xref: /dpdk/drivers/common/cpt/cpt_ucode.h (revision 99f9d799ce21ab22e922ffec8aad51d56e24d04d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8 
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12 
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17 
18 static uint8_t zuc_d[32] = {
19 	0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20 	0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21 	0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22 	0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24 
25 static __rte_always_inline void
26 gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
27 {
28 	int i, base;
29 
30 	for (i = 0; i < 4; i++) {
31 		base = 4 * i;
32 		keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
33 			(ck[base + 2] << 8) | (ck[base + 3]);
34 		keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
35 	}
36 }
37 
38 static __rte_always_inline int
39 cpt_mac_len_verify(struct rte_crypto_auth_xform *auth)
40 {
41 	uint16_t mac_len = auth->digest_length;
42 	int ret;
43 
44 	switch (auth->algo) {
45 	case RTE_CRYPTO_AUTH_MD5:
46 	case RTE_CRYPTO_AUTH_MD5_HMAC:
47 		ret = (mac_len == 16) ? 0 : -1;
48 		break;
49 	case RTE_CRYPTO_AUTH_SHA1:
50 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
51 		ret = (mac_len == 20) ? 0 : -1;
52 		break;
53 	case RTE_CRYPTO_AUTH_SHA224:
54 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
55 		ret = (mac_len == 28) ? 0 : -1;
56 		break;
57 	case RTE_CRYPTO_AUTH_SHA256:
58 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
59 		ret = (mac_len == 32) ? 0 : -1;
60 		break;
61 	case RTE_CRYPTO_AUTH_SHA384:
62 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
63 		ret = (mac_len == 48) ? 0 : -1;
64 		break;
65 	case RTE_CRYPTO_AUTH_SHA512:
66 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
67 		ret = (mac_len == 64) ? 0 : -1;
68 		break;
69 	case RTE_CRYPTO_AUTH_NULL:
70 		ret = 0;
71 		break;
72 	default:
73 		ret = -1;
74 	}
75 
76 	return ret;
77 }
78 
79 static __rte_always_inline void
80 cpt_fc_salt_update(struct cpt_ctx *cpt_ctx,
81 		   uint8_t *salt)
82 {
83 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
84 	memcpy(fctx->enc.encr_iv, salt, 4);
85 }
86 
87 static __rte_always_inline int
88 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
89 {
90 	switch (key_len) {
91 	case 16:
92 	case 24:
93 	case 32:
94 		return 0;
95 	default:
96 		return -1;
97 	}
98 }
99 
100 static __rte_always_inline int
101 cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
102 {
103 	int fc_type = 0;
104 	switch (type) {
105 	case PASSTHROUGH:
106 		fc_type = FC_GEN;
107 		break;
108 	case DES3_CBC:
109 	case DES3_ECB:
110 		fc_type = FC_GEN;
111 		break;
112 	case AES_CBC:
113 	case AES_ECB:
114 	case AES_CFB:
115 	case AES_CTR:
116 	case AES_GCM:
117 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
118 			return -1;
119 		fc_type = FC_GEN;
120 		break;
121 	case CHACHA20:
122 		fc_type = FC_GEN;
123 		break;
124 	case AES_XTS:
125 		key_len = key_len / 2;
126 		if (unlikely(key_len == 24)) {
127 			CPT_LOG_DP_ERR("Invalid AES key len for XTS");
128 			return -1;
129 		}
130 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
131 			return -1;
132 		fc_type = FC_GEN;
133 		break;
134 	case ZUC_EEA3:
135 	case SNOW3G_UEA2:
136 		if (unlikely(key_len != 16))
137 			return -1;
138 		/* No support for AEAD yet */
139 		if (unlikely(ctx->hash_type))
140 			return -1;
141 		fc_type = ZUC_SNOW3G;
142 		break;
143 	case KASUMI_F8_CBC:
144 	case KASUMI_F8_ECB:
145 		if (unlikely(key_len != 16))
146 			return -1;
147 		/* No support for AEAD yet */
148 		if (unlikely(ctx->hash_type))
149 			return -1;
150 		fc_type = KASUMI;
151 		break;
152 	default:
153 		return -1;
154 	}
155 
156 	ctx->fc_type = fc_type;
157 	return 0;
158 }
159 
160 static __rte_always_inline void
161 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
162 {
163 	cpt_ctx->enc_cipher = 0;
164 	fctx->enc.enc_cipher = 0;
165 }
166 
167 static __rte_always_inline void
168 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
169 {
170 	mc_aes_type_t aes_key_type = 0;
171 	switch (key_len) {
172 	case 16:
173 		aes_key_type = AES_128_BIT;
174 		break;
175 	case 24:
176 		aes_key_type = AES_192_BIT;
177 		break;
178 	case 32:
179 		aes_key_type = AES_256_BIT;
180 		break;
181 	default:
182 		/* This should not happen */
183 		CPT_LOG_DP_ERR("Invalid AES key len");
184 		return;
185 	}
186 	fctx->enc.aes_key = aes_key_type;
187 }
188 
189 static __rte_always_inline void
190 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
191 		uint16_t key_len)
192 {
193 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
194 	uint32_t keyx[4];
195 
196 	cpt_ctx->snow3g = 1;
197 	gen_key_snow3g(key, keyx);
198 	memcpy(zs_ctx->ci_key, keyx, key_len);
199 	cpt_ctx->zsk_flags = 0;
200 }
201 
202 static __rte_always_inline void
203 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
204 		uint16_t key_len)
205 {
206 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
207 
208 	cpt_ctx->snow3g = 0;
209 	memcpy(zs_ctx->ci_key, key, key_len);
210 	memcpy(zs_ctx->zuc_const, zuc_d, 32);
211 	cpt_ctx->zsk_flags = 0;
212 }
213 
214 static __rte_always_inline void
215 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
216 		uint16_t key_len)
217 {
218 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
219 
220 	cpt_ctx->k_ecb = 1;
221 	memcpy(k_ctx->ci_key, key, key_len);
222 	cpt_ctx->zsk_flags = 0;
223 }
224 
225 static __rte_always_inline void
226 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
227 		uint16_t key_len)
228 {
229 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
230 
231 	memcpy(k_ctx->ci_key, key, key_len);
232 	cpt_ctx->zsk_flags = 0;
233 }
234 
235 static __rte_always_inline int
236 cpt_fc_ciph_set_key(struct cpt_ctx *cpt_ctx, cipher_type_t type,
237 		    const uint8_t *key, uint16_t key_len, uint8_t *salt)
238 {
239 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
240 	int ret;
241 
242 	ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
243 	if (unlikely(ret))
244 		return -1;
245 
246 	if (cpt_ctx->fc_type == FC_GEN) {
247 		/*
248 		 * We need to always say IV is from DPTR as user can
249 		 * sometimes iverride IV per operation.
250 		 */
251 		fctx->enc.iv_source = CPT_FROM_DPTR;
252 
253 		if (cpt_ctx->auth_key_len > 64)
254 			return -1;
255 	}
256 
257 	switch (type) {
258 	case PASSTHROUGH:
259 		cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
260 		goto success;
261 	case DES3_CBC:
262 		/* CPT performs DES using 3DES with the 8B DES-key
263 		 * replicated 2 more times to match the 24B 3DES-key.
264 		 * Eg. If org. key is "0x0a 0x0b", then new key is
265 		 * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
266 		 */
267 		if (key_len == 8) {
268 			/* Skipping the first 8B as it will be copied
269 			 * in the regular code flow
270 			 */
271 			memcpy(fctx->enc.encr_key+key_len, key, key_len);
272 			memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
273 		}
274 		break;
275 	case DES3_ECB:
276 		/* For DES3_ECB IV need to be from CTX. */
277 		fctx->enc.iv_source = CPT_FROM_CTX;
278 		break;
279 	case AES_CBC:
280 	case AES_ECB:
281 	case AES_CFB:
282 	case AES_CTR:
283 	case CHACHA20:
284 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
285 		break;
286 	case AES_GCM:
287 		/* Even though iv source is from dptr,
288 		 * aes_gcm salt is taken from ctx
289 		 */
290 		if (salt) {
291 			memcpy(fctx->enc.encr_iv, salt, 4);
292 			/* Assuming it was just salt update
293 			 * and nothing else
294 			 */
295 			if (!key)
296 				goto success;
297 		}
298 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
299 		break;
300 	case AES_XTS:
301 		key_len = key_len / 2;
302 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
303 
304 		/* Copy key2 for XTS into ipad */
305 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
306 		memcpy(fctx->hmac.ipad, &key[key_len], key_len);
307 		break;
308 	case SNOW3G_UEA2:
309 		cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
310 		goto success;
311 	case ZUC_EEA3:
312 		cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
313 		goto success;
314 	case KASUMI_F8_ECB:
315 		cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
316 		goto success;
317 	case KASUMI_F8_CBC:
318 		cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
319 		goto success;
320 	default:
321 		return -1;
322 	}
323 
324 	/* Only for FC_GEN case */
325 
326 	/* For GMAC auth, cipher must be NULL */
327 	if (cpt_ctx->hash_type != GMAC_TYPE)
328 		fctx->enc.enc_cipher = type;
329 
330 	memcpy(fctx->enc.encr_key, key, key_len);
331 
332 success:
333 	cpt_ctx->enc_cipher = type;
334 
335 	return 0;
336 }
337 
338 static __rte_always_inline uint32_t
339 fill_sg_comp(sg_comp_t *list,
340 	     uint32_t i,
341 	     phys_addr_t dma_addr,
342 	     uint32_t size)
343 {
344 	sg_comp_t *to = &list[i>>2];
345 
346 	to->u.s.len[i%4] = rte_cpu_to_be_16(size);
347 	to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
348 	i++;
349 	return i;
350 }
351 
352 static __rte_always_inline uint32_t
353 fill_sg_comp_from_buf(sg_comp_t *list,
354 		      uint32_t i,
355 		      buf_ptr_t *from)
356 {
357 	sg_comp_t *to = &list[i>>2];
358 
359 	to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
360 	to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
361 	i++;
362 	return i;
363 }
364 
365 static __rte_always_inline uint32_t
366 fill_sg_comp_from_buf_min(sg_comp_t *list,
367 			  uint32_t i,
368 			  buf_ptr_t *from,
369 			  uint32_t *psize)
370 {
371 	sg_comp_t *to = &list[i >> 2];
372 	uint32_t size = *psize;
373 	uint32_t e_len;
374 
375 	e_len = (size > from->size) ? from->size : size;
376 	to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
377 	to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
378 	*psize -= e_len;
379 	i++;
380 	return i;
381 }
382 
383 /*
384  * This fills the MC expected SGIO list
385  * from IOV given by user.
386  */
387 static __rte_always_inline uint32_t
388 fill_sg_comp_from_iov(sg_comp_t *list,
389 		      uint32_t i,
390 		      iov_ptr_t *from, uint32_t from_offset,
391 		      uint32_t *psize, buf_ptr_t *extra_buf,
392 		      uint32_t extra_offset)
393 {
394 	int32_t j;
395 	uint32_t extra_len = extra_buf ? extra_buf->size : 0;
396 	uint32_t size = *psize;
397 	buf_ptr_t *bufs;
398 
399 	bufs = from->bufs;
400 	for (j = 0; (j < from->buf_cnt) && size; j++) {
401 		phys_addr_t e_dma_addr;
402 		uint32_t e_len;
403 		sg_comp_t *to = &list[i >> 2];
404 
405 		if (unlikely(from_offset)) {
406 			if (from_offset >= bufs[j].size) {
407 				from_offset -= bufs[j].size;
408 				continue;
409 			}
410 			e_dma_addr = bufs[j].dma_addr + from_offset;
411 			e_len = (size > (bufs[j].size - from_offset)) ?
412 				(bufs[j].size - from_offset) : size;
413 			from_offset = 0;
414 		} else {
415 			e_dma_addr = bufs[j].dma_addr;
416 			e_len = (size > bufs[j].size) ?
