xref: /dpdk/drivers/common/cpt/cpt_ucode.h (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8 
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12 
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17 
18 static uint8_t zuc_d[32] = {
19 	0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20 	0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21 	0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22 	0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24 
25 static __rte_always_inline int
26 cpt_is_algo_supported(struct rte_crypto_sym_xform *xform)
27 {
28 	/*
29 	 * Microcode only supports the following combination.
30 	 * Encryption followed by authentication
31 	 * Authentication followed by decryption
32 	 */
33 	if (xform->next) {
34 		if ((xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
35 		    (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
36 		    (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)) {
37 			/* Unsupported as of now by microcode */
38 			CPT_LOG_DP_ERR("Unsupported combination");
39 			return -1;
40 		}
41 		if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
42 		    (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
43 		    (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT)) {
44 			/* For GMAC auth there is no cipher operation */
45 			if (xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM ||
46 			    xform->next->auth.algo !=
47 			    RTE_CRYPTO_AUTH_AES_GMAC) {
48 				/* Unsupported as of now by microcode */
49 				CPT_LOG_DP_ERR("Unsupported combination");
50 				return -1;
51 			}
52 		}
53 	}
54 	return 0;
55 }
56 
57 static __rte_always_inline void
58 gen_key_snow3g(uint8_t *ck, uint32_t *keyx)
59 {
60 	int i, base;
61 
62 	for (i = 0; i < 4; i++) {
63 		base = 4 * i;
64 		keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
65 			(ck[base + 2] << 8) | (ck[base + 3]);
66 		keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
67 	}
68 }
69 
70 static __rte_always_inline void
71 cpt_fc_salt_update(void *ctx,
72 		   uint8_t *salt)
73 {
74 	struct cpt_ctx *cpt_ctx = ctx;
75 	memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4);
76 }
77 
78 static __rte_always_inline int
79 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
80 {
81 	switch (key_len) {
82 	case CPT_BYTE_16:
83 	case CPT_BYTE_24:
84 	case CPT_BYTE_32:
85 		return 0;
86 	default:
87 		return -1;
88 	}
89 }
90 
91 static __rte_always_inline int
92 cpt_fc_ciph_validate_key(cipher_type_t type, struct cpt_ctx *cpt_ctx,
93 		uint16_t key_len)
94 {
95 	int fc_type = 0;
96 	switch (type) {
97 	case PASSTHROUGH:
98 		fc_type = FC_GEN;
99 		break;
100 	case DES3_CBC:
101 	case DES3_ECB:
102 		fc_type = FC_GEN;
103 		break;
104 	case AES_CBC:
105 	case AES_ECB:
106 	case AES_CFB:
107 	case AES_CTR:
108 	case AES_GCM:
109 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
110 			return -1;
111 		fc_type = FC_GEN;
112 		break;
113 	case AES_XTS:
114 		key_len = key_len / 2;
115 		if (unlikely(key_len == CPT_BYTE_24)) {
116 			CPT_LOG_DP_ERR("Invalid AES key len for XTS");
117 			return -1;
118 		}
119 		if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
120 			return -1;
121 		fc_type = FC_GEN;
122 		break;
123 	case ZUC_EEA3:
124 	case SNOW3G_UEA2:
125 		if (unlikely(key_len != 16))
126 			return -1;
127 		/* No support for AEAD yet */
128 		if (unlikely(cpt_ctx->hash_type))
129 			return -1;
130 		fc_type = ZUC_SNOW3G;
131 		break;
132 	case KASUMI_F8_CBC:
133 	case KASUMI_F8_ECB:
134 		if (unlikely(key_len != 16))
135 			return -1;
136 		/* No support for AEAD yet */
137 		if (unlikely(cpt_ctx->hash_type))
138 			return -1;
139 		fc_type = KASUMI;
140 		break;
141 	default:
142 		return -1;
143 	}
144 	return fc_type;
145 }
146 
147 static __rte_always_inline void
148 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
149 {
150 	cpt_ctx->enc_cipher = 0;
151 	CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
152 }
153 
154 static __rte_always_inline void
155 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
156 {
157 	mc_aes_type_t aes_key_type = 0;
158 	switch (key_len) {
159 	case CPT_BYTE_16:
160 		aes_key_type = AES_128_BIT;
161 		break;
162 	case CPT_BYTE_24:
163 		aes_key_type = AES_192_BIT;
164 		break;
165 	case CPT_BYTE_32:
166 		aes_key_type = AES_256_BIT;
167 		break;
168 	default:
169 		/* This should not happen */
170 		CPT_LOG_DP_ERR("Invalid AES key len");
171 		return;
172 	}
173 	CPT_P_ENC_CTRL(fctx).aes_key = aes_key_type;
174 }
175 
176 static __rte_always_inline void
177 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, uint8_t *key,
178 		uint16_t key_len)
179 {
180 	uint32_t keyx[4];
181 	cpt_ctx->snow3g = 1;
182 	gen_key_snow3g(key, keyx);
183 	memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
184 	cpt_ctx->fc_type = ZUC_SNOW3G;
185 	cpt_ctx->zsk_flags = 0;
186 }
187 
188 static __rte_always_inline void
189 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, uint8_t *key,
190 		uint16_t key_len)
191 {
192 	cpt_ctx->snow3g = 0;
193 	memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
194 	memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
195 	cpt_ctx->fc_type = ZUC_SNOW3G;
196 	cpt_ctx->zsk_flags = 0;
197 }
198 
199 static __rte_always_inline void
200 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, uint8_t *key,
201 		uint16_t key_len)
202 {
203 	cpt_ctx->k_ecb = 1;
204 	memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
205 	cpt_ctx->zsk_flags = 0;
206 	cpt_ctx->fc_type = KASUMI;
207 }
208 
209 static __rte_always_inline void
210 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, uint8_t *key,
211 		uint16_t key_len)
212 {
213 	memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
214 	cpt_ctx->zsk_flags = 0;
215 	cpt_ctx->fc_type = KASUMI;
216 }
217 
218 static __rte_always_inline int
219 cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, uint8_t *key,
220 		    uint16_t key_len, uint8_t *salt)
221 {
222 	struct cpt_ctx *cpt_ctx = ctx;
223 	mc_fc_context_t *fctx = &cpt_ctx->fctx;
224 	uint64_t *ctrl_flags = NULL;
225 	int fc_type;
226 
227 	/* Validate key before proceeding */
228 	fc_type = cpt_fc_ciph_validate_key(type, cpt_ctx, key_len);
229 	if (unlikely(fc_type == -1))
230 		return -1;
231 
232 	if (fc_type == FC_GEN) {
233 		cpt_ctx->fc_type = FC_GEN;
234 		ctrl_flags = (uint64_t *)&(fctx->enc.enc_ctrl.flags);
235 		*ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
236 		/*
237 		 * We need to always say IV is from DPTR as user can
238 		 * sometimes iverride IV per operation.
239 		 */
240 		CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_DPTR;
241 	}
242 
243 	switch (type) {
244 	case PASSTHROUGH:
245 		cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
246 		goto fc_success;
247 	case DES3_CBC:
248 		/* CPT performs DES using 3DES with the 8B DES-key
249 		 * replicated 2 more times to match the 24B 3DES-key.
250 		 * Eg. If org. key is "0x0a 0x0b", then new key is
251 		 * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
252 		 */
253 		if (key_len == 8) {
254 			/* Skipping the first 8B as it will be copied
255 			 * in the regular code flow
256 			 */
257 			memcpy(fctx->enc.encr_key+key_len, key, key_len);
258 			memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
259 		}
260 		break;
261 	case DES3_ECB:
262 		/* For DES3_ECB IV need to be from CTX. */
263 		CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_CTX;
264 		break;
265 	case AES_CBC:
266 	case AES_ECB:
267 	case AES_CFB:
268 	case AES_CTR:
269 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
270 		break;
271 	case AES_GCM:
272 		/* Even though iv source is from dptr,
273 		 * aes_gcm salt is taken from ctx
274 		 */
275 		if (salt) {
276 			memcpy(fctx->enc.encr_iv, salt, 4);
277 			/* Assuming it was just salt update
278 			 * and nothing else
279 			 */
280 			if (!key)
281 				goto fc_success;
282 		}
283 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
284 		break;
285 	case AES_XTS:
286 		key_len = key_len / 2;
287 		cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
288 
289 		/* Copy key2 for XTS into ipad */
290 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
291 		memcpy(fctx->hmac.ipad, &key[key_len], key_len);
292 		break;
293 	case SNOW3G_UEA2:
294 		cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
295 		goto success;
296 	case ZUC_EEA3:
297 		cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
298 		goto success;
299 	case KASUMI_F8_ECB:
300 		cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
301 		goto success;
302 	case KASUMI_F8_CBC:
303 		cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
304 		goto success;
305 	default:
306 		break;
307 	}
308 
309 	/* Only for FC_GEN case */
310 
311 	/* For GMAC auth, cipher must be NULL */
312 	if (cpt_ctx->hash_type != GMAC_TYPE)
313 		CPT_P_ENC_CTRL(fctx).enc_cipher = type;
314 
315 	memcpy(fctx->enc.encr_key, key, key_len);
316 
317 fc_success:
318 	*ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
319 
320 success:
321 	cpt_ctx->enc_cipher = type;
322 
323 	return 0;
324 }
325 
326 static __rte_always_inline uint32_t
327 fill_sg_comp(sg_comp_t *list,
328 	     uint32_t i,
329 	     phys_addr_t dma_addr,
330 	     uint32_t size)
331 {
332 	sg_comp_t *to = &list[i>>2];
333 
334 	to->u.s.len[i%4] = rte_cpu_to_be_16(size);
335 	to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
336 	i++;
337 	return i;
338 }
339 
340 static __rte_always_inline uint32_t
341 fill_sg_comp_from_buf(sg_comp_t *list,
342 		      uint32_t i,
343 		      buf_ptr_t *from)
344 {
345 	sg_comp_t *to = &list[i>>2];
346 
347 	to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
348 	to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
349 	i++;
350 	return i;
351 }
352 
353 static __rte_always_inline uint32_t
354 fill_sg_comp_from_buf_min(sg_comp_t *list,
355 			  uint32_t i,
356 			  buf_ptr_t *from,
357 			  uint32_t *psize)
358 {
359 	sg_comp_t *to = &list[i >> 2];
360 	uint32_t size = *psize;
361 	uint32_t e_len;
362 
363 	e_len = (size > from->size) ? from->size : size;
364 	to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
365 	to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
366 	*psize -= e_len;
367 	i++;
368 	return i;
369 }
370 
371 /*
372  * This fills the MC expected SGIO list
373  * from IOV given by user.
374  */
375 static __rte_always_inline uint32_t
376 fill_sg_comp_from_iov(sg_comp_t *list,
377 		      uint32_t i,
378 		      iov_ptr_t *from, uint32_t from_offset,
379 		      uint32_t *psize, buf_ptr_t *extra_buf,
380 		      uint32_t extra_offset)
381 {
382 	int32_t j;
383 	uint32_t extra_len = extra_buf ? extra_buf->size : 0;
384 	uint32_t size = *psize - extra_len;
385 	buf_ptr_t *bufs;
386 
387 	bufs = from->bufs;
388 	for (j = 0; (j < from->buf_cnt) && size; j++) {
389 		phys_addr_t e_dma_addr;
390 		uint32_t e_len;
391 		sg_comp_t *to = &list[i >> 2];
392 
393 		if (!bufs[j].size)
394 			continue;
395 
396 		if (unlikely(from_offset)) {
397 			if (from_offset >= bufs[j].size) {
398 				from_offset -= bufs[j].size;
399 				continue;
400 			}
401 			e_dma_addr = bufs[j].dma_addr + from_offset;
402 			e_len = (size > (bufs[j].size - from_offset)) ?
403 				(bufs[j].size - from_offset) : size;
404 			from_offset = 0;
405 		} else {
406 			e_dma_addr = bufs[j].dma_addr;
407 			e_len = (size > bufs[j].size) ?
