xref: /dpdk/drivers/common/cpt/cpt_ucode.h (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8 
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12 
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17 
18 static uint8_t zuc_d[32] = {
19 	0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20 	0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21 	0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22 	0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24 
25 static __rte_always_inline void
26 gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
27 {
28 	int i, base;
29 
30 	for (i = 0; i < 4; i++) {
31 		base = 4 * i;
32 		keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
33 			(ck[base + 2] << 8) | (ck[base + 3]);
34 		keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
35 	}
36 }
37 
38 static __rte_always_inline int
39 cpt_mac_len_verify(struct rte_crypto_auth_xform *auth)
40 {
41 	uint16_t mac_len = auth->digest_length;
42 	int ret;
43 
44 	switch (auth->algo) {
45 	case RTE_CRYPTO_AUTH_MD5:
46 	case RTE_CRYPTO_AUTH_MD5_HMAC:
47 		ret = (mac_len == 16) ? 0 : -1;
48 		break;
49 	case RTE_CRYPTO_AUTH_SHA1:
50 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
51 		ret = (mac_len == 20) ? 0 : -1;
52 		break;
53 	case RTE_CRYPTO_AUTH_SHA224:
54 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
55 		ret = (mac_len == 28) ? 0 : -1;
56 		break;
57 	case RTE_CRYPTO_AUTH_SHA256:
58 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
59 		ret = (mac_len == 32) ? 0 : -1;
60 		break;
61 	case RTE_CRYPTO_AUTH_SHA384:
62 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
63 		ret = (mac_len == 48) ? 0 : -1;
64 		break;
65 	case RTE_CRYPTO_AUTH_SHA512:
66 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
67 		ret = (mac_len == 64) ? 0 : -1;
68 		break;
69 	case RTE_CRYPTO_AUTH_NULL:
70 		ret = 0;
71 		break;
72 	default:
73 		ret = -1;
74 	}
75 
76 	return ret;
77 }
78 
79 static __rte_always_inline void
80 cpt_fc_salt_update(struct cpt_ctx *cpt_ctx,
81 		   uint8_t *salt)
82 {
83 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
84 	memcpy(fctx->enc.encr_iv, salt, 4);
85 }
86 
87 static __rte_always_inline int
88 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
89 {
90 	switch (key_len) {
91 	case 16:
92 	case 24:
93 	case 32:
94 		return 0;
95 	default:
96 		return -1;
97 	}
98 }
99 
100 static __rte_always_inline int
101 cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
102 {
103 	int fc_type = 0;
104 	switch (type) {
105 	case PASSTHROUGH:
106 		fc_type = FC_GEN;
107 		break;
108 	case DES3_CBC:
109 	case DES3_ECB:
110 		fc_type = FC_GEN;
111 		break;
112 	case AES_CBC:
113 	case AES_ECB:
114 	case AES_CFB:
115 	case AES_CTR:
116 	case AES_GCM:
117 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
118 			return -1;
119 		fc_type = FC_GEN;
120 		break;
121 	case CHACHA20:
122 		fc_type = FC_GEN;
123 		break;
124 	case AES_XTS:
125 		key_len = key_len / 2;
126 		if (unlikely(key_len == 24)) {
127 			CPT_LOG_DP_ERR("Invalid AES key len for XTS");
128 			return -1;
129 		}
130 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
131 			return -1;
132 		fc_type = FC_GEN;
133 		break;
134 	case ZUC_EEA3:
135 	case SNOW3G_UEA2:
136 		if (unlikely(key_len != 16))
137 			return -1;
138 		/* No support for AEAD yet */
139 		if (unlikely(ctx->hash_type))
140 			return -1;
141 		fc_type = ZUC_SNOW3G;
142 		break;
143 	case KASUMI_F8_CBC:
144 	case KASUMI_F8_ECB:
145 		if (unlikely(key_len != 16))
146 			return -1;
147 		/* No support for AEAD yet */
148 		if (unlikely(ctx->hash_type))
149 			return -1;
150 		fc_type = KASUMI;
151 		break;
152 	default:
153 		return -1;
154 	}
155 
156 	ctx->fc_type = fc_type;
157 	return 0;
158 }
159 
160 static __rte_always_inline void
161 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
162 {
163 	cpt_ctx->enc_cipher = 0;
164 	fctx->enc.enc_cipher = 0;
165 }
166 
167 static __rte_always_inline void
168 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
169 {
170 	mc_aes_type_t aes_key_type = 0;
171 	switch (key_len) {
172 	case 16:
173 		aes_key_type = AES_128_BIT;
174 		break;
175 	case 24:
176 		aes_key_type = AES_192_BIT;
177 		break;
178 	case 32:
179 		aes_key_type = AES_256_BIT;
180 		break;
181 	default:
182 		/* This should not happen */
183 		CPT_LOG_DP_ERR("Invalid AES key len");
184 		return;
185 	}
186 	fctx->enc.aes_key = aes_key_type;
187 }
188 
189 static __rte_always_inline void
190 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
191 		uint16_t key_len)
192 {
193 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
194 	uint32_t keyx[4];
195 
196 	cpt_ctx->snow3g = 1;
197 	gen_key_snow3g(key, keyx);
198 	memcpy(zs_ctx->ci_key, keyx, key_len);
199 	cpt_ctx->zsk_flags = 0;
200 }
201 
202 static __rte_always_inline void
203 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
204 		uint16_t key_len)
205 {
206 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
207 
208 	cpt_ctx->snow3g = 0;
209 	memcpy(zs_ctx->ci_key, key, key_len);
210 	memcpy(zs_ctx->zuc_const, zuc_d, 32);
211 	cpt_ctx->zsk_flags = 0;
212 }
213 
214 static __rte_always_inline void
215 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
216 		uint16_t key_len)
217 {
218 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
219 
220 	cpt_ctx->k_ecb = 1;
221 	memcpy(k_ctx->ci_key, key, key_len);
222 	cpt_ctx->zsk_flags = 0;
223 }
224 
225 static __rte_always_inline void
226 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
227 		uint16_t key_len)
228 {
229 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
230 
231 	memcpy(k_ctx->ci_key, key, key_len);
232 	cpt_ctx->zsk_flags = 0;
233 }
234 
235 static __rte_always_inline int
236 cpt_fc_ciph_set_key(struct cpt_ctx *cpt_ctx, cipher_type_t type,
237 		    const uint8_t *key, uint16_t key_len, uint8_t *salt)
238 {
239 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
240 	int ret;
241 
242 	ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
243 	if (unlikely(ret))
244 		return -1;
245 
246 	if (cpt_ctx->fc_type == FC_GEN) {
247 		/*
248 		 * We need to always say IV is from DPTR as user can
249 		 * sometimes iverride IV per operation.
250 		 */
251 		fctx->enc.iv_source = CPT_FROM_DPTR;
252 
253 		if (cpt_ctx->auth_key_len > 64)
254 			return -1;
255 	}
256 
257 	switch (type) {
258 	case PASSTHROUGH:
259 		cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
260 		goto success;
261 	case DES3_CBC:
262 		/* CPT performs DES using 3DES with the 8B DES-key
263 		 * replicated 2 more times to match the 24B 3DES-key.
264 		 * Eg. If org. key is "0x0a 0x0b", then new key is
265 		 * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
266 		 */
267 		if (key_len == 8) {
268 			/* Skipping the first 8B as it will be copied
269 			 * in the regular code flow
270 			 */
271 			memcpy(fctx->enc.encr_key+key_len, key, key_len);
272 			memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
273 		}
274 		break;
275 	case DES3_ECB:
276 		/* For DES3_ECB IV need to be from CTX. */
277 		fctx->enc.iv_source = CPT_FROM_CTX;
278 		break;
279 	case AES_CBC:
280 	case AES_ECB:
281 	case AES_CFB:
282 	case AES_CTR:
283 	case CHACHA20:
284 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
285 		break;
286 	case AES_GCM:
287 		/* Even though iv source is from dptr,
288 		 * aes_gcm salt is taken from ctx
289 		 */
290 		if (salt) {
291 			memcpy(fctx->enc.encr_iv, salt, 4);
292 			/* Assuming it was just salt update
293 			 * and nothing else
294 			 */
295 			if (!key)
296 				goto success;
297 		}
298 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
299 		break;
300 	case AES_XTS:
301 		key_len = key_len / 2;
302 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
303 
304 		/* Copy key2 for XTS into ipad */
305 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
306 		memcpy(fctx->hmac.ipad, &key[key_len], key_len);
307 		break;
308 	case SNOW3G_UEA2:
309 		cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
310 		goto success;
311 	case ZUC_EEA3:
312 		cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
313 		goto success;
314 	case KASUMI_F8_ECB:
315 		cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
316 		goto success;
317 	case KASUMI_F8_CBC:
318 		cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
319 		goto success;
320 	default:
321 		return -1;
322 	}
323 
324 	/* Only for FC_GEN case */
325 
326 	/* For GMAC auth, cipher must be NULL */
327 	if (cpt_ctx->hash_type != GMAC_TYPE)
328 		fctx->enc.enc_cipher = type;
329 
330 	memcpy(fctx->enc.encr_key, key, key_len);
331 
332 success:
333 	cpt_ctx->enc_cipher = type;
334 
335 	return 0;
336 }
337 
338 static __rte_always_inline uint32_t
339 fill_sg_comp(sg_comp_t *list,
340 	     uint32_t i,
341 	     phys_addr_t dma_addr,
342 	     uint32_t size)
343 {
344 	sg_comp_t *to = &list[i>>2];
345 
346 	to->u.s.len[i%4] = rte_cpu_to_be_16(size);
347 	to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
348 	i++;
349 	return i;
350 }
351 
352 static __rte_always_inline uint32_t
353 fill_sg_comp_from_buf(sg_comp_t *list,
354 		      uint32_t i,
355 		      buf_ptr_t *from)
356 {
357 	sg_comp_t *to = &list[i>>2];
358 
359 	to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
360 	to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
361 	i++;
362 	return i;
363 }
364 
365 static __rte_always_inline uint32_t
366 fill_sg_comp_from_buf_min(sg_comp_t *list,
367 			  uint32_t i,
368 			  buf_ptr_t *from,
369 			  uint32_t *psize)
370 {
371 	sg_comp_t *to = &list[i >> 2];
372 	uint32_t size = *psize;
373 	uint32_t e_len;
374 
375 	e_len = (size > from->size) ? from->size : size;
376 	to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
377 	to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
378 	*psize -= e_len;
379 	i++;
380 	return i;
381 }
382 
383 /*
384  * This fills the MC expected SGIO list
385  * from IOV given by user.
386  */
387 static __rte_always_inline uint32_t
388 fill_sg_comp_from_iov(sg_comp_t *list,
389 		      uint32_t i,
390 		      iov_ptr_t *from, uint32_t from_offset,
391 		      uint32_t *psize, buf_ptr_t *extra_buf,
392 		      uint32_t extra_offset)
393 {
394 	int32_t j;
395 	uint32_t extra_len = extra_buf ? extra_buf->size : 0;
396 	uint32_t size = *psize;
397 	buf_ptr_t *bufs;
398 
399 	bufs = from->bufs;
400 	for (j = 0; (j < from->buf_cnt) && size; j++) {
401 		phys_addr_t e_dma_addr;
402 		uint32_t e_len;
403 		sg_comp_t *to = &list[i >> 2];
404 
405 		if (unlikely(from_offset)) {
406 			if (from_offset >= bufs[j].size) {
407 				from_offset -= bufs[j].size;
408 				continue;
409 			}
410 			e_dma_addr = bufs[j].dma_addr + from_offset;
411 			e_len = (size > (bufs[j].size - from_offset)) ?
412 				(bufs[j].size - from_offset) : size;
413 			from_offset = 0;
414 		} else {
415 			e_dma_addr = bufs[j].dma_addr;
416 			e_len = (size > bufs[j].size) ?