417 				bufs[j].size : size;
418 		}
419 
420 		to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
421 		to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
422 
423 		if (extra_len && (e_len >= extra_offset)) {
424 			/* Break the data at given offset */
425 			uint32_t next_len = e_len - extra_offset;
426 			phys_addr_t next_dma = e_dma_addr + extra_offset;
427 
428 			if (!extra_offset) {
429 				i--;
430 			} else {
431 				e_len = extra_offset;
432 				size -= e_len;
433 				to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
434 			}
435 
436 			extra_len = RTE_MIN(extra_len, size);
437 			/* Insert extra data ptr */
438 			if (extra_len) {
439 				i++;
440 				to = &list[i >> 2];
441 				to->u.s.len[i % 4] =
442 					rte_cpu_to_be_16(extra_len);
443 				to->ptr[i % 4] =
444 					rte_cpu_to_be_64(extra_buf->dma_addr);
445 				size -= extra_len;
446 			}
447 
448 			next_len = RTE_MIN(next_len, size);
449 			/* insert the rest of the data */
450 			if (next_len) {
451 				i++;
452 				to = &list[i >> 2];
453 				to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
454 				to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
455 				size -= next_len;
456 			}
457 			extra_len = 0;
458 
459 		} else {
460 			size -= e_len;
461 		}
462 		if (extra_offset)
463 			extra_offset -= size;
464 		i++;
465 	}
466 
467 	*psize = size;
468 	return (uint32_t)i;
469 }
470 
471 static __rte_always_inline void
472 cpt_digest_gen_prep(uint32_t flags,
473 		    uint64_t d_lens,
474 		    digest_params_t *params,
475 		    void *op,
476 		    void **prep_req)
477 {
478 	struct cpt_request_info *req;
479 	uint32_t size, i;
480 	uint16_t data_len, mac_len, key_len;
481 	auth_type_t hash_type;
482 	buf_ptr_t *meta_p;
483 	struct cpt_ctx *ctx;
484 	sg_comp_t *gather_comp;
485 	sg_comp_t *scatter_comp;
486 	uint8_t *in_buffer;
487 	uint32_t g_size_bytes, s_size_bytes;
488 	uint64_t dptr_dma, rptr_dma;
489 	vq_cmd_word0_t vq_cmd_w0;
490 	void *c_vaddr, *m_vaddr;
491 	uint64_t c_dma, m_dma;
492 
493 	ctx = params->ctx_buf.vaddr;
494 	meta_p = &params->meta_buf;
495 
496 	m_vaddr = meta_p->vaddr;
497 	m_dma = meta_p->dma_addr;
498 
499 	/*
500 	 * Save initial space that followed app data for completion code &
501 	 * alternate completion code to fall in same cache line as app data
502 	 */
503 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
504 	m_dma += COMPLETION_CODE_SIZE;
505 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
506 		(uint8_t *)m_vaddr;
507 	c_vaddr = (uint8_t *)m_vaddr + size;
508 	c_dma = m_dma + size;
509 	size += sizeof(cpt_res_s_t);
510 
511 	m_vaddr = (uint8_t *)m_vaddr + size;
512 	m_dma += size;
513 
514 	req = m_vaddr;
515 
516 	size = sizeof(struct cpt_request_info);
517 	m_vaddr = (uint8_t *)m_vaddr + size;
518 	m_dma += size;
519 
520 	hash_type = ctx->hash_type;
521 	mac_len = ctx->mac_len;
522 	key_len = ctx->auth_key_len;
523 	data_len = AUTH_DLEN(d_lens);
524 
525 	/*GP op header */
526 	vq_cmd_w0.s.opcode.minor = 0;
527 	vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
528 	if (ctx->hmac) {
529 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
530 		vq_cmd_w0.s.param1 = key_len;
531 		vq_cmd_w0.s.dlen = data_len + RTE_ALIGN_CEIL(key_len, 8);
532 	} else {
533 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
534 		vq_cmd_w0.s.param1 = 0;
535 		vq_cmd_w0.s.dlen = data_len;
536 	}
537 
538 	/* Null auth only case enters the if */
539 	if (unlikely(!hash_type && !ctx->enc_cipher)) {
540 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_MISC;
541 		/* Minor op is passthrough */
542 		vq_cmd_w0.s.opcode.minor = 0x03;
543 		/* Send out completion code only */
544 		vq_cmd_w0.s.param2 = 0x1;
545 	}
546 
547 	/* DPTR has SG list */
548 	in_buffer = m_vaddr;
549 	dptr_dma = m_dma;
550 
551 	((uint16_t *)in_buffer)[0] = 0;
552 	((uint16_t *)in_buffer)[1] = 0;
553 
554 	/* TODO Add error check if space will be sufficient */
555 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
556 
557 	/*
558 	 * Input gather list
559 	 */
560 
561 	i = 0;
562 
563 	if (ctx->hmac) {
564 		uint64_t k_dma = params->ctx_buf.dma_addr +
565 			offsetof(struct cpt_ctx, auth_key);
566 		/* Key */
567 		i = fill_sg_comp(gather_comp, i, k_dma,
568 				 RTE_ALIGN_CEIL(key_len, 8));
569 	}
570 
571 	/* input data */
572 	size = data_len;
573 	if (size) {
574 		i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
575 					  0, &size, NULL, 0);
576 		if (unlikely(size)) {
577 			CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
578 					 " by %dB", size);
579 			return;
580 		}
581 	} else {
582 		/*
583 		 * Looks like we need to support zero data
584 		 * gather ptr in case of hash & hmac
585 		 */
586 		i++;
587 	}
588 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
589 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
590 
591 	/*
592 	 * Output Gather list
593 	 */
594 
595 	i = 0;
596 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
597 
598 	if (flags & VALID_MAC_BUF) {
599 		if (unlikely(params->mac_buf.size < mac_len)) {
600 			CPT_LOG_DP_ERR("Insufficient MAC size");
601 			return;
602 		}
603 
604 		size = mac_len;
605 		i = fill_sg_comp_from_buf_min(scatter_comp, i,
606 					      &params->mac_buf, &size);
607 	} else {
608 		size = mac_len;
609 		i = fill_sg_comp_from_iov(scatter_comp, i,
610 					  params->src_iov, data_len,
611 					  &size, NULL, 0);
612 		if (unlikely(size)) {
613 			CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
614 				       " %dB", size);
615 			return;
616 		}
617 	}
618 
619 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
620 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
621 
622 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
623 
624 	/* This is DPTR len incase of SG mode */
625 	vq_cmd_w0.s.dlen = size;
626 
627 	m_vaddr = (uint8_t *)m_vaddr + size;
628 	m_dma += size;
629 
630 	/* cpt alternate completion address saved earlier */
631 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
632 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
633 	rptr_dma = c_dma - 8;
634 
635 	req->ist.ei1 = dptr_dma;
636 	req->ist.ei2 = rptr_dma;
637 
638 	/* 16 byte aligned cpt res address */
639 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
640 	*req->completion_addr = COMPLETION_CODE_INIT;
641 	req->comp_baddr  = c_dma;
642 
643 	/* Fill microcode part of instruction */
644 	req->ist.ei0 = vq_cmd_w0.u64;
645 
646 	req->op = op;
647 
648 	*prep_req = req;
649 	return;
650 }
651 
652 static __rte_always_inline void
653 cpt_enc_hmac_prep(uint32_t flags,
654 		  uint64_t d_offs,
655 		  uint64_t d_lens,
656 		  fc_params_t *fc_params,
657 		  void *op,
658 		  void **prep_req)
659 {
660 	uint32_t iv_offset = 0;
661 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
662 	struct cpt_ctx *cpt_ctx;
663 	uint32_t cipher_type, hash_type;
664 	uint32_t mac_len, size;
665 	uint8_t iv_len = 16;
666 	struct cpt_request_info *req;
667 	buf_ptr_t *meta_p, *aad_buf = NULL;
668 	uint32_t encr_offset, auth_offset;
669 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
670 	uint32_t passthrough_len = 0;
671 	void *m_vaddr, *offset_vaddr;
672 	uint64_t m_dma, offset_dma;
673 	vq_cmd_word0_t vq_cmd_w0;
674 	void *c_vaddr;
675 	uint64_t c_dma;
676 
677 	meta_p = &fc_params->meta_buf;
678 	m_vaddr = meta_p->vaddr;
679 	m_dma = meta_p->dma_addr;
680 
681 	encr_offset = ENCR_OFFSET(d_offs);
682 	auth_offset = AUTH_OFFSET(d_offs);
683 	encr_data_len = ENCR_DLEN(d_lens);
684 	auth_data_len = AUTH_DLEN(d_lens);
685 	if (unlikely(flags & VALID_AAD_BUF)) {
686 		/*
687 		 * We dont support both aad
688 		 * and auth data separately
689 		 */
690 		auth_data_len = 0;
691 		auth_offset = 0;
692 		aad_len = fc_params->aad_buf.size;
693 		aad_buf = &fc_params->aad_buf;
694 	}
695 	cpt_ctx = fc_params->ctx_buf.vaddr;
696 	cipher_type = cpt_ctx->enc_cipher;
697 	hash_type = cpt_ctx->hash_type;
698 	mac_len = cpt_ctx->mac_len;
699 
700 	/*
701 	 * Save initial space that followed app data for completion code &
702 	 * alternate completion code to fall in same cache line as app data
703 	 */
704 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
705 	m_dma += COMPLETION_CODE_SIZE;
706 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
707 		(uint8_t *)m_vaddr;
708 
709 	c_vaddr = (uint8_t *)m_vaddr + size;
710 	c_dma = m_dma + size;
711 	size += sizeof(cpt_res_s_t);
712 
713 	m_vaddr = (uint8_t *)m_vaddr + size;
714 	m_dma += size;
715 
716 	/* start cpt request info struct at 8 byte boundary */
717 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
718 		(uint8_t *)m_vaddr;
719 
720 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
721 
722 	size += sizeof(struct cpt_request_info);
723 	m_vaddr = (uint8_t *)m_vaddr + size;
724 	m_dma += size;
725 
726 	if (unlikely(!(flags & VALID_IV_BUF))) {
727 		iv_len = 0;
728 		iv_offset = ENCR_IV_OFFSET(d_offs);
729 	}
730 
731 	if (unlikely(flags & VALID_AAD_BUF)) {
732 		/*
733 		 * When AAD is given, data above encr_offset is pass through
734 		 * Since AAD is given as separate pointer and not as offset,
735 		 * this is a special case as we need to fragment input data
736 		 * into passthrough + encr_data and then insert AAD in between.
737 		 */
738 		if (hash_type != GMAC_TYPE) {
739 			passthrough_len = encr_offset;
740 			auth_offset = passthrough_len + iv_len;
741 			encr_offset = passthrough_len + aad_len + iv_len;
742 			auth_data_len = aad_len + encr_data_len;
743 		} else {
744 			passthrough_len = 16 + aad_len;
745 			auth_offset = passthrough_len + iv_len;
746 			auth_data_len = aad_len;
747 		}
748 	} else {
749 		encr_offset += iv_len;
750 		auth_offset += iv_len;
751 	}
752 
753 	/* Encryption */
754 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_FC;
755 	vq_cmd_w0.s.opcode.minor = CPT_FC_MINOR_OP_ENCRYPT;
756 	vq_cmd_w0.s.opcode.minor |= (cpt_ctx->auth_enc <<
757 					CPT_HMAC_FIRST_BIT_POS);
758 
759 	if (hash_type == GMAC_TYPE) {
760 		encr_offset = 0;
761 		encr_data_len = 0;
762 	}
763 
764 	auth_dlen = auth_offset + auth_data_len;
765 	enc_dlen = encr_data_len + encr_offset;
766 	if (unlikely(encr_data_len & 0xf)) {
767 		if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
768 			enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) +
769 					encr_offset;
770 		else if (likely((cipher_type == AES_CBC) ||
771 				(cipher_type == AES_ECB)))
772 			enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) +
773 					encr_offset;
774 	}
775 
776 	if (unlikely(auth_dlen > enc_dlen)) {
777 		inputlen = auth_dlen;
778 		outputlen = auth_dlen + mac_len;
779 	} else {
780 		inputlen = enc_dlen;
781 		outputlen = enc_dlen + mac_len;
782 	}
783 
784 	if (cpt_ctx->auth_enc != 0)
785 		outputlen = enc_dlen;
786 
787 	/* GP op header */
788 	vq_cmd_w0.s.param1 = encr_data_len;
789 	vq_cmd_w0.s.param2 = auth_data_len;
790 	/*
791 	 * In 83XX since we have a limitation of
792 	 * IV & Offset control word not part of instruction
793 	 * and need to be part of Data Buffer, we check if
794 	 * head room is there and then only do the Direct mode processing
795 	 */
796 	if (likely((flags & SINGLE_BUF_INPLACE) &&
797 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
798 		void *dm_vaddr = fc_params->bufs[0].vaddr;
799 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
800 		/*
801 		 * This flag indicates that there is 24 bytes head room and
802 		 * 8 bytes tail room available, so that we get to do
803 		 * DIRECT MODE with limitation
804 		 */
805 
806 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
807 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
808 
809 		/* DPTR */
810 		req->ist.ei1 = offset_dma;
811 		/* RPTR should just exclude offset control word */
812 		req->ist.ei2 = dm_dma_addr - iv_len;
813 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
814 						    + outputlen - iv_len);
815 
816 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
817 
818 		if (likely(iv_len)) {
819 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
820 						      + OFF_CTRL_LEN);
821 			uint64_t *src = fc_params->iv_buf;
822 			dest[0] = src[0];
823 			dest[1] = src[1];
824 		}
825 
826 		*(uint64_t *)offset_vaddr =
827 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
828 				((uint64_t)iv_offset << 8) |
829 				((uint64_t)auth_offset));
830 
831 	} else {
832 		uint32_t i, g_size_bytes, s_size_bytes;
833 		uint64_t dptr_dma, rptr_dma;
834 		sg_comp_t *gather_comp;
835 		sg_comp_t *scatter_comp;
836 		uint8_t *in_buffer;
837 
838 		/* This falls under strict SG mode */
839 		offset_vaddr = m_vaddr;
840 		offset_dma = m_dma;
841 		size = OFF_CTRL_LEN + iv_len;
842 
843 		m_vaddr = (uint8_t *)m_vaddr + size;
844 		m_dma += size;
845 
846 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
847 
848 		if (likely(iv_len)) {
849 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
850 						      + OFF_CTRL_LEN);
851 			uint64_t *src = fc_params->iv_buf;
852 			dest[0] = src[0];
853 			dest[1] = src[1];
854 		}
855 
856 		*(uint64_t *)offset_vaddr =
857 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
858 				((uint64_t)iv_offset << 8) |
859 				((uint64_t)auth_offset));
860 
861 		/* DPTR has SG list */
862 		in_buffer = m_vaddr;
863 		dptr_dma = m_dma;
864 
865 		((uint16_t *)in_buffer)[0] = 0;
866 		((uint16_t *)in_buffer)[1] = 0;
867 
868 		/* TODO Add error check if space will be sufficient */
869 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
870 
871 		/*
872 		 * Input Gather List
873 		 */
874 
875 		i = 0;
876 