408 				bufs[j].size : size;
409 		}
410 
411 		to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
412 		to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
413 
414 		if (extra_len && (e_len >= extra_offset)) {
415 			/* Break the data at given offset */
416 			uint32_t next_len = e_len - extra_offset;
417 			phys_addr_t next_dma = e_dma_addr + extra_offset;
418 
419 			if (!extra_offset) {
420 				i--;
421 			} else {
422 				e_len = extra_offset;
423 				size -= e_len;
424 				to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
425 			}
426 
427 			/* Insert extra data ptr */
428 			if (extra_len) {
429 				i++;
430 				to = &list[i >> 2];
431 				to->u.s.len[i % 4] =
432 					rte_cpu_to_be_16(extra_buf->size);
433 				to->ptr[i % 4] =
434 					rte_cpu_to_be_64(extra_buf->dma_addr);
435 
436 				/* size already decremented by extra len */
437 			}
438 
439 			/* insert the rest of the data */
440 			if (next_len) {
441 				i++;
442 				to = &list[i >> 2];
443 				to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
444 				to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
445 				size -= next_len;
446 			}
447 			extra_len = 0;
448 
449 		} else {
450 			size -= e_len;
451 		}
452 		if (extra_offset)
453 			extra_offset -= size;
454 		i++;
455 	}
456 
457 	*psize = size;
458 	return (uint32_t)i;
459 }
460 
461 static __rte_always_inline int
462 cpt_digest_gen_prep(uint32_t flags,
463 		    uint64_t d_lens,
464 		    digest_params_t *params,
465 		    void *op,
466 		    void **prep_req)
467 {
468 	struct cpt_request_info *req;
469 	uint32_t size, i;
470 	int32_t m_size;
471 	uint16_t data_len, mac_len, key_len;
472 	auth_type_t hash_type;
473 	buf_ptr_t *meta_p;
474 	struct cpt_ctx *ctx;
475 	sg_comp_t *gather_comp;
476 	sg_comp_t *scatter_comp;
477 	uint8_t *in_buffer;
478 	uint32_t g_size_bytes, s_size_bytes;
479 	uint64_t dptr_dma, rptr_dma;
480 	vq_cmd_word0_t vq_cmd_w0;
481 	vq_cmd_word3_t vq_cmd_w3;
482 	void *c_vaddr, *m_vaddr;
483 	uint64_t c_dma, m_dma;
484 	opcode_info_t opcode;
485 
486 	if (!params || !params->ctx_buf.vaddr)
487 		return ERR_BAD_INPUT_ARG;
488 
489 	ctx = params->ctx_buf.vaddr;
490 	meta_p = &params->meta_buf;
491 
492 	if (!meta_p->vaddr || !meta_p->dma_addr)
493 		return ERR_BAD_INPUT_ARG;
494 
495 	if (meta_p->size < sizeof(struct cpt_request_info))
496 		return ERR_BAD_INPUT_ARG;
497 
498 	m_vaddr = meta_p->vaddr;
499 	m_dma = meta_p->dma_addr;
500 	m_size = meta_p->size;
501 
502 	/*
503 	 * Save initial space that followed app data for completion code &
504 	 * alternate completion code to fall in same cache line as app data
505 	 */
506 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
507 	m_dma += COMPLETION_CODE_SIZE;
508 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
509 		(uint8_t *)m_vaddr;
510 	c_vaddr = (uint8_t *)m_vaddr + size;
511 	c_dma = m_dma + size;
512 	size += sizeof(cpt_res_s_t);
513 
514 	m_vaddr = (uint8_t *)m_vaddr + size;
515 	m_dma += size;
516 	m_size -= size;
517 
518 	req = m_vaddr;
519 
520 	size = sizeof(struct cpt_request_info);
521 	m_vaddr = (uint8_t *)m_vaddr + size;
522 	m_dma += size;
523 	m_size -= size;
524 
525 	hash_type = ctx->hash_type;
526 	mac_len = ctx->mac_len;
527 	key_len = ctx->auth_key_len;
528 	data_len = AUTH_DLEN(d_lens);
529 
530 	/*GP op header */
531 	vq_cmd_w0.u64 = 0;
532 	vq_cmd_w0.s.param2 = rte_cpu_to_be_16(((uint16_t)hash_type << 8));
533 	if (ctx->hmac) {
534 		opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
535 		vq_cmd_w0.s.param1 = rte_cpu_to_be_16(key_len);
536 		vq_cmd_w0.s.dlen =
537 			rte_cpu_to_be_16((data_len + ROUNDUP8(key_len)));
538 	} else {
539 		opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
540 		vq_cmd_w0.s.param1 = 0;
541 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(data_len);
542 	}
543 
544 	opcode.s.minor = 0;
545 
546 	/* Null auth only case enters the if */
547 	if (unlikely(!hash_type && !ctx->enc_cipher)) {
548 		opcode.s.major = CPT_MAJOR_OP_MISC;
549 		/* Minor op is passthrough */
550 		opcode.s.minor = 0x03;
551 		/* Send out completion code only */
552 		vq_cmd_w0.s.param2 = 0x1;
553 	}
554 
555 	vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
556 
557 	/* DPTR has SG list */
558 	in_buffer = m_vaddr;
559 	dptr_dma = m_dma;
560 
561 	((uint16_t *)in_buffer)[0] = 0;
562 	((uint16_t *)in_buffer)[1] = 0;
563 
564 	/* TODO Add error check if space will be sufficient */
565 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
566 
567 	/*
568 	 * Input gather list
569 	 */
570 
571 	i = 0;
572 
573 	if (ctx->hmac) {
574 		uint64_t k_dma = params->ctx_buf.dma_addr +
575 			offsetof(struct cpt_ctx, auth_key);
576 		/* Key */
577 		i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
578 	}
579 
580 	/* input data */
581 	size = data_len;
582 	if (size) {
583 		i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
584 					  0, &size, NULL, 0);
585 		if (size) {
586 			CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
587 					 " by %dB", size);
588 			return ERR_BAD_INPUT_ARG;
589 		}
590 	} else {
591 		/*
592 		 * Looks like we need to support zero data
593 		 * gather ptr in case of hash & hmac
594 		 */
595 		i++;
596 	}
597 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
598 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
599 
600 	/*
601 	 * Output Gather list
602 	 */
603 
604 	i = 0;
605 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
606 
607 	if (flags & VALID_MAC_BUF) {
608 		if (params->mac_buf.size < mac_len)
609 			return ERR_BAD_INPUT_ARG;
610 
611 		size = mac_len;
612 		i = fill_sg_comp_from_buf_min(scatter_comp, i,
613 					      &params->mac_buf, &size);
614 	} else {
615 		size = mac_len;
616 		i = fill_sg_comp_from_iov(scatter_comp, i,
617 					  params->src_iov, data_len,
618 					  &size, NULL, 0);
619 		if (size) {
620 			CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short by"
621 					 " %dB", size);
622 			return ERR_BAD_INPUT_ARG;
623 		}
624 	}
625 
626 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
627 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
628 
629 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
630 
631 	/* This is DPTR len incase of SG mode */
632 	vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
633 
634 	m_vaddr = (uint8_t *)m_vaddr + size;
635 	m_dma += size;
636 	m_size -= size;
637 
638 	/* cpt alternate completion address saved earlier */
639 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
640 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
641 	rptr_dma = c_dma - 8;
642 
643 	req->ist.ei1 = dptr_dma;
644 	req->ist.ei2 = rptr_dma;
645 	/* First 16-bit swap then 64-bit swap */
646 	/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
647 	 * to eliminate all the swapping
648 	 */
649 	vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
650 
651 	/* vq command w3 */
652 	vq_cmd_w3.u64 = 0;
653 
654 	/* 16 byte aligned cpt res address */
655 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
656 	*req->completion_addr = COMPLETION_CODE_INIT;
657 	req->comp_baddr  = c_dma;
658 
659 	/* Fill microcode part of instruction */
660 	req->ist.ei0 = vq_cmd_w0.u64;
661 	req->ist.ei3 = vq_cmd_w3.u64;
662 
663 	req->op = op;
664 
665 	*prep_req = req;
666 	return 0;
667 }
668 
669 static __rte_always_inline int
670 cpt_enc_hmac_prep(uint32_t flags,
671 		  uint64_t d_offs,
672 		  uint64_t d_lens,
673 		  fc_params_t *fc_params,
674 		  void *op,
675 		  void **prep_req)
676 {
677 	uint32_t iv_offset = 0;
678 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
679 	struct cpt_ctx *cpt_ctx;
680 	uint32_t cipher_type, hash_type;
681 	uint32_t mac_len, size;
682 	uint8_t iv_len = 16;
683 	struct cpt_request_info *req;
684 	buf_ptr_t *meta_p, *aad_buf = NULL;
685 	uint32_t encr_offset, auth_offset;
686 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
687 	uint32_t passthrough_len = 0;
688 	void *m_vaddr, *offset_vaddr;
689 	uint64_t m_dma, offset_dma, ctx_dma;
690 	vq_cmd_word0_t vq_cmd_w0;
691 	vq_cmd_word3_t vq_cmd_w3;
692 	void *c_vaddr;
693 	uint64_t c_dma;
694 	int32_t m_size;
695 	opcode_info_t opcode;
696 
697 	meta_p = &fc_params->meta_buf;
698 	m_vaddr = meta_p->vaddr;
699 	m_dma = meta_p->dma_addr;
700 	m_size = meta_p->size;
701 
702 	encr_offset = ENCR_OFFSET(d_offs);
703 	auth_offset = AUTH_OFFSET(d_offs);
704 	encr_data_len = ENCR_DLEN(d_lens);
705 	auth_data_len = AUTH_DLEN(d_lens);
706 	if (unlikely(flags & VALID_AAD_BUF)) {
707 		/*
708 		 * We dont support both aad
709 		 * and auth data separately
710 		 */
711 		auth_data_len = 0;
712 		auth_offset = 0;
713 		aad_len = fc_params->aad_buf.size;
714 		aad_buf = &fc_params->aad_buf;
715 	}
716 	cpt_ctx = fc_params->ctx_buf.vaddr;
717 	cipher_type = cpt_ctx->enc_cipher;
718 	hash_type = cpt_ctx->hash_type;
719 	mac_len = cpt_ctx->mac_len;
720 
721 	/*
722 	 * Save initial space that followed app data for completion code &
723 	 * alternate completion code to fall in same cache line as app data
724 	 */
725 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
726 	m_dma += COMPLETION_CODE_SIZE;
727 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
728 		(uint8_t *)m_vaddr;
729 
730 	c_vaddr = (uint8_t *)m_vaddr + size;
731 	c_dma = m_dma + size;
732 	size += sizeof(cpt_res_s_t);
733 
734 	m_vaddr = (uint8_t *)m_vaddr + size;
735 	m_dma += size;
736 	m_size -= size;
737 
738 	/* start cpt request info struct at 8 byte boundary */
739 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
740 		(uint8_t *)m_vaddr;
741 
742 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
743 
744 	size += sizeof(struct cpt_request_info);
745 	m_vaddr = (uint8_t *)m_vaddr + size;
746 	m_dma += size;
747 	m_size -= size;
748 
749 	if (hash_type == GMAC_TYPE)
750 		encr_data_len = 0;
751 
752 	if (unlikely(!(flags & VALID_IV_BUF))) {
753 		iv_len = 0;
754 		iv_offset = ENCR_IV_OFFSET(d_offs);
755 	}
756 
757 	if (unlikely(flags & VALID_AAD_BUF)) {
758 		/*
759 		 * When AAD is given, data above encr_offset is pass through
760 		 * Since AAD is given as separate pointer and not as offset,
761 		 * this is a special case as we need to fragment input data
762 		 * into passthrough + encr_data and then insert AAD in between.
763 		 */
764 		if (hash_type != GMAC_TYPE) {
765 			passthrough_len = encr_offset;
766 			auth_offset = passthrough_len + iv_len;
767 			encr_offset = passthrough_len + aad_len + iv_len;
768 			auth_data_len = aad_len + encr_data_len;
769 		} else {
770 			passthrough_len = 16 + aad_len;
771 			auth_offset = passthrough_len + iv_len;
772 			auth_data_len = aad_len;
773 		}
774 	} else {
775 		encr_offset += iv_len;
776 		auth_offset += iv_len;
777 	}
778 
779 	/* Encryption */
780 	opcode.s.major = CPT_MAJOR_OP_FC;
781 	opcode.s.minor = 0;
782 
783 	auth_dlen = auth_offset + auth_data_len;
784 	enc_dlen = encr_data_len + encr_offset;
785 	if (unlikely(encr_data_len & 0xf)) {
786 		if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
787 			enc_dlen = ROUNDUP8(encr_data_len) + encr_offset;
788 		else if (likely((cipher_type == AES_CBC) ||
789 				(cipher_type == AES_ECB)))
790 			enc_dlen = ROUNDUP16(encr_data_len) + encr_offset;
791 	}
792 
793 	if (unlikely(hash_type == GMAC_TYPE)) {
794 		encr_offset = auth_dlen;
795 		enc_dlen = 0;
796 	}
797 
798 	if (unlikely(auth_dlen > enc_dlen)) {
799 		inputlen = auth_dlen;
800 		outputlen = auth_dlen + mac_len;
801 	} else {
802 		inputlen = enc_dlen;
803 		outputlen = enc_dlen + mac_len;
804 	}
805 
806 	/* GP op header */
807 	vq_cmd_w0.u64 = 0;
808 	vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
809 	vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
810 	/*
811 	 * In 83XX since we have a limitation of
812 	 * IV & Offset control word not part of instruction
813 	 * and need to be part of Data Buffer, we check if
814 	 * head room is there and then only do the Direct mode processing
815 	 */
816 	if (likely((flags & SINGLE_BUF_INPLACE) &&
817 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
818 		void *dm_vaddr = fc_params->bufs[0].vaddr;
819 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
820 		/*
821 		 * This flag indicates that there is 24 bytes head room and
822 		 * 8 bytes tail room available, so that we get to do
823 		 * DIRECT MODE with limitation
824 		 */
825 
826 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
827 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
828 
829 		/* DPTR */
830 		req->ist.ei1 = offset_dma;
831 		/* RPTR should just exclude offset control word */
832 		req->ist.ei2 = dm_dma_addr - iv_len;
833 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
834 						    + outputlen - iv_len);
835 
836 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
837 
838 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
839 
840 		if (likely(iv_len)) {
841 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
842 						      + OFF_CTRL_LEN);
843 			uint64_t *src = fc_params->iv_buf;
844 			dest[0] = src[0];
845 			dest[1] = src[1];
846 		}
847 
848 		*(uint64_t *)offset_vaddr =
849 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
850 				((uint64_t)iv_offset << 8) |
851 				((uint64_t)auth_offset));
852 
853 	} else {
854 		uint32_t i, g_size_bytes, s_size_bytes;
855 		uint64_t dptr_dma, rptr_dma;
856 		sg_comp_t *gather_comp;
857 		sg_comp_t *scatter_comp;
858 		uint8_t *in_buffer;
859 
860 		/* This falls under strict SG mode */
861 		offset_vaddr = m_vaddr;
862 		offset_dma = m_dma;
863 		size = OFF_CTRL_LEN + iv_len;
864 
865 		m_vaddr = (uint8_t *)m_vaddr + size;
866 		m_dma += size;
867 		m_size -= size;
868 
869 		opcode.s.major |= CPT_DMA_MODE;
870 
871 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
872 
873 		if (likely(iv_len)) {
874 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
875 						      + OFF_CTRL_LEN);
876 			uint64_t *src = fc_params->iv_buf;
877 			dest[0] = src[0];
878 			dest[1] = src[1];
879 		}
880 
881 		*(uint64_t *)offset_vaddr =
882 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
883 				((uint64_t)iv_offset << 8) |
884 				((uint64_t)auth_offset));
885 
886 		/* DPTR has SG list */
887 		in_buffer = m_vaddr;