417 				bufs[j].size : size;
418 		}
419 
420 		to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
421 		to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
422 
423 		if (extra_len && (e_len >= extra_offset)) {
424 			/* Break the data at given offset */
425 			uint32_t next_len = e_len - extra_offset;
426 			phys_addr_t next_dma = e_dma_addr + extra_offset;
427 
428 			if (!extra_offset) {
429 				i--;
430 			} else {
431 				e_len = extra_offset;
432 				size -= e_len;
433 				to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
434 			}
435 
436 			extra_len = RTE_MIN(extra_len, size);
437 			/* Insert extra data ptr */
438 			if (extra_len) {
439 				i++;
440 				to = &list[i >> 2];
441 				to->u.s.len[i % 4] =
442 					rte_cpu_to_be_16(extra_len);
443 				to->ptr[i % 4] =
444 					rte_cpu_to_be_64(extra_buf->dma_addr);
445 				size -= extra_len;
446 			}
447 
448 			next_len = RTE_MIN(next_len, size);
449 			/* insert the rest of the data */
450 			if (next_len) {
451 				i++;
452 				to = &list[i >> 2];
453 				to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
454 				to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
455 				size -= next_len;
456 			}
457 			extra_len = 0;
458 
459 		} else {
460 			size -= e_len;
461 		}
462 		if (extra_offset)
463 			extra_offset -= size;
464 		i++;
465 	}
466 
467 	*psize = size;
468 	return (uint32_t)i;
469 }
470 
471 static __rte_always_inline void
472 cpt_digest_gen_prep(uint32_t flags,
473 		    uint64_t d_lens,
474 		    digest_params_t *params,
475 		    void *op,
476 		    void **prep_req)
477 {
478 	struct cpt_request_info *req;
479 	uint32_t size, i;
480 	uint16_t data_len, mac_len, key_len;
481 	auth_type_t hash_type;
482 	buf_ptr_t *meta_p;
483 	struct cpt_ctx *ctx;
484 	sg_comp_t *gather_comp;
485 	sg_comp_t *scatter_comp;
486 	uint8_t *in_buffer;
487 	uint32_t g_size_bytes, s_size_bytes;
488 	uint64_t dptr_dma, rptr_dma;
489 	vq_cmd_word0_t vq_cmd_w0;
490 	void *c_vaddr, *m_vaddr;
491 	uint64_t c_dma, m_dma;
492 
493 	ctx = params->ctx_buf.vaddr;
494 	meta_p = &params->meta_buf;
495 
496 	m_vaddr = meta_p->vaddr;
497 	m_dma = meta_p->dma_addr;
498 
499 	/*
500 	 * Save initial space that followed app data for completion code &
501 	 * alternate completion code to fall in same cache line as app data
502 	 */
503 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
504 	m_dma += COMPLETION_CODE_SIZE;
505 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
506 		(uint8_t *)m_vaddr;
507 	c_vaddr = (uint8_t *)m_vaddr + size;
508 	c_dma = m_dma + size;
509 	size += sizeof(cpt_res_s_t);
510 
511 	m_vaddr = (uint8_t *)m_vaddr + size;
512 	m_dma += size;
513 
514 	req = m_vaddr;
515 
516 	size = sizeof(struct cpt_request_info);
517 	m_vaddr = (uint8_t *)m_vaddr + size;
518 	m_dma += size;
519 
520 	hash_type = ctx->hash_type;
521 	mac_len = ctx->mac_len;
522 	key_len = ctx->auth_key_len;
523 	data_len = AUTH_DLEN(d_lens);
524 
525 	/*GP op header */
526 	vq_cmd_w0.s.opcode.minor = 0;
527 	vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
528 	if (ctx->hmac) {
529 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
530 		vq_cmd_w0.s.param1 = key_len;
531 		vq_cmd_w0.s.dlen = data_len + RTE_ALIGN_CEIL(key_len, 8);
532 	} else {
533 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
534 		vq_cmd_w0.s.param1 = 0;
535 		vq_cmd_w0.s.dlen = data_len;
536 	}
537 
538 	/* Null auth only case enters the if */
539 	if (unlikely(!hash_type && !ctx->enc_cipher)) {
540 		vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_MISC;
541 		/* Minor op is passthrough */
542 		vq_cmd_w0.s.opcode.minor = 0x03;
543 		/* Send out completion code only */
544 		vq_cmd_w0.s.param2 = 0x1;
545 	}
546 
547 	/* DPTR has SG list */
548 	in_buffer = m_vaddr;
549 	dptr_dma = m_dma;
550 
551 	((uint16_t *)in_buffer)[0] = 0;
552 	((uint16_t *)in_buffer)[1] = 0;
553 
554 	/* TODO Add error check if space will be sufficient */
555 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
556 
557 	/*
558 	 * Input gather list
559 	 */
560 
561 	i = 0;
562 
563 	if (ctx->hmac) {
564 		uint64_t k_dma = params->ctx_buf.dma_addr +
565 			offsetof(struct cpt_ctx, auth_key);
566 		/* Key */
567 		i = fill_sg_comp(gather_comp, i, k_dma,
568 				 RTE_ALIGN_CEIL(key_len, 8));
569 	}
570 
571 	/* input data */
572 	size = data_len;
573 	if (size) {
574 		i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
575 					  0, &size, NULL, 0);
576 		if (unlikely(size)) {
577 			CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
578 					 " by %dB", size);
579 			return;
580 		}
581 	} else {
582 		/*
583 		 * Looks like we need to support zero data
584 		 * gather ptr in case of hash & hmac
585 		 */
586 		i++;
587 	}
588 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
589 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
590 
591 	/*
592 	 * Output Gather list
593 	 */
594 
595 	i = 0;
596 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
597 
598 	if (flags & VALID_MAC_BUF) {
599 		if (unlikely(params->mac_buf.size < mac_len)) {
600 			CPT_LOG_DP_ERR("Insufficient MAC size");
601 			return;
602 		}
603 
604 		size = mac_len;
605 		i = fill_sg_comp_from_buf_min(scatter_comp, i,
606 					      &params->mac_buf, &size);
607 	} else {
608 		size = mac_len;
609 		i = fill_sg_comp_from_iov(scatter_comp, i,
610 					  params->src_iov, data_len,
611 					  &size, NULL, 0);
612 		if (unlikely(size)) {
613 			CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
614 				       " %dB", size);
615 			return;
616 		}
617 	}
618 
619 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
620 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
621 
622 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
623 
624 	/* This is DPTR len incase of SG mode */
625 	vq_cmd_w0.s.dlen = size;
626 
627 	m_vaddr = (uint8_t *)m_vaddr + size;
628 	m_dma += size;
629 
630 	/* cpt alternate completion address saved earlier */
631 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
632 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
633 	rptr_dma = c_dma - 8;
634 
635 	req->ist.ei1 = dptr_dma;
636 	req->ist.ei2 = rptr_dma;
637 
638 	/* 16 byte aligned cpt res address */
639 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
640 	*req->completion_addr = COMPLETION_CODE_INIT;
641 	req->comp_baddr  = c_dma;
642 
643 	/* Fill microcode part of instruction */
644 	req->ist.ei0 = vq_cmd_w0.u64;
645 
646 	req->op = op;
647 
648 	*prep_req = req;
649 	return;
650 }
651 
652 static __rte_always_inline void
653 cpt_enc_hmac_prep(uint32_t flags,
654 		  uint64_t d_offs,
655 		  uint64_t d_lens,
656 		  fc_params_t *fc_params,
657 		  void *op,
658 		  void **prep_req)
659 {
660 	uint32_t iv_offset = 0;
661 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
662 	struct cpt_ctx *cpt_ctx;
663 	uint32_t cipher_type, hash_type;
664 	uint32_t mac_len, size;
665 	uint8_t iv_len = 16;
666 	struct cpt_request_info *req;
667 	buf_ptr_t *meta_p, *aad_buf = NULL;
668 	uint32_t encr_offset, auth_offset;
669 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
670 	uint32_t passthrough_len = 0;
671 	void *m_vaddr, *offset_vaddr;
672 	uint64_t m_dma, offset_dma;
673 	vq_cmd_word0_t vq_cmd_w0;
674 	void *c_vaddr;
675 	uint64_t c_dma;
676 
677 	meta_p = &fc_params->meta_buf;
678 	m_vaddr = meta_p->vaddr;
679 	m_dma = meta_p->dma_addr;
680 
681 	encr_offset = ENCR_OFFSET(d_offs);
682 	auth_offset = AUTH_OFFSET(d_offs);
683 	encr_data_len = ENCR_DLEN(d_lens);
684 	auth_data_len = AUTH_DLEN(d_lens);
685 	if (unlikely(flags & VALID_AAD_BUF)) {
686 		/*
687 		 * We dont support both aad
688 		 * and auth data separately
689 		 */
690 		auth_data_len = 0;
691 		auth_offset = 0;
692 		aad_len = fc_params->aad_buf.size;
693 		aad_buf = &fc_params->aad_buf;
694 	}
695 	cpt_ctx = fc_params->ctx_buf.vaddr;
696 	cipher_type = cpt_ctx->enc_cipher;
697 	hash_type = cpt_ctx->hash_type;
698 	mac_len = cpt_ctx->mac_len;
699 
700 	/*
701 	 * Save initial space that followed app data for completion code &
702 	 * alternate completion code to fall in same cache line as app data
703 	 */
704 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
705 	m_dma += COMPLETION_CODE_SIZE;
706 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
707 		(uint8_t *)m_vaddr;
708 
709 	c_vaddr = (uint8_t *)m_vaddr + size;
710 	c_dma = m_dma + size;
711 	size += sizeof(cpt_res_s_t);
712 
713 	m_vaddr = (uint8_t *)m_vaddr + size;
714 	m_dma += size;
715 
716 	/* start cpt request info struct at 8 byte boundary */
717 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
718 		(uint8_t *)m_vaddr;
719 
720 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
721 
722 	size += sizeof(struct cpt_request_info);
723 	m_vaddr = (uint8_t *)m_vaddr + size;
724 	m_dma += size;
725 
726 	if (unlikely(!(flags & VALID_IV_BUF))) {
727 		iv_len = 0;
728 		iv_offset = ENCR_IV_OFFSET(d_offs);
729 	}
730 
731 	if (unlikely(flags & VALID_AAD_BUF)) {
732 		/*
733 		 * When AAD is given, data above encr_offset is pass through
734 		 * Since AAD is given as separate pointer and not as offset,
735 		 * this is a special case as we need to fragment input data
736 		 * into passthrough + encr_data and then insert AAD in between.
737 		 */
738 		if (hash_type != GMAC_TYPE) {
739 			passthrough_len = encr_offset;
740 			auth_offset = passthrough_len + iv_len;
741 			encr_offset = passthrough_len + aad_len + iv_len;
742 			auth_data_len = aad_len + encr_data_len;
743 		} else {
744 			passthrough_len = 16 + aad_len;
745 			auth_offset = passthrough_len + iv_len;
746 			auth_data_len = aad_len;
747 		}
748 	} else {
749 		encr_offset += iv_len;
750 		auth_offset += iv_len;
751 	}
752 
753 	/* Encryption */
754 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_FC;
755 	vq_cmd_w0.s.opcode.minor = 0;
756 
757 	if (hash_type == GMAC_TYPE) {
758 		encr_offset = 0;
759 		encr_data_len = 0;
760 	}
761 
762 	auth_dlen = auth_offset + auth_data_len;
763 	enc_dlen = encr_data_len + encr_offset;
764 	if (unlikely(encr_data_len & 0xf)) {
765 		if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
766 			enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) +
767 					encr_offset;
768 		else if (likely((cipher_type == AES_CBC) ||
769 				(cipher_type == AES_ECB)))
770 			enc_dlen = RTE_ALIGN_CEIL(encr_data_len, 8) +
771 					encr_offset;
772 	}
773 
774 	if (unlikely(auth_dlen > enc_dlen)) {
775 		inputlen = auth_dlen;
776 		outputlen = auth_dlen + mac_len;
777 	} else {
778 		inputlen = enc_dlen;
779 		outputlen = enc_dlen + mac_len;
780 	}
781 
782 	/* GP op header */
783 	vq_cmd_w0.s.param1 = encr_data_len;
784 	vq_cmd_w0.s.param2 = auth_data_len;
785 	/*
786 	 * In 83XX since we have a limitation of
787 	 * IV & Offset control word not part of instruction
788 	 * and need to be part of Data Buffer, we check if
789 	 * head room is there and then only do the Direct mode processing
790 	 */
791 	if (likely((flags & SINGLE_BUF_INPLACE) &&
792 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
793 		void *dm_vaddr = fc_params->bufs[0].vaddr;
794 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
795 		/*
796 		 * This flag indicates that there is 24 bytes head room and
797 		 * 8 bytes tail room available, so that we get to do
798 		 * DIRECT MODE with limitation
799 		 */
800 
801 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
802 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
803 
804 		/* DPTR */
805 		req->ist.ei1 = offset_dma;
806 		/* RPTR should just exclude offset control word */
807 		req->ist.ei2 = dm_dma_addr - iv_len;
808 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
809 						    + outputlen - iv_len);
810 
811 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
812 
813 		if (likely(iv_len)) {
814 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
815 						      + OFF_CTRL_LEN);
816 			uint64_t *src = fc_params->iv_buf;
817 			dest[0] = src[0];
818 			dest[1] = src[1];
819 		}
820 
821 		*(uint64_t *)offset_vaddr =
822 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
823 				((uint64_t)iv_offset << 8) |
824 				((uint64_t)auth_offset));
825 
826 	} else {
827 		uint32_t i, g_size_bytes, s_size_bytes;
828 		uint64_t dptr_dma, rptr_dma;
829 		sg_comp_t *gather_comp;
830 		sg_comp_t *scatter_comp;
831 		uint8_t *in_buffer;
832 
833 		/* This falls under strict SG mode */
834 		offset_vaddr = m_vaddr;
835 		offset_dma = m_dma;
836 		size = OFF_CTRL_LEN + iv_len;
837 
838 		m_vaddr = (uint8_t *)m_vaddr + size;
839 		m_dma += size;
840 
841 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
842 
843 		if (likely(iv_len)) {
844 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
845 						      + OFF_CTRL_LEN);
846 			uint64_t *src = fc_params->iv_buf;
847 			dest[0] = src[0];
848 			dest[1] = src[1];
849 		}
850 
851 		*(uint64_t *)offset_vaddr =
852 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
853 				((uint64_t)iv_offset << 8) |
854 				((uint64_t)auth_offset));
855 
856 		/* DPTR has SG list */
857 		in_buffer = m_vaddr;
858 		dptr_dma = m_dma;
859 
860 		((uint16_t *)in_buffer)[0] = 0;
861 		((uint16_t *)in_buffer)[1] = 0;
862 
863 		/* TODO Add error check if space will be sufficient */
864 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
865 
866 		/*
867 		 * Input Gather List
868 		 */
869 
870 		i = 0;
