035 		tailroom = rte_pktmbuf_tailroom(pkt);
3036 		if (likely((headroom >= 24) &&
3037 		    (tailroom >= 8))) {
3038 			/* In 83XX this is prerequivisit for Direct mode */
3039 			*flags |= SINGLE_BUF_HEADTAILROOM;
3040 		}
3041 		param->bufs[0].vaddr = seg_data;
3042 		param->bufs[0].dma_addr = seg_phys;
3043 		param->bufs[0].size = seg_size;
3044 		return 0;
3045 	}
3046 	iovec = param->src_iov;
3047 	iovec->bufs[index].vaddr = seg_data;
3048 	iovec->bufs[index].dma_addr = seg_phys;
3049 	iovec->bufs[index].size = seg_size;
3050 	index++;
3051 	pkt = pkt->next;
3052 
3053 	while (unlikely(pkt != NULL)) {
3054 		seg_data = rte_pktmbuf_mtod(pkt, void *);
3055 		seg_phys = rte_pktmbuf_iova(pkt);
3056 		seg_size = pkt->data_len;
3057 
3058 		if (!seg_size)
3059 			break;
3060 
3061 		iovec->bufs[index].vaddr = seg_data;
3062 		iovec->bufs[index].dma_addr = seg_phys;
3063 		iovec->bufs[index].size = seg_size;
3064 
3065 		index++;
3066 
3067 		pkt = pkt->next;
3068 	}
3069 
3070 	iovec->buf_cnt = index;
3071 	return 0;
3072 }
3073 
3074 static __rte_always_inline int
3075 fill_fc_params(struct rte_crypto_op *cop,
3076 	       struct cpt_sess_misc *sess_misc,
3077 	       struct cpt_qp_meta_info *m_info,
3078 	       void **mdata_ptr,
3079 	       void **prep_req)
3080 {
3081 	uint32_t space = 0;
3082 	struct rte_crypto_sym_op *sym_op = cop->sym;
3083 	struct cpt_ctx *ctx = SESS_PRIV(sess_misc);
3084 	void *mdata = NULL;
3085 	uintptr_t *op;
3086 	uint32_t mc_hash_off;
3087 	uint32_t flags = 0;
3088 	uint64_t d_offs, d_lens;
3089 	struct rte_mbuf *m_src, *m_dst;
3090 	uint8_t cpt_op = sess_misc->cpt_op;
3091 #ifdef CPT_ALWAYS_USE_SG_MODE
3092 	uint8_t inplace = 0;
3093 #else
3094 	uint8_t inplace = 1;
3095 #endif
3096 	fc_params_t fc_params;
3097 	char src[SRC_IOV_SIZE];
3098 	char dst[SRC_IOV_SIZE];
3099 	uint32_t iv_buf[4];
3100 	int ret;
3101 
3102 	if (likely(sess_misc->iv_length)) {
3103 		flags |= VALID_IV_BUF;
3104 		fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3105 				   uint8_t *, sess_misc->iv_offset);
3106 		if (sess_misc->aes_ctr &&
3107 		    unlikely(sess_misc->iv_length != 16)) {
3108 			memcpy((uint8_t *)iv_buf,
3109 				rte_crypto_op_ctod_offset(cop,
3110 				uint8_t *, sess_misc->iv_offset), 12);
3111 			iv_buf[3] = rte_cpu_to_be_32(0x1);
3112 			fc_params.iv_buf = iv_buf;
3113 		}
3114 	}
3115 
3116 	if (sess_misc->zsk_flag) {
3117 		fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3118 					uint8_t *,
3119 					sess_misc->auth_iv_offset);
3120 		if (sess_misc->zsk_flag != ZS_EA)
3121 			inplace = 0;
3122 	}
3123 	m_src = sym_op->m_src;
3124 	m_dst = sym_op->m_dst;
3125 
3126 	if (sess_misc->aes_gcm || sess_misc->chacha_poly) {
3127 		uint8_t *salt;
3128 		uint8_t *aad_data;
3129 		uint16_t aad_len;
3130 
3131 		d_offs = sym_op->aead.data.offset;
3132 		d_lens = sym_op->aead.data.length;
3133 		mc_hash_off = sym_op->aead.data.offset +
3134 			      sym_op->aead.data.length;
3135 
3136 		aad_data = sym_op->aead.aad.data;
3137 		aad_len = sess_misc->aad_length;
3138 		if (likely((aad_data + aad_len) ==
3139 			   rte_pktmbuf_mtod_offset(m_src,
3140 				uint8_t *,
3141 				sym_op->aead.data.offset))) {
3142 			d_offs = (d_offs - aad_len) | (d_offs << 16);
3143 			d_lens = (d_lens + aad_len) | (d_lens << 32);
