1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <ctype.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <stdarg.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 #include <sys/types.h> 13 #include <sys/stat.h> 14 #include <fcntl.h> 15 #include <errno.h> 16 #include <dirent.h> 17 #include <limits.h> 18 #include <sys/queue.h> 19 #include <sys/mman.h> 20 #include <sys/ioctl.h> 21 #include <sys/pciio.h> 22 #include <dev/pci/pcireg.h> 23 24 #if defined(RTE_ARCH_X86) 25 #include <machine/cpufunc.h> 26 #endif 27 28 #include <rte_interrupts.h> 29 #include <rte_log.h> 30 #include <rte_pci.h> 31 #include <rte_bus_pci.h> 32 #include <rte_common.h> 33 #include <rte_launch.h> 34 #include <rte_memory.h> 35 #include <rte_eal.h> 36 #include <rte_eal_memconfig.h> 37 #include <rte_per_lcore.h> 38 #include <rte_lcore.h> 39 #include <rte_malloc.h> 40 #include <rte_string_fns.h> 41 #include <rte_debug.h> 42 #include <rte_devargs.h> 43 44 #include "eal_filesystem.h" 45 #include "private.h" 46 47 /** 48 * @file 49 * PCI probing under BSD 50 * 51 * This code is used to simulate a PCI probe by parsing information in 52 * sysfs. Moreover, when a registered driver matches a device, the 53 * kernel driver currently using it is unloaded and replaced by 54 * igb_uio module, which is a very minimal userland driver for Intel 55 * network card, only providing access to PCI BAR to applications, and 56 * enabling bus master. 57 */ 58 59 extern struct rte_pci_bus rte_pci_bus; 60 61 /* Map pci device */ 62 int 63 rte_pci_map_device(struct rte_pci_device *dev) 64 { 65 int ret = -1; 66 67 /* try mapping the NIC resources */ 68 switch (dev->kdrv) { 69 case RTE_KDRV_NIC_UIO: 70 /* map resources for devices that use uio */ 71 ret = pci_uio_map_resource(dev); 72 break; 73 default: 74 RTE_LOG(DEBUG, EAL, 75 " Not managed by a supported kernel driver, skipped\n"); 76 ret = 1; 77 break; 78 } 79 80 return ret; 81 } 82 83 /* Unmap pci device */ 84 void 85 rte_pci_unmap_device(struct rte_pci_device *dev) 86 { 87 /* try unmapping the NIC resources */ 88 switch (dev->kdrv) { 89 case RTE_KDRV_NIC_UIO: 90 /* unmap resources for devices that use uio */ 91 pci_uio_unmap_resource(dev); 92 break; 93 default: 94 RTE_LOG(DEBUG, EAL, 95 " Not managed by a supported kernel driver, skipped\n"); 96 break; 97 } 98 } 99 100 void 101 pci_uio_free_resource(struct rte_pci_device *dev, 102 struct mapped_pci_resource *uio_res) 103 { 104 rte_free(uio_res); 105 106 if (dev->intr_handle.fd) { 107 close(dev->intr_handle.fd); 108 dev->intr_handle.fd = -1; 109 dev->intr_handle.type = RTE_INTR_HANDLE_UNKNOWN; 110 } 111 } 112 113 int 114 pci_uio_alloc_resource(struct rte_pci_device *dev, 115 struct mapped_pci_resource **uio_res) 116 { 117 char devname[PATH_MAX]; /* contains the /dev/uioX */ 118 struct rte_pci_addr *loc; 119 120 loc = &dev->addr; 121 122 snprintf(devname, sizeof(devname), "/dev/uio@pci:%u:%u:%u", 123 dev->addr.bus, dev->addr.devid, dev->addr.function); 124 125 if (access(devname, O_RDWR) < 