871 
872 		/* Offset control word that includes iv */
873 		i = fill_sg_comp(gather_comp, i, offset_dma,
874 				 OFF_CTRL_LEN + iv_len);
875 
876 		/* Add input data */
877 		size = inputlen - iv_len;
878 		if (likely(size)) {
879 			uint32_t aad_offset = aad_len ? passthrough_len : 0;
880 
881 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
882 				i = fill_sg_comp_from_buf_min(gather_comp, i,
883 							      fc_params->bufs,
884 							      &size);
885 			} else {
886 				i = fill_sg_comp_from_iov(gather_comp, i,
887 							  fc_params->src_iov,
888 							  0, &size,
889 							  aad_buf, aad_offset);
890 			}
891 
892 			if (unlikely(size)) {
893 				CPT_LOG_DP_ERR("Insufficient buffer space,"
894 					       " size %d needed", size);
895 				return;
896 			}
897 		}
898 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
899 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
900 
901 		/*
902 		 * Output Scatter list
903 		 */
904 		i = 0;
905 		scatter_comp =
906 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
907 
908 		/* Add IV */
909 		if (likely(iv_len)) {
910 			i = fill_sg_comp(scatter_comp, i,
911 					 offset_dma + OFF_CTRL_LEN,
912 					 iv_len);
913 		}
914 
915 		/* output data or output data + digest*/
916 		if (unlikely(flags & VALID_MAC_BUF)) {
917 			size = outputlen - iv_len - mac_len;
918 			if (size) {
919 				uint32_t aad_offset =
920 					aad_len ? passthrough_len : 0;
921 
922 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
923 					i = fill_sg_comp_from_buf_min(
924 							scatter_comp,
925 							i,
926 							fc_params->bufs,
927 							&size);
928 				} else {
929 					i = fill_sg_comp_from_iov(scatter_comp,
930 							i,
931 							fc_params->dst_iov,
932 							0,
933 							&size,
934 							aad_buf,
935 							aad_offset);
936 				}
937 				if (unlikely(size)) {
938 					CPT_LOG_DP_ERR("Insufficient buffer"
939 						       " space, size %d needed",
940 						       size);
941 					return;
942 				}
943 			}
944 			/* mac_data */
945 			if (mac_len) {
946 				i = fill_sg_comp_from_buf(scatter_comp, i,
947 							  &fc_params->mac_buf);
948 			}
949 		} else {
950 			/* Output including mac */
951 			size = outputlen - iv_len;
952 			if (likely(size)) {
953 				uint32_t aad_offset =
954 					aad_len ? passthrough_len : 0;
955 
956 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
957 					i = fill_sg_comp_from_buf_min(
958 							scatter_comp,
959 							i,
960 							fc_params->bufs,
961 							&size);
962 				} else {
963 					i = fill_sg_comp_from_iov(scatter_comp,
964 							i,
965 							fc_params->dst_iov,
966 							0,
967 							&size,
968 							aad_buf,
969 							aad_offset);
970 				}
971 				if (unlikely(size)) {
972 					CPT_LOG_DP_ERR("Insufficient buffer"
973 						       " space, size %d needed",
974 						       size);
975 					return;
976 				}
977 			}
978 		}
979 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
980 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
981 
982 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
983 
984 		/* This is DPTR len incase of SG mode */
985 		vq_cmd_w0.s.dlen = size;
986 
987 		m_vaddr = (uint8_t *)m_vaddr + size;
988 		m_dma += size;
989 
990 		/* cpt alternate completion address saved earlier */
991 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
992 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
993 		rptr_dma = c_dma - 8;
994 
995 		req->ist.ei1 = dptr_dma;
996 		req->ist.ei2 = rptr_dma;
997 	}
998 
999 	/* 16 byte aligned cpt res address */
1000 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1001 	*req->completion_addr = COMPLETION_CODE_INIT;
1002 	req->comp_baddr  = c_dma;
1003 
1004 	/* Fill microcode part of instruction */
1005 	req->ist.ei0 = vq_cmd_w0.u64;
1006 
1007 	req->op  = op;
1008 
1009 	*prep_req = req;
1010 	return;
1011 }
1012 
1013 static __rte_always_inline void
1014 cpt_dec_hmac_prep(uint32_t flags,
1015 		  uint64_t d_offs,
1016 		  uint64_t d_lens,
1017 		  fc_params_t *fc_params,
1018 		  void *op,
1019 		  void **prep_req)
1020 {
1021 	uint32_t iv_offset = 0, size;
1022 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1023 	struct cpt_ctx *cpt_ctx;
1024 	int32_t hash_type, mac_len;
1025 	uint8_t iv_len = 16;
1026 	struct cpt_request_info *req;
1027 	buf_ptr_t *meta_p, *aad_buf = NULL;
1028 	uint32_t encr_offset, auth_offset;
1029 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
1030 	uint32_t passthrough_len = 0;
1031 	void *m_vaddr, *offset_vaddr;
1032 	uint64_t m_dma, offset_dma;
1033 	vq_cmd_word0_t vq_cmd_w0;
1034 	void *c_vaddr;
1035 	uint64_t c_dma;
1036 
1037 	meta_p = &fc_params->meta_buf;
1038 	m_vaddr = meta_p->vaddr;
1039 	m_dma = meta_p->dma_addr;
1040 
1041 	encr_offset = ENCR_OFFSET(d_offs);
1042 	auth_offset = AUTH_OFFSET(d_offs);
1043 	encr_data_len = ENCR_DLEN(d_lens);
1044 	auth_data_len = AUTH_DLEN(d_lens);
1045 
1046 	if (unlikely(flags & VALID_AAD_BUF)) {
1047 		/*
1048 		 * We dont support both aad
1049 		 * and auth data separately
1050 		 */
1051 		auth_data_len = 0;
1052 		auth_offset = 0;
1053 		aad_len = fc_params->aad_buf.size;
1054 		aad_buf = &fc_params->aad_buf;
1055 	}
1056 
1057 	cpt_ctx = fc_params->ctx_buf.vaddr;
1058 	hash_type = cpt_ctx->hash_type;
1059 	mac_len = cpt_ctx->mac_len;
1060 
1061 	if (unlikely(!(flags & VALID_IV_BUF))) {
1062 		iv_len = 0;
1063 		iv_offset = ENCR_IV_OFFSET(d_offs);
1064 	}
1065 
1066 	if (unlikely(flags & VALID_AAD_BUF)) {
1067 		/*
1068 		 * When AAD is given, data above encr_offset is pass through
1069 		 * Since AAD is given as separate pointer and not as offset,
1070 		 * this is a special case as we need to fragment input data
1071 		 * into passthrough + encr_data and then insert AAD in between.
1072 		 */
1073 		if (hash_type != GMAC_TYPE) {
1074 			passthrough_len = encr_offset;
1075 			auth_offset = passthrough_len + iv_len;
1076 			encr_offset = passthrough_len + aad_len + iv_len;
1077 			auth_data_len = aad_len + encr_data_len;
1078 		} else {
1079 			passthrough_len = 16 + aad_len;
1080 			auth_offset = passthrough_len + iv_len;
1081 			auth_data_len = aad_len;
1082 		}
1083 	} else {
1084 		encr_offset += iv_len;
1085 		auth_offset += iv_len;
1086 	}
1087 
1088 	/*
1089 	 * Save initial space that followed app data for completion code &
1090 	 * alternate completion code to fall in same cache line as app data
1091 	 */
1092 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1093 	m_dma += COMPLETION_CODE_SIZE;
1094 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1095 	       (uint8_t *)m_vaddr;
1096 	c_vaddr = (uint8_t *)m_vaddr + size;
1097 	c_dma = m_dma + size;
1098 	size += sizeof(cpt_res_s_t);
1099 
1100 	m_vaddr = (uint8_t *)m_vaddr + size;
1101 	m_dma += size;
1102 
1103 	/* start cpt request info structure at 8 byte alignment */
1104 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1105 		(uint8_t *)m_vaddr;
1106 
1107 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1108 
1109 	size += sizeof(struct cpt_request_info);
1110 	m_vaddr = (uint8_t *)m_vaddr + size;
1111 	m_dma += size;
1112 
1113 	/* Decryption */
1114 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_FC;
1115 	vq_cmd_w0.s.opcode.minor = 1;
1116 
1117 	if (hash_type == GMAC_TYPE) {
1118 		encr_offset = 0;
1119 		encr_data_len = 0;
1120 	}
1121 
1122 	enc_dlen = encr_offset + encr_data_len;
1123 	auth_dlen = auth_offset + auth_data_len;
1124 
1125 	if (auth_dlen > enc_dlen) {
1126 		inputlen = auth_dlen + mac_len;
1127 		outputlen = auth_dlen;
1128 	} else {
1129 		inputlen = enc_dlen + mac_len;
1130 		outputlen = enc_dlen;
1131 	}
1132 
1133 	vq_cmd_w0.s.param1 = encr_data_len;
1134 	vq_cmd_w0.s.param2 = auth_data_len;
1135 
1136 	/*
1137 	 * In 83XX since we have a limitation of
1138 	 * IV & Offset control word not part of instruction
1139 	 * and need to be part of Data Buffer, we check if
1140 	 * head room is there and then only do the Direct mode processing
1141 	 */
1142 	if (likely((flags & SINGLE_BUF_INPLACE) &&
1143 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
1144 		void *dm_vaddr = fc_params->bufs[0].vaddr;
1145 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1146 		/*
1147 		 * This flag indicates that there is 24 bytes head room and
1148 		 * 8 bytes tail room available, so that we get to do
1149 		 * DIRECT MODE with limitation
1150 		 */
1151 
1152 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1153 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1154 		req->ist.ei1 = offset_dma;
1155 
1156 		/* RPTR should just exclude offset control word */
1157 		req->ist.ei2 = dm_dma_addr - iv_len;
1158 
1159 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1160 					outputlen - iv_len);
1161 		/* since this is decryption,
1162 		 * don't touch the content of
1163 		 * alternate ccode space as it contains
1164 		 * hmac.
1165 		 */
1166 
1167 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1168 
1169 		if (likely(iv_len)) {
1170 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1171 						      OFF_CTRL_LEN);
1172 			uint64_t *src = fc_params->iv_buf;
1173 			dest[0] = src[0];
1174 			dest[1] = src[1];
1175 		}
1176 
1177 		*(uint64_t *)offset_vaddr =
1178 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1179 				((uint64_t)iv_offset << 8) |
1180 				((uint64_t)auth_offset));
1181 
1182 	} else {
1183 		uint64_t dptr_dma, rptr_dma;
1184 		uint32_t g_size_bytes, s_size_bytes;
1185 		sg_comp_t *gather_comp;
1186 		sg_comp_t *scatter_comp;
1187 		uint8_t *in_buffer;
1188 		uint8_t i = 0;
1189 
1190 		/* This falls under strict SG mode */
1191 		offset_vaddr = m_vaddr;
1192 		offset_dma = m_dma;
1193 		size = OFF_CTRL_LEN + iv_len;
1194 
1195 		m_vaddr = (uint8_t *)m_vaddr + size;
1196 		m_dma += size;
1197 
1198 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1199 
1200 		if (likely(iv_len)) {
1201 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1202 						      OFF_CTRL_LEN);
1203 			uint64_t *src = fc_params->iv_buf;
1204 			dest[0] = src[0];
1205 			dest[1] = src[1];
1206 		}
1207 
1208 		*(uint64_t *)offset_vaddr =
1209 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1210 				((uint64_t)iv_offset << 8) |
1211 				((uint64_t)auth_offset));
1212 
1213 		/* DPTR has SG list */
1214 		in_buffer = m_vaddr;
1215 		dptr_dma = m_dma;
1216 
1217 		((uint16_t *)in_buffer)[0] = 0;
1218 		((uint16_t *)in_buffer)[1] = 0;
1219 
1220 		/* TODO Add error check if space will be sufficient */
1221 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1222 
1223 		/*
1224 		 * Input Gather List
1225 		 */
1226 		i = 0;
1227 
1228 		/* Offset control word that includes iv */
1229 		i = fill_sg_comp(gather_comp, i, offset_dma,
1230 				 OFF_CTRL_LEN + iv_len);
1231 
1232 		/* Add input data */
1233 		if (flags & VALID_MAC_BUF) {
1234 			size = inputlen - iv_len - mac_len;
1235 			if (size) {
1236 				/* input data only */
1237 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1238 					i = fill_sg_comp_from_buf_min(
1239 							gather_comp, i,
1240 							fc_params->bufs,
1241 							&size);
1242 				} else {
1243 					uint32_t aad_offset = aad_len ?
1244 						passthrough_len : 0;
1245 
1246 					i = fill_sg_comp_from_iov(gather_comp,
1247 							i,
1248 							fc_params->src_iov,
1249 							0, &size,
1250 							aad_buf,
1251 							aad_offset);
1252 				}
1253 				if (unlikely(size)) {
1254 					CPT_LOG_DP_ERR("Insufficient buffer"
1255 						       " space, size %d needed",
1256 						       size);
1257 					return;
1258 				}
1259 			}
1260 
1261 			/* mac data */
1262 			if (mac_len) {
1263 				i = fill_sg_comp_from_buf(gather_comp, i,
1264 							  &fc_params->mac_buf);
1265 			}
1266 		} else {
1267 			/* input data + mac */
1268 			size = inputlen - iv_len;
1269 			if (size) {
1270 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1271 					i = fill_sg_comp_from_buf_min(
1272 							gather_comp, i,
1273 							fc_params->bufs,
1274 							&size);
1275 				} else {
1276 					uint32_t aad_offset = aad_len ?
1277 						passthrough_len : 0;
1278 
1279 					if (unlikely(!fc_params->src_iov)) {
1280 						CPT_LOG_DP_ERR("Bad input args");
1281 						return;
1282 					}
1283 
1284 					i = fill_sg_comp_from_iov(
1285 							gather_comp, i,
1286 							fc_params->src_iov,
1287 							0, &size,
1288 							aad_buf,
1289 							aad_offset);
1290 				}
1291 
1292 				if (unlikely(size)) {
1293 					CPT_LOG_DP_ERR("Insufficient buffer"
1294 						       " space, size %d needed",
1295 						       size);
1296 					return;
1297 				}
1298 			}
1299 		}
1300 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1301 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1302 
1303 		/*
1304 		 * Output Scatter List
1305 		 */
1306 
1307 		i = 0;
1308 		scatter_comp =
1309 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1310 
1311 		/* Add iv */
1312 		if (iv_len) {
1313 			i = fill_sg_comp(scatter_comp, i,
1314 					 offset_dma + OFF_CTRL_LEN,
1315 					 iv_len);
1316 		}
1317 
1318 		/* Add output data */
1319 		size = outputlen - iv_len;
1320 		if (size) {
1321 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1322 				/* handle single buffer here */
1323 				i = fill_sg_comp_from_buf_min(scatter_comp, i,
1324 							      fc_params->bufs,
1325 							      &size);
1326 			} else {
1327 				uint32_t aad_offset = aad_len ?