877 		/* Offset control word that includes iv */
878 		i = fill_sg_comp(gather_comp, i, offset_dma,
879 				 OFF_CTRL_LEN + iv_len);
880 
881 		/* Add input data */
882 		size = inputlen - iv_len;
883 		if (likely(size)) {
884 			uint32_t aad_offset = aad_len ? passthrough_len : 0;
885 
886 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
887 				i = fill_sg_comp_from_buf_min(gather_comp, i,
888 							      fc_params->bufs,
889 							      &size);
890 			} else {
891 				i = fill_sg_comp_from_iov(gather_comp, i,
892 							  fc_params->src_iov,
893 							  0, &size,
894 							  aad_buf, aad_offset);
895 			}
896 
897 			if (unlikely(size)) {
898 				CPT_LOG_DP_ERR("Insufficient buffer space,"
899 					       " size %d needed", size);
900 				return;
901 			}
902 		}
903 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
904 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
905 
906 		/*
907 		 * Output Scatter list
908 		 */
909 		i = 0;
910 		scatter_comp =
911 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
912 
913 		/* Add IV */
914 		if (likely(iv_len)) {
915 			i = fill_sg_comp(scatter_comp, i,
916 					 offset_dma + OFF_CTRL_LEN,
917 					 iv_len);
918 		}
919 
920 		/* output data or output data + digest*/
921 		if (unlikely(flags & VALID_MAC_BUF)) {
922 			size = outputlen - iv_len - mac_len;
923 			if (size) {
924 				uint32_t aad_offset =
925 					aad_len ? passthrough_len : 0;
926 
927 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
928 					i = fill_sg_comp_from_buf_min(
929 							scatter_comp,
930 							i,
931 							fc_params->bufs,
932 							&size);
933 				} else {
934 					i = fill_sg_comp_from_iov(scatter_comp,
935 							i,
936 							fc_params->dst_iov,
937 							0,
938 							&size,
939 							aad_buf,
940 							aad_offset);
941 				}
942 				if (unlikely(size)) {
943 					CPT_LOG_DP_ERR("Insufficient buffer"
944 						       " space, size %d needed",
945 						       size);
946 					return;
947 				}
948 			}
949 			/* mac_data */
950 			if (mac_len) {
951 				i = fill_sg_comp_from_buf(scatter_comp, i,
952 							  &fc_params->mac_buf);
953 			}
954 		} else {
955 			/* Output including mac */
956 			size = outputlen - iv_len;
957 			if (likely(size)) {
958 				uint32_t aad_offset =
959 					aad_len ? passthrough_len : 0;
960 
961 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
962 					i = fill_sg_comp_from_buf_min(
963 							scatter_comp,
964 							i,
965 							fc_params->bufs,
966 							&size);
967 				} else {
968 					i = fill_sg_comp_from_iov(scatter_comp,
969 							i,
970 							fc_params->dst_iov,
971 							0,
972 							&size,
973 							aad_buf,
974 							aad_offset);
975 				}
976 				if (unlikely(size)) {
977 					CPT_LOG_DP_ERR("Insufficient buffer"
978 						       " space, size %d needed",
979 						       size);
980 					return;
981 				}
982 			}
983 		}
984 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
985 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
986 
987 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
988 
989 		/* This is DPTR len incase of SG mode */
990 		vq_cmd_w0.s.dlen = size;
991 
992 		m_vaddr = (uint8_t *)m_vaddr + size;
993 		m_dma += size;
994 
995 		/* cpt alternate completion address saved earlier */
996 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
997 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
998 		rptr_dma = c_dma - 8;
999 
1000 		req->ist.ei1 = dptr_dma;
1001 		req->ist.ei2 = rptr_dma;
1002 	}
1003 
1004 	/* 16 byte aligned cpt res address */
1005 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1006 	*req->completion_addr = COMPLETION_CODE_INIT;
1007 	req->comp_baddr  = c_dma;
1008 
1009 	/* Fill microcode part of instruction */
1010 	req->ist.ei0 = vq_cmd_w0.u64;
1011 
1012 	req->op  = op;
1013 
1014 	*prep_req = req;
1015 	return;
1016 }
1017 
1018 static __rte_always_inline void
1019 cpt_dec_hmac_prep(uint32_t flags,
1020 		  uint64_t d_offs,
1021 		  uint64_t d_lens,
1022 		  fc_params_t *fc_params,
1023 		  void *op,
1024 		  void **prep_req)
1025 {
1026 	uint32_t iv_offset = 0, size;
1027 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1028 	struct cpt_ctx *cpt_ctx;
1029 	int32_t hash_type, mac_len;
1030 	uint8_t iv_len = 16;
1031 	struct cpt_request_info *req;
1032 	buf_ptr_t *meta_p, *aad_buf = NULL;
1033 	uint32_t encr_offset, auth_offset;
1034 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
1035 	uint32_t passthrough_len = 0;
1036 	void *m_vaddr, *offset_vaddr;
1037 	uint64_t m_dma, offset_dma;
1038 	vq_cmd_word0_t vq_cmd_w0;
1039 	void *c_vaddr;
1040 	uint64_t c_dma;
1041 
1042 	meta_p = &fc_params->meta_buf;
1043 	m_vaddr = meta_p->vaddr;
1044 	m_dma = meta_p->dma_addr;
1045 
1046 	encr_offset = ENCR_OFFSET(d_offs);
1047 	auth_offset = AUTH_OFFSET(d_offs);
1048 	encr_data_len = ENCR_DLEN(d_lens);
1049 	auth_data_len = AUTH_DLEN(d_lens);
1050 
1051 	if (unlikely(flags & VALID_AAD_BUF)) {
1052 		/*
1053 		 * We dont support both aad
1054 		 * and auth data separately
1055 		 */
1056 		auth_data_len = 0;
1057 		auth_offset = 0;
1058 		aad_len = fc_params->aad_buf.size;
1059 		aad_buf = &fc_params->aad_buf;
1060 	}
1061 
1062 	cpt_ctx = fc_params->ctx_buf.vaddr;
1063 	hash_type = cpt_ctx->hash_type;
1064 	mac_len = cpt_ctx->mac_len;
1065 
1066 	if (unlikely(!(flags & VALID_IV_BUF))) {
1067 		iv_len = 0;
1068 		iv_offset = ENCR_IV_OFFSET(d_offs);
1069 	}
1070 
1071 	if (unlikely(flags & VALID_AAD_BUF)) {
1072 		/*
1073 		 * When AAD is given, data above encr_offset is pass through
1074 		 * Since AAD is given as separate pointer and not as offset,
1075 		 * this is a special case as we need to fragment input data
1076 		 * into passthrough + encr_data and then insert AAD in between.
1077 		 */
1078 		if (hash_type != GMAC_TYPE) {
1079 			passthrough_len = encr_offset;
1080 			auth_offset = passthrough_len + iv_len;
1081 			encr_offset = passthrough_len + aad_len + iv_len;
1082 			auth_data_len = aad_len + encr_data_len;
1083 		} else {
1084 			passthrough_len = 16 + aad_len;
1085 			auth_offset = passthrough_len + iv_len;
1086 			auth_data_len = aad_len;
1087 		}
1088 	} else {
1089 		encr_offset += iv_len;
1090 		auth_offset += iv_len;
1091 	}
1092 
1093 	/*
1094 	 * Save initial space that followed app data for completion code &
1095 	 * alternate completion code to fall in same cache line as app data
1096 	 */
1097 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1098 	m_dma += COMPLETION_CODE_SIZE;
1099 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1100 	       (uint8_t *)m_vaddr;
1101 	c_vaddr = (uint8_t *)m_vaddr + size;
1102 	c_dma = m_dma + size;
1103 	size += sizeof(cpt_res_s_t);
1104 
1105 	m_vaddr = (uint8_t *)m_vaddr + size;
1106 	m_dma += size;
1107 
1108 	/* start cpt request info structure at 8 byte alignment */
1109 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1110 		(uint8_t *)m_vaddr;
1111 
1112 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1113 
1114 	size += sizeof(struct cpt_request_info);
1115 	m_vaddr = (uint8_t *)m_vaddr + size;
1116 	m_dma += size;
1117 
1118 	/* Decryption */
1119 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_FC;
1120 	vq_cmd_w0.s.opcode.minor = CPT_FC_MINOR_OP_DECRYPT;
1121 	vq_cmd_w0.s.opcode.minor |= (cpt_ctx->dec_auth <<
1122 					CPT_HMAC_FIRST_BIT_POS);
1123 
1124 	if (hash_type == GMAC_TYPE) {
1125 		encr_offset = 0;
1126 		encr_data_len = 0;
1127 	}
1128 
1129 	enc_dlen = encr_offset + encr_data_len;
1130 	auth_dlen = auth_offset + auth_data_len;
1131 
1132 	if (auth_dlen > enc_dlen) {
1133 		inputlen = auth_dlen + mac_len;
1134 		outputlen = auth_dlen;
1135 	} else {
1136 		inputlen = enc_dlen + mac_len;
1137 		outputlen = enc_dlen;
1138 	}
1139 
1140 	if (cpt_ctx->dec_auth != 0)
1141 		outputlen = inputlen = enc_dlen;
1142 
1143 	vq_cmd_w0.s.param1 = encr_data_len;
1144 	vq_cmd_w0.s.param2 = auth_data_len;
1145 
1146 	/*
1147 	 * In 83XX since we have a limitation of
1148 	 * IV & Offset control word not part of instruction
1149 	 * and need to be part of Data Buffer, we check if
1150 	 * head room is there and then only do the Direct mode processing
1151 	 */
1152 	if (likely((flags & SINGLE_BUF_INPLACE) &&
1153 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
1154 		void *dm_vaddr = fc_params->bufs[0].vaddr;
1155 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1156 		/*
1157 		 * This flag indicates that there is 24 bytes head room and
1158 		 * 8 bytes tail room available, so that we get to do
1159 		 * DIRECT MODE with limitation
1160 		 */
1161 
1162 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1163 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1164 		req->ist.ei1 = offset_dma;
1165 
1166 		/* RPTR should just exclude offset control word */
1167 		req->ist.ei2 = dm_dma_addr - iv_len;
1168 
1169 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1170 					outputlen - iv_len);
1171 		/* since this is decryption,
1172 		 * don't touch the content of
1173 		 * alternate ccode space as it contains
1174 		 * hmac.
1175 		 */
1176 
1177 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1178 
1179 		if (likely(iv_len)) {
1180 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1181 						      OFF_CTRL_LEN);
1182 			uint64_t *src = fc_params->iv_buf;
1183 			dest[0] = src[0];
1184 			dest[1] = src[1];
1185 		}
1186 
1187 		*(uint64_t *)offset_vaddr =
1188 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1189 				((uint64_t)iv_offset << 8) |
1190 				((uint64_t)auth_offset));
1191 
1192 	} else {
1193 		uint64_t dptr_dma, rptr_dma;
1194 		uint32_t g_size_bytes, s_size_bytes;
1195 		sg_comp_t *gather_comp;
1196 		sg_comp_t *scatter_comp;
1197 		uint8_t *in_buffer;
1198 		uint8_t i = 0;
1199 
1200 		/* This falls under strict SG mode */
1201 		offset_vaddr = m_vaddr;
1202 		offset_dma = m_dma;
1203 		size = OFF_CTRL_LEN + iv_len;
1204 
1205 		m_vaddr = (uint8_t *)m_vaddr + size;
1206 		m_dma += size;
1207 
1208 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1209 
1210 		if (likely(iv_len)) {
1211 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1212 						      OFF_CTRL_LEN);
1213 			uint64_t *src = fc_params->iv_buf;
1214 			dest[0] = src[0];
1215 			dest[1] = src[1];
1216 		}
1217 
1218 		*(uint64_t *)offset_vaddr =
1219 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1220 				((uint64_t)iv_offset << 8) |
1221 				((uint64_t)auth_offset));
1222 
1223 		/* DPTR has SG list */
1224 		in_buffer = m_vaddr;
1225 		dptr_dma = m_dma;
1226 
1227 		((uint16_t *)in_buffer)[0] = 0;
1228 		((uint16_t *)in_buffer)[1] = 0;
1229 
1230 		/* TODO Add error check if space will be sufficient */
1231 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1232 
1233 		/*
1234 		 * Input Gather List
1235 		 */
1236 		i = 0;
1237 
1238 		/* Offset control word that includes iv */
1239 		i = fill_sg_comp(gather_comp, i, offset_dma,
1240 				 OFF_CTRL_LEN + iv_len);
1241 
1242 		/* Add input data */
1243 		if (flags & VALID_MAC_BUF) {
1244 			size = inputlen - iv_len - mac_len;
1245 			if (size) {
1246 				/* input data only */
1247 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1248 					i = fill_sg_comp_from_buf_min(
1249 							gather_comp, i,
1250 							fc_params->bufs,
1251 							&size);
1252 				} else {
1253 					uint32_t aad_offset = aad_len ?
1254 						passthrough_len : 0;
1255 
1256 					i = fill_sg_comp_from_iov(gather_comp,
1257 							i,
1258 							fc_params->src_iov,
1259 							0, &size,
1260 							aad_buf,
1261 							aad_offset);
1262 				}
1263 				if (unlikely(size)) {
1264 					CPT_LOG_DP_ERR("Insufficient buffer"
1265 						       " space, size %d needed",
1266 						       size);
1267 					return;
1268 				}
1269 			}
1270 
1271 			/* mac data */
1272 			if (mac_len) {
1273 				i = fill_sg_comp_from_buf(gather_comp, i,
1274 							  &fc_params->mac_buf);
1275 			}
1276 		} else {
1277 			/* input data + mac */
1278 			size = inputlen - iv_len;
1279 			if (size) {
1280 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1281 					i = fill_sg_comp_from_buf_min(
1282 							gather_comp, i,
1283 							fc_params->bufs,
1284 							&size);
1285 				} else {
1286 					uint32_t aad_offset = aad_len ?
1287 						passthrough_len : 0;
1288 
1289 					if (unlikely(!fc_params->src_iov)) {
1290 						CPT_LOG_DP_ERR("Bad input args");
1291 						return;
1292 					}
1293 
1294 					i = fill_sg_comp_from_iov(
1295 							gather_comp, i,
1296 							fc_params->src_iov,
1297 							0, &size,
1298 							aad_buf,
1299 							aad_offset);
1300 				}
1301 
1302 				if (unlikely(size)) {
1303 					CPT_LOG_DP_ERR("Insufficient buffer"
1304 						       " space, size %d needed",
1305 						       size);
1306 					return;
1307 				}
1308 			}
1309 		}
1310 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1311 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1312 
1313 		/*
1314 		 * Output Scatter List
1315 		 */
1316 
1317 		i = 0;
1318 		scatter_comp =
1319 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1320 
1321 		/* Add iv */
1322 		if (iv_len) {
1323 			i = fill_sg_comp(scatter_comp, i,
1324 					 offset_dma + OFF_CTRL_LEN,
1325 					 iv_len);
1326 		}
1327 
1328 		/* Add output data */
1329 		size = outputlen - iv_len;
1330 		if (size) {
1331 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1332 				/* handle single buffer here */
1333 				i = fill_sg_comp_from_buf_min(scatter_comp, i,
1334 							      fc_params->bufs,
1335 							      &size);
1336 			} else {
1337 				uint32_t aad_offset = aad_len ?