3144 		} else {
3145 			fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3146 			fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3147 			fc_params.aad_buf.size = aad_len;
3148 			flags |= VALID_AAD_BUF;
3149 			inplace = 0;
3150 			d_offs = d_offs << 16;
3151 			d_lens = d_lens << 32;
3152 		}
3153 
3154 		salt = fc_params.iv_buf;
3155 		if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3156 			cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3157 			sess_misc->salt = *(uint32_t *)salt;
3158 		}
3159 		fc_params.iv_buf = salt + 4;
3160 		if (likely(sess_misc->mac_len)) {
3161 			struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3162 					     m_src;
3163 
3164 			if (!m)
3165 				m = m_src;
3166 
3167 			/* hmac immediately following data is best case */
3168 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3169 			    mc_hash_off !=
3170 			    (uint8_t *)sym_op->aead.digest.data)) {
3171 				flags |= VALID_MAC_BUF;
3172 				fc_params.mac_buf.size = sess_misc->mac_len;
3173 				fc_params.mac_buf.vaddr =
3174 				  sym_op->aead.digest.data;
3175 				fc_params.mac_buf.dma_addr =
3176 				 sym_op->aead.digest.phys_addr;
3177 				inplace = 0;
3178 			}
3179 		}
3180 	} else {
3181 		d_offs = sym_op->cipher.data.offset;
3182 		d_lens = sym_op->cipher.data.length;
3183 		mc_hash_off = sym_op->cipher.data.offset +
3184 			      sym_op->cipher.data.length;
3185 		d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3186 		d_lens = (d_lens << 32) | sym_op->auth.data.length;
3187 
3188 		if (mc_hash_off < (sym_op->auth.data.offset +
3189 				   sym_op->auth.data.length)){
3190 			mc_hash_off = (sym_op->auth.data.offset +
3191 				       sym_op->auth.data.length);
3192 		}
3193 		/* for gmac, salt should be updated like in gcm */
3194 		if (unlikely(sess_misc->is_gmac)) {
3195 			uint8_t *salt;
3196 			salt = fc_params.iv_buf;
3197 			if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3198 				cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3199 				sess_misc->salt = *(uint32_t *)salt;
3200 			}
3201 			fc_params.iv_buf = salt + 4;
3202 		}
3203 		if (likely(sess_misc->mac_len)) {
3204 			struct rte_mbuf *m;
3205 
3206 			m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3207 			if (!m)
3208 				m = m_src;
3209 
3210 			/* hmac immediately following data is best case */
3211 			if (!ctx->dec_auth && !ctx->auth_enc &&
3212 				 (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3213 			    mc_hash_off !=
3214 			     (uint8_t *)sym_op->auth.digest.data))) {
3215 				flags |= VALID_MAC_BUF;
3216 				fc_params.mac_buf.size =
3217 					sess_misc->mac_len;
3218 				fc_params.mac_buf.vaddr =
3219 					sym_op->auth.digest.data;
3220 				fc_params.mac_buf.dma_addr =
3221 				sym_op->auth.digest.phys_addr;
3222 				inplace = 0;
3223 			}
3224 		}
3225 	}
3226 	fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3227 	fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3228 
3229 	if (!ctx->dec_auth &&
3230 		  unlikely(sess_misc->is_null ||
3231 		  sess_misc->cpt_op == CPT_OP_DECODE))
3232 		inplace = 0;
3233 
3234 	if (likely(!m_dst && inplace)) {
3235 		/* Case of single buffer without AAD buf or
3236 		 * separate mac buf in place and
3237 		 * not air crypto
3238 		 */