1328 					passthrough_len : 0;
1329 
1330 				if (unlikely(!fc_params->dst_iov)) {
1331 					CPT_LOG_DP_ERR("Bad input args");
1332 					return;
1333 				}
1334 
1335 				i = fill_sg_comp_from_iov(scatter_comp, i,
1336 							  fc_params->dst_iov, 0,
1337 							  &size, aad_buf,
1338 							  aad_offset);
1339 			}
1340 
1341 			if (unlikely(size)) {
1342 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1343 					       " size %d needed", size);
1344 				return;
1345 			}
1346 		}
1347 
1348 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1349 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1350 
1351 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1352 
1353 		/* This is DPTR len incase of SG mode */
1354 		vq_cmd_w0.s.dlen = size;
1355 
1356 		m_vaddr = (uint8_t *)m_vaddr + size;
1357 		m_dma += size;
1358 
1359 		/* cpt alternate completion address saved earlier */
1360 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1361 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1362 		rptr_dma = c_dma - 8;
1363 		size += COMPLETION_CODE_SIZE;
1364 
1365 		req->ist.ei1 = dptr_dma;
1366 		req->ist.ei2 = rptr_dma;
1367 	}
1368 
1369 	/* 16 byte aligned cpt res address */
1370 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1371 	*req->completion_addr = COMPLETION_CODE_INIT;
1372 	req->comp_baddr  = c_dma;
1373 
1374 	/* Fill microcode part of instruction */
1375 	req->ist.ei0 = vq_cmd_w0.u64;
1376 
1377 	req->op = op;
1378 
1379 	*prep_req = req;
1380 	return;
1381 }
1382 
1383 static __rte_always_inline void
1384 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1385 			uint64_t d_offs,
1386 			uint64_t d_lens,
1387 			fc_params_t *params,
1388 			void *op,
1389 			void **prep_req)
1390 {
1391 	uint32_t size;
1392 	int32_t inputlen, outputlen;
1393 	struct cpt_ctx *cpt_ctx;
1394 	uint32_t mac_len = 0;
1395 	uint8_t snow3g, j;
1396 	struct cpt_request_info *req;
1397 	buf_ptr_t *buf_p;
1398 	uint32_t encr_offset = 0, auth_offset = 0;
1399 	uint32_t encr_data_len = 0, auth_data_len = 0;
1400 	int flags, iv_len = 16;
1401 	void *m_vaddr, *c_vaddr;
1402 	uint64_t m_dma, c_dma, offset_ctrl;
1403 	uint64_t *offset_vaddr, offset_dma;
1404 	uint32_t *iv_s, iv[4];
1405 	vq_cmd_word0_t vq_cmd_w0;
1406 
1407 	buf_p = &params->meta_buf;
1408 	m_vaddr = buf_p->vaddr;
1409 	m_dma = buf_p->dma_addr;
1410 
1411 	cpt_ctx = params->ctx_buf.vaddr;
1412 	flags = cpt_ctx->zsk_flags;
1413 	mac_len = cpt_ctx->mac_len;
1414 	snow3g = cpt_ctx->snow3g;
1415 
1416 	/*
1417 	 * Save initial space that followed app data for completion code &
1418 	 * alternate completion code to fall in same cache line as app data
1419 	 */
1420 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1421 	m_dma += COMPLETION_CODE_SIZE;
1422 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1423 		(uint8_t *)m_vaddr;
1424 
1425 	c_vaddr = (uint8_t *)m_vaddr + size;
1426 	c_dma = m_dma + size;
1427 	size += sizeof(cpt_res_s_t);
1428 
1429 	m_vaddr = (uint8_t *)m_vaddr + size;
1430 	m_dma += size;
1431 
1432 	/* Reserve memory for cpt request info */
1433 	req = m_vaddr;
1434 
1435 	size = sizeof(struct cpt_request_info);
1436 	m_vaddr = (uint8_t *)m_vaddr + size;
1437 	m_dma += size;
1438 
1439 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1440 
1441 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1442 
1443 	vq_cmd_w0.s.opcode.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1444 			  (0 << 3) | (flags & 0x7));
1445 
1446 	if (flags == 0x1) {
1447 		/*
1448 		 * Microcode expects offsets in bytes
1449 		 * TODO: Rounding off
1450 		 */
1451 		auth_data_len = AUTH_DLEN(d_lens);
1452 
1453 		/* EIA3 or UIA2 */
1454 		auth_offset = AUTH_OFFSET(d_offs);
1455 		auth_offset = auth_offset / 8;
1456 
1457 		/* consider iv len */
1458 		auth_offset += iv_len;
1459 
1460 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1461 		outputlen = mac_len;
1462 
1463 		offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1464 
1465 	} else {
1466 		/* EEA3 or UEA2 */
1467 		/*
1468 		 * Microcode expects offsets in bytes
1469 		 * TODO: Rounding off
1470 		 */
1471 		encr_data_len = ENCR_DLEN(d_lens);
1472 
1473 		encr_offset = ENCR_OFFSET(d_offs);
1474 		encr_offset = encr_offset / 8;
1475 		/* consider iv len */
1476 		encr_offset += iv_len;
1477 
1478 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1479 		outputlen = inputlen;
1480 
1481 		/* iv offset is 0 */
1482 		offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1483 	}
1484 
1485 	/* IV */
1486 	iv_s = (flags == 0x1) ? params->auth_iv_buf :
1487 		params->iv_buf;
1488 
1489 	if (snow3g) {
1490 		/*
1491 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1492 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1493 		 */
1494 
1495 		for (j = 0; j < 4; j++)
1496 			iv[j] = iv_s[3 - j];
1497 	} else {
1498 		/* ZUC doesn't need a swap */
1499 		for (j = 0; j < 4; j++)
1500 			iv[j] = iv_s[j];
1501 	}
1502 
1503 	/*
1504 	 * GP op header, lengths are expected in bits.
1505 	 */
1506 	vq_cmd_w0.s.param1 = encr_data_len;
1507 	vq_cmd_w0.s.param2 = auth_data_len;
1508 
1509 	/*
1510 	 * In 83XX since we have a limitation of
1511 	 * IV & Offset control word not part of instruction
1512 	 * and need to be part of Data Buffer, we check if
1513 	 * head room is there and then only do the Direct mode processing
1514 	 */
1515 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1516 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1517 		void *dm_vaddr = params->bufs[0].vaddr;
1518 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1519 		/*
1520 		 * This flag indicates that there is 24 bytes head room and
1521 		 * 8 bytes tail room available, so that we get to do
1522 		 * DIRECT MODE with limitation
1523 		 */
1524 
1525 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1526 					    OFF_CTRL_LEN - iv_len);
1527 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1528 
1529 		/* DPTR */
1530 		req->ist.ei1 = offset_dma;
1531 		/* RPTR should just exclude offset control word */
1532 		req->ist.ei2 = dm_dma_addr - iv_len;
1533 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1534 						    + outputlen - iv_len);
1535 
1536 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1537 
1538 		if (likely(iv_len)) {
1539 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1540 						      + OFF_CTRL_LEN);
1541 			memcpy(iv_d, iv, 16);
1542 		}
1543 
1544 		*offset_vaddr = offset_ctrl;
1545 	} else {
1546 		uint32_t i, g_size_bytes, s_size_bytes;
1547 		uint64_t dptr_dma, rptr_dma;
1548 		sg_comp_t *gather_comp;
1549 		sg_comp_t *scatter_comp;
1550 		uint8_t *in_buffer;
1551 		uint32_t *iv_d;
1552 
1553 		/* save space for iv */
1554 		offset_vaddr = m_vaddr;
1555 		offset_dma = m_dma;
1556 
1557 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1558 		m_dma += OFF_CTRL_LEN + iv_len;
1559 
1560 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1561 
1562 		/* DPTR has SG list */
1563 		in_buffer = m_vaddr;
1564 		dptr_dma = m_dma;
1565 
1566 		((uint16_t *)in_buffer)[0] = 0;
1567 		((uint16_t *)in_buffer)[1] = 0;
1568 
1569 		/* TODO Add error check if space will be sufficient */
1570 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1571 
1572 		/*
1573 		 * Input Gather List
1574 		 */
1575 		i = 0;
1576 
1577 		/* Offset control word followed by iv */
1578 
1579 		i = fill_sg_comp(gather_comp, i, offset_dma,
1580 				 OFF_CTRL_LEN + iv_len);
1581 
1582 		/* iv offset is 0 */
1583 		*offset_vaddr = offset_ctrl;
1584 
1585 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1586 		memcpy(iv_d, iv, 16);
1587 
1588 		/* input data */
1589 		size = inputlen - iv_len;
1590 		if (size) {
1591 			i = fill_sg_comp_from_iov(gather_comp, i,
1592 						  params->src_iov,
1593 						  0, &size, NULL, 0);
1594 			if (unlikely(size)) {
1595 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1596 					       " size %d needed", size);
1597 				return;
1598 			}
1599 		}
1600 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1601 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1602 
1603 		/*
1604 		 * Output Scatter List
1605 		 */
1606 
1607 		i = 0;
1608 		scatter_comp =
1609 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1610 
1611 		if (flags == 0x1) {
1612 			/* IV in SLIST only for EEA3 & UEA2 */
1613 			iv_len = 0;
1614 		}
1615 
1616 		if (iv_len) {
1617 			i = fill_sg_comp(scatter_comp, i,
1618 					 offset_dma + OFF_CTRL_LEN, iv_len);
1619 		}
1620 
1621 		/* Add output data */
1622 		if (req_flags & VALID_MAC_BUF) {
1623 			size = outputlen - iv_len - mac_len;
1624 			if (size) {
1625 				i = fill_sg_comp_from_iov(scatter_comp, i,
1626 							  params->dst_iov, 0,
1627 							  &size, NULL, 0);
1628 
1629 				if (unlikely(size)) {
1630 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1631 						       " size %d needed", size);
1632 					return;
1633 				}
1634 			}
1635 
1636 			/* mac data */
1637 			if (mac_len) {
1638 				i = fill_sg_comp_from_buf(scatter_comp, i,
1639 							  &params->mac_buf);
1640 			}
1641 		} else {
1642 			/* Output including mac */
1643 			size = outputlen - iv_len;
1644 			if (size) {
1645 				i = fill_sg_comp_from_iov(scatter_comp, i,
1646 							  params->dst_iov, 0,
1647 							  &size, NULL, 0);
1648 
1649 				if (unlikely(size)) {
1650 					CPT_LOG_DP_ERR("Insufficient buffer space,"
1651 						       " size %d needed", size);
1652 					return;
1653 				}
1654 			}
1655 		}
1656 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1657 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1658 
1659 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1660 
1661 		/* This is DPTR len incase of SG mode */
1662 		vq_cmd_w0.s.dlen = size;
1663 
1664 		m_vaddr = (uint8_t *)m_vaddr + size;
1665 		m_dma += size;
1666 
1667 		/* cpt alternate completion address saved earlier */
1668 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1669 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1670 		rptr_dma = c_dma - 8;
1671 
1672 		req->ist.ei1 = dptr_dma;
1673 		req->ist.ei2 = rptr_dma;
1674 	}
1675 
1676 	/* 16 byte aligned cpt res address */
1677 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1678 	*req->completion_addr = COMPLETION_CODE_INIT;
1679 	req->comp_baddr  = c_dma;
1680 
1681 	/* Fill microcode part of instruction */
1682 	req->ist.ei0 = vq_cmd_w0.u64;
1683 
1684 	req->op = op;
1685 
1686 	*prep_req = req;
1687 	return;
1688 }
1689 
1690 static __rte_always_inline void
1691 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1692 			uint64_t d_offs,
1693 			uint64_t d_lens,
1694 			fc_params_t *params,
1695 			void *op,
1696 			void **prep_req)
1697 {
1698 	uint32_t size;
1699 	int32_t inputlen = 0, outputlen;
1700 	struct cpt_ctx *cpt_ctx;
1701 	uint8_t snow3g, iv_len = 16;
1702 	struct cpt_request_info *req;
1703 	buf_ptr_t *buf_p;
1704 	uint32_t encr_offset;
1705 	uint32_t encr_data_len;
1706 	int flags;
1707 	void *m_vaddr, *c_vaddr;
1708 	uint64_t m_dma, c_dma;
1709 	uint64_t *offset_vaddr, offset_dma;
1710 	uint32_t *iv_s, iv[4], j;
1711 	vq_cmd_word0_t vq_cmd_w0;
1712 
1713 	buf_p = &params->meta_buf;
1714 	m_vaddr = buf_p->vaddr;
1715 	m_dma = buf_p->dma_addr;
1716 
1717 	/*
1718 	 * Microcode expects offsets in bytes
1719 	 * TODO: Rounding off
1720 	 */
1721 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1722 	encr_data_len = ENCR_DLEN(d_lens);
1723 
1724 	cpt_ctx = params->ctx_buf.vaddr;
1725 	flags = cpt_ctx->zsk_flags;
1726 	snow3g = cpt_ctx->snow3g;
1727 	/*
1728 	 * Save initial space that followed app data for completion code &
1729 	 * alternate completion code to fall in same cache line as app data
1730 	 */
1731 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1732 	m_dma += COMPLETION_CODE_SIZE;
1733 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1734 		(uint8_t *)m_vaddr;
1735 
1736 	c_vaddr = (uint8_t *)m_vaddr + size;
1737 	c_dma = m_dma + size;
1738 	size += sizeof(cpt_res_s_t);
1739 
1740 	m_vaddr = (uint8_t *)m_vaddr + size;
1741 	m_dma += size;
1742 
1743 	/* Reserve memory for cpt request info */
1744 	req = m_vaddr;
1745 
1746 	size = sizeof(struct cpt_request_info);
1747 	m_vaddr = (uint8_t *)m_vaddr + size;
1748 	m_dma += size;
1749 
1750 	vq_cmd_w0.u64 = 0;
1751 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1752 
1753 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1754 
1755 	vq_cmd_w0.s.opcode.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1756 			  (0 << 3) | (flags & 0x7));
1757 
1758 	/* consider iv len */
1759 	encr_offset += iv_len;
1760 
1761 	inputlen = encr_offset +
1762 		(RTE_ALIGN(encr_data_len, 8) / 8);
1763 	outputlen = inputlen;
1764 
1765 	/* IV */
1766 	iv_s = params->iv_buf;
1767 	if (snow3g) {
1768 		/*
1769 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1770 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1771 		 */
1772 
1773 		for (j = 0; j < 4; j++)
1774 			iv[j] = iv_s[3 - j];
1775 	} else {
1776 		/* ZUC doesn't need a swap */
1777 		for (j = 0; j < 4; j++)
1778 			iv[j] = iv_s[j];
1779 	}
1780 
1781 	/*
1782 	 * GP op header, lengths are expected in bits.