0) { 126 RTE_LOG(WARNING, EAL, " "PCI_PRI_FMT" not managed by UIO driver, " 127 "skipping\n", loc->domain, loc->bus, loc->devid, loc->function); 128 return 1; 129 } 130 131 /* save fd if in primary process */ 132 dev->intr_handle.fd = open(devname, O_RDWR); 133 if (dev->intr_handle.fd < 0) { 134 RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", 135 devname, strerror(errno)); 136 goto error; 137 } 138 dev->intr_handle.type = RTE_INTR_HANDLE_UIO; 139 140 /* allocate the mapping details for secondary processes*/ 141 *uio_res = rte_zmalloc("UIO_RES", sizeof(**uio_res), 0); 142 if (*uio_res == NULL) { 143 RTE_LOG(ERR, EAL, 144 "%s(): cannot store uio mmap details\n", __func__); 145 goto error; 146 } 147 148 snprintf((*uio_res)->path, sizeof((*uio_res)->path), "%s", devname); 149 memcpy(&(*uio_res)->pci_addr, &dev->addr, sizeof((*uio_res)->pci_addr)); 150 151 return 0; 152 153 error: 154 pci_uio_free_resource(dev, *uio_res); 155 return -1; 156 } 157 158 int 159 pci_uio_map_resource_by_index(struct rte_pci_device *dev, int res_idx, 160 struct mapped_pci_resource *uio_res, int map_idx) 161 { 162 int fd; 163 char *devname; 164 void *mapaddr; 165 uint64_t offset; 166 uint64_t pagesz; 167 struct pci_map *maps; 168 169 maps = uio_res->maps; 170 devname = uio_res->path; 171 pagesz = sysconf(_SC_PAGESIZE); 172 173 /* allocate memory to keep path */ 174 maps[map_idx].path = rte_malloc(NULL, strlen(devname) + 1, 0); 175 if (maps[map_idx].path == NULL) { 176 RTE_LOG(ERR, EAL, "Cannot allocate memory for path: %s\n", 177 strerror(errno)); 178 return -1; 179 } 180 181 /* 182 * open resource file, to mmap it 183 */ 184 fd = open(devname, O_RDWR); 185 if (fd < 0) { 186 RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", 187 devname, strerror(errno)); 188 goto error; 189 } 190 191 /* if matching map is found, then use it */ 192 offset = res_idx * pagesz; 193 mapaddr = pci_map_resource(NULL, fd, (off_t)offset, 194 (size_t)dev->mem_resource[res_idx].len, 0); 195 close(fd); 196 if (mapaddr == MAP_FAILED) 197 goto error; 198 199 maps[map_idx].phaddr = dev->mem_resource[res_idx].phys_addr; 200 maps[map_idx].size = dev->mem_resource[res_idx].len; 201 maps[map_idx].addr = mapaddr; 202 maps[map_idx].offset = offset; 203 strcpy(maps[map_idx].path, devname); 204 dev->mem_resource[res_idx].addr = mapaddr; 205 206 return 0; 207 208 error: 209 rte_free(maps[map_idx].path); 210 return -1; 211 } 212 213 static int 214 pci_scan_one(int dev_pci_fd, struct pci_conf *conf) 215 { 216 struct rte_pci_device *dev; 217 struct pci_bar_io bar; 218 unsigned i, max; 219 220 dev = malloc(sizeof(*dev)); 221 if (dev == NULL) { 222 return -1; 223 } 224 225 memset(dev, 0, sizeof(*dev)); 226 dev->device.bus = &rte_pci_bus.bus; 227 228 dev->addr.domain = conf->pc_sel.pc_domain; 229 dev->addr.bus = conf->pc_sel.pc_bus; 230 dev->addr.devid = conf->pc_sel.pc_dev; 231 dev->addr.function = conf->pc_sel.pc_func; 232 233 /* get vendor id */ 234 dev->id.vendor_id = conf->pc_vendor; 