888 		dptr_dma = m_dma;
889 
890 		((uint16_t *)in_buffer)[0] = 0;
891 		((uint16_t *)in_buffer)[1] = 0;
892 
893 		/* TODO Add error check if space will be sufficient */
894 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
895 
896 		/*
897 		 * Input Gather List
898 		 */
899 
900 		i = 0;
901 
902 		/* Offset control word that includes iv */
903 		i = fill_sg_comp(gather_comp, i, offset_dma,
904 				 OFF_CTRL_LEN + iv_len);
905 
906 		/* Add input data */
907 		size = inputlen - iv_len;
908 		if (likely(size)) {
909 			uint32_t aad_offset = aad_len ? passthrough_len : 0;
910 
911 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
912 				i = fill_sg_comp_from_buf_min(gather_comp, i,
913 							      fc_params->bufs,
914 							      &size);
915 			} else {
916 				i = fill_sg_comp_from_iov(gather_comp, i,
917 							  fc_params->src_iov,
918 							  0, &size,
919 							  aad_buf, aad_offset);
920 			}
921 
922 			if (unlikely(size)) {
923 				CPT_LOG_DP_ERR("Insufficient buffer space,"
924 					       " size %d needed", size);
925 				return ERR_BAD_INPUT_ARG;
926 			}
927 		}
928 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
929 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
930 
931 		/*
932 		 * Output Scatter list
933 		 */
934 		i = 0;
935 		scatter_comp =
936 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
937 
938 		/* Add IV */
939 		if (likely(iv_len)) {
940 			i = fill_sg_comp(scatter_comp, i,
941 					 offset_dma + OFF_CTRL_LEN,
942 					 iv_len);
943 		}
944 
945 		/* output data or output data + digest*/
946 		if (unlikely(flags & VALID_MAC_BUF)) {
947 			size = outputlen - iv_len - mac_len;
948 			if (size) {
949 				uint32_t aad_offset =
950 					aad_len ? passthrough_len : 0;
951 
952 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
953 					i = fill_sg_comp_from_buf_min(
954 							scatter_comp,
955 							i,
956 							fc_params->bufs,
957 							&size);
958 				} else {
959 					i = fill_sg_comp_from_iov(scatter_comp,
960 							i,
961 							fc_params->dst_iov,
962 							0,
963 							&size,
964 							aad_buf,
965 							aad_offset);
966 				}
967 				if (size)
968 					return ERR_BAD_INPUT_ARG;
969 			}
970 			/* mac_data */
971 			if (mac_len) {
972 				i = fill_sg_comp_from_buf(scatter_comp, i,
973 							  &fc_params->mac_buf);
974 			}
975 		} else {
976 			/* Output including mac */
977 			size = outputlen - iv_len;
978 			if (likely(size)) {
979 				uint32_t aad_offset =
980 					aad_len ? passthrough_len : 0;
981 
982 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
983 					i = fill_sg_comp_from_buf_min(
984 							scatter_comp,
985 							i,
986 							fc_params->bufs,
987 							&size);
988 				} else {
989 					i = fill_sg_comp_from_iov(scatter_comp,
990 							i,
991 							fc_params->dst_iov,
992 							0,
993 							&size,
994 							aad_buf,
995 							aad_offset);
996 				}
997 				if (unlikely(size)) {
998 					CPT_LOG_DP_ERR("Insufficient buffer"
999 						       " space, size %d needed",
1000 						       size);
1001 					return ERR_BAD_INPUT_ARG;
1002 				}
1003 			}
1004 		}
1005 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1006 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1007 
1008 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1009 
1010 		/* This is DPTR len incase of SG mode */
1011 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
1012 
1013 		m_vaddr = (uint8_t *)m_vaddr + size;
1014 		m_dma += size;
1015 		m_size -= size;
1016 
1017 		/* cpt alternate completion address saved earlier */
1018 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1019 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1020 		rptr_dma = c_dma - 8;
1021 
1022 		req->ist.ei1 = dptr_dma;
1023 		req->ist.ei2 = rptr_dma;
1024 	}
1025 
1026 	/* First 16-bit swap then 64-bit swap */
1027 	/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
1028 	 * to eliminate all the swapping
1029 	 */
1030 	vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
1031 
1032 	ctx_dma = fc_params->ctx_buf.dma_addr +
1033 		offsetof(struct cpt_ctx, fctx);
1034 	/* vq command w3 */
1035 	vq_cmd_w3.u64 = 0;
1036 	vq_cmd_w3.s.grp = 0;
1037 	vq_cmd_w3.s.cptr = ctx_dma;
1038 
1039 	/* 16 byte aligned cpt res address */
1040 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1041 	*req->completion_addr = COMPLETION_CODE_INIT;
1042 	req->comp_baddr  = c_dma;
1043 
1044 	/* Fill microcode part of instruction */
1045 	req->ist.ei0 = vq_cmd_w0.u64;
1046 	req->ist.ei3 = vq_cmd_w3.u64;
1047 
1048 	req->op  = op;
1049 
1050 	*prep_req = req;
1051 	return 0;
1052 }
1053 
1054 static __rte_always_inline int
1055 cpt_dec_hmac_prep(uint32_t flags,
1056 		  uint64_t d_offs,
1057 		  uint64_t d_lens,
1058 		  fc_params_t *fc_params,
1059 		  void *op,
1060 		  void **prep_req)
1061 {
1062 	uint32_t iv_offset = 0, size;
1063 	int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1064 	struct cpt_ctx *cpt_ctx;
1065 	int32_t hash_type, mac_len, m_size;
1066 	uint8_t iv_len = 16;
1067 	struct cpt_request_info *req;
1068 	buf_ptr_t *meta_p, *aad_buf = NULL;
1069 	uint32_t encr_offset, auth_offset;
1070 	uint32_t encr_data_len, auth_data_len, aad_len = 0;
1071 	uint32_t passthrough_len = 0;
1072 	void *m_vaddr, *offset_vaddr;
1073 	uint64_t m_dma, offset_dma, ctx_dma;
1074 	opcode_info_t opcode;
1075 	vq_cmd_word0_t vq_cmd_w0;
1076 	vq_cmd_word3_t vq_cmd_w3;
1077 	void *c_vaddr;
1078 	uint64_t c_dma;
1079 
1080 	meta_p = &fc_params->meta_buf;
1081 	m_vaddr = meta_p->vaddr;
1082 	m_dma = meta_p->dma_addr;
1083 	m_size = meta_p->size;
1084 
1085 	encr_offset = ENCR_OFFSET(d_offs);
1086 	auth_offset = AUTH_OFFSET(d_offs);
1087 	encr_data_len = ENCR_DLEN(d_lens);
1088 	auth_data_len = AUTH_DLEN(d_lens);
1089 
1090 	if (unlikely(flags & VALID_AAD_BUF)) {
1091 		/*
1092 		 * We dont support both aad
1093 		 * and auth data separately
1094 		 */
1095 		auth_data_len = 0;
1096 		auth_offset = 0;
1097 		aad_len = fc_params->aad_buf.size;
1098 		aad_buf = &fc_params->aad_buf;
1099 	}
1100 
1101 	cpt_ctx = fc_params->ctx_buf.vaddr;
1102 	hash_type = cpt_ctx->hash_type;
1103 	mac_len = cpt_ctx->mac_len;
1104 
1105 	if (hash_type == GMAC_TYPE)
1106 		encr_data_len = 0;
1107 
1108 	if (unlikely(!(flags & VALID_IV_BUF))) {
1109 		iv_len = 0;
1110 		iv_offset = ENCR_IV_OFFSET(d_offs);
1111 	}
1112 
1113 	if (unlikely(flags & VALID_AAD_BUF)) {
1114 		/*
1115 		 * When AAD is given, data above encr_offset is pass through
1116 		 * Since AAD is given as separate pointer and not as offset,
1117 		 * this is a special case as we need to fragment input data
1118 		 * into passthrough + encr_data and then insert AAD in between.
1119 		 */
1120 		if (hash_type != GMAC_TYPE) {
1121 			passthrough_len = encr_offset;
1122 			auth_offset = passthrough_len + iv_len;
1123 			encr_offset = passthrough_len + aad_len + iv_len;
1124 			auth_data_len = aad_len + encr_data_len;
1125 		} else {
1126 			passthrough_len = 16 + aad_len;
1127 			auth_offset = passthrough_len + iv_len;
1128 			auth_data_len = aad_len;
1129 		}
1130 	} else {
1131 		encr_offset += iv_len;
1132 		auth_offset += iv_len;
1133 	}
1134 
1135 	/*
1136 	 * Save initial space that followed app data for completion code &
1137 	 * alternate completion code to fall in same cache line as app data
1138 	 */
1139 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1140 	m_dma += COMPLETION_CODE_SIZE;
1141 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1142 	       (uint8_t *)m_vaddr;
1143 	c_vaddr = (uint8_t *)m_vaddr + size;
1144 	c_dma = m_dma + size;
1145 	size += sizeof(cpt_res_s_t);
1146 
1147 	m_vaddr = (uint8_t *)m_vaddr + size;
1148 	m_dma += size;
1149 	m_size -= size;
1150 
1151 	/* start cpt request info structure at 8 byte alignment */
1152 	size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1153 		(uint8_t *)m_vaddr;
1154 
1155 	req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1156 
1157 	size += sizeof(struct cpt_request_info);
1158 	m_vaddr = (uint8_t *)m_vaddr + size;
1159 	m_dma += size;
1160 	m_size -= size;
1161 
1162 	/* Decryption */
1163 	opcode.s.major = CPT_MAJOR_OP_FC;
1164 	opcode.s.minor = 1;
1165 
1166 	enc_dlen = encr_offset + encr_data_len;
1167 	auth_dlen = auth_offset + auth_data_len;
1168 
1169 	if (auth_dlen > enc_dlen) {
1170 		inputlen = auth_dlen + mac_len;
1171 		outputlen = auth_dlen;
1172 	} else {
1173 		inputlen = enc_dlen + mac_len;
1174 		outputlen = enc_dlen;
1175 	}
1176 
1177 	if (hash_type == GMAC_TYPE)
1178 		encr_offset = inputlen;
1179 
1180 	vq_cmd_w0.u64 = 0;
1181 	vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
1182 	vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
1183 
1184 	/*
1185 	 * In 83XX since we have a limitation of
1186 	 * IV & Offset control word not part of instruction
1187 	 * and need to be part of Data Buffer, we check if
1188 	 * head room is there and then only do the Direct mode processing
1189 	 */
1190 	if (likely((flags & SINGLE_BUF_INPLACE) &&
1191 		   (flags & SINGLE_BUF_HEADTAILROOM))) {
1192 		void *dm_vaddr = fc_params->bufs[0].vaddr;
1193 		uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1194 		/*
1195 		 * This flag indicates that there is 24 bytes head room and
1196 		 * 8 bytes tail room available, so that we get to do
1197 		 * DIRECT MODE with limitation
1198 		 */
1199 
1200 		offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1201 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1202 		req->ist.ei1 = offset_dma;
1203 
1204 		/* RPTR should just exclude offset control word */
1205 		req->ist.ei2 = dm_dma_addr - iv_len;
1206 
1207 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1208 					outputlen - iv_len);
1209 		/* since this is decryption,
1210 		 * don't touch the content of
1211 		 * alternate ccode space as it contains
1212 		 * hmac.
1213 		 */
1214 
1215 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
1216 
1217 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1218 
1219 		if (likely(iv_len)) {
1220 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1221 						      OFF_CTRL_LEN);
1222 			uint64_t *src = fc_params->iv_buf;
1223 			dest[0] = src[0];
1224 			dest[1] = src[1];
1225 		}
1226 
1227 		*(uint64_t *)offset_vaddr =
1228 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1229 				((uint64_t)iv_offset << 8) |
1230 				((uint64_t)auth_offset));
1231 
1232 	} else {
1233 		uint64_t dptr_dma, rptr_dma;
1234 		uint32_t g_size_bytes, s_size_bytes;
1235 		sg_comp_t *gather_comp;
1236 		sg_comp_t *scatter_comp;
1237 		uint8_t *in_buffer;
1238 		uint8_t i = 0;
1239 
1240 		/* This falls under strict SG mode */
1241 		offset_vaddr = m_vaddr;
1242 		offset_dma = m_dma;
1243 		size = OFF_CTRL_LEN + iv_len;
1244 
1245 		m_vaddr = (uint8_t *)m_vaddr + size;
1246 		m_dma += size;
1247 		m_size -= size;
1248 
1249 		opcode.s.major |= CPT_DMA_MODE;
1250 
1251 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1252 
1253 		if (likely(iv_len)) {
1254 			uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1255 						      OFF_CTRL_LEN);
1256 			uint64_t *src = fc_params->iv_buf;
1257 			dest[0] = src[0];
1258 			dest[1] = src[1];
1259 		}
1260 
1261 		*(uint64_t *)offset_vaddr =
1262 			rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1263 				((uint64_t)iv_offset << 8) |
1264 				((uint64_t)auth_offset));
1265 
1266 		/* DPTR has SG list */
1267 		in_buffer = m_vaddr;
1268 		dptr_dma = m_dma;
1269 
1270 		((uint16_t *)in_buffer)[0] = 0;
1271 		((uint16_t *)in_buffer)[1] = 0;
1272 
1273 		/* TODO Add error check if space will be sufficient */
1274 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1275 
1276 		/*
1277 		 * Input Gather List
1278 		 */
1279 		i = 0;
1280 
1281 		/* Offset control word that includes iv */
1282 		i = fill_sg_comp(gather_comp, i, offset_dma,
1283 				 OFF_CTRL_LEN + iv_len);
1284 
1285 		/* Add input data */
1286 		if (flags & VALID_MAC_BUF) {
1287 			size = inputlen - iv_len - mac_len;
1288 			if (size) {
1289 				/* input data only */
1290 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1291 					i = fill_sg_comp_from_buf_min(
1292 							gather_comp, i,
1293 							fc_params->bufs,
1294 							&size);
1295 				} else {
1296 					uint32_t aad_offset = aad_len ?
1297 						passthrough_len : 0;
1298 
1299 					i = fill_sg_comp_from_iov(gather_comp,
1300 							i,
1301 							fc_params->src_iov,
1302 							0, &size,
1303 							aad_buf,
1304 							aad_offset);
1305 				}
1306 				if (size)
1307 					return ERR_BAD_INPUT_ARG;
1308 			}
1309 
1310 			/* mac data */
1311 			if (mac_len) {
1312 				i = fill_sg_comp_from_buf(gather_comp, i,
1313 							  &fc_params->mac_buf);
1314 			}
1315 		} else {
1316 			/* input data + mac */
1317 			size = inputlen - iv_len;
1318 			if (size) {
1319 				if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1320 					i = fill_sg_comp_from_buf_min(
1321 							gather_comp, i,
1322 							fc_params->bufs,
1323 							&size);
1324 				} else {
1325 					uint32_t aad_offset = aad_len ?
1326 						passthrough_len : 0;
1327 
1328 					if (!fc_params->src_iov)
1329 						return ERR_BAD_INPUT_ARG;
1330 
1331 					i = fill_sg_comp_from_iov(
1332 							gather_comp, i,
1333 							fc_params->src_iov,
1334 							0, &size,
1335 							aad_buf,
1336 							aad_offset);
1337 				}
1338 
1339 				if (size)
1340 					return ERR_BAD_INPUT_ARG;
1341 			}
1342 		}
1343 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1344 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1345 
1346 		/*
1347 		 * Output Scatter List
1348 		 */
1349 
1350 		i = 0;
1351 		scatter_comp =
1352 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1353 
1354 		/* Add iv */
1355 		if (iv_len) {
1356 			i = fill_sg_comp(scatter_comp, i,
1357 					 offset_dma + OFF_CTRL_LEN,
1358 					 iv_len);
1359 		}
1360 
1361 		/* Add output data */
1362 		size = outputlen - iv_len;
1363 		if (size) {
1364 			if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1365 				/* handle single buffer here */
1366 				i = fill_sg_comp_from_buf_min(scatter_comp, i,
1367 							      fc_params->bufs,
1368 							      &size);
1369 			} else {
1370 				uint32_t aad_offset = aad_len ?