1783 	 */
1784 	vq_cmd_w0.s.param1 = encr_data_len;
1785 
1786 	/*
1787 	 * In 83XX since we have a limitation of
1788 	 * IV & Offset control word not part of instruction
1789 	 * and need to be part of Data Buffer, we check if
1790 	 * head room is there and then only do the Direct mode processing
1791 	 */
1792 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1793 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1794 		void *dm_vaddr = params->bufs[0].vaddr;
1795 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1796 		/*
1797 		 * This flag indicates that there is 24 bytes head room and
1798 		 * 8 bytes tail room available, so that we get to do
1799 		 * DIRECT MODE with limitation
1800 		 */
1801 
1802 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1803 					    OFF_CTRL_LEN - iv_len);
1804 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1805 
1806 		/* DPTR */
1807 		req->ist.ei1 = offset_dma;
1808 		/* RPTR should just exclude offset control word */
1809 		req->ist.ei2 = dm_dma_addr - iv_len;
1810 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1811 						    + outputlen - iv_len);
1812 
1813 		vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1814 
1815 		if (likely(iv_len)) {
1816 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1817 						      + OFF_CTRL_LEN);
1818 			memcpy(iv_d, iv, 16);
1819 		}
1820 
1821 		/* iv offset is 0 */
1822 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1823 	} else {
1824 		uint32_t i, g_size_bytes, s_size_bytes;
1825 		uint64_t dptr_dma, rptr_dma;
1826 		sg_comp_t *gather_comp;
1827 		sg_comp_t *scatter_comp;
1828 		uint8_t *in_buffer;
1829 		uint32_t *iv_d;
1830 
1831 		/* save space for offset and iv... */
1832 		offset_vaddr = m_vaddr;
1833 		offset_dma = m_dma;
1834 
1835 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1836 		m_dma += OFF_CTRL_LEN + iv_len;
1837 
1838 		vq_cmd_w0.s.opcode.major |= CPT_DMA_MODE;
1839 
1840 		/* DPTR has SG list */
1841 		in_buffer = m_vaddr;
1842 		dptr_dma = m_dma;
1843 
1844 		((uint16_t *)in_buffer)[0] = 0;
1845 		((uint16_t *)in_buffer)[1] = 0;
1846 
1847 		/* TODO Add error check if space will be sufficient */
1848 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1849 
1850 		/*
1851 		 * Input Gather List
1852 		 */
1853 		i = 0;
1854 
1855 		/* Offset control word */
1856 
1857 		/* iv offset is 0 */
1858 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1859 
1860 		i = fill_sg_comp(gather_comp, i, offset_dma,
1861 				 OFF_CTRL_LEN + iv_len);
1862 
1863 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1864 		memcpy(iv_d, iv, 16);
1865 
1866 		/* Add input data */
1867 		size = inputlen - iv_len;
1868 		if (size) {
1869 			i = fill_sg_comp_from_iov(gather_comp, i,
1870 						  params->src_iov,
1871 						  0, &size, NULL, 0);
1872 			if (unlikely(size)) {
1873 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1874 					       " size %d needed", size);
1875 				return;
1876 			}
1877 		}
1878 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1879 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1880 
1881 		/*
1882 		 * Output Scatter List
1883 		 */
1884 
1885 		i = 0;
1886 		scatter_comp =
1887 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1888 
1889 		/* IV */
1890 		i = fill_sg_comp(scatter_comp, i,
1891 				 offset_dma + OFF_CTRL_LEN,
1892 				 iv_len);
1893 
1894 		/* Add output data */
1895 		size = outputlen - iv_len;
1896 		if (size) {
1897 			i = fill_sg_comp_from_iov(scatter_comp, i,
1898 						  params->dst_iov, 0,
1899 						  &size, NULL, 0);
1900 
1901 			if (unlikely(size)) {
1902 				CPT_LOG_DP_ERR("Insufficient buffer space,"
1903 					       " size %d needed", size);
1904 				return;
1905 			}
1906 		}
1907 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1908 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1909 
1910 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1911 
1912 		/* This is DPTR len incase of SG mode */
1913 		vq_cmd_w0.s.dlen = size;
1914 
1915 		m_vaddr = (uint8_t *)m_vaddr + size;
1916 		m_dma += size;
1917 
1918 		/* cpt alternate completion address saved earlier */
1919 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1920 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1921 		rptr_dma = c_dma - 8;
1922 
1923 		req->ist.ei1 = dptr_dma;
1924 		req->ist.ei2 = rptr_dma;
1925 	}
1926 
1927 	/* 16 byte aligned cpt res address */
1928 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1929 	*req->completion_addr = COMPLETION_CODE_INIT;
1930 	req->comp_baddr  = c_dma;
1931 
1932 	/* Fill microcode part of instruction */
1933 	req->ist.ei0 = vq_cmd_w0.u64;
1934 
1935 	req->op = op;
1936 
1937 	*prep_req = req;
1938 	return;
1939 }
1940 
1941 static __rte_always_inline void
1942 cpt_kasumi_enc_prep(uint32_t req_flags,
1943 		    uint64_t d_offs,
1944 		    uint64_t d_lens,
1945 		    fc_params_t *params,
1946 		    void *op,
1947 		    void **prep_req)
1948 {
1949 	uint32_t size;
1950 	int32_t inputlen = 0, outputlen = 0;
1951 	struct cpt_ctx *cpt_ctx;
1952 	uint32_t mac_len = 0;
1953 	uint8_t i = 0;
1954 	struct cpt_request_info *req;
1955 	buf_ptr_t *buf_p;
1956 	uint32_t encr_offset, auth_offset;
1957 	uint32_t encr_data_len, auth_data_len;
1958 	int flags;
1959 	uint8_t *iv_s, *iv_d, iv_len = 8;
1960 	uint8_t dir = 0;
1961 	void *m_vaddr, *c_vaddr;
1962 	uint64_t m_dma, c_dma;
1963 	uint64_t *offset_vaddr, offset_dma;
1964 	vq_cmd_word0_t vq_cmd_w0;
1965 	uint8_t *in_buffer;
1966 	uint32_t g_size_bytes, s_size_bytes;
1967 	uint64_t dptr_dma, rptr_dma;
1968 	sg_comp_t *gather_comp;
1969 	sg_comp_t *scatter_comp;
1970 
1971 	buf_p = &params->meta_buf;
1972 	m_vaddr = buf_p->vaddr;
1973 	m_dma = buf_p->dma_addr;
1974 
1975 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1976 	auth_offset = AUTH_OFFSET(d_offs) / 8;
1977 	encr_data_len = ENCR_DLEN(d_lens);
1978 	auth_data_len = AUTH_DLEN(d_lens);
1979 
1980 	cpt_ctx = params->ctx_buf.vaddr;
1981 	flags = cpt_ctx->zsk_flags;
1982 	mac_len = cpt_ctx->mac_len;
1983 
1984 	if (flags == 0x0)
1985 		iv_s = params->iv_buf;
1986 	else
1987 		iv_s = params->auth_iv_buf;
1988 
1989 	dir = iv_s[8] & 0x1;
1990 
1991 	/*
1992 	 * Save initial space that followed app data for completion code &
1993 	 * alternate completion code to fall in same cache line as app data
1994 	 */
1995 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1996 	m_dma += COMPLETION_CODE_SIZE;
1997 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1998 		(uint8_t *)m_vaddr;
1999 
2000 	c_vaddr = (uint8_t *)m_vaddr + size;
2001 	c_dma = m_dma + size;
2002 	size += sizeof(cpt_res_s_t);
2003 
2004 	m_vaddr = (uint8_t *)m_vaddr + size;
2005 	m_dma += size;
2006 
2007 	/* Reserve memory for cpt request info */
2008 	req = m_vaddr;
2009 
2010 	size = sizeof(struct cpt_request_info);
2011 	m_vaddr = (uint8_t *)m_vaddr + size;
2012 	m_dma += size;
2013 
2014 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2015 
2016 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2017 	vq_cmd_w0.s.opcode.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2018 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2019 
2020 	/*
2021 	 * GP op header, lengths are expected in bits.
2022 	 */
2023 	vq_cmd_w0.s.param1 = encr_data_len;
2024 	vq_cmd_w0.s.param2 = auth_data_len;
2025 
2026 	/* consider iv len */
2027 	if (flags == 0x0) {
2028 		encr_offset += iv_len;
2029 		auth_offset += iv_len;
2030 	}
2031 
2032 	/* save space for offset ctrl and iv */
2033 	offset_vaddr = m_vaddr;
2034 	offset_dma = m_dma;
2035 
2036 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2037 	m_dma += OFF_CTRL_LEN + iv_len;
2038 
2039 	/* DPTR has SG list */
2040 	in_buffer = m_vaddr;
2041 	dptr_dma = m_dma;
2042 
2043 	((uint16_t *)in_buffer)[0] = 0;
2044 	((uint16_t *)in_buffer)[1] = 0;
2045 
2046 	/* TODO Add error check if space will be sufficient */
2047 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2048 
2049 	/*
2050 	 * Input Gather List
2051 	 */
2052 	i = 0;
2053 
2054 	/* Offset control word followed by iv */
2055 
2056 	if (flags == 0x0) {
2057 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2058 		outputlen = inputlen;
2059 		/* iv offset is 0 */
2060 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2061 	} else {
2062 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2063 		outputlen = mac_len;
2064 		/* iv offset is 0 */
2065 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2066 	}
2067 
2068 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2069 
2070 	/* IV */
2071 	iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2072 	memcpy(iv_d, iv_s, iv_len);
2073 
2074 	/* input data */
2075 	size = inputlen - iv_len;
2076 	if (size) {
2077 		i = fill_sg_comp_from_iov(gather_comp, i,
2078 					  params->src_iov, 0,
2079 					  &size, NULL, 0);
2080 
2081 		if (unlikely(size)) {
2082 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2083 				       " size %d needed", size);
2084 			return;
2085 		}
2086 	}
2087 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2088 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2089 
2090 	/*
2091 	 * Output Scatter List
2092 	 */
2093 
2094 	i = 0;
2095 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2096 
2097 	if (flags == 0x1) {
2098 		/* IV in SLIST only for F8 */
2099 		iv_len = 0;
2100 	}
2101 
2102 	/* IV */
2103 	if (iv_len) {
2104 		i = fill_sg_comp(scatter_comp, i,
2105 				 offset_dma + OFF_CTRL_LEN,
2106 				 iv_len);
2107 	}
2108 
2109 	/* Add output data */
2110 	if (req_flags & VALID_MAC_BUF) {
2111 		size = outputlen - iv_len - mac_len;
2112 		if (size) {
2113 			i = fill_sg_comp_from_iov(scatter_comp, i,
2114 						  params->dst_iov, 0,
2115 						  &size, NULL, 0);
2116 
2117 			if (unlikely(size)) {
2118 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2119 					       " size %d needed", size);
2120 				return;
2121 			}
2122 		}
2123 
2124 		/* mac data */
2125 		if (mac_len) {
2126 			i = fill_sg_comp_from_buf(scatter_comp, i,
2127 						  &params->mac_buf);
2128 		}
2129 	} else {
2130 		/* Output including mac */
2131 		size = outputlen - iv_len;
2132 		if (size) {
2133 			i = fill_sg_comp_from_iov(scatter_comp, i,
2134 						  params->dst_iov, 0,
2135 						  &size, NULL, 0);
2136 
2137 			if (unlikely(size)) {
2138 				CPT_LOG_DP_ERR("Insufficient buffer space,"
2139 					       " size %d needed", size);
2140 				return;
2141 			}
2142 		}
2143 	}
2144 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2145 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2146 
2147 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2148 
2149 	/* This is DPTR len incase of SG mode */
2150 	vq_cmd_w0.s.dlen = size;
2151 
2152 	m_vaddr = (uint8_t *)m_vaddr + size;
2153 	m_dma += size;
2154 
2155 	/* cpt alternate completion address saved earlier */
2156 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2157 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2158 	rptr_dma = c_dma - 8;
2159 
2160 	req->ist.ei1 = dptr_dma;
2161 	req->ist.ei2 = rptr_dma;
2162 
2163 	/* 16 byte aligned cpt res address */
2164 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2165 	*req->completion_addr = COMPLETION_CODE_INIT;
2166 	req->comp_baddr  = c_dma;
2167 
2168 	/* Fill microcode part of instruction */
2169 	req->ist.ei0 = vq_cmd_w0.u64;
2170 
2171 	req->op = op;
2172 
2173 	*prep_req = req;
2174 	return;
2175 }
2176 
2177 static __rte_always_inline void
2178 cpt_kasumi_dec_prep(uint64_t d_offs,
2179 		    uint64_t d_lens,
2180 		    fc_params_t *params,
2181 		    void *op,
2182 		    void **prep_req)
2183 {
2184 	uint32_t size;
2185 	int32_t inputlen = 0, outputlen;
2186 	struct cpt_ctx *cpt_ctx;
2187 	uint8_t i = 0, iv_len = 8;
2188 	struct cpt_request_info *req;
2189 	buf_ptr_t *buf_p;
2190 	uint32_t encr_offset;
2191 	uint32_t encr_data_len;
2192 	int flags;
2193 	uint8_t dir = 0;
2194 	void *m_vaddr, *c_vaddr;
2195 	uint64_t m_dma, c_dma;
2196 	uint64_t *offset_vaddr, offset_dma;
2197 	vq_cmd_word0_t vq_cmd_w0;
2198 	uint8_t *in_buffer;
2199 	uint32_t g_size_bytes, s_size_bytes;
2200 	uint64_t dptr_dma, rptr_dma;
2201 	sg_comp_t *gather_comp;
2202 	sg_comp_t *scatter_comp;
2203 
2204 	buf_p = &params->meta_buf;
2205 	m_vaddr = buf_p->vaddr;
2206 	m_dma = buf_p->dma_addr;
2207 
2208 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2209 	encr_data_len = ENCR_DLEN(d_lens);
2210 
2211 	cpt_ctx = params->ctx_buf.vaddr;
2212 	flags = cpt_ctx->zsk_flags;
2213 	/*
2214 	 * Save initial space that followed app data for completion code &
2215 	 * alternate completion code to fall in same cache line as app data
2216 	 */
2217 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2218 	m_dma += COMPLETION_CODE_SIZE;
2219 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2220 		(uint8_t *)m_vaddr;
2221 
2222 	c_vaddr = (uint8_t *)m_vaddr + size;
2223 	c_dma = m_dma + size;
2224 	size += sizeof(cpt_res_s_t);
2225 
2226 	m_vaddr = (uint8_t *)m_vaddr + size;
2227 	m_dma += size;
2228 
2229 	/* Reserve memory for cpt request info */
2230 	req = m_vaddr;
2231 
2232 	size = sizeof(struct cpt_request_info);
2233 	m_vaddr = (uint8_t *)m_vaddr + size;
2234 	m_dma += size;
2235 
2236 	vq_cmd_w0.u64 = 0;
2237 	vq_cmd_w0.s.opcode.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2238 
2239 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2240 	vq_cmd_w0.s.opcode.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2241 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2242 
2243 	/*
2244 	 * GP op header, lengths are expected in bits.