3239 		fc_params.dst_iov = fc_params.src_iov = (void *)src;
3240 
3241 		if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3242 							  &fc_params,
3243 							  &flags))) {
3244 			CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3245 			ret = -EINVAL;
3246 			goto err_exit;
3247 		}
3248 
3249 	} else {
3250 		/* Out of place processing */
3251 		fc_params.src_iov = (void *)src;
3252 		fc_params.dst_iov = (void *)dst;
3253 
3254 		/* Store SG I/O in the api for reuse */
3255 		if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3256 			CPT_LOG_DP_ERR("Prepare src iov failed");
3257 			ret = -EINVAL;
3258 			goto err_exit;
3259 		}
3260 
3261 		if (unlikely(m_dst != NULL)) {
3262 			uint32_t pkt_len;
3263 
3264 			/* Try to make room as much as src has */
3265 			pkt_len = rte_pktmbuf_pkt_len(m_dst);
3266 
3267 			if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3268 				pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3269 				if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3270 					CPT_LOG_DP_ERR("Not enough space in "
3271 						       "m_dst %p, need %u"
3272 						       " more",
3273 						       m_dst, pkt_len);
3274 					ret = -EINVAL;
3275 					goto err_exit;
3276 				}
3277 			}
3278 
3279 			if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3280 				CPT_LOG_DP_ERR("Prepare dst iov failed for "
3281 					       "m_dst %p", m_dst);
3282 				ret = -EINVAL;
3283 				goto err_exit;
3284 			}
3285 		} else {
3286 			fc_params.dst_iov = (void *)src;
3287 		}
3288 	}
3289 
3290 	if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3291 		mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3292 				      m_info->lb_mlen, m_info->pool);
3293 	else
3294 		mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3295 				      m_info->sg_mlen, m_info->pool);
3296 
3297 	if (unlikely(mdata == NULL)) {
3298 		CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3299 		ret = -ENOMEM;
3300 		goto err_exit;
3301 	}
3302 
3303 	op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3304 	op[0] = (uintptr_t)mdata;
3305 	op[1] = (uintptr_t)cop;
3306 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3307 	space += 4 * sizeof(uint64_t);
3308 
3309 	fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3310 	fc_params.meta_buf.dma_addr += space;
3311 	fc_params.meta_buf.size -= space;
3312 
3313 	/* Finally prepare the instruction */
3314 	if (cpt_op & CPT_OP_ENCODE)
3315 		*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3316 						 &fc_params, op);
3317 	else
3318 		*prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3319 						 &fc_params, op);
3320 
3321 	if (unlikely(*prep_req == NULL)) {
3322 		CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3323 		ret = -EINVAL;
3324 		goto free_mdata_and_exit;
3325 	}
3326 
3327 	*mdata_ptr = mdata;
3328 
3329 	return 0;
3330 
3331 free_mdata_and_exit:
3332 	free_op_meta(mdata, m_info->pool);
3333 err_exit:
3334 	return ret;
3335 }
3336 
3337 static __rte_always_inline void
3338 compl_auth_verify(struct rte_crypto_op *op,
3339 		      uint8_t *gen_mac,
3340 		      uint64_t mac_len)
3341 {
3342 	uint8_t *mac;
3343 	struct rte_crypto_sym_op *sym_op = op->sym;
3344 
3345 	if (sym_op->auth.digest.data)
3346 		mac = sym_op->auth.digest.data;
3347 	else