1371 					passthrough_len : 0;
1372 
1373 				if (!fc_params->dst_iov)
1374 					return ERR_BAD_INPUT_ARG;
1375 
1376 				i = fill_sg_comp_from_iov(scatter_comp, i,
1377 							  fc_params->dst_iov, 0,
1378 							  &size, aad_buf,
1379 							  aad_offset);
1380 			}
1381 
1382 			if (unlikely(size))
1383 				return ERR_BAD_INPUT_ARG;
1384 		}
1385 
1386 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1387 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1388 
1389 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1390 
1391 		/* This is DPTR len incase of SG mode */
1392 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
1393 
1394 		m_vaddr = (uint8_t *)m_vaddr + size;
1395 		m_dma += size;
1396 		m_size -= size;
1397 
1398 		/* cpt alternate completion address saved earlier */
1399 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1400 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1401 		rptr_dma = c_dma - 8;
1402 		size += COMPLETION_CODE_SIZE;
1403 
1404 		req->ist.ei1 = dptr_dma;
1405 		req->ist.ei2 = rptr_dma;
1406 	}
1407 
1408 	/* First 16-bit swap then 64-bit swap */
1409 	/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
1410 	 * to eliminate all the swapping
1411 	 */
1412 	vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
1413 
1414 	ctx_dma = fc_params->ctx_buf.dma_addr +
1415 		offsetof(struct cpt_ctx, fctx);
1416 	/* vq command w3 */
1417 	vq_cmd_w3.u64 = 0;
1418 	vq_cmd_w3.s.grp = 0;
1419 	vq_cmd_w3.s.cptr = ctx_dma;
1420 
1421 	/* 16 byte aligned cpt res address */
1422 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1423 	*req->completion_addr = COMPLETION_CODE_INIT;
1424 	req->comp_baddr  = c_dma;
1425 
1426 	/* Fill microcode part of instruction */
1427 	req->ist.ei0 = vq_cmd_w0.u64;
1428 	req->ist.ei3 = vq_cmd_w3.u64;
1429 
1430 	req->op = op;
1431 
1432 	*prep_req = req;
1433 	return 0;
1434 }
1435 
1436 static __rte_always_inline int
1437 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1438 			uint64_t d_offs,
1439 			uint64_t d_lens,
1440 			fc_params_t *params,
1441 			void *op,
1442 			void **prep_req)
1443 {
1444 	uint32_t size;
1445 	int32_t inputlen, outputlen;
1446 	struct cpt_ctx *cpt_ctx;
1447 	uint32_t mac_len = 0;
1448 	uint8_t snow3g, j;
1449 	struct cpt_request_info *req;
1450 	buf_ptr_t *buf_p;
1451 	uint32_t encr_offset = 0, auth_offset = 0;
1452 	uint32_t encr_data_len = 0, auth_data_len = 0;
1453 	int flags, iv_len = 16, m_size;
1454 	void *m_vaddr, *c_vaddr;
1455 	uint64_t m_dma, c_dma, offset_ctrl;
1456 	uint64_t *offset_vaddr, offset_dma;
1457 	uint32_t *iv_s, iv[4];
1458 	vq_cmd_word0_t vq_cmd_w0;
1459 	vq_cmd_word3_t vq_cmd_w3;
1460 	opcode_info_t opcode;
1461 
1462 	buf_p = &params->meta_buf;
1463 	m_vaddr = buf_p->vaddr;
1464 	m_dma = buf_p->dma_addr;
1465 	m_size = buf_p->size;
1466 
1467 	cpt_ctx = params->ctx_buf.vaddr;
1468 	flags = cpt_ctx->zsk_flags;
1469 	mac_len = cpt_ctx->mac_len;
1470 	snow3g = cpt_ctx->snow3g;
1471 
1472 	/*
1473 	 * Save initial space that followed app data for completion code &
1474 	 * alternate completion code to fall in same cache line as app data
1475 	 */
1476 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1477 	m_dma += COMPLETION_CODE_SIZE;
1478 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1479 		(uint8_t *)m_vaddr;
1480 
1481 	c_vaddr = (uint8_t *)m_vaddr + size;
1482 	c_dma = m_dma + size;
1483 	size += sizeof(cpt_res_s_t);
1484 
1485 	m_vaddr = (uint8_t *)m_vaddr + size;
1486 	m_dma += size;
1487 	m_size -= size;
1488 
1489 	/* Reserve memory for cpt request info */
1490 	req = m_vaddr;
1491 
1492 	size = sizeof(struct cpt_request_info);
1493 	m_vaddr = (uint8_t *)m_vaddr + size;
1494 	m_dma += size;
1495 	m_size -= size;
1496 
1497 	opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1498 
1499 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1500 	opcode.s.minor = ((1 << 6) | (snow3g << 5) | (0 << 4) |
1501 			  (0 << 3) | (flags & 0x7));
1502 
1503 	if (flags == 0x1) {
1504 		/*
1505 		 * Microcode expects offsets in bytes
1506 		 * TODO: Rounding off
1507 		 */
1508 		auth_data_len = AUTH_DLEN(d_lens);
1509 
1510 		/* EIA3 or UIA2 */
1511 		auth_offset = AUTH_OFFSET(d_offs);
1512 		auth_offset = auth_offset / 8;
1513 
1514 		/* consider iv len */
1515 		auth_offset += iv_len;
1516 
1517 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1518 		outputlen = mac_len;
1519 
1520 		offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1521 
1522 	} else {
1523 		/* EEA3 or UEA2 */
1524 		/*
1525 		 * Microcode expects offsets in bytes
1526 		 * TODO: Rounding off
1527 		 */
1528 		encr_data_len = ENCR_DLEN(d_lens);
1529 
1530 		encr_offset = ENCR_OFFSET(d_offs);
1531 		encr_offset = encr_offset / 8;
1532 		/* consider iv len */
1533 		encr_offset += iv_len;
1534 
1535 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1536 		outputlen = inputlen;
1537 
1538 		/* iv offset is 0 */
1539 		offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1540 	}
1541 
1542 	/* IV */
1543 	iv_s = (flags == 0x1) ? params->auth_iv_buf :
1544 		params->iv_buf;
1545 
1546 	if (snow3g) {
1547 		/*
1548 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1549 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1550 		 */
1551 
1552 		for (j = 0; j < 4; j++)
1553 			iv[j] = iv_s[3 - j];
1554 	} else {
1555 		/* ZUC doesn't need a swap */
1556 		for (j = 0; j < 4; j++)
1557 			iv[j] = iv_s[j];
1558 	}
1559 
1560 	/*
1561 	 * GP op header, lengths are expected in bits.
1562 	 */
1563 	vq_cmd_w0.u64 = 0;
1564 	vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
1565 	vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
1566 
1567 	/*
1568 	 * In 83XX since we have a limitation of
1569 	 * IV & Offset control word not part of instruction
1570 	 * and need to be part of Data Buffer, we check if
1571 	 * head room is there and then only do the Direct mode processing
1572 	 */
1573 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1574 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1575 		void *dm_vaddr = params->bufs[0].vaddr;
1576 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1577 		/*
1578 		 * This flag indicates that there is 24 bytes head room and
1579 		 * 8 bytes tail room available, so that we get to do
1580 		 * DIRECT MODE with limitation
1581 		 */
1582 
1583 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1584 					    OFF_CTRL_LEN - iv_len);
1585 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1586 
1587 		/* DPTR */
1588 		req->ist.ei1 = offset_dma;
1589 		/* RPTR should just exclude offset control word */
1590 		req->ist.ei2 = dm_dma_addr - iv_len;
1591 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1592 						    + outputlen - iv_len);
1593 
1594 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
1595 
1596 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1597 
1598 		if (likely(iv_len)) {
1599 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1600 						      + OFF_CTRL_LEN);
1601 			memcpy(iv_d, iv, 16);
1602 		}
1603 
1604 		*offset_vaddr = offset_ctrl;
1605 	} else {
1606 		uint32_t i, g_size_bytes, s_size_bytes;
1607 		uint64_t dptr_dma, rptr_dma;
1608 		sg_comp_t *gather_comp;
1609 		sg_comp_t *scatter_comp;
1610 		uint8_t *in_buffer;
1611 		uint32_t *iv_d;
1612 
1613 		/* save space for iv */
1614 		offset_vaddr = m_vaddr;
1615 		offset_dma = m_dma;
1616 
1617 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1618 		m_dma += OFF_CTRL_LEN + iv_len;
1619 		m_size -= OFF_CTRL_LEN + iv_len;
1620 
1621 		opcode.s.major |= CPT_DMA_MODE;
1622 
1623 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1624 
1625 		/* DPTR has SG list */
1626 		in_buffer = m_vaddr;
1627 		dptr_dma = m_dma;
1628 
1629 		((uint16_t *)in_buffer)[0] = 0;
1630 		((uint16_t *)in_buffer)[1] = 0;
1631 
1632 		/* TODO Add error check if space will be sufficient */
1633 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1634 
1635 		/*
1636 		 * Input Gather List
1637 		 */
1638 		i = 0;
1639 
1640 		/* Offset control word followed by iv */
1641 
1642 		i = fill_sg_comp(gather_comp, i, offset_dma,
1643 				 OFF_CTRL_LEN + iv_len);
1644 
1645 		/* iv offset is 0 */
1646 		*offset_vaddr = offset_ctrl;
1647 
1648 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1649 		memcpy(iv_d, iv, 16);
1650 
1651 		/* input data */
1652 		size = inputlen - iv_len;
1653 		if (size) {
1654 			i = fill_sg_comp_from_iov(gather_comp, i,
1655 						  params->src_iov,
1656 						  0, &size, NULL, 0);
1657 			if (size)
1658 				return ERR_BAD_INPUT_ARG;
1659 		}
1660 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1661 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1662 
1663 		/*
1664 		 * Output Scatter List
1665 		 */
1666 
1667 		i = 0;
1668 		scatter_comp =
1669 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1670 
1671 		if (flags == 0x1) {
1672 			/* IV in SLIST only for EEA3 & UEA2 */
1673 			iv_len = 0;
1674 		}
1675 
1676 		if (iv_len) {
1677 			i = fill_sg_comp(scatter_comp, i,
1678 					 offset_dma + OFF_CTRL_LEN, iv_len);
1679 		}
1680 
1681 		/* Add output data */
1682 		if (req_flags & VALID_MAC_BUF) {
1683 			size = outputlen - iv_len - mac_len;
1684 			if (size) {
1685 				i = fill_sg_comp_from_iov(scatter_comp, i,
1686 							  params->dst_iov, 0,
1687 							  &size, NULL, 0);
1688 
1689 				if (size)
1690 					return ERR_BAD_INPUT_ARG;
1691 			}
1692 
1693 			/* mac data */
1694 			if (mac_len) {
1695 				i = fill_sg_comp_from_buf(scatter_comp, i,
1696 							  &params->mac_buf);
1697 			}
1698 		} else {
1699 			/* Output including mac */
1700 			size = outputlen - iv_len;
1701 			if (size) {
1702 				i = fill_sg_comp_from_iov(scatter_comp, i,
1703 							  params->dst_iov, 0,
1704 							  &size, NULL, 0);
1705 
1706 				if (size)
1707 					return ERR_BAD_INPUT_ARG;
1708 			}
1709 		}
1710 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1711 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1712 
1713 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1714 
1715 		/* This is DPTR len incase of SG mode */
1716 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
1717 
1718 		m_vaddr = (uint8_t *)m_vaddr + size;
1719 		m_dma += size;
1720 		m_size -= size;
1721 
1722 		/* cpt alternate completion address saved earlier */
1723 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1724 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1725 		rptr_dma = c_dma - 8;
1726 
1727 		req->ist.ei1 = dptr_dma;
1728 		req->ist.ei2 = rptr_dma;
1729 	}
1730 
1731 	/* First 16-bit swap then 64-bit swap */
1732 	/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
1733 	 * to eliminate all the swapping
1734 	 */
1735 	vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
1736 
1737 	/* vq command w3 */
1738 	vq_cmd_w3.u64 = 0;
1739 	vq_cmd_w3.s.grp = 0;
1740 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1741 		offsetof(struct cpt_ctx, zs_ctx);
1742 
1743 	/* 16 byte aligned cpt res address */
1744 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1745 	*req->completion_addr = COMPLETION_CODE_INIT;
1746 	req->comp_baddr  = c_dma;
1747 
1748 	/* Fill microcode part of instruction */
1749 	req->ist.ei0 = vq_cmd_w0.u64;
1750 	req->ist.ei3 = vq_cmd_w3.u64;
1751 
1752 	req->op = op;
1753 
1754 	*prep_req = req;
1755 	return 0;
1756 }
1757 
1758 static __rte_always_inline int
1759 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1760 			uint64_t d_offs,
1761 			uint64_t d_lens,
1762 			fc_params_t *params,
1763 			void *op,
1764 			void **prep_req)
1765 {
1766 	uint32_t size;
1767 	int32_t inputlen = 0, outputlen;
1768 	struct cpt_ctx *cpt_ctx;
1769 	uint8_t snow3g, iv_len = 16;
1770 	struct cpt_request_info *req;
1771 	buf_ptr_t *buf_p;
1772 	uint32_t encr_offset;
1773 	uint32_t encr_data_len;
1774 	int flags, m_size;
1775 	void *m_vaddr, *c_vaddr;
1776 	uint64_t m_dma, c_dma;
1777 	uint64_t *offset_vaddr, offset_dma;
1778 	uint32_t *iv_s, iv[4], j;
1779 	vq_cmd_word0_t vq_cmd_w0;
1780 	vq_cmd_word3_t vq_cmd_w3;
1781 	opcode_info_t opcode;
1782 
1783 	buf_p = &params->meta_buf;
1784 	m_vaddr = buf_p->vaddr;
1785 	m_dma = buf_p->dma_addr;
1786 	m_size = buf_p->size;
1787 
1788 	/*
1789 	 * Microcode expects offsets in bytes
1790 	 * TODO: Rounding off
1791 	 */
1792 	encr_offset = ENCR_OFFSET(d_offs) / 8;
1793 	encr_data_len = ENCR_DLEN(d_lens);
1794 
1795 	cpt_ctx = params->ctx_buf.vaddr;
1796 	flags = cpt_ctx->zsk_flags;
1797 	snow3g = cpt_ctx->snow3g;
1798 	/*
1799 	 * Save initial space that followed app data for completion code &
1800 	 * alternate completion code to fall in same cache line as app data
1801 	 */
1802 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1803 	m_dma += COMPLETION_CODE_SIZE;
1804 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1805 		(uint8_t *)m_vaddr;
1806 
1807 	c_vaddr = (uint8_t *)m_vaddr + size;
1808 	c_dma = m_dma + size;
1809 	size += sizeof(cpt_res_s_t);
1810 
1811 	m_vaddr = (uint8_t *)m_vaddr + size;
1812 	m_dma += size;
1813 	m_size -= size;
1814 
1815 	/* Reserve memory for cpt request info */
1816 	req = m_vaddr;
1817 
1818 	size = sizeof(struct cpt_request_info);
1819 	m_vaddr = (uint8_t *)m_vaddr + size;
1820 	m_dma += size;
1821 	m_size -= size;
1822 
1823 	opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1824 
1825 	/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1826 	opcode.s.minor = ((1 << 6) | (snow3g << 5) | (0 << 4) |
1827 			  (0 << 3) | (flags & 0x7));
1828 
1829 	/* consider iv len */
1830 	encr_offset += iv_len;
1831 
1832 	inputlen = encr_offset +
1833 		(RTE_ALIGN(encr_data_len, 8) / 8);
1834 	outputlen = inputlen;
1835 
1836 	/* IV */
1837 	iv_s = params->iv_buf;
1838 	if (snow3g) {
1839 		/*
1840 		 * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1841 		 * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1842 		 */
1843 
1844 		for (j = 0; j < 4; j++)
1845 			iv[j] = iv_s[3 - j];
1846 	} else {
1847 		/* ZUC doesn't need a swap */
1848 		for (j = 0; j < 4; j++)
1849 			iv[j] = iv_s[j];
1850 	}
1851 
1852 	/*
1853 	 * GP op header, lengths are expected in bits.