2245 	 */
2246 	vq_cmd_w0.s.param1 = encr_data_len;
2247 
2248 	/* consider iv len */
2249 	encr_offset += iv_len;
2250 
2251 	inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2252 	outputlen = inputlen;
2253 
2254 	/* save space for offset ctrl & iv */
2255 	offset_vaddr = m_vaddr;
2256 	offset_dma = m_dma;
2257 
2258 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2259 	m_dma += OFF_CTRL_LEN + iv_len;
2260 
2261 	/* DPTR has SG list */
2262 	in_buffer = m_vaddr;
2263 	dptr_dma = m_dma;
2264 
2265 	((uint16_t *)in_buffer)[0] = 0;
2266 	((uint16_t *)in_buffer)[1] = 0;
2267 
2268 	/* TODO Add error check if space will be sufficient */
2269 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2270 
2271 	/*
2272 	 * Input Gather List
2273 	 */
2274 	i = 0;
2275 
2276 	/* Offset control word followed by iv */
2277 	*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2278 
2279 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2280 
2281 	/* IV */
2282 	memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2283 	       params->iv_buf, iv_len);
2284 
2285 	/* Add input data */
2286 	size = inputlen - iv_len;
2287 	if (size) {
2288 		i = fill_sg_comp_from_iov(gather_comp, i,
2289 					  params->src_iov,
2290 					  0, &size, NULL, 0);
2291 		if (unlikely(size)) {
2292 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2293 				       " size %d needed", size);
2294 			return;
2295 		}
2296 	}
2297 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2298 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2299 
2300 	/*
2301 	 * Output Scatter List
2302 	 */
2303 
2304 	i = 0;
2305 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2306 
2307 	/* IV */
2308 	i = fill_sg_comp(scatter_comp, i,
2309 			 offset_dma + OFF_CTRL_LEN,
2310 			 iv_len);
2311 
2312 	/* Add output data */
2313 	size = outputlen - iv_len;
2314 	if (size) {
2315 		i = fill_sg_comp_from_iov(scatter_comp, i,
2316 					  params->dst_iov, 0,
2317 					  &size, NULL, 0);
2318 		if (unlikely(size)) {
2319 			CPT_LOG_DP_ERR("Insufficient buffer space,"
2320 				       " size %d needed", size);
2321 			return;
2322 		}
2323 	}
2324 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2325 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2326 
2327 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2328 
2329 	/* This is DPTR len incase of SG mode */
2330 	vq_cmd_w0.s.dlen = size;
2331 
2332 	m_vaddr = (uint8_t *)m_vaddr + size;
2333 	m_dma += size;
2334 
2335 	/* cpt alternate completion address saved earlier */
2336 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2337 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2338 	rptr_dma = c_dma - 8;
2339 
2340 	req->ist.ei1 = dptr_dma;
2341 	req->ist.ei2 = rptr_dma;
2342 
2343 	/* 16 byte aligned cpt res address */
2344 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2345 	*req->completion_addr = COMPLETION_CODE_INIT;
2346 	req->comp_baddr  = c_dma;
2347 
2348 	/* Fill microcode part of instruction */
2349 	req->ist.ei0 = vq_cmd_w0.u64;
2350 
2351 	req->op = op;
2352 
2353 	*prep_req = req;
2354 	return;
2355 }
2356 
2357 static __rte_always_inline void *
2358 cpt_fc_dec_hmac_prep(uint32_t flags,
2359 		     uint64_t d_offs,
2360 		     uint64_t d_lens,
2361 		     fc_params_t *fc_params,
2362 		     void *op)
2363 {
2364 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2365 	uint8_t fc_type;
2366 	void *prep_req = NULL;
2367 
2368 	fc_type = ctx->fc_type;
2369 
2370 	if (likely(fc_type == FC_GEN)) {
2371 		cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2372 				  &prep_req);
2373 	} else if (fc_type == ZUC_SNOW3G) {
2374 		cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2375 					&prep_req);
2376 	} else if (fc_type == KASUMI) {
2377 		cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2378 	}
2379 
2380 	/*
2381 	 * For AUTH_ONLY case,
2382 	 * MC only supports digest generation and verification
2383 	 * should be done in software by memcmp()
2384 	 */
2385 
2386 	return prep_req;
2387 }
2388 
2389 static __rte_always_inline void *__rte_hot
2390 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2391 		     fc_params_t *fc_params, void *op)
2392 {
2393 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2394 	uint8_t fc_type;
2395 	void *prep_req = NULL;
2396 
2397 	fc_type = ctx->fc_type;
2398 
2399 	/* Common api for rest of the ops */
2400 	if (likely(fc_type == FC_GEN)) {
2401 		cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2402 				  &prep_req);
2403 	} else if (fc_type == ZUC_SNOW3G) {
2404 		cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2405 					&prep_req);
2406 	} else if (fc_type == KASUMI) {
2407 		cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2408 				    &prep_req);
2409 	} else if (fc_type == HASH_HMAC) {
2410 		cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2411 	}
2412 
2413 	return prep_req;
2414 }
2415 
2416 static __rte_always_inline int
2417 cpt_fc_auth_set_key(struct cpt_ctx *cpt_ctx, auth_type_t type,
2418 		    const uint8_t *key, uint16_t key_len, uint16_t mac_len)
2419 {
2420 	mc_fc_context_t *fctx = &cpt_ctx->mc_ctx.fctx;
2421 	mc_zuc_snow3g_ctx_t *zs_ctx = &cpt_ctx->mc_ctx.zs_ctx;
2422 	mc_kasumi_ctx_t *k_ctx = &cpt_ctx->mc_ctx.k_ctx;
2423 
2424 	if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2425 		uint32_t keyx[4];
2426 
2427 		if (key_len != 16)
2428 			return -1;
2429 		/* No support for AEAD yet */
2430 		if (cpt_ctx->enc_cipher)
2431 			return -1;
2432 		/* For ZUC/SNOW3G/Kasumi */
2433 		switch (type) {
2434 		case SNOW3G_UIA2:
2435 			cpt_ctx->snow3g = 1;
2436 			gen_key_snow3g(key, keyx);
2437 			memcpy(zs_ctx->ci_key, keyx, key_len);
2438 			cpt_ctx->fc_type = ZUC_SNOW3G;
2439 			cpt_ctx->zsk_flags = 0x1;
2440 			break;
2441 		case ZUC_EIA3:
2442 			cpt_ctx->snow3g = 0;
2443 			memcpy(zs_ctx->ci_key, key, key_len);
2444 			memcpy(zs_ctx->zuc_const, zuc_d, 32);
2445 			cpt_ctx->fc_type = ZUC_SNOW3G;
2446 			cpt_ctx->zsk_flags = 0x1;
2447 			break;
2448 		case KASUMI_F9_ECB:
2449 			/* Kasumi ECB mode */
2450 			cpt_ctx->k_ecb = 1;
2451 			memcpy(k_ctx->ci_key, key, key_len);
2452 			cpt_ctx->fc_type = KASUMI;
2453 			cpt_ctx->zsk_flags = 0x1;
2454 			break;
2455 		case KASUMI_F9_CBC:
2456 			memcpy(k_ctx->ci_key, key, key_len);
2457 			cpt_ctx->fc_type = KASUMI;
2458 			cpt_ctx->zsk_flags = 0x1;
2459 			break;
2460 		default:
2461 			return -1;
2462 		}
2463 		cpt_ctx->mac_len = 4;
2464 		cpt_ctx->hash_type = type;
2465 		return 0;
2466 	}
2467 
2468 	if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2469 		if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2470 			cpt_ctx->fc_type = HASH_HMAC;
2471 	}
2472 
2473 	if (cpt_ctx->fc_type == FC_GEN && key_len > 64)
2474 		return -1;
2475 
2476 	/* For GMAC auth, cipher must be NULL */
2477 	if (type == GMAC_TYPE)
2478 		fctx->enc.enc_cipher = 0;
2479 
2480 	fctx->enc.hash_type = cpt_ctx->hash_type = type;
2481 	fctx->enc.mac_len = cpt_ctx->mac_len = mac_len;
2482 
2483 	if (key_len) {
2484 		cpt_ctx->hmac = 1;
2485 		memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2486 		memcpy(cpt_ctx->auth_key, key, key_len);
2487 		cpt_ctx->auth_key_len = key_len;
2488 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2489 		memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2490 
2491 		if (key_len <= 64)
2492 			memcpy(fctx->hmac.opad, key, key_len);
2493 		fctx->enc.auth_input_type = 1;
2494 	}
2495 	return 0;
2496 }
2497 
2498 static __rte_always_inline int
2499 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2500 		 struct cpt_sess_misc *sess)
2501 {
2502 	struct rte_crypto_aead_xform *aead_form;
2503 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2504 	auth_type_t auth_type = 0; /* NULL Auth type */
2505 	uint32_t cipher_key_len = 0;
2506 	uint8_t aes_gcm = 0;
2507 	aead_form = &xform->aead;
2508 	void *ctx = SESS_PRIV(sess);
2509 
2510 	if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
2511 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2512 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2513 	} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) {
2514 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2515 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2516 	} else {
2517 		CPT_LOG_DP_ERR("Unknown aead operation\n");
2518 		return -1;
2519 	}
2520 	switch (aead_form->algo) {
2521 	case RTE_CRYPTO_AEAD_AES_GCM:
2522 		enc_type = AES_GCM;
2523 		cipher_key_len = 16;
2524 		aes_gcm = 1;
2525 		break;
2526 	case RTE_CRYPTO_AEAD_AES_CCM:
2527 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2528 			       aead_form->algo);
2529 		return -1;
2530 	case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
2531 		enc_type = CHACHA20;
2532 		auth_type = POLY1305;
2533 		cipher_key_len = 32;
2534 		sess->chacha_poly = 1;
2535 		break;
2536 	default:
2537 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2538 			       aead_form->algo);
2539 		return -1;
2540 	}
2541 	if (aead_form->key.length < cipher_key_len) {
2542 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2543 			       (unsigned int long)aead_form->key.length);
2544 		return -1;
2545 	}
2546 	sess->zsk_flag = 0;
2547 	sess->aes_gcm = aes_gcm;
2548 	sess->mac_len = aead_form->digest_length;
2549 	sess->iv_offset = aead_form->iv.offset;
2550 	sess->iv_length = aead_form->iv.length;
2551 	sess->aad_length = aead_form->aad_length;
2552 
2553 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2554 			aead_form->key.length, NULL)))
2555 		return -1;
2556 
2557 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2558 			aead_form->digest_length)))
2559 		return -1;
2560 
2561 	return 0;
2562 }
2563 
2564 static __rte_always_inline int
2565 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2566 		 struct cpt_sess_misc *sess)
2567 {
2568 	struct rte_crypto_cipher_xform *c_form;
2569 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2570 	uint32_t cipher_key_len = 0;
2571 	uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
2572 
2573 	c_form = &xform->cipher;
2574 
2575 	if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2576 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2577 	else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
2578 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2579 	else {
2580 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2581 		return -1;
2582 	}
2583 
2584 	switch (c_form->algo) {
2585 	case RTE_CRYPTO_CIPHER_AES_CBC:
2586 		enc_type = AES_CBC;
2587 		cipher_key_len = 16;
2588 		break;
2589 	case RTE_CRYPTO_CIPHER_3DES_CBC:
2590 		enc_type = DES3_CBC;
2591 		cipher_key_len = 24;
2592 		break;
2593 	case RTE_CRYPTO_CIPHER_DES_CBC:
2594 		/* DES is implemented using 3DES in hardware */
2595 		enc_type = DES3_CBC;
2596 		cipher_key_len = 8;
2597 		break;
2598 	case RTE_CRYPTO_CIPHER_AES_CTR:
2599 		enc_type = AES_CTR;
2600 		cipher_key_len = 16;
2601 		aes_ctr = 1;
2602 		break;
2603 	case RTE_CRYPTO_CIPHER_NULL:
2604 		enc_type = 0;
2605 		is_null = 1;
2606 		break;
2607 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
2608 		enc_type = KASUMI_F8_ECB;
2609 		cipher_key_len = 16;
2610 		zsk_flag = K_F8;
2611 		break;
2612 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2613 		enc_type = SNOW3G_UEA2;
2614 		cipher_key_len = 16;
2615 		zsk_flag = ZS_EA;
2616 		break;
2617 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2618 		enc_type = ZUC_EEA3;
2619 		cipher_key_len = 16;
2620 		zsk_flag = ZS_EA;
2621 		break;
2622 	case RTE_CRYPTO_CIPHER_AES_XTS:
2623 		enc_type = AES_XTS;
2624 		cipher_key_len = 16;
2625 		break;
2626 	case RTE_CRYPTO_CIPHER_3DES_ECB:
2627 		enc_type = DES3_ECB;
2628 		cipher_key_len = 24;
2629 		break;
2630 	case RTE_CRYPTO_CIPHER_AES_ECB:
2631 		enc_type = AES_ECB;
2632 		cipher_key_len = 16;
2633 		break;
2634 	case RTE_CRYPTO_CIPHER_3DES_CTR:
2635 	case RTE_CRYPTO_CIPHER_AES_F8:
2636 	case RTE_CRYPTO_CIPHER_ARC4:
2637 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2638 			       c_form->algo);
2639 		return -1;
2640 	default:
2641 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2642 			       c_form->algo);
2643 		return -1;
2644 	}
2645 
2646 	if (c_form->key.length < cipher_key_len) {
2647 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2648 			       (unsigned long) c_form->key.length);
2649 		return -1;
2650 	}
2651 
2652 	sess->zsk_flag = zsk_flag;
2653 	sess->aes_gcm = 0;
2654 	sess->aes_ctr = aes_ctr;