3348 		mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3349 					      uint8_t *,
3350 					      sym_op->auth.data.length +
3351 					      sym_op->auth.data.offset);
3352 	if (!mac) {
3353 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3354 		return;
3355 	}
3356 
3357 	if (memcmp(mac, gen_mac, mac_len))
3358 		op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3359 	else
3360 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3361 }
3362 
3363 static __rte_always_inline void
3364 find_kasumif9_direction_and_length(uint8_t *src,
3365 				   uint32_t counter_num_bytes,
3366 				   uint32_t *addr_length_in_bits,
3367 				   uint8_t *addr_direction)
3368 {
3369 	uint8_t found = 0;
3370 	uint32_t pos;
3371 	uint8_t last_byte;
3372 	while (!found && counter_num_bytes > 0) {
3373 		counter_num_bytes--;
3374 		if (src[counter_num_bytes] == 0x00)
3375 			continue;
3376 		pos = rte_bsf32(src[counter_num_bytes]);
3377 		if (pos == 7) {
3378 			if (likely(counter_num_bytes > 0)) {
3379 				last_byte = src[counter_num_bytes - 1];
3380 				*addr_direction  =  last_byte & 0x1;
3381 				*addr_length_in_bits = counter_num_bytes * 8
3382 							- 1;
3383 			}
3384 		} else {
3385 			last_byte = src[counter_num_bytes];
3386 			*addr_direction = (last_byte >> (pos + 1)) & 0x1;
3387 			*addr_length_in_bits = counter_num_bytes * 8
3388 						+ (8 - (pos + 2));
3389 		}
3390 		found = 1;
3391 	}
3392 }
3393 
3394 /*
3395  * This handles all auth only except AES_GMAC
3396  */
3397 static __rte_always_inline int
3398 fill_digest_params(struct rte_crypto_op *cop,
3399 		   struct cpt_sess_misc *sess,
3400 		   struct cpt_qp_meta_info *m_info,
3401 		   void **mdata_ptr,
3402 		   void **prep_req)
3403 {
3404 	uint32_t space = 0;
3405 	struct rte_crypto_sym_op *sym_op = cop->sym;
3406 	void *mdata;
3407 	phys_addr_t mphys;
3408 	uint64_t *op;
3409 	uint32_t auth_range_off;
3410 	uint32_t flags = 0;
3411 	uint64_t d_offs = 0, d_lens;
3412 	struct rte_mbuf *m_src, *m_dst;
3413 	uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3414 	uint16_t mac_len = sess->mac_len;
3415 	fc_params_t params;
3416 	char src[SRC_IOV_SIZE];
3417 	uint8_t iv_buf[16];
3418 	int ret;
3419 
3420 	memset(&params, 0, sizeof(fc_params_t));
3421 
3422 	m_src = sym_op->m_src;
3423 
3424 	/* For just digest lets force mempool alloc */
3425 	mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3426 			      m_info->pool);
3427 	if (mdata == NULL) {
3428 		ret = -ENOMEM;
3429 		goto err_exit;
3430 	}
3431 
3432 	mphys = params.meta_buf.dma_addr;
3433 
3434 	op = mdata;
3435 	op[0] = (uintptr_t)mdata;
3436 	op[1] = (uintptr_t)cop;
3437 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3438 	space += 4 * sizeof(uint64_t);
3439 
3440 	auth_range_off = sym_op->auth.data.offset;
3441 
3442 	flags = VALID_MAC_BUF;
3443 	params.src_iov = (void *)src;
3444 	if (unlikely(sess->zsk_flag)) {
3445 		/*
3446 		 * Since for Zuc, Kasumi, Snow3g offsets are in bits
3447 		 * we will send pass through even for auth only case,
3448 		 * let MC handle it
3449 		 */
3450 		d_offs = auth_range_off;
3451 		auth_range_off = 0;
3452 		params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3453 					uint8_t *, sess->auth_iv_offset);
3454 		if (sess->zsk_flag == K_F9) {
3455 			uint32_t length_in_bits, num_bytes;