1338 					passthrough_len : 0;
1339 
1340 				if (unlikely(!fc_params->dst_iov)) {
1341 					CPT_LOG_DP_ERR("Bad input args");
1342 					return;
1343 				}
1344 
1345 				i = fill_sg_comp_from_iov(scatter_comp, i,
1346 							  fc_params->dst_iov, 0,
1347 							  &size, aad_buf,
1348 							  aad_offset);
1349 			}
1350 
1351 			if (unlikely(size)) {
1352 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1353 					       " size %d needed", size);
1354 				return;
1355 			}
1356 		}
1357 
1358 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1359 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1360 
1361 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1362 
1363 		/* This is DPTR len incase of SG mode */
1364 		vq_cmd_w0.s.dlen = size;
1365 
1366 		m_vaddr = (uint8_t *)m_vaddr + size;
1367 		m_dma += size;
1368 
1369 		/* cpt alternate completion address saved earlier */
1370 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1371 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1372 		rptr_dma = c_dma - 8;
1373 		size += COMPLETION_CODE_SIZE;
1374 
1375 		req->ist.ei1 = dptr_dma;
1376 		req->ist.ei2 = rptr_dma;
1377 	}
1378 
1379 	/* 16 byte aligned cpt res address */
1380 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1381 	*req->completion_addr = COMPLETION_CODE_INIT;
1382 	req->comp_baddr  = c_dma;
1383 
1384 	/* Fill microcode part of instruction */
1385 	req->ist.ei0 = vq_cmd_w0.u64;
1386 
1387 	req->op = op;
1388 
1389 	*prep_req = req;
1390 	return;
1391 }
1392 
1393 static __rte_always_inline void
1394 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1395 			uint64_t d_offs,
1396 			uint64_t d_lens,
1397 			fc_params_t *params,
1398 			void *op,
1399 			void **prep_req)
1400 {
1401 	uint32_t size;
1402 	int32_t inputlen, outputlen;
1403 	struct cpt_ctx *cpt_ctx;
1404 	uint32_t mac_len = 0;
1405 	uint8_t snow3g, j;
1406 	struct cpt_request_info *req;
1407 	buf_ptr_t *buf_p;
1408 	uint32_t encr_offset = 0, auth_offset = 0;
1409 	uint32_t encr_data_len = 0, auth_data_len = 0;
1410 	int flags, iv_len = 16;
1411 	void *m_vaddr, *c_vaddr;
1412 	uint64_t m_dma, c_dma, offset_ctrl;
1413 	uint64_t *offset_vaddr, offset_dma;
1414 	uint32_t *iv_s, iv[4];
1415 	vq_cmd_word0_t vq_cmd_w0;
1416 
1417 	buf_p = &params->meta_buf;
1418 	m_vaddr = buf_p->vaddr;
1419 	m_dma = buf_p->dma_addr;
1420 
1421 	cpt_ctx = params->ctx_buf.vaddr;
1422 	flags = cpt_ctx->zsk_flags;
1423 	mac_len = cpt_ctx->mac_len;
1424 	snow3g = cpt_ctx->snow3g;
1425 
1426 	/*
1427 	 * Save initial space that followed app data for completion code &
1428 	 * alternate completion code to fall in same cache line as app data
1429 	 */
1430 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1431 	m_dma += COMPLETION_CODE_SIZE;
1432 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1433 		(uint8_t *)m_vaddr;
1434 
1435 	c_vaddr = (uint8_t *)m_vaddr + size;
1436 	c_dma = m_dma + size;
1437 	size += sizeof(cpt_res_s_t);
1438 
1439 	m_vaddr = (uint8_t *)m_vaddr + size;
1440 	m_dma += size;
1441 
1442 	/* Reserve memory for cpt request info */
1443 	req = m_vaddr;
1444 
1445 	size = sizeof(struct cpt_request_info);
1446 	m_vaddr = (uint8_t *)m_vaddr + size;
1447 	m_dma += size;
1448 
1449 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1450 
1451 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1452 
1453 	vq_cmd_w0.s.opcode.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1454 			  (0 << 3) | (flags & 0x7));
1455 
1456 	if (flags == 0x1) {
1457 		/*
1458 		 * Microcode expects offsets in bytes
1459 		 * TODO: Rounding off
1460 		 */
1461 		auth_data_len = AUTH_DLEN(d_lens);
1462 
1463 		/* EIA3 or UIA2 */
1464 		auth_offset = AUTH_OFFSET(d_offs);
1465 		auth_offset = auth_offset / 8;
1466 
1467 		/* consider iv len */
1468 		auth_offset += iv_len;
1469 
1470 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1471 		outputlen = mac_len;
1472 
1473 		offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1474 
1475 	} else {
1476 		/* EEA3 or UEA2 */
1477 		/*
1478 		 * Microcode expects offsets in bytes
1479 		 * TODO: Rounding off
1480 		 */
1481 		encr_data_len = ENCR_DLEN(d_lens);
1482 
1483 		encr_offset = ENCR_OFFSET(d_offs);
1484 		encr_offset = encr_offset / 8;
1485 		/* consider iv len */
1486 		encr_offset += iv_len;
1487 
1488 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1489 		outputlen = inputlen;
1490 
1491 		/* iv offset is 0 */
1492 		offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1493 	}
1494 
1495 	/* IV */
1496 	iv_s = (flags == 0x1) ? params->auth_iv_buf :
1497 		params->iv_buf;
1498 
1499 	if (snow3g) {
1500 		/*
1501 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1502 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1503 		 */
1504 
1505 		for (j = 0; j < 4; j++)
1506 			iv[j] = iv_s[3 - j];
1507 	} else {
1508 		/* ZUC doesn't need a swap */
1509 		for (j = 0; j < 4; j++)
1510 			iv[j] = iv_s[j];
1511 	}
1512 
1513 	/*
1514 	 * GP op header, lengths are expected in bits.
1515 	 */
1516 	vq_cmd_w0.s.param1 = encr_data_len;
1517 	vq_cmd_w0.s.param2 = auth_data_len;
1518 
1519 	/*
1520 	 * In 83XX since we have a limitation of
1521 	 * IV & Offset control word not part of instruction
1522 	 * and need to be part of Data Buffer, we check if
1523 	 * head room is there and then only do the Direct mode processing
1524 	 */
1525 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1526 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1527 		void *dm_vaddr = params->bufs[0].vaddr;
1528 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1529 		/*
1530 		 * This flag indicates that there is 24 bytes head room and
1531 		 * 8 bytes tail room available, so that we get to do
1532 		 * DIRECT MODE with limitation
1533 		 */
1534 
1535 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1536 					    OFF_CTRL_LEN - iv_len);
1537 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1538 
1539 		/* DPTR */
1540 		req->ist.ei1 = offset_dma;
1541 		/* RPTR should just exclude offset control word */
1542 		req->ist.ei2 = dm_dma_addr - iv_len;
1543 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1544 						    + outputlen - iv_len);
1545 
1546 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1547 
1548 		if (likely(iv_len)) {
1549 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1550 						      + OFF_CTRL_LEN);
1551 			memcpy(iv_d, iv, 16);
1552 		}
1553 
1554 		*offset_vaddr = offset_ctrl;
1555 	} else {
1556 		uint32_t i, g_size_bytes, s_size_bytes;
1557 		uint64_t dptr_dma, rptr_dma;
1558 		sg_comp_t *gather_comp;
1559 		sg_comp_t *scatter_comp;
1560 		uint8_t *in_buffer;
1561 		uint32_t *iv_d;
1562 
1563 		/* save space for iv */
1564 		offset_vaddr = m_vaddr;
1565 		offset_dma = m_dma;
1566 
1567 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1568 		m_dma += OFF_CTRL_LEN + iv_len;
1569 
1570 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1571 
1572 		/* DPTR has SG list */
1573 		in_buffer = m_vaddr;
1574 		dptr_dma = m_dma;
1575 
1576 		((uint16_t *)in_buffer)[0] = 0;
1577 		((uint16_t *)in_buffer)[1] = 0;
1578 
1579 		/* TODO Add error check if space will be sufficient */
1580 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1581 
1582 		/*
1583 		 * Input Gather List
1584 		 */
1585 		i = 0;
1586 
1587 		/* Offset control word followed by iv */
1588 
1589 		i = fill_sg_comp(gather_comp, i, offset_dma,
1590 				 OFF_CTRL_LEN + iv_len);
1591 
1592 		/* iv offset is 0 */
1593 		*offset_vaddr = offset_ctrl;
1594 
1595 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1596 		memcpy(iv_d, iv, 16);
1597 
1598 		/* input data */
1599 		size = inputlen - iv_len;
1600 		if (size) {
1601 			i = fill_sg_comp_from_iov(gather_comp, i,
1602 						  params->src_iov,
1603 						  0, &size, NULL, 0);
1604 			if (unlikely(size)) {
1605 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1606 					       " size %d needed", size);
1607 				return;
1608 			}
1609 		}
1610 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1611 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1612 
1613 		/*
1614 		 * Output Scatter List
1615 		 */
1616 
1617 		i = 0;
1618 		scatter_comp =
1619 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1620 
1621 		if (flags == 0x1) {
1622 			/* IV in SLIST only for EEA3 & UEA2 */
1623 			iv_len = 0;
1624 		}
1625 
1626 		if (iv_len) {
1627 			i = fill_sg_comp(scatter_comp, i,
1628 					 offset_dma + OFF_CTRL_LEN, iv_len);
1629 		}
1630 
1631 		/* Add output data */
1632 		if (req_flags & VALID_MAC_BUF) {
1633 			size = outputlen - iv_len - mac_len;
1634 			if (size) {
1635 				i = fill_sg_comp_from_iov(scatter_comp, i,
1636 							  params->dst_iov, 0,
1637 							  &size, NULL, 0);
1638 
1639 				if (unlikely(size)) {
1640 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1641 						       " size %d needed", size);
1642 					return;
1643 				}
1644 			}
1645 
1646 			/* mac data */
1647 			if (mac_len) {
1648 				i = fill_sg_comp_from_buf(scatter_comp, i,
1649 							  &params->mac_buf);
1650 			}
1651 		} else {
1652 			/* Output including mac */
1653 			size = outputlen - iv_len;
1654 			if (size) {
1655 				i = fill_sg_comp_from_iov(scatter_comp, i,
1656 							  params->dst_iov, 0,
1657 							  &size, NULL, 0);
1658 
1659 				if (unlikely(size)) {
1660 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1661 						       " size %d needed", size);
1662 					return;
1663 				}
1664 			}
1665 		}
1666 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1667 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1668 
1669 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1670 
1671 		/* This is DPTR len incase of SG mode */
1672 		vq_cmd_w0.s.dlen = size;
1673 
1674 		m_vaddr = (uint8_t *)m_vaddr + size;
1675 		m_dma += size;
1676 
1677 		/* cpt alternate completion address saved earlier */
1678 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1679 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1680 		rptr_dma = c_dma - 8;
1681 
1682 		req->ist.ei1 = dptr_dma;
1683 		req->ist.ei2 = rptr_dma;
1684 	}
1685 
1686 	/* 16 byte aligned cpt res address */
1687 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1688 	*req->completion_addr = COMPLETION_CODE_INIT;
1689 	req->comp_baddr  = c_dma;
1690 
1691 	/* Fill microcode part of instruction */
1692 	req->ist.ei0 = vq_cmd_w0.u64;
1693 
1694 	req->op = op;
1695 
1696 	*prep_req = req;
1697 	return;
1698 }
1699 
1700 static __rte_always_inline void
1701 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1702 			uint64_t d_offs,
1703 			uint64_t d_lens,
1704 			fc_params_t *params,
1705 			void *op,
1706 			void **prep_req)
1707 {
1708 	uint32_t size;
1709 	int32_t inputlen = 0, outputlen;
1710 	struct cpt_ctx *cpt_ctx;
1711 	uint8_t snow3g, iv_len = 16;
1712 	struct cpt_request_info *req;
1713 	buf_ptr_t *buf_p;
1714 	uint32_t encr_offset;
1715 	uint32_t encr_data_len;
1716 	int flags;
1717 	void *m_vaddr, *c_vaddr;
1718 	uint64_t m_dma, c_dma;
1719 	uint64_t *offset_vaddr, offset_dma;
1720 	uint32_t *iv_s, iv[4], j;
1721 	vq_cmd_word0_t vq_cmd_w0;
1722 
1723 	buf_p = &params->meta_buf;
1724 	m_vaddr = buf_p->vaddr;
1725 	m_dma = buf_p->dma_addr;
1726 
1727 	/*
1728 	 * Microcode expects offsets in bytes
1729 	 * TODO: Rounding off
1730 	 */
1731 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1732 	encr_data_len = ENCR_DLEN(d_lens);
1733 
1734 	cpt_ctx = params->ctx_buf.vaddr;
1735 	flags = cpt_ctx->zsk_flags;
1736 	snow3g = cpt_ctx->snow3g;
1737 	/*
1738 	 * Save initial space that followed app data for completion code &
1739 	 * alternate completion code to fall in same cache line as app data
1740 	 */
1741 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1742 	m_dma += COMPLETION_CODE_SIZE;
1743 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1744 		(uint8_t *)m_vaddr;
1745 
1746 	c_vaddr = (uint8_t *)m_vaddr + size;
1747 	c_dma = m_dma + size;
1748 	size += sizeof(cpt_res_s_t);
1749 
1750 	m_vaddr = (uint8_t *)m_vaddr + size;
1751 	m_dma += size;
1752 
1753 	/* Reserve memory for cpt request info */
1754 	req = m_vaddr;
1755 
1756 	size = sizeof(struct cpt_request_info);
1757 	m_vaddr = (uint8_t *)m_vaddr + size;
1758 	m_dma += size;
1759 
1760 	vq_cmd_w0.u64 = 0;
1761 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1762 
1763 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1764 
1765 	vq_cmd_w0.s.opcode.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1766 			  (0 << 3) | (flags & 0x7));
1767 
1768 	/* consider iv len */
1769 	encr_offset += iv_len;
1770 
1771 	inputlen = encr_offset +
1772 		(RTE_ALIGN(encr_data_len, 8) / 8);
1773 	outputlen = inputlen;
1774 
1775 	/* IV */
1776 	iv_s = params->iv_buf;
1777 	if (snow3g) {
1778 		/*
1779 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1780 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1781 		 */
1782 
1783 		for (j = 0; j < 4; j++)
1784 			iv[j] = iv_s[3 - j];
1785 	} else {
1786 		/* ZUC doesn't need a swap */
1787 		for (j = 0; j < 4; j++)
1788 			iv[j] = iv_s[j];
1789 	}
1790 
1791 	/*
1792 	 * GP op header, lengths are expected in bits.