2655 	sess->iv_offset = c_form->iv.offset;
2656 	sess->iv_length = c_form->iv.length;
2657 	sess->is_null = is_null;
2658 
2659 	if (unlikely(cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type,
2660 			c_form->key.data, c_form->key.length, NULL)))
2661 		return -1;
2662 
2663 	return 0;
2664 }
2665 
2666 static __rte_always_inline int
2667 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2668 	       struct cpt_sess_misc *sess)
2669 {
2670 	struct rte_crypto_auth_xform *a_form;
2671 	auth_type_t auth_type = 0; /* NULL Auth type */
2672 	uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2673 
2674 	a_form = &xform->auth;
2675 
2676 	if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2677 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2678 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2679 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2680 	else {
2681 		CPT_LOG_DP_ERR("Unknown auth operation");
2682 		return -1;
2683 	}
2684 
2685 	switch (a_form->algo) {
2686 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
2687 		/* Fall through */
2688 	case RTE_CRYPTO_AUTH_SHA1:
2689 		auth_type = SHA1_TYPE;
2690 		break;
2691 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
2692 	case RTE_CRYPTO_AUTH_SHA256:
2693 		auth_type = SHA2_SHA256;
2694 		break;
2695 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
2696 	case RTE_CRYPTO_AUTH_SHA512:
2697 		auth_type = SHA2_SHA512;
2698 		break;
2699 	case RTE_CRYPTO_AUTH_AES_GMAC:
2700 		auth_type = GMAC_TYPE;
2701 		aes_gcm = 1;
2702 		break;
2703 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
2704 	case RTE_CRYPTO_AUTH_SHA224:
2705 		auth_type = SHA2_SHA224;
2706 		break;
2707 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
2708 	case RTE_CRYPTO_AUTH_SHA384:
2709 		auth_type = SHA2_SHA384;
2710 		break;
2711 	case RTE_CRYPTO_AUTH_MD5_HMAC:
2712 	case RTE_CRYPTO_AUTH_MD5:
2713 		auth_type = MD5_TYPE;
2714 		break;
2715 	case RTE_CRYPTO_AUTH_KASUMI_F9:
2716 		auth_type = KASUMI_F9_ECB;
2717 		/*
2718 		 * Indicate that direction needs to be taken out
2719 		 * from end of src
2720 		 */
2721 		zsk_flag = K_F9;
2722 		break;
2723 	case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2724 		auth_type = SNOW3G_UIA2;
2725 		zsk_flag = ZS_IA;
2726 		break;
2727 	case RTE_CRYPTO_AUTH_ZUC_EIA3:
2728 		auth_type = ZUC_EIA3;
2729 		zsk_flag = ZS_IA;
2730 		break;
2731 	case RTE_CRYPTO_AUTH_NULL:
2732 		auth_type = 0;
2733 		is_null = 1;
2734 		break;
2735 	case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2736 	case RTE_CRYPTO_AUTH_AES_CMAC:
2737 	case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2738 		CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2739 			       a_form->algo);
2740 		return -1;
2741 	default:
2742 		CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2743 			       a_form->algo);
2744 		return -1;
2745 	}
2746 
2747 	sess->zsk_flag = zsk_flag;
2748 	sess->aes_gcm = aes_gcm;
2749 	sess->mac_len = a_form->digest_length;
2750 	sess->is_null = is_null;
2751 	if (zsk_flag) {
2752 		sess->auth_iv_offset = a_form->iv.offset;
2753 		sess->auth_iv_length = a_form->iv.length;
2754 	}
2755 	if (unlikely(cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type,
2756 			a_form->key.data, a_form->key.length,
2757 			a_form->digest_length)))
2758 		return -1;
2759 
2760 	return 0;
2761 }
2762 
2763 static __rte_always_inline int
2764 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2765 		 struct cpt_sess_misc *sess)
2766 {
2767 	struct rte_crypto_auth_xform *a_form;
2768 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2769 	auth_type_t auth_type = 0; /* NULL Auth type */
2770 	void *ctx = SESS_PRIV(sess);
2771 
2772 	a_form = &xform->auth;
2773 
2774 	if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2775 		sess->cpt_op |= CPT_OP_ENCODE;
2776 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2777 		sess->cpt_op |= CPT_OP_DECODE;
2778 	else {
2779 		CPT_LOG_DP_ERR("Unknown auth operation");
2780 		return -1;
2781 	}
2782 
2783 	switch (a_form->algo) {
2784 	case RTE_CRYPTO_AUTH_AES_GMAC:
2785 		enc_type = AES_GCM;
2786 		auth_type = GMAC_TYPE;
2787 		break;
2788 	default:
2789 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2790 			       a_form->algo);
2791 		return -1;
2792 	}
2793 
2794 	sess->zsk_flag = 0;
2795 	sess->aes_gcm = 0;
2796 	sess->is_gmac = 1;
2797 	sess->iv_offset = a_form->iv.offset;
2798 	sess->iv_length = a_form->iv.length;
2799 	sess->mac_len = a_form->digest_length;
2800 
2801 	if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2802 			a_form->key.length, NULL)))
2803 		return -1;
2804 
2805 	if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2806 			a_form->digest_length)))
2807 		return -1;
2808 
2809 	return 0;
2810 }
2811 
2812 static __rte_always_inline void *
2813 alloc_op_meta(struct rte_mbuf *m_src,
2814 	      buf_ptr_t *buf,
2815 	      int32_t len,
2816 	      struct rte_mempool *cpt_meta_pool)
2817 {
2818 	uint8_t *mdata;
2819 
2820 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2821 	if (likely(m_src && (m_src->nb_segs == 1))) {
2822 		int32_t tailroom;
2823 		phys_addr_t mphys;
2824 
2825 		/* Check if tailroom is sufficient to hold meta data */
2826 		tailroom = rte_pktmbuf_tailroom(m_src);
2827 		if (likely(tailroom > len + 8)) {
2828 			mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2829 			mphys = m_src->buf_iova + m_src->buf_len;
2830 			mdata -= len;
2831 			mphys -= len;
2832 			buf->vaddr = mdata;
2833 			buf->dma_addr = mphys;
2834 			buf->size = len;
2835 			/* Indicate that this is a mbuf allocated mdata */
2836 			mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2837 			return mdata;
2838 		}
2839 	}
2840 #else
2841 	RTE_SET_USED(m_src);
2842 #endif
2843 
2844 	if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2845 		return NULL;
2846 
2847 	buf->vaddr = mdata;
2848 	buf->dma_addr = rte_mempool_virt2iova(mdata);
2849 	buf->size = len;
2850 
2851 	return mdata;
2852 }
2853 
2854 /**
2855  * cpt_free_metabuf - free metabuf to mempool.
2856  * @param instance: pointer to instance.
2857  * @param objp: pointer to the metabuf.
2858  */
2859 static __rte_always_inline void
2860 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2861 {
2862 	bool nofree = ((uintptr_t)mdata & 1ull);
2863 
2864 	if (likely(nofree))
2865 		return;
2866 	rte_mempool_put(cpt_meta_pool, mdata);
2867 }
2868 
2869 static __rte_always_inline uint32_t
2870 prepare_iov_from_pkt(struct rte_mbuf *pkt,
2871 		     iov_ptr_t *iovec, uint32_t start_offset)
2872 {
2873 	uint16_t index = 0;
2874 	void *seg_data = NULL;
2875 	phys_addr_t seg_phys;
2876 	int32_t seg_size = 0;
2877 
2878 	if (!pkt) {
2879 		iovec->buf_cnt = 0;
2880 		return 0;
2881 	}
2882 
2883 	if (!start_offset) {
2884 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2885 		seg_phys = rte_pktmbuf_iova(pkt);
2886 		seg_size = pkt->data_len;
2887 	} else {
2888 		while (start_offset >= pkt->data_len) {
2889 			start_offset -= pkt->data_len;
2890 			pkt = pkt->next;
2891 		}
2892 
2893 		seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
2894 		seg_phys = rte_pktmbuf_iova_offset(pkt, start_offset);
2895 		seg_size = pkt->data_len - start_offset;
2896 		if (!seg_size)
2897 			return 1;
2898 	}
2899 
2900 	/* first seg */
2901 	iovec->bufs[index].vaddr = seg_data;
2902 	iovec->bufs[index].dma_addr = seg_phys;
2903 	iovec->bufs[index].size = seg_size;
2904 	index++;
2905 	pkt = pkt->next;
2906 
2907 	while (unlikely(pkt != NULL)) {
2908 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2909 		seg_phys = rte_pktmbuf_iova(pkt);
2910 		seg_size = pkt->data_len;
2911 		if (!seg_size)
2912 			break;
2913 
2914 		iovec->bufs[index].vaddr = seg_data;
2915 		iovec->bufs[index].dma_addr = seg_phys;
2916 		iovec->bufs[index].size = seg_size;
2917 
2918 		index++;
2919 
2920 		pkt = pkt->next;
2921 	}
2922 
2923 	iovec->buf_cnt = index;
2924 	return 0;
2925 }
2926 
2927 static __rte_always_inline uint32_t
2928 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
2929 			     fc_params_t *param,
2930 			     uint32_t *flags)
2931 {
2932 	uint16_t index = 0;
2933 	void *seg_data = NULL;
2934 	phys_addr_t seg_phys;
2935 	uint32_t seg_size = 0;
2936 	iov_ptr_t *iovec;
2937 
2938 	seg_data = rte_pktmbuf_mtod(pkt, void *);
2939 	seg_phys = rte_pktmbuf_iova(pkt);
2940 	seg_size = pkt->data_len;
2941 
2942 	/* first seg */
2943 	if (likely(!pkt->next)) {
2944 		uint32_t headroom, tailroom;
2945 
2946 		*flags |= SINGLE_BUF_INPLACE;
2947 		headroom = rte_pktmbuf_headroom(pkt);
2948 		tailroom = rte_pktmbuf_tailroom(pkt);
2949 		if (likely((headroom >= 24) &&
2950 		    (tailroom >= 8))) {
2951 			/* In 83XX this is prerequivisit for Direct mode */
2952 			*flags |= SINGLE_BUF_HEADTAILROOM;
2953 		}
2954 		param->bufs[0].vaddr = seg_data;
2955 		param->bufs[0].dma_addr = seg_phys;
2956 		param->bufs[0].size = seg_size;
2957 		return 0;
2958 	}
2959 	iovec = param->src_iov;
2960 	iovec->bufs[index].vaddr = seg_data;
2961 	iovec->bufs[index].dma_addr = seg_phys;
2962 	iovec->bufs[index].size = seg_size;
2963 	index++;
2964 	pkt = pkt->next;
2965 
2966 	while (unlikely(pkt != NULL)) {
2967 		seg_data = rte_pktmbuf_mtod(pkt, void *);
2968 		seg_phys = rte_pktmbuf_iova(pkt);
2969 		seg_size = pkt->data_len;
2970 
2971 		if (!seg_size)
2972 			break;
2973 
2974 		iovec->bufs[index].vaddr = seg_data;
2975 		iovec->bufs[index].dma_addr = seg_phys;
2976 		iovec->bufs[index].size = seg_size;
2977 
2978 		index++;
2979 
2980 		pkt = pkt->next;
2981 	}
2982 
2983 	iovec->buf_cnt = index;
2984 	return 0;
2985 }
2986 
2987 static __rte_always_inline int
2988 fill_fc_params(struct rte_crypto_op *cop,
2989 	       struct cpt_sess_misc *sess_misc,
2990 	       struct cpt_qp_meta_info *m_info,
2991 	       void **mdata_ptr,
2992 	       void **prep_req)
2993 {
2994 	uint32_t space = 0;
2995 	struct rte_crypto_sym_op *sym_op = cop->sym;
2996 	void *mdata = NULL;
2997 	uintptr_t *op;
2998 	uint32_t mc_hash_off;
2999 	uint32_t flags = 0;
3000 	uint64_t d_offs, d_lens;
3001 	struct rte_mbuf *m_src, *m_dst;
3002 	uint8_t cpt_op = sess_misc->cpt_op;
3003 #ifdef CPT_ALWAYS_USE_SG_MODE
3004 	uint8_t inplace = 0;
3005 #else
3006 	uint8_t inplace = 1;
3007 #endif
3008 	fc_params_t fc_params;
3009 	char src[SRC_IOV_SIZE];
3010 	char dst[SRC_IOV_SIZE];
3011 	uint32_t iv_buf[4];
3012 	int ret;
3013 
3014 	if (likely(sess_misc->iv_length)) {
3015 		flags |= VALID_IV_BUF;
3016 		fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3017 				   uint8_t *, sess_misc->iv_offset);
3018 		if (sess_misc->aes_ctr &&
3019 		    unlikely(sess_misc->iv_length != 16)) {
3020 			memcpy((uint8_t *)iv_buf,
3021 				rte_crypto_op_ctod_offset(cop,
3022 				uint8_t *, sess_misc->iv_offset), 12);
3023 			iv_buf[3] = rte_cpu_to_be_32(0x1);
3024 			fc_params.iv_buf = iv_buf;
3025 		}
3026 	}
3027 
3028 	if (sess_misc->zsk_flag) {
3029 		fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3030 					uint8_t *,
3031 					sess_misc->auth_iv_offset);
3032 		if (sess_misc->zsk_flag != ZS_EA)
3033 			inplace = 0;
3034 	}
3035 	m_src = sym_op->m_src;
3036 	m_dst = sym_op->m_dst;
3037 
3038 	if (sess_misc->aes_gcm || sess_misc->chacha_poly) {
3039 		uint8_t *salt;
3040 		uint8_t *aad_data;
3041 		uint16_t aad_len;
3042 
3043 		d_offs = sym_op->aead.data.offset;
3044 		d_lens = sym_op->aead.data.length;
3045 		mc_hash_off = sym_op->aead.data.offset +
3046 			      sym_op->aead.data.length;
3047 
3048 		aad_data = sym_op->aead.aad.data;
3049 		aad_len = sess_misc->aad_length;
3050 		if (likely((aad_data + aad_len) ==
3051 			   rte_pktmbuf_mtod_offset(m_src,
3052 				uint8_t *,
3053 				sym_op->aead.data.offset))) {
3054 			d_offs = (d_offs - aad_len) | (d_offs << 16);
3055 			d_lens = (d_lens + aad_len) | (d_lens << 32);
3056 		} else {
3057 			fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3058 			fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3059 			fc_params.aad_buf.size = aad_len;
3060 			flags |= VALID_AAD_BUF;
3061 			inplace = 0;
3062 			d_offs = d_offs << 16;
3063 			d_lens = d_lens << 32;
3064 		}
3065 
3066 		salt = fc_params.iv_buf;
3067 		if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3068 			cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3069 			sess_misc->salt = *(uint32_t *)salt;
3070 		}
3071 		fc_params.iv_buf = salt + 4;
3072 		if (likely(sess_misc->mac_len)) {