3456 			uint8_t *src, direction = 0;
3457 
3458 			memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3459 							uint8_t *), 8);
3460 			/*
3461 			 * This is kasumi f9, take direction from
3462 			 * source buffer
3463 			 */
3464 			length_in_bits = cop->sym->auth.data.length;
3465 			num_bytes = (length_in_bits >> 3);
3466 			src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3467 			find_kasumif9_direction_and_length(src,
3468 						num_bytes,
3469 						&length_in_bits,
3470 						&direction);
3471 			length_in_bits -= 64;
3472 			cop->sym->auth.data.offset += 64;
3473 			d_offs = cop->sym->auth.data.offset;
3474 			auth_range_off = d_offs / 8;
3475 			cop->sym->auth.data.length = length_in_bits;
3476 
3477 			/* Store it at end of auth iv */
3478 			iv_buf[8] = direction;
3479 			params.auth_iv_buf = iv_buf;
3480 		}
3481 	}
3482 
3483 	d_lens = sym_op->auth.data.length;
3484 
3485 	params.ctx_buf.vaddr = SESS_PRIV(sess);
3486 	params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3487 
3488 	if (auth_op == CPT_OP_AUTH_GENERATE) {
3489 		if (sym_op->auth.digest.data) {
3490 			/*
3491 			 * Digest to be generated
3492 			 * in separate buffer
3493 			 */
3494 			params.mac_buf.size =
3495 				sess->mac_len;
3496 			params.mac_buf.vaddr =
3497 				sym_op->auth.digest.data;
3498 			params.mac_buf.dma_addr =
3499 				sym_op->auth.digest.phys_addr;
3500 		} else {
3501 			uint32_t off = sym_op->auth.data.offset +
3502 				sym_op->auth.data.length;
3503 			int32_t dlen, space;
3504 
3505 			m_dst = sym_op->m_dst ?
3506 				sym_op->m_dst : sym_op->m_src;
3507 			dlen = rte_pktmbuf_pkt_len(m_dst);
3508 
3509 			space = off + mac_len - dlen;
3510 			if (space > 0)
3511 				if (!rte_pktmbuf_append(m_dst, space)) {
3512 					CPT_LOG_DP_ERR("Failed to extend "
3513 						       "mbuf by %uB", space);
3514 					ret = -EINVAL;
3515 					goto free_mdata_and_exit;
3516 				}
3517 
3518 			params.mac_buf.vaddr =
3519 				rte_pktmbuf_mtod_offset(m_dst, void *, off);
3520 			params.mac_buf.dma_addr =
3521 				rte_pktmbuf_iova_offset(m_dst, off);
3522 			params.mac_buf.size = mac_len;
3523 		}
3524 	} else {
3525 		/* Need space for storing generated mac */
3526 		params.mac_buf.vaddr = (uint8_t *)mdata + space;
3527 		params.mac_buf.dma_addr = mphys + space;
3528 		params.mac_buf.size = mac_len;
3529 		space += RTE_ALIGN_CEIL(mac_len, 8);
3530 		op[2] = (uintptr_t)params.mac_buf.vaddr;
3531 		op[3] = mac_len;
3532 	}
3533 
3534 	params.meta_buf.vaddr = (uint8_t *)mdata + space;
3535 	params.meta_buf.dma_addr = mphys + space;
3536 	params.meta_buf.size -= space;
3537 
3538 	/* Out of place processing */
3539 	params.src_iov = (void *)src;
3540 
3541 	/*Store SG I/O in the api for reuse */
3542 	if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3543 		CPT_LOG_DP_ERR("Prepare src iov failed");
3544 		ret = -EINVAL;
3545 		goto free_mdata_and_exit;
3546 	}
3547 
3548 	*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3549 	if (unlikely(*prep_req == NULL)) {
3550 		ret = -EINVAL;
3551 		goto free_mdata_and_exit;
3552 	}
3553 
3554 	*mdata_ptr = mdata;
3555 
3556 	return 0;
3557 
3558 free_mdata_and_exit:
3559 	free_op_meta(mdata, m_info->pool);
3560 err_exit:
3561 	return ret;
3562 }
3563 
3564 #endif /*_CPT_UCODE_H_ */
3565