1854 	 */
1855 	vq_cmd_w0.u64 = 0;
1856 	vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
1857 
1858 	/*
1859 	 * In 83XX since we have a limitation of
1860 	 * IV & Offset control word not part of instruction
1861 	 * and need to be part of Data Buffer, we check if
1862 	 * head room is there and then only do the Direct mode processing
1863 	 */
1864 	if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1865 		   (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1866 		void *dm_vaddr = params->bufs[0].vaddr;
1867 		uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1868 		/*
1869 		 * This flag indicates that there is 24 bytes head room and
1870 		 * 8 bytes tail room available, so that we get to do
1871 		 * DIRECT MODE with limitation
1872 		 */
1873 
1874 		offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1875 					    OFF_CTRL_LEN - iv_len);
1876 		offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1877 
1878 		/* DPTR */
1879 		req->ist.ei1 = offset_dma;
1880 		/* RPTR should just exclude offset control word */
1881 		req->ist.ei2 = dm_dma_addr - iv_len;
1882 		req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1883 						    + outputlen - iv_len);
1884 
1885 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
1886 
1887 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1888 
1889 		if (likely(iv_len)) {
1890 			uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1891 						      + OFF_CTRL_LEN);
1892 			memcpy(iv_d, iv, 16);
1893 		}
1894 
1895 		/* iv offset is 0 */
1896 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1897 	} else {
1898 		uint32_t i, g_size_bytes, s_size_bytes;
1899 		uint64_t dptr_dma, rptr_dma;
1900 		sg_comp_t *gather_comp;
1901 		sg_comp_t *scatter_comp;
1902 		uint8_t *in_buffer;
1903 		uint32_t *iv_d;
1904 
1905 		/* save space for offset and iv... */
1906 		offset_vaddr = m_vaddr;
1907 		offset_dma = m_dma;
1908 
1909 		m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1910 		m_dma += OFF_CTRL_LEN + iv_len;
1911 		m_size -= OFF_CTRL_LEN + iv_len;
1912 
1913 		opcode.s.major |= CPT_DMA_MODE;
1914 
1915 		vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1916 
1917 		/* DPTR has SG list */
1918 		in_buffer = m_vaddr;
1919 		dptr_dma = m_dma;
1920 
1921 		((uint16_t *)in_buffer)[0] = 0;
1922 		((uint16_t *)in_buffer)[1] = 0;
1923 
1924 		/* TODO Add error check if space will be sufficient */
1925 		gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1926 
1927 		/*
1928 		 * Input Gather List
1929 		 */
1930 		i = 0;
1931 
1932 		/* Offset control word */
1933 
1934 		/* iv offset is 0 */
1935 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1936 
1937 		i = fill_sg_comp(gather_comp, i, offset_dma,
1938 				 OFF_CTRL_LEN + iv_len);
1939 
1940 		iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1941 		memcpy(iv_d, iv, 16);
1942 
1943 		/* Add input data */
1944 		size = inputlen - iv_len;
1945 		if (size) {
1946 			i = fill_sg_comp_from_iov(gather_comp, i,
1947 						  params->src_iov,
1948 						  0, &size, NULL, 0);
1949 			if (size)
1950 				return ERR_BAD_INPUT_ARG;
1951 		}
1952 		((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1953 		g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1954 
1955 		/*
1956 		 * Output Scatter List
1957 		 */
1958 
1959 		i = 0;
1960 		scatter_comp =
1961 			(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1962 
1963 		/* IV */
1964 		i = fill_sg_comp(scatter_comp, i,
1965 				 offset_dma + OFF_CTRL_LEN,
1966 				 iv_len);
1967 
1968 		/* Add output data */
1969 		size = outputlen - iv_len;
1970 		if (size) {
1971 			i = fill_sg_comp_from_iov(scatter_comp, i,
1972 						  params->dst_iov, 0,
1973 						  &size, NULL, 0);
1974 
1975 			if (size)
1976 				return ERR_BAD_INPUT_ARG;
1977 		}
1978 		((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1979 		s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1980 
1981 		size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1982 
1983 		/* This is DPTR len incase of SG mode */
1984 		vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
1985 
1986 		m_vaddr = (uint8_t *)m_vaddr + size;
1987 		m_dma += size;
1988 		m_size -= size;
1989 
1990 		/* cpt alternate completion address saved earlier */
1991 		req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1992 		*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1993 		rptr_dma = c_dma - 8;
1994 
1995 		req->ist.ei1 = dptr_dma;
1996 		req->ist.ei2 = rptr_dma;
1997 	}
1998 
1999 	/* First 16-bit swap then 64-bit swap */
2000 	/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
2001 	 * to eliminate all the swapping
2002 	 */
2003 	vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
2004 
2005 	/* vq command w3 */
2006 	vq_cmd_w3.u64 = 0;
2007 	vq_cmd_w3.s.grp = 0;
2008 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2009 		offsetof(struct cpt_ctx, zs_ctx);
2010 
2011 	/* 16 byte aligned cpt res address */
2012 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2013 	*req->completion_addr = COMPLETION_CODE_INIT;
2014 	req->comp_baddr  = c_dma;
2015 
2016 	/* Fill microcode part of instruction */
2017 	req->ist.ei0 = vq_cmd_w0.u64;
2018 	req->ist.ei3 = vq_cmd_w3.u64;
2019 
2020 	req->op = op;
2021 
2022 	*prep_req = req;
2023 	return 0;
2024 }
2025 
2026 static __rte_always_inline int
2027 cpt_kasumi_enc_prep(uint32_t req_flags,
2028 		    uint64_t d_offs,
2029 		    uint64_t d_lens,
2030 		    fc_params_t *params,
2031 		    void *op,
2032 		    void **prep_req)
2033 {
2034 	uint32_t size;
2035 	int32_t inputlen = 0, outputlen = 0;
2036 	struct cpt_ctx *cpt_ctx;
2037 	uint32_t mac_len = 0;
2038 	uint8_t i = 0;
2039 	struct cpt_request_info *req;
2040 	buf_ptr_t *buf_p;
2041 	uint32_t encr_offset, auth_offset;
2042 	uint32_t encr_data_len, auth_data_len;
2043 	int flags, m_size;
2044 	uint8_t *iv_s, *iv_d, iv_len = 8;
2045 	uint8_t dir = 0;
2046 	void *m_vaddr, *c_vaddr;
2047 	uint64_t m_dma, c_dma;
2048 	uint64_t *offset_vaddr, offset_dma;
2049 	vq_cmd_word0_t vq_cmd_w0;
2050 	vq_cmd_word3_t vq_cmd_w3;
2051 	opcode_info_t opcode;
2052 	uint8_t *in_buffer;
2053 	uint32_t g_size_bytes, s_size_bytes;
2054 	uint64_t dptr_dma, rptr_dma;
2055 	sg_comp_t *gather_comp;
2056 	sg_comp_t *scatter_comp;
2057 
2058 	buf_p = &params->meta_buf;
2059 	m_vaddr = buf_p->vaddr;
2060 	m_dma = buf_p->dma_addr;
2061 	m_size = buf_p->size;
2062 
2063 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2064 	auth_offset = AUTH_OFFSET(d_offs) / 8;
2065 	encr_data_len = ENCR_DLEN(d_lens);
2066 	auth_data_len = AUTH_DLEN(d_lens);
2067 
2068 	cpt_ctx = params->ctx_buf.vaddr;
2069 	flags = cpt_ctx->zsk_flags;
2070 	mac_len = cpt_ctx->mac_len;
2071 
2072 	if (flags == 0x0)
2073 		iv_s = params->iv_buf;
2074 	else
2075 		iv_s = params->auth_iv_buf;
2076 
2077 	dir = iv_s[8] & 0x1;
2078 
2079 	/*
2080 	 * Save initial space that followed app data for completion code &
2081 	 * alternate completion code to fall in same cache line as app data
2082 	 */
2083 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2084 	m_dma += COMPLETION_CODE_SIZE;
2085 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2086 		(uint8_t *)m_vaddr;
2087 
2088 	c_vaddr = (uint8_t *)m_vaddr + size;
2089 	c_dma = m_dma + size;
2090 	size += sizeof(cpt_res_s_t);
2091 
2092 	m_vaddr = (uint8_t *)m_vaddr + size;
2093 	m_dma += size;
2094 	m_size -= size;
2095 
2096 	/* Reserve memory for cpt request info */
2097 	req = m_vaddr;
2098 
2099 	size = sizeof(struct cpt_request_info);
2100 	m_vaddr = (uint8_t *)m_vaddr + size;
2101 	m_dma += size;
2102 	m_size -= size;
2103 
2104 	opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2105 
2106 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2107 	opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2108 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2109 
2110 	/*
2111 	 * GP op header, lengths are expected in bits.
2112 	 */
2113 	vq_cmd_w0.u64 = 0;
2114 	vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
2115 	vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
2116 	vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
2117 
2118 	/* consider iv len */
2119 	if (flags == 0x0) {
2120 		encr_offset += iv_len;
2121 		auth_offset += iv_len;
2122 	}
2123 
2124 	/* save space for offset ctrl and iv */
2125 	offset_vaddr = m_vaddr;
2126 	offset_dma = m_dma;
2127 
2128 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2129 	m_dma += OFF_CTRL_LEN + iv_len;
2130 	m_size -= OFF_CTRL_LEN + iv_len;
2131 
2132 	/* DPTR has SG list */
2133 	in_buffer = m_vaddr;
2134 	dptr_dma = m_dma;
2135 
2136 	((uint16_t *)in_buffer)[0] = 0;
2137 	((uint16_t *)in_buffer)[1] = 0;
2138 
2139 	/* TODO Add error check if space will be sufficient */
2140 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2141 
2142 	/*
2143 	 * Input Gather List
2144 	 */
2145 	i = 0;
2146 
2147 	/* Offset control word followed by iv */
2148 
2149 	if (flags == 0x0) {
2150 		inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2151 		outputlen = inputlen;
2152 		/* iv offset is 0 */
2153 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2154 	} else {
2155 		inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2156 		outputlen = mac_len;
2157 		/* iv offset is 0 */
2158 		*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2159 	}
2160 
2161 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2162 
2163 	/* IV */
2164 	iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2165 	memcpy(iv_d, iv_s, iv_len);
2166 
2167 	/* input data */
2168 	size = inputlen - iv_len;
2169 	if (size) {
2170 		i = fill_sg_comp_from_iov(gather_comp, i,
2171 					  params->src_iov, 0,
2172 					  &size, NULL, 0);
2173 
2174 		if (size)
2175 			return ERR_BAD_INPUT_ARG;
2176 	}
2177 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2178 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2179 
2180 	/*
2181 	 * Output Scatter List
2182 	 */
2183 
2184 	i = 0;
2185 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2186 
2187 	if (flags == 0x1) {
2188 		/* IV in SLIST only for F8 */
2189 		iv_len = 0;
2190 	}
2191 
2192 	/* IV */
2193 	if (iv_len) {
2194 		i = fill_sg_comp(scatter_comp, i,
2195 				 offset_dma + OFF_CTRL_LEN,
2196 				 iv_len);
2197 	}
2198 
2199 	/* Add output data */
2200 	if (req_flags & VALID_MAC_BUF) {
2201 		size = outputlen - iv_len - mac_len;
2202 		if (size) {
2203 			i = fill_sg_comp_from_iov(scatter_comp, i,
2204 						  params->dst_iov, 0,
2205 						  &size, NULL, 0);
2206 
2207 			if (size)
2208 				return ERR_BAD_INPUT_ARG;
2209 		}
2210 
2211 		/* mac data */
2212 		if (mac_len) {
2213 			i = fill_sg_comp_from_buf(scatter_comp, i,
2214 						  &params->mac_buf);
2215 		}
2216 	} else {
2217 		/* Output including mac */
2218 		size = outputlen - iv_len;
2219 		if (size) {
2220 			i = fill_sg_comp_from_iov(scatter_comp, i,
2221 						  params->dst_iov, 0,
2222 						  &size, NULL, 0);
2223 
2224 			if (size)
2225 				return ERR_BAD_INPUT_ARG;
2226 		}
2227 	}
2228 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2229 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2230 
2231 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2232 
2233 	/* This is DPTR len incase of SG mode */
2234 	vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
2235 
2236 	m_vaddr = (uint8_t *)m_vaddr + size;
2237 	m_dma += size;
2238 	m_size -= size;
2239 
2240 	/* cpt alternate completion address saved earlier */
2241 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2242 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2243 	rptr_dma = c_dma - 8;
2244 
2245 	req->ist.ei1 = dptr_dma;
2246 	req->ist.ei2 = rptr_dma;
2247 
2248 	/* First 16-bit swap then 64-bit swap */
2249 	/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
2250 	 * to eliminate all the swapping
2251 	 */
2252 	vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
2253 
2254 	/* vq command w3 */
2255 	vq_cmd_w3.u64 = 0;
2256 	vq_cmd_w3.s.grp = 0;
2257 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2258 		offsetof(struct cpt_ctx, k_ctx);
2259 
2260 	/* 16 byte aligned cpt res address */
2261 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2262 	*req->completion_addr = COMPLETION_CODE_INIT;
2263 	req->comp_baddr  = c_dma;
2264 
2265 	/* Fill microcode part of instruction */
2266 	req->ist.ei0 = vq_cmd_w0.u64;
2267 	req->ist.ei3 = vq_cmd_w3.u64;
2268 
2269 	req->op = op;
2270 
2271 	*prep_req = req;
2272 	return 0;
2273 }
2274 
2275 static __rte_always_inline int
2276 cpt_kasumi_dec_prep(uint64_t d_offs,
2277 		    uint64_t d_lens,
2278 		    fc_params_t *params,
2279 		    void *op,
2280 		    void **prep_req)
2281 {
2282 	uint32_t size;
2283 	int32_t inputlen = 0, outputlen;
2284 	struct cpt_ctx *cpt_ctx;
2285 	uint8_t i = 0, iv_len = 8;
2286 	struct cpt_request_info *req;
2287 	buf_ptr_t *buf_p;
2288 	uint32_t encr_offset;
2289 	uint32_t encr_data_len;
2290 	int flags, m_size;
2291 	uint8_t dir = 0;
2292 	void *m_vaddr, *c_vaddr;
2293 	uint64_t m_dma, c_dma;
2294 	uint64_t *offset_vaddr, offset_dma;
2295 	vq_cmd_word0_t vq_cmd_w0;
2296 	vq_cmd_word3_t vq_cmd_w3;
2297 	opcode_info_t opcode;
2298 	uint8_t *in_buffer;
2299 	uint32_t g_size_bytes, s_size_bytes;
2300 	uint64_t dptr_dma, rptr_dma;
2301 	sg_comp_t *gather_comp;
2302 	sg_comp_t *scatter_comp;
2303 
2304 	buf_p = &params->meta_buf;
2305 	m_vaddr = buf_p->vaddr;
2306 	m_dma = buf_p->dma_addr;
2307 	m_size = buf_p->size;
2308 
2309 	encr_offset = ENCR_OFFSET(d_offs) / 8;
2310 	encr_data_len = ENCR_DLEN(d_lens);
2311 
2312 	cpt_ctx = params->ctx_buf.vaddr;
2313 	flags = cpt_ctx->zsk_flags;
2314 	/*
2315 	 * Save initial space that followed app data for completion code &
2316 	 * alternate completion code to fall in same cache line as app data
2317 	 */
2318 	m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2319 	m_dma += COMPLETION_CODE_SIZE;
2320 	size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2321 		(uint8_t *)m_vaddr;
2322 
2323 	c_vaddr = (uint8_t *)m_vaddr + size;
2324 	c_dma = m_dma + size;
2325 	size += sizeof(cpt_res_s_t);
2326 
2327 	m_vaddr = (uint8_t *)m_vaddr + size;
2328 	m_dma += size;
2329 	m_size -= size;
2330 
2331 	/* Reserve memory for cpt request info */
2332 	req = m_vaddr;
2333 
2334 	size = sizeof(struct cpt_request_info);
2335 	m_vaddr = (uint8_t *)m_vaddr + size;
2336 	m_dma += size;
2337 	m_size -= size;
2338 
2339 	opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2340 
2341 	/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2342 	opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2343 			  (dir << 4) | (0 << 3) | (flags & 0x7));
2344 
2345 	/*
2346 	 * GP op header, lengths are expected in bits.