235 236 /* get device id */ 237 dev->id.device_id = conf->pc_device; 238 239 /* get subsystem_vendor id */ 240 dev->id.subsystem_vendor_id = conf->pc_subvendor; 241 242 /* get subsystem_device id */ 243 dev->id.subsystem_device_id = conf->pc_subdevice; 244 245 /* get class id */ 246 dev->id.class_id = (conf->pc_class << 16) | 247 (conf->pc_subclass << 8) | 248 (conf->pc_progif); 249 250 /* TODO: get max_vfs */ 251 dev->max_vfs = 0; 252 253 /* FreeBSD has no NUMA support (yet) */ 254 dev->device.numa_node = 0; 255 256 pci_name_set(dev); 257 258 /* FreeBSD has only one pass through driver */ 259 dev->kdrv = RTE_KDRV_NIC_UIO; 260 261 /* parse resources */ 262 switch (conf->pc_hdr & PCIM_HDRTYPE) { 263 case PCIM_HDRTYPE_NORMAL: 264 max = PCIR_MAX_BAR_0; 265 break; 266 case PCIM_HDRTYPE_BRIDGE: 267 max = PCIR_MAX_BAR_1; 268 break; 269 case PCIM_HDRTYPE_CARDBUS: 270 max = PCIR_MAX_BAR_2; 271 break; 272 default: 273 goto skipdev; 274 } 275 276 for (i = 0; i <= max; i++) { 277 bar.pbi_sel = conf->pc_sel; 278 bar.pbi_reg = PCIR_BAR(i); 279 if (ioctl(dev_pci_fd, PCIOCGETBAR, &bar) < 0) 280 continue; 281 282 dev->mem_resource[i].len = bar.pbi_length; 283 if (PCI_BAR_IO(bar.pbi_base)) { 284 dev->mem_resource[i].addr = (void *)(bar.pbi_base & ~((uint64_t)0xf)); 285 continue; 286 } 287 dev->mem_resource[i].phys_addr = bar.pbi_base & ~((uint64_t)0xf); 288 } 289 290 /* device is valid, add in list (sorted) */ 291 if (TAILQ_EMPTY(&rte_pci_bus.device_list)) { 292 rte_pci_add_device(dev); 293 } 294 else { 295 struct rte_pci_device *dev2 = NULL; 296 int ret; 297 298 TAILQ_FOREACH(dev2, &rte_pci_bus.device_list, next) { 299 ret = rte_pci_addr_cmp(&dev->addr, &dev2->addr); 300 if (ret > 0) 301 continue; 302 else if (ret < 0) { 303 rte_pci_insert_device(dev2, dev); 304 } else { /* already registered */ 305 dev2->kdrv = dev->kdrv; 306 dev2->max_vfs = dev->max_vfs; 307 pci_name_set(dev2); 308 memmove(dev2->mem_resource, 309 dev->mem_resource, 310 sizeof(dev->mem_resource)); 311 free(dev); 312 } 313 return 0; 314 } 315 rte_pci_add_device(dev); 316 } 317 318 return 0; 319 320 skipdev: 321 free(dev); 322 return 0; 323 } 324 325 /* 326 * Scan the content of the PCI bus, and add the devices in the devices 327 * list. Call pci_scan_one() for each pci entry found. 328 */ 329 int 330 rte_pci_scan(void) 331 { 332 int fd; 333 unsigned dev_count = 0; 334 struct pci_conf matches[16]; 335 struct pci_conf_io conf_io = { 336 .pat_buf_len = 0, 337 .num_patterns = 0, 338 .patterns = NULL, 339 .match_buf_len = sizeof(matches), 340 .matches = &matches[0], 341 }; 342 343 /* for debug purposes, PCI can be disabled */ 344 if (!rte_eal_has_pci()) 345 return 0; 346 347 fd = open("/dev/pci", O_RDONLY); 348 if (fd < 0) { 349 RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__); 350 goto error; 351 } 352 353 do { 354 unsigned i; 355 if (ioctl(fd, PCIOCGETCONF, &conf_io) < 0) { 356 RTE_LOG(ERR, EAL, "%s(): error with ioctl on /dev/pci: %s\n", 357 __func__, strerror(errno)); 358 