3073 			struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3074 					     m_src;
3075 
3076 			if (!m)
3077 				m = m_src;
3078 
3079 			/* hmac immediately following data is best case */
3080 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3081 			    mc_hash_off !=
3082 			    (uint8_t *)sym_op->aead.digest.data)) {
3083 				flags |= VALID_MAC_BUF;
3084 				fc_params.mac_buf.size = sess_misc->mac_len;
3085 				fc_params.mac_buf.vaddr =
3086 				  sym_op->aead.digest.data;
3087 				fc_params.mac_buf.dma_addr =
3088 				 sym_op->aead.digest.phys_addr;
3089 				inplace = 0;
3090 			}
3091 		}
3092 	} else {
3093 		d_offs = sym_op->cipher.data.offset;
3094 		d_lens = sym_op->cipher.data.length;
3095 		mc_hash_off = sym_op->cipher.data.offset +
3096 			      sym_op->cipher.data.length;
3097 		d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3098 		d_lens = (d_lens << 32) | sym_op->auth.data.length;
3099 
3100 		if (mc_hash_off < (sym_op->auth.data.offset +
3101 				   sym_op->auth.data.length)){
3102 			mc_hash_off = (sym_op->auth.data.offset +
3103 				       sym_op->auth.data.length);
3104 		}
3105 		/* for gmac, salt should be updated like in gcm */
3106 		if (unlikely(sess_misc->is_gmac)) {
3107 			uint8_t *salt;
3108 			salt = fc_params.iv_buf;
3109 			if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3110 				cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3111 				sess_misc->salt = *(uint32_t *)salt;
3112 			}
3113 			fc_params.iv_buf = salt + 4;
3114 		}
3115 		if (likely(sess_misc->mac_len)) {
3116 			struct rte_mbuf *m;
3117 
3118 			m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3119 			if (!m)
3120 				m = m_src;
3121 
3122 			/* hmac immediately following data is best case */
3123 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3124 			    mc_hash_off !=
3125 			     (uint8_t *)sym_op->auth.digest.data)) {
3126 				flags |= VALID_MAC_BUF;
3127 				fc_params.mac_buf.size =
3128 					sess_misc->mac_len;
3129 				fc_params.mac_buf.vaddr =
3130 					sym_op->auth.digest.data;
3131 				fc_params.mac_buf.dma_addr =
3132 				sym_op->auth.digest.phys_addr;
3133 				inplace = 0;
3134 			}
3135 		}
3136 	}
3137 	fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3138 	fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3139 
3140 	if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
3141 		inplace = 0;
3142 
3143 	if (likely(!m_dst && inplace)) {
3144 		/* Case of single buffer without AAD buf or
3145 		 * separate mac buf in place and
3146 		 * not air crypto
3147 		 */
3148 		fc_params.dst_iov = fc_params.src_iov = (void *)src;
3149 
3150 		if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3151 							  &fc_params,
3152 							  &flags))) {
3153 			CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3154 			ret = -EINVAL;
3155 			goto err_exit;
3156 		}
3157 
3158 	} else {
3159 		/* Out of place processing */
3160 		fc_params.src_iov = (void *)src;
3161 		fc_params.dst_iov = (void *)dst;
3162 
3163 		/* Store SG I/O in the api for reuse */
3164 		if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3165 			CPT_LOG_DP_ERR("Prepare src iov failed");
3166 			ret = -EINVAL;
3167 			goto err_exit;
3168 		}
3169 
3170 		if (unlikely(m_dst != NULL)) {
3171 			uint32_t pkt_len;
3172 
3173 			/* Try to make room as much as src has */
3174 			pkt_len = rte_pktmbuf_pkt_len(m_dst);
3175 
3176 			if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3177 				pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3178 				if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3179 					CPT_LOG_DP_ERR("Not enough space in "
3180 						       "m_dst %p, need %u"
3181 						       " more",
3182 						       m_dst, pkt_len);
3183 					ret = -EINVAL;
3184 					goto err_exit;
3185 				}
3186 			}
3187 
3188 			if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3189 				CPT_LOG_DP_ERR("Prepare dst iov failed for "
3190 					       "m_dst %p", m_dst);
3191 				ret = -EINVAL;
3192 				goto err_exit;
3193 			}
3194 		} else {
3195 			fc_params.dst_iov = (void *)src;
3196 		}
3197 	}
3198 
3199 	if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3200 		mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3201 				      m_info->lb_mlen, m_info->pool);
3202 	else
3203 		mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3204 				      m_info->sg_mlen, m_info->pool);
3205 
3206 	if (unlikely(mdata == NULL)) {
3207 		CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3208 		ret = -ENOMEM;
3209 		goto err_exit;
3210 	}
3211 
3212 	op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3213 	op[0] = (uintptr_t)mdata;
3214 	op[1] = (uintptr_t)cop;
3215 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3216 	space += 4 * sizeof(uint64_t);
3217 
3218 	fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3219 	fc_params.meta_buf.dma_addr += space;
3220 	fc_params.meta_buf.size -= space;
3221 
3222 	/* Finally prepare the instruction */
3223 	if (cpt_op & CPT_OP_ENCODE)
3224 		*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3225 						 &fc_params, op);
3226 	else
3227 		*prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3228 						 &fc_params, op);
3229 
3230 	if (unlikely(*prep_req == NULL)) {
3231 		CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3232 		ret = -EINVAL;
3233 		goto free_mdata_and_exit;
3234 	}
3235 
3236 	*mdata_ptr = mdata;
3237 
3238 	return 0;
3239 
3240 free_mdata_and_exit:
3241 	free_op_meta(mdata, m_info->pool);
3242 err_exit:
3243 	return ret;
3244 }
3245 
3246 static __rte_always_inline void
3247 compl_auth_verify(struct rte_crypto_op *op,
3248 		      uint8_t *gen_mac,
3249 		      uint64_t mac_len)
3250 {
3251 	uint8_t *mac;
3252 	struct rte_crypto_sym_op *sym_op = op->sym;
3253 
3254 	if (sym_op->auth.digest.data)
3255 		mac = sym_op->auth.digest.data;
3256 	else
3257 		mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3258 					      uint8_t *,
3259 					      sym_op->auth.data.length +
3260 					      sym_op->auth.data.offset);
3261 	if (!mac) {
3262 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3263 		return;
3264 	}
3265 
3266 	if (memcmp(mac, gen_mac, mac_len))
3267 		op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3268 	else
3269 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3270 }
3271 
3272 static __rte_always_inline void
3273 find_kasumif9_direction_and_length(uint8_t *src,
3274 				   uint32_t counter_num_bytes,
3275 				   uint32_t *addr_length_in_bits,
3276 				   uint8_t *addr_direction)
3277 {
3278 	uint8_t found = 0;
3279 	uint32_t pos;
3280 	uint8_t last_byte;
3281 	while (!found && counter_num_bytes > 0) {
3282 		counter_num_bytes--;
3283 		if (src[counter_num_bytes] == 0x00)
3284 			continue;
3285 		pos = rte_bsf32(src[counter_num_bytes]);
3286 		if (pos == 7) {
3287 			if (likely(counter_num_bytes > 0)) {
3288 				last_byte = src[counter_num_bytes - 1];
3289 				*addr_direction  =  last_byte & 0x1;
3290 				*addr_length_in_bits = counter_num_bytes * 8
3291 							- 1;
3292 			}
3293 		} else {
3294 			last_byte = src[counter_num_bytes];
3295 			*addr_direction = (last_byte >> (pos + 1)) & 0x1;
3296 			*addr_length_in_bits = counter_num_bytes * 8
3297 						+ (8 - (pos + 2));
3298 		}
3299 		found = 1;
3300 	}
3301 }
3302 
3303 /*
3304  * This handles all auth only except AES_GMAC
3305  */
3306 static __rte_always_inline int
3307 fill_digest_params(struct rte_crypto_op *cop,
3308 		   struct cpt_sess_misc *sess,
3309 		   struct cpt_qp_meta_info *m_info,
3310 		   void **mdata_ptr,
3311 		   void **prep_req)
3312 {
3313 	uint32_t space = 0;
3314 	struct rte_crypto_sym_op *sym_op = cop->sym;
3315 	void *mdata;
3316 	phys_addr_t mphys;
3317 	uint64_t *op;
3318 	uint32_t auth_range_off;
3319 	uint32_t flags = 0;
3320 	uint64_t d_offs = 0, d_lens;
3321 	struct rte_mbuf *m_src, *m_dst;
3322 	uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3323 	uint16_t mac_len = sess->mac_len;
3324 	fc_params_t params;
3325 	char src[SRC_IOV_SIZE];
3326 	uint8_t iv_buf[16];
3327 	int ret;
3328 
3329 	memset(&params, 0, sizeof(fc_params_t));
3330 
3331 	m_src = sym_op->m_src;
3332 
3333 	/* For just digest lets force mempool alloc */
3334 	mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3335 			      m_info->pool);
3336 	if (mdata == NULL) {
3337 		ret = -ENOMEM;
3338 		goto err_exit;
3339 	}
3340 
3341 	mphys = params.meta_buf.dma_addr;
3342 
3343 	op = mdata;
3344 	op[0] = (uintptr_t)mdata;
3345 	op[1] = (uintptr_t)cop;
3346 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3347 	space += 4 * sizeof(uint64_t);
3348 
3349 	auth_range_off = sym_op->auth.data.offset;
3350 
3351 	flags = VALID_MAC_BUF;
3352 	params.src_iov = (void *)src;
3353 	if (unlikely(sess->zsk_flag)) {
3354 		/*
3355 		 * Since for Zuc, Kasumi, Snow3g offsets are in bits
3356 		 * we will send pass through even for auth only case,
3357 		 * let MC handle it
3358 		 */
3359 		d_offs = auth_range_off;
3360 		auth_range_off = 0;
3361 		params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3362 					uint8_t *, sess->auth_iv_offset);
3363 		if (sess->zsk_flag == K_F9) {
3364 			uint32_t length_in_bits, num_bytes;
3365 			uint8_t *src, direction = 0;
3366 
3367 			memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3368 							uint8_t *), 8);
3369 			/*
3370 			 * This is kasumi f9, take direction from
3371 			 * source buffer
3372 			 */
3373 			length_in_bits = cop->sym->auth.data.length;
3374 			num_bytes = (length_in_bits >> 3);
3375 			src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3376 			find_kasumif9_direction_and_length(src,
3377 						num_bytes,
3378 						&length_in_bits,
3379 						&direction);
3380 			length_in_bits -= 64;
3381 			cop->sym->auth.data.offset += 64;
3382 			d_offs = cop->sym->auth.data.offset;
3383 			auth_range_off = d_offs / 8;
3384 			cop->sym->auth.data.length = length_in_bits;
3385 
3386 			/* Store it at end of auth iv */
3387 			iv_buf[8] = direction;
3388 			params.auth_iv_buf = iv_buf;
3389 		}
3390 	}
3391 
3392 	d_lens = sym_op->auth.data.length;
3393 
3394 	params.ctx_buf.vaddr = SESS_PRIV(sess);
3395 	params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3396 
3397 	if (auth_op == CPT_OP_AUTH_GENERATE) {
3398 		if (sym_op->auth.digest.data) {
3399 			/*
3400 			 * Digest to be generated
3401 			 * in separate buffer
3402 			 */
3403 			params.mac_buf.size =
3404 				sess->mac_len;
3405 			params.mac_buf.vaddr =
3406 				sym_op->auth.digest.data;
3407 			params.mac_buf.dma_addr =
3408 				sym_op->auth.digest.phys_addr;
3409 		} else {
3410 			uint32_t off = sym_op->auth.data.offset +
3411 				sym_op->auth.data.length;
3412 			int32_t dlen, space;
3413 
3414 			m_dst = sym_op->m_dst ?
3415 				sym_op->m_dst : sym_op->m_src;
3416 			dlen = rte_pktmbuf_pkt_len(m_dst);
3417 
3418 			space = off + mac_len - dlen;
3419 			if (space > 0)
3420 				if (!rte_pktmbuf_append(m_dst, space)) {
3421 					CPT_LOG_DP_ERR("Failed to extend "
3422 						       "mbuf by %uB", space);
3423 					ret = -EINVAL;
3424 					goto free_mdata_and_exit;
3425 				}
3426 
3427 			params.mac_buf.vaddr =
3428 				rte_pktmbuf_mtod_offset(m_dst, void *, off);
3429 			params.mac_buf.dma_addr =
3430 				rte_pktmbuf_iova_offset(m_dst, off);
3431 			params.mac_buf.size = mac_len;
3432 		}
3433 	} else {
3434 		/* Need space for storing generated mac */
3435 		params.mac_buf.vaddr = (uint8_t *)mdata + space;
3436 		params.mac_buf.dma_addr = mphys + space;
3437 		params.mac_buf.size = mac_len;
3438 		space += RTE_ALIGN_CEIL(mac_len, 8);
3439 		op[2] = (uintptr_t)params.mac_buf.vaddr;
3440 		op[3] = mac_len;
3441 	}
3442 
3443 	params.meta_buf.vaddr = (uint8_t *)mdata + space;
3444 	params.meta_buf.dma_addr = mphys + space;
3445 	params.meta_buf.size -= space;
3446 
3447 	/* Out of place processing */
3448 	params.src_iov = (void *)src;
3449 
3450 	/*Store SG I/O in the api for reuse */
3451 	if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3452 		CPT_LOG_DP_ERR("Prepare src iov failed");
3453 		ret = -EINVAL;
3454 		goto free_mdata_and_exit;
3455 	}
3456 
3457 	*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3458 	if (unlikely(*prep_req == NULL)) {
3459 		ret = -EINVAL;
3460 		goto free_mdata_and_exit;
3461 	}
3462 
3463 	*mdata_ptr = mdata;
3464 
3465 	return 0;
3466 
3467 free_mdata_and_exit:
3468 	free_op_meta(mdata, m_info->pool);
3469 err_exit:
3470 	return ret;
3471 }
3472 
3473 #endif /*_CPT_UCODE_H_ */
3474