1793 	 */
1794 	vq_cmd_w0.s.param1 = encr_data_len;
1795 
1796 	/*
1797 	 * In 83XX since we have a limitation of
1798 	 * IV & Offset control word not part of instruction
1799 	 * and need to be part of Data Buffer, we check if
1800 	 * head room is there and then only do the Direct mode processing
1801 	 */
1802 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1803 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1804 		void *dm_vaddr = params->bufs[0].vaddr;
1805 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1806 		/*
1807 		 * This flag indicates that there is 24 bytes head room and
1808 		 * 8 bytes tail room available, so that we get to do
1809 		 * DIRECT MODE with limitation
1810 		 */
1811 
1812 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1813 					    OFF_CTRL_LEN - iv_len);
1814 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1815 
1816 		/* DPTR */
1817 		req->ist.ei1 = offset_dma;
1818 		/* RPTR should just exclude offset control word */
1819 		req->ist.ei2 = dm_dma_addr - iv_len;
1820 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1821 						    + outputlen - iv_len);
1822 
1823 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1824 
1825 		if (likely(iv_len)) {
1826 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1827 						      + OFF_CTRL_LEN);
1828 			memcpy(iv_d, iv, 16);
1829 		}
1830 
1831 		/* iv offset is 0 */
1832 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1833 	} else {
1834 		uint32_t i, g_size_bytes, s_size_bytes;
1835 		uint64_t dptr_dma, rptr_dma;
1836 		sg_comp_t *gather_comp;
1837 		sg_comp_t *scatter_comp;
1838 		uint8_t *in_buffer;
1839 		uint32_t *iv_d;
1840 
1841 		/* save space for offset and iv... */
1842 		offset_vaddr = m_vaddr;
1843 		offset_dma = m_dma;
1844 
1845 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1846 		m_dma += OFF_CTRL_LEN + iv_len;
1847 
1848 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1849 
1850 		/* DPTR has SG list */
1851 		in_buffer = m_vaddr;
1852 		dptr_dma = m_dma;
1853 
1854 		((uint16_t *)in_buffer)[0] = 0;
1855 		((uint16_t *)in_buffer)[1] = 0;
1856 
1857 		/* TODO Add error check if space will be sufficient */
1858 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1859 
1860 		/*
1861 		 * Input Gather List
1862 		 */
1863 		i = 0;
1864 
1865 		/* Offset control word */
1866 
1867 		/* iv offset is 0 */
1868 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1869 
1870 		i = fill_sg_comp(gather_comp, i, offset_dma,
1871 				 OFF_CTRL_LEN + iv_len);
1872 
1873 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1874 		memcpy(iv_d, iv, 16);
1875 
1876 		/* Add input data */
1877 		size = inputlen - iv_len;
1878 		if (size) {
1879 			i = fill_sg_comp_from_iov(gather_comp, i,
1880 						  params->src_iov,
1881 						  0, &size, NULL, 0);
1882 			if (unlikely(size)) {
1883 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1884 					       " size %d needed", size);
1885 				return;
1886 			}
1887 		}
1888 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1889 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1890 
1891 		/*
1892 		 * Output Scatter List
1893 		 */
1894 
1895 		i = 0;
1896 		scatter_comp =
1897 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1898 
1899 		/* IV */
1900 		i = fill_sg_comp(scatter_comp, i,
1901 				 offset_dma + OFF_CTRL_LEN,
1902 				 iv_len);
1903 
1904 		/* Add output data */
1905 		size = outputlen - iv_len;
1906 		if (size) {
1907 			i = fill_sg_comp_from_iov(scatter_comp, i,
1908 						  params->dst_iov, 0,
1909 						  &size, NULL, 0);
1910 
1911 			if (unlikely(size)) {
1912 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1913 					       " size %d needed", size);
1914 				return;
1915 			}
1916 		}
1917 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1918 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1919 
1920 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1921 
1922 		/* This is DPTR len incase of SG mode */
1923 		vq_cmd_w0.s.dlen = size;
1924 
1925 		m_vaddr = (uint8_t *)m_vaddr + size;
1926 		m_dma += size;
1927 
1928 		/* cpt alternate completion address saved earlier */
1929 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1930 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1931 		rptr_dma = c_dma - 8;
1932 
1933 		req->ist.ei1 = dptr_dma;
1934 		req->ist.ei2 = rptr_dma;
1935 	}
1936 
1937 	/* 16 byte aligned cpt res address */
1938 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1939 	*req->completion_addr = COMPLETION_CODE_INIT;
1940 	req->comp_baddr  = c_dma;
1941 
1942 	/* Fill microcode part of instruction */
1943 	req->ist.ei0 = vq_cmd_w0.u64;
1944 
1945 	req->op = op;
1946 
1947 	*prep_req = req;
1948 	return;
1949 }
1950 
1951 static __rte_always_inline void
1952 cpt_kasumi_enc_prep(uint32_t req_flags,
1953 		    uint64_t d_offs,
1954 		    uint64_t d_lens,
1955 		    fc_params_t *params,
1956 		    void *op,
1957 		    void **prep_req)
1958 {
1959 	uint32_t size;
1960 	int32_t inputlen = 0, outputlen = 0;
1961 	struct cpt_ctx *cpt_ctx;
1962 	uint32_t mac_len = 0;
1963 	uint8_t i = 0;
1964 	struct cpt_request_info *req;
1965 	buf_ptr_t *buf_p;
1966 	uint32_t encr_offset, auth_offset;
1967 	uint32_t encr_data_len, auth_data_len;
1968 	int flags;
1969 	uint8_t *iv_s, *iv_d, iv_len = 8;
1970 	uint8_t dir = 0;
1971 	void *m_vaddr, *c_vaddr;
1972 	uint64_t m_dma, c_dma;
1973 	uint64_t *offset_vaddr, offset_dma;
1974 	vq_cmd_word0_t vq_cmd_w0;
1975 	uint8_t *in_buffer;
1976 	uint32_t g_size_bytes, s_size_bytes;
1977 	uint64_t dptr_dma, rptr_dma;
1978 	sg_comp_t *gather_comp;
1979 	sg_comp_t *scatter_comp;
1980 
1981 	buf_p = &params->meta_buf;
1982 	m_vaddr = buf_p->vaddr;
1983 	m_dma = buf_p->dma_addr;
1984 
1985 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1986 	auth_offset = AUTH_OFFSET(d_offs) / 8;
1987 	encr_data_len = ENCR_DLEN(d_lens);
1988 	auth_data_len = AUTH_DLEN(d_lens);
1989 
1990 	cpt_ctx = params->ctx_buf.vaddr;
1991 	flags = cpt_ctx->zsk_flags;
1992 	mac_len = cpt_ctx->mac_len;
1993 
1994 	if (flags == 0x0)
1995 		iv_s = params->iv_buf;
1996 	else
1997 		iv_s = params->auth_iv_buf;
1998 
1999 	dir = iv_s[8] & 0x1;
2000 
2001 	/*
2002 	 * Save initial space that followed app data for completion code &
2003 	 * alternate completion code to fall in same cache line as app data
2004 	 */
2005 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2006 	m_dma += COMPLETION_CODE_SIZE;
2007 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2008 		(uint8_t *)m_vaddr;
2009 
2010 	c_vaddr = (uint8_t *)m_vaddr + size;
2011 	c_dma = m_dma + size;
2012 	size += sizeof(cpt_res_s_t);
2013 
2014 	m_vaddr = (uint8_t *)m_vaddr + size;
2015 	m_dma += size;
2016 
2017 	/* Reserve memory for cpt request info */
2018 	req = m_vaddr;
2019 
2020 	size = sizeof(struct cpt_request_info);
2021 	m_vaddr = (uint8_t *)m_vaddr + size;
2022 	m_dma += size;
2023 
2024 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2025 
2026 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2027 	vq_cmd_w0.s.opcode.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2028 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2029 
2030 	/*
2031 	 * GP op header, lengths are expected in bits.
2032 	 */
2033 	vq_cmd_w0.s.param1 = encr_data_len;
2034 	vq_cmd_w0.s.param2 = auth_data_len;
2035 
2036 	/* consider iv len */
2037 	if (flags == 0x0) {
2038 		encr_offset += iv_len;
2039 		auth_offset += iv_len;
2040 	}
2041 
2042 	/* save space for offset ctrl and iv */
2043 	offset_vaddr = m_vaddr;
2044 	offset_dma = m_dma;
2045 
2046 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2047 	m_dma += OFF_CTRL_LEN + iv_len;
2048 
2049 	/* DPTR has SG list */
2050 	in_buffer = m_vaddr;
2051 	dptr_dma = m_dma;
2052 
2053 	((uint16_t *)in_buffer)[0] = 0;
2054 	((uint16_t *)in_buffer)[1] = 0;
2055 
2056 	/* TODO Add error check if space will be sufficient */
2057 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2058 
2059 	/*
2060 	 * Input Gather List
2061 	 */
2062 	i = 0;
2063 
2064 	/* Offset control word followed by iv */
2065 
2066 	if (flags == 0x0) {
2067 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2068 		outputlen = inputlen;
2069 		/* iv offset is 0 */
2070 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2071 	} else {
2072 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2073 		outputlen = mac_len;
2074 		/* iv offset is 0 */
2075 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2076 	}
2077 
2078 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2079 
2080 	/* IV */
2081 	iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2082 	memcpy(iv_d, iv_s, iv_len);
2083 
2084 	/* input data */
2085 	size = inputlen - iv_len;
2086 	if (size) {
2087 		i = fill_sg_comp_from_iov(gather_comp, i,
2088 					  params->src_iov, 0,
2089 					  &size, NULL, 0);
2090 
2091 		if (unlikely(size)) {
2092 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2093 				       " size %d needed", size);
2094 			return;
2095 		}
2096 	}
2097 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2098 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2099 
2100 	/*
2101 	 * Output Scatter List
2102 	 */
2103 
2104 	i = 0;
2105 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2106 
2107 	if (flags == 0x1) {
2108 		/* IV in SLIST only for F8 */
2109 		iv_len = 0;
2110 	}
2111 
2112 	/* IV */
2113 	if (iv_len) {
2114 		i = fill_sg_comp(scatter_comp, i,
2115 				 offset_dma + OFF_CTRL_LEN,
2116 				 iv_len);
2117 	}
2118 
2119 	/* Add output data */
2120 	if (req_flags & VALID_MAC_BUF) {
2121 		size = outputlen - iv_len - mac_len;
2122 		if (size) {
2123 			i = fill_sg_comp_from_iov(scatter_comp, i,
2124 						  params->dst_iov, 0,
2125 						  &size, NULL, 0);
2126 
2127 			if (unlikely(size)) {
2128 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2129 					       " size %d needed", size);
2130 				return;
2131 			}
2132 		}
2133 
2134 		/* mac data */
2135 		if (mac_len) {
2136 			i = fill_sg_comp_from_buf(scatter_comp, i,
2137 						  &params->mac_buf);
2138 		}
2139 	} else {
2140 		/* Output including mac */
2141 		size = outputlen - iv_len;
2142 		if (size) {
2143 			i = fill_sg_comp_from_iov(scatter_comp, i,
2144 						  params->dst_iov, 0,
2145 						  &size, NULL, 0);
2146 
2147 			if (unlikely(size)) {
2148 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2149 					       " size %d needed", size);
2150 				return;
2151 			}
2152 		}
2153 	}
2154 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2155 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2156 
2157 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2158 
2159 	/* This is DPTR len incase of SG mode */
2160 	vq_cmd_w0.s.dlen = size;
2161 
2162 	m_vaddr = (uint8_t *)m_vaddr + size;
2163 	m_dma += size;
2164 
2165 	/* cpt alternate completion address saved earlier */
2166 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2167 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2168 	rptr_dma = c_dma - 8;
2169 
2170 	req->ist.ei1 = dptr_dma;
2171 	req->ist.ei2 = rptr_dma;
2172 
2173 	/* 16 byte aligned cpt res address */
2174 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2175 	*req->completion_addr = COMPLETION_CODE_INIT;
2176 	req->comp_baddr  = c_dma;
2177 
2178 	/* Fill microcode part of instruction */
2179 	req->ist.ei0 = vq_cmd_w0.u64;
2180 
2181 	req->op = op;
2182 
2183 	*prep_req = req;
2184 	return;
2185 }
2186 
2187 static __rte_always_inline void
2188 cpt_kasumi_dec_prep(uint64_t d_offs,
2189 		    uint64_t d_lens,
2190 		    fc_params_t *params,
2191 		    void *op,
2192 		    void **prep_req)
2193 {
2194 	uint32_t size;
2195 	int32_t inputlen = 0, outputlen;
2196 	struct cpt_ctx *cpt_ctx;
2197 	uint8_t i = 0, iv_len = 8;
2198 	struct cpt_request_info *req;
2199 	buf_ptr_t *buf_p;
2200 	uint32_t encr_offset;
2201 	uint32_t encr_data_len;
2202 	int flags;
2203 	uint8_t dir = 0;
2204 	void *m_vaddr, *c_vaddr;
2205 	uint64_t m_dma, c_dma;
2206 	uint64_t *offset_vaddr, offset_dma;
2207 	vq_cmd_word0_t vq_cmd_w0;
2208 	uint8_t *in_buffer;
2209 	uint32_t g_size_bytes, s_size_bytes;
2210 	uint64_t dptr_dma, rptr_dma;
2211 	sg_comp_t *gather_comp;
2212 	sg_comp_t *scatter_comp;
2213 
2214 	buf_p = &params->meta_buf;
2215 	m_vaddr = buf_p->vaddr;
2216 	m_dma = buf_p->dma_addr;
2217 
2218 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2219 	encr_data_len = ENCR_DLEN(d_lens);
2220 
2221 	cpt_ctx = params->ctx_buf.vaddr;
2222 	flags = cpt_ctx->zsk_flags;
2223 	/*
2224 	 * Save initial space that followed app data for completion code &
2225 	 * alternate completion code to fall in same cache line as app data
2226 	 */
2227 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2228 	m_dma += COMPLETION_CODE_SIZE;
2229 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2230 		(uint8_t *)m_vaddr;
2231 
2232 	c_vaddr = (uint8_t *)m_vaddr + size;
2233 	c_dma = m_dma + size;
2234 	size += sizeof(cpt_res_s_t);
2235 
2236 	m_vaddr = (uint8_t *)m_vaddr + size;
2237 	m_dma += size;
2238 
2239 	/* Reserve memory for cpt request info */
2240 	req = m_vaddr;
2241 
2242 	size = sizeof(struct cpt_request_info);
2243 	m_vaddr = (uint8_t *)m_vaddr + size;
2244 	m_dma += size;
2245 
2246 	vq_cmd_w0.u64 = 0;
2247 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2248 
2249 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2250 	vq_cmd_w0.s.opcode.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2251 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2252 
2253 	/*
2254 	 * GP op header, lengths are expected in bits.