goto error; 359 } 360 361 for (i = 0; i < conf_io.num_matches; i++) 362 if (pci_scan_one(fd, &matches[i]) < 0) 363 goto error; 364 365 dev_count += conf_io.num_matches; 366 } while(conf_io.status == PCI_GETCONF_MORE_DEVS); 367 368 close(fd); 369 370 RTE_LOG(DEBUG, EAL, "PCI scan found %u devices\n", dev_count); 371 return 0; 372 373 error: 374 if (fd >= 0) 375 close(fd); 376 return -1; 377 } 378 379 /* 380 * Get iommu class of PCI devices on the bus. 381 */ 382 enum rte_iova_mode 383 rte_pci_get_iommu_class(void) 384 { 385 /* Supports only RTE_KDRV_NIC_UIO */ 386 return RTE_IOVA_PA; 387 } 388 389 int 390 pci_update_device(const struct rte_pci_addr *addr) 391 { 392 int fd; 393 struct pci_conf matches[2]; 394 struct pci_match_conf match = { 395 .pc_sel = { 396 .pc_domain = addr->domain, 397 .pc_bus = addr->bus, 398 .pc_dev = addr->devid, 399 .pc_func = addr->function, 400 }, 401 }; 402 struct pci_conf_io conf_io = { 403 .pat_buf_len = 0, 404 .num_patterns = 1, 405 .patterns = &match, 406 .match_buf_len = sizeof(matches), 407 .matches = &matches[0], 408 }; 409 410 fd = open("/dev/pci", O_RDONLY); 411 if (fd < 0) { 412 RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__); 413 goto error; 414 } 415 416 if (ioctl(fd, PCIOCGETCONF, &conf_io) < 0) { 417 RTE_LOG(ERR, EAL, "%s(): error with ioctl on /dev/pci: %s\n", 418 __func__, strerror(errno)); 419 goto error; 420 } 421 422 if (conf_io.num_matches != 1) 423 goto error; 424 425 if (pci_scan_one(fd, &matches[0]) < 0) 426 goto error; 427 428 close(fd); 429 430 return 0; 431 432 error: 433 if (fd >= 0) 434 close(fd); 435 return -1; 436 } 437 438 /* Read PCI config space. */ 439 int rte_pci_read_config(const struct rte_pci_device *dev, 440 void *buf, size_t len, off_t offset) 441 { 442 int fd = -1; 443 int size; 444 struct pci_io pi = { 445 .pi_sel = { 446 .pc_domain = dev->addr.domain, 447 .pc_bus = dev->addr.bus, 448 .pc_dev = dev->addr.devid, 449 .pc_func = dev->addr.function, 450 }, 451 .pi_reg = offset, 452 }; 453 454 fd = open("/dev/pci", O_RDWR); 455 if (fd < 0) { 456 RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__); 457 goto error; 458 } 459 460 while (len > 0) { 461 size = (len >= 4) ? 4 : ((len >= 2) ? 2 : 1); 462 pi.pi_width = size; 463 464 if (ioctl(fd, PCIOCREAD, &pi) < 0) 465 goto error; 466 memcpy(buf, &pi.pi_data, size); 467 468 buf = (char *)buf + size; 469 pi.pi_reg += size; 470 len -= size; 471 } 472 close(fd); 473 474 return 0; 475 476 error: 477 if (fd >= 0) 478 close(fd); 479 return -1; 480 } 481 482 /* Write PCI config space. */ 483 int rte_pci_write_config(const struct rte_pci_device *dev, 484 const void *buf, size_t len, off_t offset) 485 { 486 int fd = -1; 487 488 struct pci_io pi = { 489 .pi_sel = { 490 .pc_domain = dev->addr.domain, 491 .pc_bus = dev->addr.bus, 492 .pc_dev = dev->addr.devid, 493 .pc_func = dev->addr.function, 494 }, 495 .pi_reg = offset, 496 .pi_data = *(const uint32_t *)buf, 497 .pi_width = len, 498 }; 499 500 if (len == 3 || len > sizeof(pi.pi_data)) { 501 RTE_LOG(ERR, EAL, "%s(): invalid pci read length\n", __func__); 502 goto error; 503 } 504 505 memcpy(&pi.pi_data, buf, len); 506 507 fd = open("/dev/pci", O_RDWR); 508 if (fd < 0) { 509 RTE_LOG(ERR, EAL, "%s(): error opening /dev/pci\n", __func__); 510 goto error; 511 } 512 513 if (ioctl(fd, PCIOCWRITE, &pi) < 0) 514 goto error; 515 516 close(fd); 517 return 0; 518 519 error: 520 if (fd >= 0) 521 close(fd); 522 return -1; 523 } 524 525 int 526 rte_pci_ioport_map(struct rte_pci_device *dev, int bar, 527 struct rte_pci_ioport *p) 528 { 529 int ret; 530 531 switch (dev->kdrv) { 532 #if defined(RTE_ARCH_X86) 533 case RTE_KDRV_NIC_UIO: 534 if ((uintptr_t) dev->mem_resource[bar].addr <= UINT16_MAX) { 535 p->base = (uintptr_t)dev->mem_resource[bar].addr; 536 ret = 0; 537 } else 538 ret = -1; 539 break; 540 #endif 541 default: 542 ret = -1; 543 break; 544 } 545 546 if (!ret) 547 p->dev = dev; 548 549 return ret; 550 } 551 552 static void 553 pci_uio_ioport_read(struct rte_pci_ioport *p, 554 void *data, size_t len, off_t offset) 555 { 556 #if defined(RTE_ARCH_X86) 557 uint8_t *d; 558 int size; 559 unsigned short reg = p->base + offset; 560 561 for (d = data; len > 0; d += size, reg += size, len -= size) { 562 if (len >= 4) { 563 size = 4; 564 *(uint32_t *)d = inl(reg); 565 } else if (len >= 2) { 566 size = 2; 567 *(uint16_t *)d = inw(reg); 568 } else { 569 size = 1; 570 *d = inb(reg); 571 } 572 } 573 #else 574 RTE_SET_USED(p); 575 RTE_SET_USED(data); 576 RTE_SET_USED(len); 577 RTE_SET_USED(offset); 578 #endif 579 } 580 581 void 582 rte_pci_ioport_read(struct rte_pci_ioport *p, 583 void *data, size_t len, off_t offset) 584 { 585 switch (p->dev->kdrv) { 586 case RTE_KDRV_NIC_UIO: 587 pci_uio_ioport_read(p, data, len, offset); 588 break; 589 default: 590 break; 591 } 592 } 593 594 static void 595 pci_uio_ioport_write(struct rte_pci_ioport *p, 596 const void *data, size_t len, off_t offset) 597 { 598 #if defined(RTE_ARCH_X86) 599 const uint8_t *s; 600 int size; 601 unsigned short reg = p->base + offset; 602 603 for (s = data; len > 0; s += size, reg += size, len -= size) { 604 if (len >= 4) { 605 size = 4; 606 outl(reg, *(const uint32_t *)s); 607 } else if (len >= 2) { 608 size = 2; 609 outw(reg, *(const uint16_t *)s); 610 } else { 611 size = 1; 612 outb(reg, *s); 613 } 614 } 615 #else 616 RTE_SET_USED(p); 617 RTE_SET_USED(data); 618 RTE_SET_USED(len); 619 RTE_SET_USED(offset); 620 #endif 621 } 622 623 void 624 rte_pci_ioport_write(struct rte_pci_ioport *p, 625 const void *data, size_t len, off_t offset) 626 { 627 switch (p->dev->kdrv) { 628 case RTE_KDRV_NIC_UIO: 629 pci_uio_ioport_write(p, data, len, offset); 630 break; 631 default: 632 break; 633 } 634 } 635 636 int 637 rte_pci_ioport_unmap(struct rte_pci_ioport *p) 638 { 639 int ret; 640 641 switch (p->dev->kdrv) { 642 #if defined(RTE_ARCH_X86) 643 case RTE_KDRV_NIC_UIO: 644 ret = 0; 645 break; 646 #endif 647 default: 648 ret = -1; 649 break; 650 } 651 652 return ret; 653 } 654