2347 	 */
2348 	vq_cmd_w0.u64 = 0;
2349 	vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
2350 	vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
2351 
2352 	/* consider iv len */
2353 	encr_offset += iv_len;
2354 
2355 	inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2356 	outputlen = inputlen;
2357 
2358 	/* save space for offset ctrl & iv */
2359 	offset_vaddr = m_vaddr;
2360 	offset_dma = m_dma;
2361 
2362 	m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2363 	m_dma += OFF_CTRL_LEN + iv_len;
2364 	m_size -= OFF_CTRL_LEN + iv_len;
2365 
2366 	/* DPTR has SG list */
2367 	in_buffer = m_vaddr;
2368 	dptr_dma = m_dma;
2369 
2370 	((uint16_t *)in_buffer)[0] = 0;
2371 	((uint16_t *)in_buffer)[1] = 0;
2372 
2373 	/* TODO Add error check if space will be sufficient */
2374 	gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2375 
2376 	/*
2377 	 * Input Gather List
2378 	 */
2379 	i = 0;
2380 
2381 	/* Offset control word followed by iv */
2382 	*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2383 
2384 	i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2385 
2386 	/* IV */
2387 	memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2388 	       params->iv_buf, iv_len);
2389 
2390 	/* Add input data */
2391 	size = inputlen - iv_len;
2392 	if (size) {
2393 		i = fill_sg_comp_from_iov(gather_comp, i,
2394 					  params->src_iov,
2395 					  0, &size, NULL, 0);
2396 		if (size)
2397 			return ERR_BAD_INPUT_ARG;
2398 	}
2399 	((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2400 	g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2401 
2402 	/*
2403 	 * Output Scatter List
2404 	 */
2405 
2406 	i = 0;
2407 	scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2408 
2409 	/* IV */
2410 	i = fill_sg_comp(scatter_comp, i,
2411 			 offset_dma + OFF_CTRL_LEN,
2412 			 iv_len);
2413 
2414 	/* Add output data */
2415 	size = outputlen - iv_len;
2416 	if (size) {
2417 		i = fill_sg_comp_from_iov(scatter_comp, i,
2418 					  params->dst_iov, 0,
2419 					  &size, NULL, 0);
2420 		if (size)
2421 			return ERR_BAD_INPUT_ARG;
2422 	}
2423 	((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2424 	s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2425 
2426 	size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2427 
2428 	/* This is DPTR len incase of SG mode */
2429 	vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
2430 
2431 	m_vaddr = (uint8_t *)m_vaddr + size;
2432 	m_dma += size;
2433 	m_size -= size;
2434 
2435 	/* cpt alternate completion address saved earlier */
2436 	req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2437 	*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2438 	rptr_dma = c_dma - 8;
2439 
2440 	req->ist.ei1 = dptr_dma;
2441 	req->ist.ei2 = rptr_dma;
2442 
2443 	/* First 16-bit swap then 64-bit swap */
2444 	/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
2445 	 * to eliminate all the swapping
2446 	 */
2447 	vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
2448 
2449 	/* vq command w3 */
2450 	vq_cmd_w3.u64 = 0;
2451 	vq_cmd_w3.s.grp = 0;
2452 	vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2453 		offsetof(struct cpt_ctx, k_ctx);
2454 
2455 	/* 16 byte aligned cpt res address */
2456 	req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2457 	*req->completion_addr = COMPLETION_CODE_INIT;
2458 	req->comp_baddr  = c_dma;
2459 
2460 	/* Fill microcode part of instruction */
2461 	req->ist.ei0 = vq_cmd_w0.u64;
2462 	req->ist.ei3 = vq_cmd_w3.u64;
2463 
2464 	req->op = op;
2465 
2466 	*prep_req = req;
2467 	return 0;
2468 }
2469 
2470 static __rte_always_inline void *
2471 cpt_fc_dec_hmac_prep(uint32_t flags,
2472 		     uint64_t d_offs,
2473 		     uint64_t d_lens,
2474 		     fc_params_t *fc_params,
2475 		     void *op, int *ret_val)
2476 {
2477 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2478 	uint8_t fc_type;
2479 	void *prep_req = NULL;
2480 	int ret;
2481 
2482 	fc_type = ctx->fc_type;
2483 
2484 	if (likely(fc_type == FC_GEN)) {
2485 		ret = cpt_dec_hmac_prep(flags, d_offs, d_lens,
2486 					fc_params, op, &prep_req);
2487 	} else if (fc_type == ZUC_SNOW3G) {
2488 		ret = cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens,
2489 					      fc_params, op, &prep_req);
2490 	} else if (fc_type == KASUMI) {
2491 		ret = cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op,
2492 					  &prep_req);
2493 	} else {
2494 		/*
2495 		 * For AUTH_ONLY case,
2496 		 * MC only supports digest generation and verification
2497 		 * should be done in software by memcmp()
2498 		 */
2499 
2500 		ret = ERR_EIO;
2501 	}
2502 
2503 	if (unlikely(!prep_req))
2504 		*ret_val = ret;
2505 	return prep_req;
2506 }
2507 
2508 static __rte_always_inline void *__hot
2509 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2510 		     fc_params_t *fc_params, void *op, int *ret_val)
2511 {
2512 	struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2513 	uint8_t fc_type;
2514 	void *prep_req = NULL;
2515 	int ret;
2516 
2517 	fc_type = ctx->fc_type;
2518 
2519 	/* Common api for rest of the ops */
2520 	if (likely(fc_type == FC_GEN)) {
2521 		ret = cpt_enc_hmac_prep(flags, d_offs, d_lens,
2522 					fc_params, op, &prep_req);
2523 	} else if (fc_type == ZUC_SNOW3G) {
2524 		ret = cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens,
2525 					      fc_params, op, &prep_req);
2526 	} else if (fc_type == KASUMI) {
2527 		ret = cpt_kasumi_enc_prep(flags, d_offs, d_lens,
2528 					  fc_params, op, &prep_req);
2529 	} else if (fc_type == HASH_HMAC) {
2530 		ret = cpt_digest_gen_prep(flags, d_lens, fc_params, op,
2531 					  &prep_req);
2532 	} else {
2533 		ret = ERR_EIO;
2534 	}
2535 
2536 	if (unlikely(!prep_req))
2537 		*ret_val = ret;
2538 	return prep_req;
2539 }
2540 
2541 static __rte_always_inline int
2542 cpt_fc_auth_set_key(void *ctx, auth_type_t type, uint8_t *key,
2543 		    uint16_t key_len, uint16_t mac_len)
2544 {
2545 	struct cpt_ctx *cpt_ctx = ctx;
2546 	mc_fc_context_t *fctx = &cpt_ctx->fctx;
2547 	uint64_t *ctrl_flags = NULL;
2548 
2549 	if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2550 		uint32_t keyx[4];
2551 
2552 		if (key_len != 16)
2553 			return -1;
2554 		/* No support for AEAD yet */
2555 		if (cpt_ctx->enc_cipher)
2556 			return -1;
2557 		/* For ZUC/SNOW3G/Kasumi */
2558 		switch (type) {
2559 		case SNOW3G_UIA2:
2560 			cpt_ctx->snow3g = 1;
2561 			gen_key_snow3g(key, keyx);
2562 			memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
2563 			cpt_ctx->fc_type = ZUC_SNOW3G;
2564 			cpt_ctx->zsk_flags = 0x1;
2565 			break;
2566 		case ZUC_EIA3:
2567 			cpt_ctx->snow3g = 0;
2568 			memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
2569 			memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
2570 			cpt_ctx->fc_type = ZUC_SNOW3G;
2571 			cpt_ctx->zsk_flags = 0x1;
2572 			break;
2573 		case KASUMI_F9_ECB:
2574 			/* Kasumi ECB mode */
2575 			cpt_ctx->k_ecb = 1;
2576 			memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2577 			cpt_ctx->fc_type = KASUMI;
2578 			cpt_ctx->zsk_flags = 0x1;
2579 			break;
2580 		case KASUMI_F9_CBC:
2581 			memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2582 			cpt_ctx->fc_type = KASUMI;
2583 			cpt_ctx->zsk_flags = 0x1;
2584 			break;
2585 		default:
2586 			return -1;
2587 		}
2588 		cpt_ctx->mac_len = 4;
2589 		cpt_ctx->hash_type = type;
2590 		return 0;
2591 	}
2592 
2593 	if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2594 		if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2595 			cpt_ctx->fc_type = HASH_HMAC;
2596 	}
2597 
2598 	ctrl_flags = (uint64_t *)&fctx->enc.enc_ctrl.flags;
2599 	*ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
2600 
2601 	/* For GMAC auth, cipher must be NULL */
2602 	if (type == GMAC_TYPE)
2603 		CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
2604 
2605 	CPT_P_ENC_CTRL(fctx).hash_type = cpt_ctx->hash_type = type;
2606 	CPT_P_ENC_CTRL(fctx).mac_len = cpt_ctx->mac_len = mac_len;
2607 
2608 	if (key_len) {
2609 		cpt_ctx->hmac = 1;
2610 		memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2611 		memcpy(cpt_ctx->auth_key, key, key_len);
2612 		cpt_ctx->auth_key_len = key_len;
2613 		memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2614 		memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2615 		memcpy(fctx->hmac.opad, key, key_len);
2616 		CPT_P_ENC_CTRL(fctx).auth_input_type = 1;
2617 	}
2618 	*ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
2619 	return 0;
2620 }
2621 
2622 static __rte_always_inline int
2623 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2624 		 struct cpt_sess_misc *sess)
2625 {
2626 	struct rte_crypto_aead_xform *aead_form;
2627 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2628 	auth_type_t auth_type = 0; /* NULL Auth type */
2629 	uint32_t cipher_key_len = 0;
2630 	uint8_t zsk_flag = 0, aes_gcm = 0;
2631 	aead_form = &xform->aead;
2632 	void *ctx;
2633 
2634 	if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT &&
2635 	   aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2636 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2637 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2638 	} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT &&
2639 		aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2640 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2641 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2642 	} else {
2643 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2644 		return -1;
2645 	}
2646 	switch (aead_form->algo) {
2647 	case RTE_CRYPTO_AEAD_AES_GCM:
2648 		enc_type = AES_GCM;
2649 		cipher_key_len = 16;
2650 		aes_gcm = 1;
2651 		break;
2652 	case RTE_CRYPTO_AEAD_AES_CCM:
2653 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2654 			       aead_form->algo);
2655 		return -1;
2656 	default:
2657 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2658 			       aead_form->algo);
2659 		return -1;
2660 	}
2661 	if (aead_form->key.length < cipher_key_len) {
2662 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2663 			       (unsigned int long)aead_form->key.length);
2664 		return -1;
2665 	}
2666 	sess->zsk_flag = zsk_flag;
2667 	sess->aes_gcm = aes_gcm;
2668 	sess->mac_len = aead_form->digest_length;
2669 	sess->iv_offset = aead_form->iv.offset;
2670 	sess->iv_length = aead_form->iv.length;
2671 	sess->aad_length = aead_form->aad_length;
2672 	ctx = (void *)((uint8_t *)sess + sizeof(struct cpt_sess_misc)),
2673 
2674 	cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2675 			aead_form->key.length, NULL);
2676 
2677 	cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, aead_form->digest_length);
2678 
2679 	return 0;
2680 }
2681 
2682 static __rte_always_inline int
2683 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2684 		 struct cpt_sess_misc *sess)
2685 {
2686 	struct rte_crypto_cipher_xform *c_form;
2687 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2688 	uint32_t cipher_key_len = 0;
2689 	uint8_t zsk_flag = 0, aes_gcm = 0, aes_ctr = 0, is_null = 0;
2690 
2691 	if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER)
2692 		return -1;
2693 
2694 	c_form = &xform->cipher;
2695 
2696 	if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2697 		sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2698 	else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
2699 		sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2700 	else {
2701 		CPT_LOG_DP_ERR("Unknown cipher operation\n");
2702 		return -1;
2703 	}
2704 
2705 	switch (c_form->algo) {
2706 	case RTE_CRYPTO_CIPHER_AES_CBC:
2707 		enc_type = AES_CBC;
2708 		cipher_key_len = 16;
2709 		break;
2710 	case RTE_CRYPTO_CIPHER_3DES_CBC:
2711 		enc_type = DES3_CBC;
2712 		cipher_key_len = 24;
2713 		break;
2714 	case RTE_CRYPTO_CIPHER_DES_CBC:
2715 		/* DES is implemented using 3DES in hardware */
2716 		enc_type = DES3_CBC;
2717 		cipher_key_len = 8;
2718 		break;
2719 	case RTE_CRYPTO_CIPHER_AES_CTR:
2720 		enc_type = AES_CTR;
2721 		cipher_key_len = 16;
2722 		aes_ctr = 1;
2723 		break;
2724 	case RTE_CRYPTO_CIPHER_NULL:
2725 		enc_type = 0;
2726 		is_null = 1;
2727 		break;
2728 	case RTE_CRYPTO_CIPHER_KASUMI_F8:
2729 		enc_type = KASUMI_F8_ECB;
2730 		cipher_key_len = 16;
2731 		zsk_flag = K_F8;
2732 		break;
2733 	case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2734 		enc_type = SNOW3G_UEA2;
2735 		cipher_key_len = 16;
2736 		zsk_flag = ZS_EA;
2737 		break;
2738 	case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2739 		enc_type = ZUC_EEA3;
2740 		cipher_key_len = 16;
2741 		zsk_flag = ZS_EA;
2742 		break;
2743 	case RTE_CRYPTO_CIPHER_AES_XTS:
2744 		enc_type = AES_XTS;
2745 		cipher_key_len = 16;
2746 		break;
2747 	case RTE_CRYPTO_CIPHER_3DES_ECB:
2748 		enc_type = DES3_ECB;
2749 		cipher_key_len = 24;
2750 		break;
2751 	case RTE_CRYPTO_CIPHER_AES_ECB:
2752 		enc_type = AES_ECB;
2753 		cipher_key_len = 16;
2754 		break;
2755 	case RTE_CRYPTO_CIPHER_3DES_CTR:
2756 	case RTE_CRYPTO_CIPHER_AES_F8:
2757 	case RTE_CRYPTO_CIPHER_ARC4:
2758 		CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2759 			       c_form->algo);
2760 		return -1;
2761 	default:
2762 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2763 			       c_form->algo);
2764 		return -1;
2765 	}
2766 
2767 	if (c_form->key.length < cipher_key_len) {