2255 	 */
2256 	vq_cmd_w0.s.param1 = encr_data_len;
2257 
2258 	/* consider iv len */
2259 	encr_offset += iv_len;
2260 
2261 	inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2262 	outputlen = inputlen;
2263 
2264 	/* save space for offset ctrl & iv */
2265 	offset_vaddr = m_vaddr;
2266 	offset_dma = m_dma;
2267 
2268 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2269 	m_dma += OFF_CTRL_LEN + iv_len;
2270 
2271 	/* DPTR has SG list */
2272 	in_buffer = m_vaddr;
2273 	dptr_dma = m_dma;
2274 
2275 	((uint16_t *)in_buffer)[0] = 0;
2276 	((uint16_t *)in_buffer)[1] = 0;
2277 
2278 	/* TODO Add error check if space will be sufficient */
2279 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2280 
2281 	/*
2282 	 * Input Gather List
2283 	 */
2284 	i = 0;
2285 
2286 	/* Offset control word followed by iv */
2287 	*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2288 
2289 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2290 
2291 	/* IV */
2292 	memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2293 	       params->iv_buf, iv_len);
2294 
2295 	/* Add input data */
2296 	size = inputlen - iv_len;
2297 	if (size) {
2298 		i = fill_sg_comp_from_iov(gather_comp, i,
2299 					  params->src_iov,
2300 					  0, &size, NULL, 0);
2301 		if (unlikely(size)) {
2302 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2303 				       " size %d needed", size);
2304 			return;
2305 		}
2306 	}
2307 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2308 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2309 
2310 	/*
2311 	 * Output Scatter List
2312 	 */
2313 
2314 	i = 0;
2315 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2316 
2317 	/* IV */
2318 	i = fill_sg_comp(scatter_comp, i,
2319 			 offset_dma + OFF_CTRL_LEN,
2320 			 iv_len);
2321 
2322 	/* Add output data */
2323 	size = outputlen - iv_len;
2324 	if (size) {
2325 		i = fill_sg_comp_from_iov(scatter_comp, i,
2326 					  params->dst_iov, 0,
2327 					  &size, NULL, 0);
2328 		if (unlikely(size)) {
2329 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2330 				       " size %d needed", size);
2331 			return;
2332 		}
2333 	}
2334 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2335 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2336 
2337 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2338 
2339 	/* This is DPTR len incase of SG mode */
2340 	vq_cmd_w0.s.dlen = size;
2341 
2342 	m_vaddr = (uint8_t *)m_vaddr + size;
2343 	m_dma += size;
2344 
2345 	/* cpt alternate completion address saved earlier */
2346 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2347 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2348 	rptr_dma = c_dma - 8;
2349 
2350 	req->ist.ei1 = dptr_dma;
2351 	req->ist.ei2 = rptr_dma;
2352 
2353 	/* 16 byte aligned cpt res address */
2354 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2355 	*req->completion_addr = COMPLETION_CODE_INIT;
2356 	req->comp_baddr  = c_dma;
2357 
2358 	/* Fill microcode part of instruction */
2359 	req->ist.ei0 = vq_cmd_w0.u64;
2360 
2361 	req->op = op;
2362 
2363 	*prep_req = req;
2364 	return;
2365 }
2366 
2367 static __rte_always_inline void *
2368 cpt_fc_dec_hmac_prep(uint32_t flags,
2369 		     uint64_t d_offs,
2370 		     uint64_t d_lens,
2371 		     fc_params_t *fc_params,
2372 		     void *op)
2373 {
2374 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2375 	uint8_t fc_type;
2376 	void *prep_req = NULL;
2377 
2378 	fc_type = ctx->fc_type;
2379 
2380 	if (likely(fc_type == FC_GEN)) {
2381 		cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2382 				  &prep_req);
2383 	} else if (fc_type == ZUC_SNOW3G) {
2384 		cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2385 					&prep_req);
2386 	} else if (fc_type == KASUMI) {
2387 		cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2388 	}
2389 
2390 	/*
2391 	 * For AUTH_ONLY case,
2392 	 * MC only supports digest generation and verification
2393 	 * should be done in software by memcmp()
2394 	 */
2395 
2396 	return prep_req;
2397 }
2398 
2399 static __rte_always_inline void *__rte_hot
2400 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2401 		     fc_params_t *fc_params, void *op)
2402 {
2403 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2404 	uint8_t fc_type;
2405 	void *prep_req = NULL;
2406 
2407 	fc_type = ctx->fc_type;
2408 
2409 	/* Common api for rest of the ops */
2410 	if (likely(fc_type == FC_GEN)) {
2411 		cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2412 				  &prep_req);
2413 	} else if (fc_type == ZUC_SNOW3G) {
2414 		cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2415 					&prep_req);
2416 	} else if (fc_type == KASUMI) {
2417 		cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2418 				    &prep_req);
2419 	} else if (fc_type == HASH_HMAC) {
2420 		cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2421 	}
2422 
2423 	return prep_req;
2424 }
2425 
2426 static __rte_always_inline int
2427 cpt_fc_auth_set_key(struct cpt_ctx *cpt_ctx, auth_type_t type,
2428 		    const uint8_t *key, uint16_t key_len, uint16_t mac_len)
2429 {
2430 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
2431 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
2432 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
2433 
2434 	if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2435 		uint32_t keyx[4];
2436 
2437 		if (key_len != 16)
2438 			return -1;
2439 		/* No support for AEAD yet */
2440 		if (cpt_ctx->enc_cipher)
2441 			return -1;
2442 		/* For ZUC/SNOW3G/Kasumi */
2443 		switch (type) {
2444 		case SNOW3G_UIA2:
2445 			cpt_ctx->snow3g = 1;
2446 			gen_key_snow3g(key, keyx);
2447 			memcpy(zs_ctx->ci_key, keyx, key_len);
2448 			cpt_ctx->fc_type = ZUC_SNOW3G;
2449 			cpt_ctx->zsk_flags = 0x1;
2450 			break;
2451 		case ZUC_EIA3:
2452 			cpt_ctx->snow3g = 0;
2453 			memcpy(zs_ctx->ci_key, key, key_len);
2454 			memcpy(zs_ctx->zuc_const, zuc_d, 32);
2455 			cpt_ctx->fc_type = ZUC_SNOW3G;
2456 			cpt_ctx->zsk_flags = 0x1;
2457 			break;
2458 		case KASUMI_F9_ECB:
2459 			/* Kasumi ECB mode */
2460 			cpt_ctx->k_ecb = 1;
2461 			memcpy(k_ctx->ci_key, key, key_len);
2462 			cpt_ctx->fc_type = KASUMI;
2463 			cpt_ctx->zsk_flags = 0x1;
2464 			break;
2465 		case KASUMI_F9_CBC:
2466 			memcpy(k_ctx->ci_key, key, key_len);
2467 			cpt_ctx->fc_type = KASUMI;
2468 			cpt_ctx->zsk_flags = 0x1;
2469 			break;
2470 		default:
2471 			return -1;
2472 		}
2473 		cpt_ctx->mac_len = 4;
2474 		cpt_ctx->hash_type = type;
2475 		return 0;
2476 	}
2477 
2478 	if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2479 		if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2480 			cpt_ctx->fc_type = HASH_HMAC;
2481 	}
2482 
2483 	if (cpt_ctx->fc_type == FC_GEN && key_len > 64)
2484 		return -1;
2485 
2486 	/* For GMAC auth, cipher must be NULL */
2487 	if (type == GMAC_TYPE)
2488 		fctx->enc.enc_cipher = 0;
2489 
2490 	fctx->enc.hash_type = cpt_ctx->hash_type = type;
2491 	fctx->enc.mac_len = cpt_ctx->mac_len = mac_len;
2492 
2493 	if (key_len) {
2494 		cpt_ctx->hmac = 1;
2495 		memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2496 		memcpy(cpt_ctx->auth_key, key, key_len);
2497 		cpt_ctx->auth_key_len = key_len;
2498 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2499 		memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2500 
2501 		if (key_len <= 64)
2502 			memcpy(fctx->hmac.opad, key, key_len);
2503 		fctx->enc.auth_input_type = 1;
2504 	}
2505 	return 0;
2506 }
2507 
2508 static __rte_always_inline int
2509 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2510 		 struct cpt_sess_misc *sess)
2511 {
2512 	struct rte_crypto_aead_xform *aead_form;
2513 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2514 	auth_type_t auth_type = 0; /* NULL Auth type */
2515 	uint32_t cipher_key_len = 0;
2516 	uint8_t aes_gcm = 0;
2517 	aead_form = &xform->aead;
2518 	void *ctx = SESS_PRIV(sess);
2519 
2520 	if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
2521 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2522 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2523 	} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) {
2524 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2525 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2526 	} else {
2527 		CPT_LOG_DP_ERR("Unknown aead operation\n");
2528 		return -1;
2529 	}
2530 	switch (aead_form->algo) {
2531 	case RTE_CRYPTO_AEAD_AES_GCM:
2532 		enc_type = AES_GCM;
2533 		cipher_key_len = 16;
2534 		aes_gcm = 1;
2535 		break;
2536 	case RTE_CRYPTO_AEAD_AES_CCM:
2537 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2538 			       aead_form->algo);
2539 		return -1;
2540 	case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
2541 		enc_type = CHACHA20;
2542 		auth_type = POLY1305;
2543 		cipher_key_len = 32;
2544 		sess->chacha_poly = 1;
2545 		break;
2546 	default:
2547 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2548 			       aead_form->algo);
2549 		return -1;
2550 	}
2551 	if (aead_form->key.length < cipher_key_len) {
2552 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2553 			       (unsigned int long)aead_form->key.length);
2554 		return -1;
2555 	}
2556 	sess->zsk_flag = 0;
2557 	sess->aes_gcm = aes_gcm;
2558 	sess->mac_len = aead_form->digest_length;
2559 	sess->iv_offset = aead_form->iv.offset;
2560 	sess->iv_length = aead_form->iv.length;
2561 	sess->aad_length = aead_form->aad_length;
2562 
2563 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2564 			aead_form->key.length, NULL)))
2565 		return -1;
2566 
2567 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2568 			aead_form->digest_length)))
2569 		return -1;
2570 
2571 	return 0;
2572 }
2573 
2574 static __rte_always_inline int
2575 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2576 		 struct cpt_sess_misc *sess)
2577 {
2578 	struct rte_crypto_cipher_xform *c_form;
2579 	struct cpt_ctx *ctx = SESS_PRIV(sess);
2580 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2581 	uint32_t cipher_key_len = 0;
2582 	uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
2583 
2584 	c_form = &xform->cipher;
2585 
2586 	if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2587 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2588 	else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT) {
2589 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2590 		if (xform->next != NULL &&
2591 		    xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
2592 			/* Perform decryption followed by auth verify */
2593 			ctx->dec_auth = 1;
2594 		}
2595 	} else {
2596 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2597 		return -1;
2598 	}
2599 
2600 	switch (c_form->algo) {
2601 	case RTE_CRYPTO_CIPHER_AES_CBC:
2602 		enc_type = AES_CBC;
2603 		cipher_key_len = 16;
2604 		break;
2605 	case RTE_CRYPTO_CIPHER_3DES_CBC:
2606 		enc_type = DES3_CBC;
2607 		cipher_key_len = 24;
2608 		break;
2609 	case RTE_CRYPTO_CIPHER_DES_CBC:
2610 		/* DES is implemented using 3DES in hardware */
2611 		enc_type = DES3_CBC;
2612 		cipher_key_len = 8;
2613 		break;
2614 	case RTE_CRYPTO_CIPHER_AES_CTR:
2615 		enc_type = AES_CTR;
2616 		cipher_key_len = 16;
2617 		aes_ctr = 1;
2618 		break;
2619 	case RTE_CRYPTO_CIPHER_NULL:
2620 		enc_type = 0;
2621 		is_null = 1;
2622 		break;
2623 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
2624 		enc_type = KASUMI_F8_ECB;
2625 		cipher_key_len = 16;
2626 		zsk_flag = K_F8;
2627 		break;
2628 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2629 		enc_type = SNOW3G_UEA2;
2630 		cipher_key_len = 16;
2631 		zsk_flag = ZS_EA;
2632 		break;
2633 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2634 		enc_type = ZUC_EEA3;
2635 		cipher_key_len = 16;
2636 		zsk_flag = ZS_EA;
2637 		break;
2638 	case RTE_CRYPTO_CIPHER_AES_XTS:
2639 		enc_type = AES_XTS;
2640 		cipher_key_len = 16;
2641 		break;
2642 	case RTE_CRYPTO_CIPHER_3DES_ECB:
2643 		enc_type = DES3_ECB;
2644 		cipher_key_len = 24;
2645 		break;
2646 	case RTE_CRYPTO_CIPHER_AES_ECB:
2647 		enc_type = AES_ECB;
2648 		cipher_key_len = 16;
2649 		break;
2650 	case RTE_CRYPTO_CIPHER_3DES_CTR:
2651 	case RTE_CRYPTO_CIPHER_AES_F8:
2652 	case RTE_CRYPTO_CIPHER_ARC4:
2653 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2654 			       c_form->algo);
2655 		return -1;
2656 	default:
2657 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2658 			       c_form->algo);
2659 		return -1;
2660 	}
2661 
2662 	if (c_form->key.length < cipher_key_len) {
2663 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2664 			       (unsigned long) c_form->key.length);
2665 		return -1;
2666 	}
2667 
2668 	sess->zsk_flag = zsk_flag;
2669 	sess->aes_gcm = 0;
2670 	sess->aes_ctr = aes_ctr;
2671 	sess->iv_offset = c_form->iv.offset;
2672 	sess->iv_length = c_form->iv.length;
2673 	sess->is_null = is_null;
2674 
2675 	if (unlikely(cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type,
2676 			c_form->key.data, c_form->key.length, NULL)))
2677 		return -1;
2678 
2679 	return 0;
2680 }
2681 
2682 static __rte_always_inline int
2683 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2684 	       struct cpt_sess_misc *sess)
2685 {
2686 	struct cpt_ctx *ctx = SESS_PRIV(sess);
2687 	struct rte_crypto_auth_xform *a_form;
2688 	auth_type_t auth_type = 0; /* NULL Auth type */
2689 	uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2690 
2691 	if (xform->next != NULL &&
2692 	    xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
2693 	    xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
2694 		/* Perform auth followed by encryption */
2695 		ctx->auth_enc = 1;
2696 	}
2697 
2698 	a_form = &xform->auth;
2699 
2700 	if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2701 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2702 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2703 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2704 	else {
2705 		CPT_LOG_DP_ERR("Unknown auth operation");
2706 		return -1;
2707 	}
2708 
2709 	switch (a_form->algo) {
2710 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
2711 		/* Fall through */
2712 	case RTE_CRYPTO_AUTH_SHA1:
2713 		auth_type = SHA1_TYPE;
2714 		break;
2715 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
2716 	case RTE_CRYPTO_AUTH_SHA256:
2717 		auth_type = SHA2_SHA256;
2718 		break;
2719 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
2720 	case RTE_CRYPTO_AUTH_SHA512:
2721 		auth_type = SHA2_SHA512;
2722 		break;
2723 	case RTE_CRYPTO_AUTH_AES_GMAC:
2724 		auth_type = GMAC_TYPE;
2725 		aes_gcm = 1;
2726 		break;
2727 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
2728 	case RTE_CRYPTO_AUTH_SHA224:
2729 		auth_type = SHA2_SHA224;
2730 		break;
2731 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
2732 	case RTE_CRYPTO_AUTH_SHA384:
2733 		auth_type = SHA2_SHA384;
2734 		break;
2735 	case RTE_CRYPTO_AUTH_MD5_HMAC:
2736 	case RTE_CRYPTO_AUTH_MD5:
2737 		auth_type = MD5_TYPE;
2738 		break;
2739 	case RTE_CRYPTO_AUTH_KASUMI_F9:
2740 		auth_type = KASUMI_F9_ECB;
2741 		/*
2742 		 * Indicate that direction needs to be taken out
2743 		 * from end of src
2744 		 */
2745 		zsk_flag = K_F9;
2746 		break;
2747 	case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2748 		auth_type = SNOW3G_UIA2;
2749 		zsk_flag = ZS_IA;
2750 		break;
2751 	case RTE_CRYPTO_AUTH_ZUC_EIA3:
2752 		auth_type = ZUC_EIA3;
2753 		zsk_flag = ZS_IA;
2754 		break;
2755 	case RTE_CRYPTO_AUTH_NULL:
2756 		auth_type = 0;
2757 		is_null = 1;
2758 		break;
2759 	case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2760 	case RTE_CRYPTO_AUTH_AES_CMAC:
2761 	case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2762 		CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2763 			       a_form->algo);
2764 		return -1;
2765 	default:
2766 		CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2767 			       a_form->algo);
2768 		return -1;
2769 	}
2770 
2771 	sess->zsk_flag = zsk_flag;
2772 	sess->aes_gcm = aes_gcm;
2773 	sess->mac_len = a_form->digest_length;
2774 	sess->is_null = is_null;
2775 	if (zsk_flag) {
2776 		sess->auth_iv_offset = a_form->iv.offset;
2777 		sess->auth_iv_length = a_form->iv.length;
2778 	}
2779 	if (unlikely(cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type,
2780 			a_form->key.data, a_form->key.length,
2781 			a_form->digest_length)))
2782 		return -1;
2783 
2784 	return 0;
2785 }
2786 
2787 static __rte_always_inline int
2788 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2789 		 struct cpt_sess_misc *sess)
2790 {
2791 	struct rte_crypto_auth_xform *a_form;
2792 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2793 	auth_type_t auth_type = 0; /* NULL Auth type */
2794 	void *ctx = SESS_PRIV(sess);
2795 
2796 	a_form = &xform->auth;
2797 
2798 	if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2799 		sess->cpt_op |= CPT_OP_ENCODE;
2800 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2801 		sess->cpt_op |= CPT_OP_DECODE;
2802 	else {
2803 		CPT_LOG_DP_ERR("Unknown auth operation");
2804 		return -1;
2805 	}
2806 
2807 	switch (a_form->algo) {
2808 	case RTE_CRYPTO_AUTH_AES_GMAC:
2809 		enc_type = AES_GCM;
2810 		auth_type = GMAC_TYPE;
2811 		break;
2812 	default:
2813 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2814 			       a_form->algo);
2815 		return -1;
2816 	}
2817 
2818 	sess->zsk_flag = 0;
2819 	sess->aes_gcm = 0;
2820 	sess->is_gmac = 1;
2821 	sess->iv_offset = a_form->iv.offset;
2822 	sess->iv_length = a_form->iv.length;
2823 	sess->mac_len = a_form->digest_length;
2824 
2825 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2826 			a_form->key.length, NULL)))
2827 		return -1;
2828 
2829 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2830 			a_form->digest_length)))
2831 		return -1;
2832 
2833 	return 0;
2834 }
2835 
2836 static __rte_always_inline void *
2837 alloc_op_meta(struct rte_mbuf *m_src,
2838 	      buf_ptr_t *buf,
2839 	      int32_t len,
2840 	      struct rte_mempool *cpt_meta_pool)
2841 {
2842 	uint8_t *mdata;
2843 
2844 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2845 	if (likely(m_src && (m_src->nb_segs == 1))) {
2846 		int32_t tailroom;
2847 		phys_addr_t mphys;
2848 
2849 		/* Check if tailroom is sufficient to hold meta data */
2850 		tailroom = rte_pktmbuf_tailroom(m_src);
2851 		if (likely(tailroom > len + 8)) {
2852 			mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2853 			mphys = m_src->buf_iova + m_src->buf_len;
2854 			mdata -= len;
2855 			mphys -= len;
2856 			buf->vaddr = mdata;
2857 			buf->dma_addr = mphys;
2858 			buf->size = len;
2859 			/* Indicate that this is a mbuf allocated mdata */
2860 			mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2861 			return mdata;
2862 		}
2863 	}
2864 #else
2865 	RTE_SET_USED(m_src);
2866 #endif
2867 
2868 	if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2869 		return NULL;
2870 
2871 	buf->vaddr = mdata;
2872 	buf->dma_addr = rte_mempool_virt2iova(mdata);
2873 	buf->size = len;
2874 
2875 	return mdata;
2876 }
2877 
2878 /**
2879  * cpt_free_metabuf - free metabuf to mempool.
2880  * @param instance: pointer to instance.
2881  * @param objp: pointer to the metabuf.
2882  */
2883 static __rte_always_inline void
2884 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2885 {
2886 	bool nofree = ((uintptr_t)mdata & 1ull);
2887 
2888 	if (likely(nofree))
2889 		return;
2890 	rte_mempool_put(cpt_meta_pool, mdata);
2891 }
2892 
2893 static __rte_always_inline uint32_t
2894 prepare_iov_from_pkt(struct rte_mbuf *pkt,
2895 		     iov_ptr_t *iovec, uint32_t start_offset)
2896 {
2897 	uint16_t index = 0;
2898 	void *seg_data = NULL;
2899 	phys_addr_t seg_phys;
2900 	int32_t seg_size = 0;
2901 
2902 	if (!pkt) {
2903 		iovec->buf_cnt = 0;
2904 		return 0;
2905 	}
2906 
2907 	if (!start_offset) {
2908 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2909 		seg_phys = rte_pktmbuf_iova(pkt);
2910 		seg_size = pkt->data_len;
2911 	} else {
2912 		while (start_offset >= pkt->data_len) {
2913 			start_offset -= pkt->data_len;
2914 			pkt = pkt->next;
2915 		}
2916 
2917 		seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
2918 		seg_phys = rte_pktmbuf_iova_offset(pkt, start_offset);
2919 		seg_size = pkt->data_len - start_offset;
2920 		if (!seg_size)
2921 			return 1;
2922 	}
2923 
2924 	/* first seg */
2925 	iovec->bufs[index].vaddr = seg_data;
2926 	iovec->bufs[index].dma_addr = seg_phys;
2927 	iovec->bufs[index].size = seg_size;
2928 	index++;
2929 	pkt = pkt->next;
2930 
2931 	while (unlikely(pkt != NULL)) {
2932 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2933 		seg_phys = rte_pktmbuf_iova(pkt);
2934 		seg_size = pkt->data_len;
2935 		if (!seg_size)
2936 			break;
2937 
2938 		iovec->bufs[index].vaddr = seg_data;
2939 		iovec->bufs[index].dma_addr = seg_phys;
2940 		iovec->bufs[index].size = seg_size;
2941 
2942 		index++;
2943 
2944 		pkt = pkt->next;
2945 	}
2946 
2947 	iovec->buf_cnt = index;
2948 	return 0;
2949 }
2950 
2951 static __rte_always_inline uint32_t
2952 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
2953 			     fc_params_t *param,
2954 			     uint32_t *flags)
2955 {
2956 	uint16_t index = 0;
2957 	void *seg_data = NULL;
2958 	phys_addr_t seg_phys;
2959 	uint32_t seg_size = 0;
2960 	iov_ptr_t *iovec;
2961 
2962 	seg_data = rte_pktmbuf_mtod(pkt, void *);
2963 	seg_phys = rte_pktmbuf_iova(pkt);
2964 	seg_size = pkt->data_len;
2965 
2966 	/* first seg */
2967 	if (likely(!pkt->next)) {
2968 		uint32_t headroom, tailroom;
2969 
2970 		*flags |= SINGLE_BUF_INPLACE;
2971 		headroom = rte_pktmbuf_headroom(pkt);
2972 		tailroom = rte_pktmbuf_tailroom(pkt);
2973 		if (likely((headroom >= 24) &&
2974 		    (tailroom >= 8))) {
2975 			/* In 83XX this is prerequivisit for Direct mode */
2976 			*flags |= SINGLE_BUF_HEADTAILROOM;
2977 		}
2978 		param->bufs[0].vaddr = seg_data;
2979 		param->bufs[0].dma_addr = seg_phys;
2980 		param->bufs[0].size = seg_size;
2981 		return 0;
2982 	}
2983 	iovec = param->src_iov;
2984 	iovec->bufs[index].vaddr = seg_data;
2985 	iovec->bufs[index].dma_addr = seg_phys;
2986 	iovec->bufs[index].size = seg_size;
2987 	index++;
2988 	pkt = pkt->next;
2989 
2990 	while (unlikely(pkt != NULL)) {
2991 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2992 		seg_phys = rte_pktmbuf_iova(pkt);
2993 		seg_size = pkt->data_len;
2994 
2995 		if (!seg_size)
2996 			break;
2997 
2998 		iovec->bufs[index].vaddr = seg_data;
2999 		iovec->bufs[index].dma_addr = seg_phys;
3000 		iovec->bufs[index].size = seg_size;
3001 
3002 		index++;
3003 
3004 		pkt = pkt->next;
3005 	}
3006 
3007 	iovec->buf_cnt = index;
3008 	return 0;
3009 }
3010 
3011 static __rte_always_inline int
3012 fill_fc_params(struct rte_crypto_op *cop,
3013 	       struct cpt_sess_misc *sess_misc,
3014 	       struct cpt_qp_meta_info *m_info,
3015 	       void **mdata_ptr,
3016 	       void **prep_req)
3017 {
3018 	uint32_t space = 0;
3019 	struct rte_crypto_sym_op *sym_op = cop->sym;
3020 	struct cpt_ctx *ctx = SESS_PRIV(sess_misc);
3021 	void *mdata = NULL;
3022 	uintptr_t *op;
3023 	uint32_t mc_hash_off;
3024 	uint32_t flags = 0;
3025 	uint64_t d_offs, d_lens;
3026 	struct rte_mbuf *m_src, *m_dst;
3027 	uint8_t cpt_op = sess_misc->cpt_op;
3028 #ifdef CPT_ALWAYS_USE_SG_MODE
3029 	uint8_t inplace = 0;
3030 #else
3031 	uint8_t inplace = 1;
3032 #endif
3033 	fc_params_t fc_params;
3034 	char src[SRC_IOV_SIZE];
3035 	char dst[SRC_IOV_SIZE];
3036 	uint32_t iv_buf[4];
3037 	int ret;
3038 
3039 	if (likely(sess_misc->iv_length)) {
3040 		flags |= VALID_IV_BUF;
3041 		fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3042 				   uint8_t *, sess_misc->iv_offset);
3043 		if (sess_misc->aes_ctr &&
3044 		    unlikely(sess_misc->iv_length != 16)) {
3045 			memcpy((uint8_t *)iv_buf,
3046 				rte_crypto_op_ctod_offset(cop,
3047 				uint8_t *, sess_misc->iv_offset), 12);
3048 			iv_buf[3] = rte_cpu_to_be_32(0x1);
3049 			fc_params.iv_buf = iv_buf;
3050 		}
3051 	}
3052 
3053 	if (sess_misc->zsk_flag) {
3054 		fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3055 					uint8_t *,
3056 					sess_misc->auth_iv_offset);
3057 		if (sess_misc->zsk_flag != ZS_EA)
3058 			inplace = 0;
3059 	}
3060 	m_src = sym_op->m_src;
3061 	m_dst = sym_op->m_dst;
3062 
3063 	if (sess_misc->aes_gcm || sess_misc->chacha_poly) {
3064 		uint8_t *salt;
3065 		uint8_t *aad_data;
3066 		uint16_t aad_len;
3067 
3068 		d_offs = sym_op->aead.data.offset;
3069 		d_lens = sym_op->aead.data.length;
3070 		mc_hash_off = sym_op->aead.data.offset +
3071 			      sym_op->aead.data.length;
3072 
3073 		aad_data = sym_op->aead.aad.data;
3074 		aad_len = sess_misc->aad_length;
3075 		if (likely((aad_data + aad_len) ==
3076 			   rte_pktmbuf_mtod_offset(m_src,
3077 				uint8_t *,
3078 				sym_op->aead.data.offset))) {
3079 			d_offs = (d_offs - aad_len) | (d_offs << 16);
3080 			d_lens = (d_lens + aad_len) | (d_lens << 32);
3081 		} else {
3082 			fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3083 			fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3084 			fc_params.aad_buf.size = aad_len;
3085 			flags |= VALID_AAD_BUF;
3086 			inplace = 0;
3087 			d_offs = d_offs << 16;
3088 			d_lens = d_lens << 32;
3089 		}
3090 
3091 		salt = fc_params.iv_buf;
3092 		if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3093 			cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3094 			sess_misc->salt = *(uint32_t *)salt;