2768 		CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2769 			       (unsigned long) c_form->key.length);
2770 		return -1;
2771 	}
2772 
2773 	sess->zsk_flag = zsk_flag;
2774 	sess->aes_gcm = aes_gcm;
2775 	sess->aes_ctr = aes_ctr;
2776 	sess->iv_offset = c_form->iv.offset;
2777 	sess->iv_length = c_form->iv.length;
2778 	sess->is_null = is_null;
2779 
2780 	cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type, c_form->key.data,
2781 			    c_form->key.length, NULL);
2782 
2783 	return 0;
2784 }
2785 
2786 static __rte_always_inline int
2787 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2788 	       struct cpt_sess_misc *sess)
2789 {
2790 	struct rte_crypto_auth_xform *a_form;
2791 	auth_type_t auth_type = 0; /* NULL Auth type */
2792 	uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2793 
2794 	if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH)
2795 		goto error_out;
2796 
2797 	a_form = &xform->auth;
2798 
2799 	if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2800 		sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2801 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2802 		sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2803 	else {
2804 		CPT_LOG_DP_ERR("Unknown auth operation");
2805 		return -1;
2806 	}
2807 
2808 	if (a_form->key.length > 64) {
2809 		CPT_LOG_DP_ERR("Auth key length is big");
2810 		return -1;
2811 	}
2812 
2813 	switch (a_form->algo) {
2814 	case RTE_CRYPTO_AUTH_SHA1_HMAC:
2815 		/* Fall through */
2816 	case RTE_CRYPTO_AUTH_SHA1:
2817 		auth_type = SHA1_TYPE;
2818 		break;
2819 	case RTE_CRYPTO_AUTH_SHA256_HMAC:
2820 	case RTE_CRYPTO_AUTH_SHA256:
2821 		auth_type = SHA2_SHA256;
2822 		break;
2823 	case RTE_CRYPTO_AUTH_SHA512_HMAC:
2824 	case RTE_CRYPTO_AUTH_SHA512:
2825 		auth_type = SHA2_SHA512;
2826 		break;
2827 	case RTE_CRYPTO_AUTH_AES_GMAC:
2828 		auth_type = GMAC_TYPE;
2829 		aes_gcm = 1;
2830 		break;
2831 	case RTE_CRYPTO_AUTH_SHA224_HMAC:
2832 	case RTE_CRYPTO_AUTH_SHA224:
2833 		auth_type = SHA2_SHA224;
2834 		break;
2835 	case RTE_CRYPTO_AUTH_SHA384_HMAC:
2836 	case RTE_CRYPTO_AUTH_SHA384:
2837 		auth_type = SHA2_SHA384;
2838 		break;
2839 	case RTE_CRYPTO_AUTH_MD5_HMAC:
2840 	case RTE_CRYPTO_AUTH_MD5:
2841 		auth_type = MD5_TYPE;
2842 		break;
2843 	case RTE_CRYPTO_AUTH_KASUMI_F9:
2844 		auth_type = KASUMI_F9_ECB;
2845 		/*
2846 		 * Indicate that direction needs to be taken out
2847 		 * from end of src
2848 		 */
2849 		zsk_flag = K_F9;
2850 		break;
2851 	case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2852 		auth_type = SNOW3G_UIA2;
2853 		zsk_flag = ZS_IA;
2854 		break;
2855 	case RTE_CRYPTO_AUTH_ZUC_EIA3:
2856 		auth_type = ZUC_EIA3;
2857 		zsk_flag = ZS_IA;
2858 		break;
2859 	case RTE_CRYPTO_AUTH_NULL:
2860 		auth_type = 0;
2861 		is_null = 1;
2862 		break;
2863 	case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2864 	case RTE_CRYPTO_AUTH_AES_CMAC:
2865 	case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2866 		CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2867 			       a_form->algo);
2868 		goto error_out;
2869 	default:
2870 		CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2871 			       a_form->algo);
2872 		goto error_out;
2873 	}
2874 
2875 	sess->zsk_flag = zsk_flag;
2876 	sess->aes_gcm = aes_gcm;
2877 	sess->mac_len = a_form->digest_length;
2878 	sess->is_null = is_null;
2879 	if (zsk_flag) {
2880 		sess->auth_iv_offset = a_form->iv.offset;
2881 		sess->auth_iv_length = a_form->iv.length;
2882 	}
2883 	cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type, a_form->key.data,
2884 			    a_form->key.length, a_form->digest_length);
2885 
2886 	return 0;
2887 
2888 error_out:
2889 	return -1;
2890 }
2891 
2892 static __rte_always_inline int
2893 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2894 		 struct cpt_sess_misc *sess)
2895 {
2896 	struct rte_crypto_auth_xform *a_form;
2897 	cipher_type_t enc_type = 0; /* NULL Cipher type */
2898 	auth_type_t auth_type = 0; /* NULL Auth type */
2899 	uint8_t zsk_flag = 0, aes_gcm = 0;
2900 	void *ctx;
2901 
2902 	if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH)
2903 		return -1;
2904 
2905 	a_form = &xform->auth;
2906 
2907 	if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2908 		sess->cpt_op |= CPT_OP_ENCODE;
2909 	else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2910 		sess->cpt_op |= CPT_OP_DECODE;
2911 	else {
2912 		CPT_LOG_DP_ERR("Unknown auth operation");
2913 		return -1;
2914 	}
2915 
2916 	switch (a_form->algo) {
2917 	case RTE_CRYPTO_AUTH_AES_GMAC:
2918 		enc_type = AES_GCM;
2919 		auth_type = GMAC_TYPE;
2920 		break;
2921 	default:
2922 		CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2923 			       a_form->algo);
2924 		return -1;
2925 	}
2926 
2927 	sess->zsk_flag = zsk_flag;
2928 	sess->aes_gcm = aes_gcm;
2929 	sess->is_gmac = 1;
2930 	sess->iv_offset = a_form->iv.offset;
2931 	sess->iv_length = a_form->iv.length;
2932 	sess->mac_len = a_form->digest_length;
2933 	ctx = (void *)((uint8_t *)sess + sizeof(struct cpt_sess_misc)),
2934 
2935 	cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2936 			a_form->key.length, NULL);
2937 	cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, a_form->digest_length);
2938 
2939 	return 0;
2940 }
2941 
2942 static __rte_always_inline void *
2943 alloc_op_meta(struct rte_mbuf *m_src,
2944 	      buf_ptr_t *buf,
2945 	      int32_t len,
2946 	      struct rte_mempool *cpt_meta_pool)
2947 {
2948 	uint8_t *mdata;
2949 
2950 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2951 	if (likely(m_src && (m_src->nb_segs == 1))) {
2952 		int32_t tailroom;
2953 		phys_addr_t mphys;
2954 
2955 		/* Check if tailroom is sufficient to hold meta data */
2956 		tailroom = rte_pktmbuf_tailroom(m_src);
2957 		if (likely(tailroom > len + 8)) {
2958 			mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2959 			mphys = m_src->buf_physaddr + m_src->buf_len;
2960 			mdata -= len;
2961 			mphys -= len;
2962 			buf->vaddr = mdata;
2963 			buf->dma_addr = mphys;
2964 			buf->size = len;
2965 			/* Indicate that this is a mbuf allocated mdata */
2966 			mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2967 			return mdata;
2968 		}
2969 	}
2970 #else
2971 	RTE_SET_USED(m_src);
2972 #endif
2973 
2974 	if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2975 		return NULL;
2976 
2977 	buf->vaddr = mdata;
2978 	buf->dma_addr = rte_mempool_virt2iova(mdata);
2979 	buf->size = len;
2980 
2981 	return mdata;
2982 }
2983 
2984 /**
2985  * cpt_free_metabuf - free metabuf to mempool.
2986  * @param instance: pointer to instance.
2987  * @param objp: pointer to the metabuf.
2988  */
2989 static __rte_always_inline void
2990 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2991 {
2992 	bool nofree = ((uintptr_t)mdata & 1ull);
2993 
2994 	if (likely(nofree))
2995 		return;
2996 	rte_mempool_put(cpt_meta_pool, mdata);
2997 }
2998 
2999 static __rte_always_inline uint32_t
3000 prepare_iov_from_pkt(struct rte_mbuf *pkt,
3001 		     iov_ptr_t *iovec, uint32_t start_offset)
3002 {
3003 	uint16_t index = 0;
3004 	void *seg_data = NULL;
3005 	phys_addr_t seg_phys;
3006 	int32_t seg_size = 0;
3007 
3008 	if (!pkt) {
3009 		iovec->buf_cnt = 0;
3010 		return 0;
3011 	}
3012 
3013 	if (!start_offset) {
3014 		seg_data = rte_pktmbuf_mtod(pkt, void *);
3015 		seg_phys = rte_pktmbuf_mtophys(pkt);
3016 		seg_size = pkt->data_len;
3017 	} else {
3018 		while (start_offset >= pkt->data_len) {
3019 			start_offset -= pkt->data_len;
3020 			pkt = pkt->next;
3021 		}
3022 
3023 		seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
3024 		seg_phys = rte_pktmbuf_mtophys_offset(pkt, start_offset);
3025 		seg_size = pkt->data_len - start_offset;
3026 		if (!seg_size)
3027 			return 1;
3028 	}
3029 
3030 	/* first seg */
3031 	iovec->bufs[index].vaddr = seg_data;
3032 	iovec->bufs[index].dma_addr = seg_phys;
3033 	iovec->bufs[index].size = seg_size;
3034 	index++;
3035 	pkt = pkt->next;
3036 
3037 	while (unlikely(pkt != NULL)) {
3038 		seg_data = rte_pktmbuf_mtod(pkt, void *);
3039 		seg_phys = rte_pktmbuf_mtophys(pkt);
3040 		seg_size = pkt->data_len;
3041 		if (!seg_size)
3042 			break;
3043 
3044 		iovec->bufs[index].vaddr = seg_data;
3045 		iovec->bufs[index].dma_addr = seg_phys;
3046 		iovec->bufs[index].size = seg_size;
3047 
3048 		index++;
3049 
3050 		pkt = pkt->next;
3051 	}
3052 
3053 	iovec->buf_cnt = index;
3054 	return 0;
3055 }
3056 
3057 static __rte_always_inline uint32_t
3058 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
3059 			     fc_params_t *param,
3060 			     uint32_t *flags)
3061 {
3062 	uint16_t index = 0;
3063 	void *seg_data = NULL;
3064 	phys_addr_t seg_phys;
3065 	uint32_t seg_size = 0;
3066 	iov_ptr_t *iovec;
3067 
3068 	seg_data = rte_pktmbuf_mtod(pkt, void *);
3069 	seg_phys = rte_pktmbuf_mtophys(pkt);
3070 	seg_size = pkt->data_len;
3071 
3072 	/* first seg */
3073 	if (likely(!pkt->next)) {
3074 		uint32_t headroom, tailroom;
3075 
3076 		*flags |= SINGLE_BUF_INPLACE;
3077 		headroom = rte_pktmbuf_headroom(pkt);
3078 		tailroom = rte_pktmbuf_tailroom(pkt);
3079 		if (likely((headroom >= 24) &&
3080 		    (tailroom >= 8))) {
3081 			/* In 83XX this is prerequivisit for Direct mode */
3082 			*flags |= SINGLE_BUF_HEADTAILROOM;
3083 		}
3084 		param->bufs[0].vaddr = seg_data;
3085 		param->bufs[0].dma_addr = seg_phys;
3086 		param->bufs[0].size = seg_size;
3087 		return 0;
3088 	}
3089 	iovec = param->src_iov;
3090 	iovec->bufs[index].vaddr = seg_data;
3091 	iovec->bufs[index].dma_addr = seg_phys;
3092 	iovec->bufs[index].size = seg_size;
3093 	index++;
3094 	pkt = pkt->next;
3095 
3096 	while (unlikely(pkt != NULL)) {
3097 		seg_data = rte_pktmbuf_mtod(pkt, void *);
3098 		seg_phys = rte_pktmbuf_mtophys(pkt);
3099 		seg_size = pkt->data_len;
3100 
3101 		if (!seg_size)
3102 			break;
3103 
3104 		iovec->bufs[index].vaddr = seg_data;
3105 		iovec->bufs[index].dma_addr = seg_phys;
3106 		iovec->bufs[index].size = seg_size;
3107 
3108 		index++;
3109 
3110 		pkt = pkt->next;
3111 	}
3112 
3113 	iovec->buf_cnt = index;
3114 	return 0;
3115 }
3116 
3117 static __rte_always_inline void *
3118 fill_fc_params(struct rte_crypto_op *cop,
3119 	       struct cpt_sess_misc *sess_misc,
3120 	       void **mdata_ptr,
3121 	       int *op_ret)
3122 {
3123 	uint32_t space = 0;
3124 	struct rte_crypto_sym_op *sym_op = cop->sym;
3125 	void *mdata;
3126 	uintptr_t *op;
3127 	uint32_t mc_hash_off;
3128 	uint32_t flags = 0;
3129 	uint64_t d_offs, d_lens;
3130 	void *prep_req = NULL;
3131 	struct rte_mbuf *m_src, *m_dst;
3132 	uint8_t cpt_op = sess_misc->cpt_op;
3133 	uint8_t zsk_flag = sess_misc->zsk_flag;
3134 	uint8_t aes_gcm = sess_misc->aes_gcm;
3135 	uint16_t mac_len = sess_misc->mac_len;
3136 #ifdef CPT_ALWAYS_USE_SG_MODE
3137 	uint8_t inplace = 0;
3138 #else
3139 	uint8_t inplace = 1;
3140 #endif
3141 	fc_params_t fc_params;
3142 	char src[SRC_IOV_SIZE];
3143 	char dst[SRC_IOV_SIZE];
3144 	uint32_t iv_buf[4];
3145 	struct cptvf_meta_info *cpt_m_info =
3146 				(struct cptvf_meta_info *)(*mdata_ptr);
3147 
3148 	if (likely(sess_misc->iv_length)) {
3149 		flags |= VALID_IV_BUF;
3150 		fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3151 				   uint8_t *, sess_misc->iv_offset);
3152 		if (sess_misc->aes_ctr &&
3153 		    unlikely(sess_misc->iv_length != 16)) {
3154 			memcpy((uint8_t *)iv_buf,
3155 				rte_crypto_op_ctod_offset(cop,
3156 				uint8_t *, sess_misc->iv_offset), 12);
3157 			iv_buf[3] = rte_cpu_to_be_32(0x1);
3158 			fc_params.iv_buf = iv_buf;
3159 		}
3160 	}
3161 
3162 	if (zsk_flag) {
3163 		fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3164 					uint8_t *,
3165 					sess_misc->auth_iv_offset);
3166 		if (zsk_flag == K_F9) {
3167 			CPT_LOG_DP_ERR("Should not reach here for "
3168 			"kasumi F9\n");
3169 		}
3170 		if (zsk_flag != ZS_EA)
3171 			inplace = 0;
3172 	}
3173 	m_src = sym_op->m_src;
3174 	m_dst = sym_op->m_dst;
3175 
3176 	if (aes_gcm) {
3177 		uint8_t *salt;
3178 		uint8_t *aad_data;
3179 		uint16_t aad_len;
3180 
3181 		d_offs = sym_op->aead.data.offset;
3182 		d_lens = sym_op->aead.data.length;
3183 		mc_hash_off = sym_op->aead.data.offset +
3184 			      sym_op->aead.data.length;
3185 
3186 		aad_data = sym_op->aead.aad.data;
3187 		aad_len = sess_misc->aad_length;
3188 		if (likely((aad_data + aad_len) ==
3189 			   rte_pktmbuf_mtod_offset(m_src,
3190 				uint8_t *,
3191 				sym_op->aead.data.offset))) {
3192 			d_offs = (d_offs - aad_len) | (d_offs << 16);
3193 			d_lens = (d_lens + aad_len) | (d_lens << 32);
3194 		} else {
3195 			fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3196 			fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3197 			fc_params.aad_buf.size = aad_len;
3198 			flags |= VALID_AAD_BUF;
3199 			inplace = 0;
3200 			d_offs = d_offs << 16;
3201 			d_lens = d_lens << 32;
3202 		}
3203 
3204 		salt = fc_params.iv_buf;
3205 		if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3206 			cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3207 			sess_misc->salt = *(uint32_t *)salt;
3208 		}
3209 		fc_params.iv_buf = salt + 4;
3210 		if (likely(mac_len)) {
3211 			struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3212 					     m_src;
3213 
3214 			if (!m)
3215 				m = m_src;
3216 
3217 			/* hmac immediately following data is best case */