3095 		}
3096 		fc_params.iv_buf = salt + 4;
3097 		if (likely(sess_misc->mac_len)) {
3098 			struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3099 					     m_src;
3100 
3101 			if (!m)
3102 				m = m_src;
3103 
3104 			/* hmac immediately following data is best case */
3105 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3106 			    mc_hash_off !=
3107 			    (uint8_t *)sym_op->aead.digest.data)) {
3108 				flags |= VALID_MAC_BUF;
3109 				fc_params.mac_buf.size = sess_misc->mac_len;
3110 				fc_params.mac_buf.vaddr =
3111 				  sym_op->aead.digest.data;
3112 				fc_params.mac_buf.dma_addr =
3113 				 sym_op->aead.digest.phys_addr;
3114 				inplace = 0;
3115 			}
3116 		}
3117 	} else {
3118 		d_offs = sym_op->cipher.data.offset;
3119 		d_lens = sym_op->cipher.data.length;
3120 		mc_hash_off = sym_op->cipher.data.offset +
3121 			      sym_op->cipher.data.length;
3122 		d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3123 		d_lens = (d_lens << 32) | sym_op->auth.data.length;
3124 
3125 		if (mc_hash_off < (sym_op->auth.data.offset +
3126 				   sym_op->auth.data.length)){
3127 			mc_hash_off = (sym_op->auth.data.offset +
3128 				       sym_op->auth.data.length);
3129 		}
3130 		/* for gmac, salt should be updated like in gcm */
3131 		if (unlikely(sess_misc->is_gmac)) {
3132 			uint8_t *salt;
3133 			salt = fc_params.iv_buf;
3134 			if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3135 				cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3136 				sess_misc->salt = *(uint32_t *)salt;
3137 			}
3138 			fc_params.iv_buf = salt + 4;
3139 		}
3140 		if (likely(sess_misc->mac_len)) {
3141 			struct rte_mbuf *m;
3142 
3143 			m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3144 			if (!m)
3145 				m = m_src;
3146 
3147 			/* hmac immediately following data is best case */
3148 			if (!ctx->dec_auth && !ctx->auth_enc &&
3149 				 (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3150 			    mc_hash_off !=
3151 			     (uint8_t *)sym_op->auth.digest.data))) {
3152 				flags |= VALID_MAC_BUF;
3153 				fc_params.mac_buf.size =
3154 					sess_misc->mac_len;
3155 				fc_params.mac_buf.vaddr =
3156 					sym_op->auth.digest.data;
3157 				fc_params.mac_buf.dma_addr =
3158 				sym_op->auth.digest.phys_addr;
3159 				inplace = 0;
3160 			}
3161 		}
3162 	}
3163 	fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3164 	fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3165 
3166 	if (!ctx->dec_auth &&
3167 		  unlikely(sess_misc->is_null ||
3168 		  sess_misc->cpt_op == CPT_OP_DECODE))
3169 		inplace = 0;
3170 
3171 	if (likely(!m_dst && inplace)) {
3172 		/* Case of single buffer without AAD buf or
3173 		 * separate mac buf in place and
3174 		 * not air crypto
3175 		 */
3176 		fc_params.dst_iov = fc_params.src_iov = (void *)src;
3177 
3178 		if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3179 							  &fc_params,
3180 							  &flags))) {
3181 			CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3182 			ret = -EINVAL;
3183 			goto err_exit;
3184 		}
3185 
3186 	} else {
3187 		/* Out of place processing */
3188 		fc_params.src_iov = (void *)src;
3189 		fc_params.dst_iov = (void *)dst;
3190 
3191 		/* Store SG I/O in the api for reuse */
3192 		if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3193 			CPT_LOG_DP_ERR("Prepare src iov failed");
3194 			ret = -EINVAL;
3195 			goto err_exit;
3196 		}
3197 
3198 		if (unlikely(m_dst != NULL)) {
3199 			uint32_t pkt_len;
3200 
3201 			/* Try to make room as much as src has */
3202 			pkt_len = rte_pktmbuf_pkt_len(m_dst);
3203 
3204 			if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3205 				pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3206 				if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3207 					CPT_LOG_DP_ERR("Not enough space in "
3208 						       "m_dst %p, need %u"
3209 						       " more",
3210 						       m_dst, pkt_len);
3211 					ret = -EINVAL;
3212 					goto err_exit;
3213 				}
3214 			}
3215 
3216 			if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3217 				CPT_LOG_DP_ERR("Prepare dst iov failed for "
3218 					       "m_dst %p", m_dst);
3219 				ret = -EINVAL;
3220 				goto err_exit;
3221 			}
3222 		} else {
3223 			fc_params.dst_iov = (void *)src;
3224 		}
3225 	}
3226 
3227 	if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3228 		mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3229 				      m_info->lb_mlen, m_info->pool);
3230 	else
3231 		mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3232 				      m_info->sg_mlen, m_info->pool);
3233 
3234 	if (unlikely(mdata == NULL)) {
3235 		CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3236 		ret = -ENOMEM;
3237 		goto err_exit;
3238 	}
3239 
3240 	op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3241 	op[0] = (uintptr_t)mdata;
3242 	op[1] = (uintptr_t)cop;
3243 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3244 	space += 4 * sizeof(uint64_t);
3245 
3246 	fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3247 	fc_params.meta_buf.dma_addr += space;
3248 	fc_params.meta_buf.size -= space;
3249 
3250 	/* Finally prepare the instruction */
3251 	if (cpt_op & CPT_OP_ENCODE)
3252 		*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3253 						 &fc_params, op);
3254 	else
3255 		*prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3256 						 &fc_params, op);
3257 
3258 	if (unlikely(*prep_req == NULL)) {
3259 		CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3260 		ret = -EINVAL;
3261 		goto free_mdata_and_exit;
3262 	}
3263 
3264 	*mdata_ptr = mdata;
3265 
3266 	return 0;
3267 
3268 free_mdata_and_exit:
3269 	free_op_meta(mdata, m_info->pool);
3270 err_exit:
3271 	return ret;
3272 }
3273 
3274 static __rte_always_inline void
3275 compl_auth_verify(struct rte_crypto_op *op,
3276 		      uint8_t *gen_mac,
3277 		      uint64_t mac_len)
3278 {
3279 	uint8_t *mac;
3280 	struct rte_crypto_sym_op *sym_op = op->sym;
3281 
3282 	if (sym_op->auth.digest.data)
3283 		mac = sym_op->auth.digest.data;
3284 	else
3285 		mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3286 					      uint8_t *,
3287 					      sym_op->auth.data.length +
3288 					      sym_op->auth.data.offset);
3289 	if (!mac) {
3290 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3291 		return;
3292 	}
3293 
3294 	if (memcmp(mac, gen_mac, mac_len))
3295 		op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3296 	else
3297 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3298 }
3299 
3300 static __rte_always_inline void
3301 find_kasumif9_direction_and_length(uint8_t *src,
3302 				   uint32_t counter_num_bytes,
3303 				   uint32_t *addr_length_in_bits,
3304 				   uint8_t *addr_direction)
3305 {
3306 	uint8_t found = 0;
3307 	uint32_t pos;
3308 	uint8_t last_byte;
3309 	while (!found && counter_num_bytes > 0) {
3310 		counter_num_bytes--;
3311 		if (src[counter_num_bytes] == 0x00)
3312 			continue;
3313 		pos = rte_bsf32(src[counter_num_bytes]);
3314 		if (pos == 7) {
3315 			if (likely(counter_num_bytes > 0)) {
3316 				last_byte = src[counter_num_bytes - 1];
3317 				*addr_direction  =  last_byte & 0x1;
3318 				*addr_length_in_bits = counter_num_bytes * 8
3319 							- 1;
3320 			}
3321 		} else {
3322 			last_byte = src[counter_num_bytes];
3323 			*addr_direction = (last_byte >> (pos + 1)) & 0x1;
3324 			*addr_length_in_bits = counter_num_bytes * 8
3325 						+ (8 - (pos + 2));
3326 		}
3327 		found = 1;
3328 	}
3329 }
3330 
3331 /*
3332  * This handles all auth only except AES_GMAC
3333  */
3334 static __rte_always_inline int
3335 fill_digest_params(struct rte_crypto_op *cop,
3336 		   struct cpt_sess_misc *sess,
3337 		   struct cpt_qp_meta_info *m_info,
3338 		   void **mdata_ptr,
3339 		   void **prep_req)
3340 {
3341 	uint32_t space = 0;
3342 	struct rte_crypto_sym_op *sym_op = cop->sym;
3343 	void *mdata;
3344 	phys_addr_t mphys;
3345 	uint64_t *op;
3346 	uint32_t auth_range_off;
3347 	uint32_t flags = 0;
3348 	uint64_t d_offs = 0, d_lens;
3349 	struct rte_mbuf *m_src, *m_dst;
3350 	uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3351 	uint16_t mac_len = sess->mac_len;
3352 	fc_params_t params;
3353 	char src[SRC_IOV_SIZE];
3354 	uint8_t iv_buf[16];
3355 	int ret;
3356 
3357 	memset(&params, 0, sizeof(fc_params_t));
3358 
3359 	m_src = sym_op->m_src;
3360 
3361 	/* For just digest lets force mempool alloc */
3362 	mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3363 			      m_info->pool);
3364 	if (mdata == NULL) {
3365 		ret = -ENOMEM;
3366 		goto err_exit;
3367 	}
3368 
3369 	mphys = params.meta_buf.dma_addr;
3370 
3371 	op = mdata;
3372 	op[0] = (uintptr_t)mdata;
3373 	op[1] = (uintptr_t)cop;
3374 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3375 	space += 4 * sizeof(uint64_t);
3376 
3377 	auth_range_off = sym_op->auth.data.offset;
3378 
3379 	flags = VALID_MAC_BUF;
3380 	params.src_iov = (void *)src;
3381 	if (unlikely(sess->zsk_flag)) {
3382 		/*
3383 		 * Since for Zuc, Kasumi, Snow3g offsets are in bits
3384 		 * we will send pass through even for auth only case,
3385 		 * let MC handle it
3386 		 */
3387 		d_offs = auth_range_off;
3388 		auth_range_off = 0;
3389 		params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3390 					uint8_t *, sess->auth_iv_offset);
3391 		if (sess->zsk_flag == K_F9) {
3392 			uint32_t length_in_bits, num_bytes;
3393 			uint8_t *src, direction = 0;
3394 
3395 			memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3396 							uint8_t *), 8);
3397 			/*
3398 			 * This is kasumi f9, take direction from
3399 			 * source buffer
3400 			 */
3401 			length_in_bits = cop->sym->auth.data.length;
3402 			num_bytes = (length_in_bits >> 3);
3403 			src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3404 			find_kasumif9_direction_and_length(src,
3405 						num_bytes,
3406 						&length_in_bits,
3407 						&direction);
3408 			length_in_bits -= 64;
3409 			cop->sym->auth.data.offset += 64;
3410 			d_offs = cop->sym->auth.data.offset;
3411 			auth_range_off = d_offs / 8;
3412 			cop->sym->auth.data.length = length_in_bits;
3413 
3414 			/* Store it at end of auth iv */
3415 			iv_buf[8] = direction;
3416 			params.auth_iv_buf = iv_buf;
3417 		}
3418 	}
3419 
3420 	d_lens = sym_op->auth.data.length;
3421 
3422 	params.ctx_buf.vaddr = SESS_PRIV(sess);
3423 	params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3424 
3425 	if (auth_op == CPT_OP_AUTH_GENERATE) {
3426 		if (sym_op->auth.digest.data) {
3427 			/*
3428 			 * Digest to be generated
3429 			 * in separate buffer
3430 			 */
3431 			params.mac_buf.size =
3432 				sess->mac_len;
3433 			params.mac_buf.vaddr =
3434 				sym_op->auth.digest.data;
3435 			params.mac_buf.dma_addr =
3436 				sym_op->auth.digest.phys_addr;
3437 		} else {
3438 			uint32_t off = sym_op->auth.data.offset +
3439 				sym_op->auth.data.length;
3440 			int32_t dlen, space;
3441 
3442 			m_dst = sym_op->m_dst ?
3443 				sym_op->m_dst : sym_op->m_src;
3444 			dlen = rte_pktmbuf_pkt_len(m_dst);
3445 
3446 			space = off + mac_len - dlen;
3447 			if (space > 0)
3448 				if (!rte_pktmbuf_append(m_dst, space)) {
3449 					CPT_LOG_DP_ERR("Failed to extend "
3450 						       "mbuf by %uB", space);
3451 					ret = -EINVAL;
3452 					goto free_mdata_and_exit;
3453 				}
3454 
3455 			params.mac_buf.vaddr =
3456 				rte_pktmbuf_mtod_offset(m_dst, void *, off);
3457 			params.mac_buf.dma_addr =
3458 				rte_pktmbuf_iova_offset(m_dst, off);
3459 			params.mac_buf.size = mac_len;
3460 		}
3461 	} else {
3462 		/* Need space for storing generated mac */
3463 		params.mac_buf.vaddr = (uint8_t *)mdata + space;
3464 		params.mac_buf.dma_addr = mphys + space;
3465 		params.mac_buf.size = mac_len;
3466 		space += RTE_ALIGN_CEIL(mac_len, 8);
3467 		op[2] = (uintptr_t)params.mac_buf.vaddr;
3468 		op[3] = mac_len;
3469 	}
3470 
3471 	params.meta_buf.vaddr = (uint8_t *)mdata + space;
3472 	params.meta_buf.dma_addr = mphys + space;
3473 	params.meta_buf.size -= space;
3474 
3475 	/* Out of place processing */
3476 	params.src_iov = (void *)src;
3477 
3478 	/*Store SG I/O in the api for reuse */
3479 	if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3480 		CPT_LOG_DP_ERR("Prepare src iov failed");
3481 		ret = -EINVAL;
3482 		goto free_mdata_and_exit;
3483 	}
3484 
3485 	*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3486 	if (unlikely(*prep_req == NULL)) {
3487 		ret = -EINVAL;
3488 		goto free_mdata_and_exit;
3489 	}
3490 
3491 	*mdata_ptr = mdata;
3492 
3493 	return 0;
3494 
3495 free_mdata_and_exit:
3496 	free_op_meta(mdata, m_info->pool);
3497 err_exit:
3498 	return ret;
3499 }
3500 
3501 #endif /*_CPT_UCODE_H_ */
3502