3218 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3219 			    mc_hash_off !=
3220 			    (uint8_t *)sym_op->aead.digest.data)) {
3221 				flags |= VALID_MAC_BUF;
3222 				fc_params.mac_buf.size = sess_misc->mac_len;
3223 				fc_params.mac_buf.vaddr =
3224 				  sym_op->aead.digest.data;
3225 				fc_params.mac_buf.dma_addr =
3226 				 sym_op->aead.digest.phys_addr;
3227 				inplace = 0;
3228 			}
3229 		}
3230 	} else {
3231 		d_offs = sym_op->cipher.data.offset;
3232 		d_lens = sym_op->cipher.data.length;
3233 		mc_hash_off = sym_op->cipher.data.offset +
3234 			      sym_op->cipher.data.length;
3235 		d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3236 		d_lens = (d_lens << 32) | sym_op->auth.data.length;
3237 
3238 		if (mc_hash_off < (sym_op->auth.data.offset +
3239 				   sym_op->auth.data.length)){
3240 			mc_hash_off = (sym_op->auth.data.offset +
3241 				       sym_op->auth.data.length);
3242 		}
3243 		/* for gmac, salt should be updated like in gcm */
3244 		if (unlikely(sess_misc->is_gmac)) {
3245 			uint8_t *salt;
3246 			salt = fc_params.iv_buf;
3247 			if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3248 				cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3249 				sess_misc->salt = *(uint32_t *)salt;
3250 			}
3251 			fc_params.iv_buf = salt + 4;
3252 		}
3253 		if (likely(mac_len)) {
3254 			struct rte_mbuf *m;
3255 
3256 			m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3257 			if (!m)
3258 				m = m_src;
3259 
3260 			/* hmac immediately following data is best case */
3261 			if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3262 			    mc_hash_off !=
3263 			     (uint8_t *)sym_op->auth.digest.data)) {
3264 				flags |= VALID_MAC_BUF;
3265 				fc_params.mac_buf.size =
3266 					sess_misc->mac_len;
3267 				fc_params.mac_buf.vaddr =
3268 					sym_op->auth.digest.data;
3269 				fc_params.mac_buf.dma_addr =
3270 				sym_op->auth.digest.phys_addr;
3271 				inplace = 0;
3272 			}
3273 		}
3274 	}
3275 	fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3276 	fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3277 
3278 	if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
3279 		inplace = 0;
3280 
3281 	if (likely(!m_dst && inplace)) {
3282 		/* Case of single buffer without AAD buf or
3283 		 * separate mac buf in place and
3284 		 * not air crypto
3285 		 */
3286 		fc_params.dst_iov = fc_params.src_iov = (void *)src;
3287 
3288 		if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3289 							  &fc_params,
3290 							  &flags))) {
3291 			CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3292 			*op_ret = -1;
3293 			return NULL;
3294 		}
3295 
3296 	} else {
3297 		/* Out of place processing */
3298 		fc_params.src_iov = (void *)src;
3299 		fc_params.dst_iov = (void *)dst;
3300 
3301 		/* Store SG I/O in the api for reuse */
3302 		if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3303 			CPT_LOG_DP_ERR("Prepare src iov failed");
3304 			*op_ret = -1;
3305 			return NULL;
3306 		}
3307 
3308 		if (unlikely(m_dst != NULL)) {
3309 			uint32_t pkt_len;
3310 
3311 			/* Try to make room as much as src has */
3312 			m_dst = sym_op->m_dst;
3313 			pkt_len = rte_pktmbuf_pkt_len(m_dst);
3314 
3315 			if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3316 				pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3317 				if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3318 					CPT_LOG_DP_ERR("Not enough space in "
3319 						       "m_dst %p, need %u"
3320 						       " more",
3321 						       m_dst, pkt_len);
3322 					return NULL;
3323 				}
3324 			}
3325 
3326 			if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3327 				CPT_LOG_DP_ERR("Prepare dst iov failed for "
3328 					       "m_dst %p", m_dst);
3329 				return NULL;
3330 			}
3331 		} else {
3332 			fc_params.dst_iov = (void *)src;
3333 		}
3334 	}
3335 
3336 	if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3337 		mdata = alloc_op_meta(m_src,
3338 				      &fc_params.meta_buf,
3339 				      cpt_m_info->cptvf_op_sb_mlen,
3340 				      cpt_m_info->cptvf_meta_pool);
3341 	else
3342 		mdata = alloc_op_meta(NULL,
3343 				      &fc_params.meta_buf,
3344 				      cpt_m_info->cptvf_op_mlen,
3345 				      cpt_m_info->cptvf_meta_pool);
3346 
3347 	if (unlikely(mdata == NULL)) {
3348 		CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3349 		return NULL;
3350 	}
3351 
3352 	op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3353 	op[0] = (uintptr_t)mdata;
3354 	op[1] = (uintptr_t)cop;
3355 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3356 	space += 4 * sizeof(uint64_t);
3357 
3358 	fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3359 	fc_params.meta_buf.dma_addr += space;
3360 	fc_params.meta_buf.size -= space;
3361 
3362 	/* Finally prepare the instruction */
3363 	if (cpt_op & CPT_OP_ENCODE)
3364 		prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3365 						&fc_params, op, op_ret);
3366 	else
3367 		prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3368 						&fc_params, op, op_ret);
3369 
3370 	if (unlikely(!prep_req))
3371 		free_op_meta(mdata, cpt_m_info->cptvf_meta_pool);
3372 	*mdata_ptr = mdata;
3373 	return prep_req;
3374 }
3375 
3376 static __rte_always_inline void
3377 compl_auth_verify(struct rte_crypto_op *op,
3378 		      uint8_t *gen_mac,
3379 		      uint64_t mac_len)
3380 {
3381 	uint8_t *mac;
3382 	struct rte_crypto_sym_op *sym_op = op->sym;
3383 
3384 	if (sym_op->auth.digest.data)
3385 		mac = sym_op->auth.digest.data;
3386 	else
3387 		mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3388 					      uint8_t *,
3389 					      sym_op->auth.data.length +
3390 					      sym_op->auth.data.offset);
3391 	if (!mac) {
3392 		op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3393 		return;
3394 	}
3395 
3396 	if (memcmp(mac, gen_mac, mac_len))
3397 		op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3398 	else
3399 		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3400 }
3401 
3402 static __rte_always_inline int
3403 instance_session_cfg(struct rte_crypto_sym_xform *xform, void *sess)
3404 {
3405 	struct rte_crypto_sym_xform *chain;
3406 
3407 	CPT_PMD_INIT_FUNC_TRACE();
3408 
3409 	if (cpt_is_algo_supported(xform))
3410 		goto err;
3411 
3412 	chain = xform;
3413 	while (chain) {
3414 		switch (chain->type) {
3415 		case RTE_CRYPTO_SYM_XFORM_AEAD:
3416 			if (fill_sess_aead(chain, sess))
3417 				goto err;
3418 			break;
3419 		case RTE_CRYPTO_SYM_XFORM_CIPHER:
3420 			if (fill_sess_cipher(chain, sess))
3421 				goto err;
3422 			break;
3423 		case RTE_CRYPTO_SYM_XFORM_AUTH:
3424 			if (chain->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
3425 				if (fill_sess_gmac(chain, sess))
3426 					goto err;
3427 			} else {
3428 				if (fill_sess_auth(chain, sess))
3429 					goto err;
3430 			}
3431 			break;
3432 		default:
3433 			CPT_LOG_DP_ERR("Invalid crypto xform type");
3434 			break;
3435 		}
3436 		chain = chain->next;
3437 	}
3438 
3439 	return 0;
3440 
3441 err:
3442 	return -1;
3443 }
3444 
3445 static __rte_always_inline void
3446 find_kasumif9_direction_and_length(uint8_t *src,
3447 				   uint32_t counter_num_bytes,
3448 				   uint32_t *addr_length_in_bits,
3449 				   uint8_t *addr_direction)
3450 {
3451 	uint8_t found = 0;
3452 	uint32_t pos;
3453 	uint8_t last_byte;
3454 	while (!found && counter_num_bytes > 0) {
3455 		counter_num_bytes--;
3456 		if (src[counter_num_bytes] == 0x00)
3457 			continue;
3458 		pos = rte_bsf32(src[counter_num_bytes]);
3459 		if (pos == 7) {
3460 			if (likely(counter_num_bytes > 0)) {
3461 				last_byte = src[counter_num_bytes - 1];
3462 				*addr_direction  =  last_byte & 0x1;
3463 				*addr_length_in_bits = counter_num_bytes * 8
3464 							- 1;
3465 			}
3466 		} else {
3467 			last_byte = src[counter_num_bytes];
3468 			*addr_direction = (last_byte >> (pos + 1)) & 0x1;
3469 			*addr_length_in_bits = counter_num_bytes * 8
3470 						+ (8 - (pos + 2));
3471 		}
3472 		found = 1;
3473 	}
3474 }
3475 
3476 /*
3477  * This handles all auth only except AES_GMAC
3478  */
3479 static __rte_always_inline void *
3480 fill_digest_params(struct rte_crypto_op *cop,
3481 		   struct cpt_sess_misc *sess,
3482 		   void **mdata_ptr,
3483 		   int *op_ret)
3484 {
3485 	uint32_t space = 0;
3486 	struct rte_crypto_sym_op *sym_op = cop->sym;
3487 	void *mdata;
3488 	phys_addr_t mphys;
3489 	uint64_t *op;
3490 	uint32_t auth_range_off;
3491 	uint32_t flags = 0;
3492 	uint64_t d_offs = 0, d_lens;
3493 	void *prep_req = NULL;
3494 	struct rte_mbuf *m_src, *m_dst;
3495 	uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3496 	uint8_t zsk_flag = sess->zsk_flag;
3497 	uint16_t mac_len = sess->mac_len;
3498 	fc_params_t params;
3499 	char src[SRC_IOV_SIZE];
3500 	uint8_t iv_buf[16];
3501 	memset(&params, 0, sizeof(fc_params_t));
3502 	struct cptvf_meta_info *cpt_m_info =
3503 				(struct cptvf_meta_info *)(*mdata_ptr);
3504 
3505 	m_src = sym_op->m_src;
3506 
3507 	/* For just digest lets force mempool alloc */
3508 	mdata = alloc_op_meta(NULL, &params.meta_buf, cpt_m_info->cptvf_op_mlen,
3509 			      cpt_m_info->cptvf_meta_pool);
3510 	if (mdata == NULL) {
3511 		CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3512 		*op_ret = -ENOMEM;
3513 		return NULL;
3514 	}
3515 
3516 	mphys = params.meta_buf.dma_addr;
3517 
3518 	op = mdata;
3519 	op[0] = (uintptr_t)mdata;
3520 	op[1] = (uintptr_t)cop;
3521 	op[2] = op[3] = 0; /* Used to indicate auth verify */
3522 	space += 4 * sizeof(uint64_t);
3523 
3524 	auth_range_off = sym_op->auth.data.offset;
3525 
3526 	flags = VALID_MAC_BUF;
3527 	params.src_iov = (void *)src;
3528 	if (unlikely(zsk_flag)) {
3529 		/*
3530 		 * Since for Zuc, Kasumi, Snow3g offsets are in bits
3531 		 * we will send pass through even for auth only case,
3532 		 * let MC handle it
3533 		 */
3534 		d_offs = auth_range_off;
3535 		auth_range_off = 0;
3536 		params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3537 					uint8_t *, sess->auth_iv_offset);
3538 		if (zsk_flag == K_F9) {
3539 			uint32_t length_in_bits, num_bytes;
3540 			uint8_t *src, direction = 0;
3541 			uint32_t counter_num_bytes;
3542 
3543 			memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3544 							uint8_t *), 8);
3545 			/*
3546 			 * This is kasumi f9, take direction from
3547 			 * source buffer
3548 			 */
3549 			length_in_bits = cop->sym->auth.data.length;
3550 			num_bytes = (length_in_bits >> 3);
3551 			counter_num_bytes = num_bytes;
3552 			src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3553 			find_kasumif9_direction_and_length(src,
3554 						counter_num_bytes,
3555 						&length_in_bits,
3556 						&direction);
3557 			length_in_bits -= 64;
3558 			cop->sym->auth.data.offset += 64;
3559 			d_offs = cop->sym->auth.data.offset;
3560 			auth_range_off = d_offs / 8;
3561 			cop->sym->auth.data.length = length_in_bits;
3562 
3563 			/* Store it at end of auth iv */
3564 			iv_buf[8] = direction;
3565 			params.auth_iv_buf = iv_buf;
3566 		}
3567 	}
3568 
3569 	d_lens = sym_op->auth.data.length;
3570 
3571 	params.ctx_buf.vaddr = SESS_PRIV(sess);
3572 	params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3573 
3574 	if (auth_op == CPT_OP_AUTH_GENERATE) {
3575 		if (sym_op->auth.digest.data) {
3576 			/*
3577 			 * Digest to be generated
3578 			 * in separate buffer
3579 			 */
3580 			params.mac_buf.size =
3581 				sess->mac_len;
3582 			params.mac_buf.vaddr =
3583 				sym_op->auth.digest.data;
3584 			params.mac_buf.dma_addr =
3585 				sym_op->auth.digest.phys_addr;
3586 		} else {
3587 			uint32_t off = sym_op->auth.data.offset +
3588 				sym_op->auth.data.length;
3589 			int32_t dlen, space;
3590 
3591 			m_dst = sym_op->m_dst ?
3592 				sym_op->m_dst : sym_op->m_src;
3593 			dlen = rte_pktmbuf_pkt_len(m_dst);
3594 
3595 			space = off + mac_len - dlen;
3596 			if (space > 0)
3597 				if (!rte_pktmbuf_append(m_dst, space)) {
3598 					CPT_LOG_DP_ERR("Failed to extend "
3599 						       "mbuf by %uB", space);
3600 					goto err;
3601 				}
3602 
3603 			params.mac_buf.vaddr =
3604 				rte_pktmbuf_mtod_offset(m_dst, void *, off);
3605 			params.mac_buf.dma_addr =
3606 				rte_pktmbuf_mtophys_offset(m_dst, off);
3607 			params.mac_buf.size = mac_len;
3608 		}
3609 	} else {
3610 		/* Need space for storing generated mac */
3611 		params.mac_buf.vaddr = (uint8_t *)mdata + space;
3612 		params.mac_buf.dma_addr = mphys + space;
3613 		params.mac_buf.size = mac_len;
3614 		space += RTE_ALIGN_CEIL(mac_len, 8);
3615 		op[2] = (uintptr_t)params.mac_buf.vaddr;
3616 		op[3] = mac_len;
3617 	}
3618 
3619 	params.meta_buf.vaddr = (uint8_t *)mdata + space;
3620 	params.meta_buf.dma_addr = mphys + space;
3621 	params.meta_buf.size -= space;
3622 
3623 	/* Out of place processing */
3624 	params.src_iov = (void *)src;
3625 
3626 	/*Store SG I/O in the api for reuse */
3627 	if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3628 		CPT_LOG_DP_ERR("Prepare src iov failed");
3629 		*op_ret = -1;
3630 		goto err;
3631 	}
3632 
3633 	prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3634 					&params, op, op_ret);
3635 	*mdata_ptr = mdata;
3636 	return prep_req;
3637 err:
3638 	if (unlikely(!prep_req))
3639 		free_op_meta(mdata, cpt_m_info->cptvf_meta_pool);
3640 	return NULL;
3641 }
3642 
3643 #endif /*_CPT_UCODE_H_ */
3644