1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <string.h> 6 7 #include <rte_common.h> 8 #include <rte_bus_vdev.h> 9 #include <rte_malloc.h> 10 #include <rte_ring.h> 11 #include <rte_kvargs.h> 12 #include <rte_cycles.h> 13 14 #include <rte_bbdev.h> 15 #include <rte_bbdev_pmd.h> 16 17 #include <phy_turbo.h> 18 #include <phy_crc.h> 19 #include <phy_rate_match.h> 20 #include <divide.h> 21 22 #define DRIVER_NAME baseband_turbo_sw 23 24 /* Turbo SW PMD logging ID */ 25 static int bbdev_turbo_sw_logtype; 26 27 /* Helper macro for logging */ 28 #define rte_bbdev_log(level, fmt, ...) \ 29 rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \ 30 ##__VA_ARGS__) 31 32 #define rte_bbdev_log_debug(fmt, ...) \ 33 rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \ 34 ##__VA_ARGS__) 35 36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48) 37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6) 38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48) 39 40 /* private data structure */ 41 struct bbdev_private { 42 unsigned int max_nb_queues; /**< Max number of queues */ 43 }; 44 45 /* Initialisation params structure that can be used by Turbo SW driver */ 46 struct turbo_sw_params { 47 int socket_id; /*< Turbo SW device socket */ 48 uint16_t queues_num; /*< Turbo SW device queues number */ 49 }; 50 51 /* Accecptable params for Turbo SW devices */ 52 #define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues" 53 #define TURBO_SW_SOCKET_ID_ARG "socket_id" 54 55 static const char * const turbo_sw_valid_params[] = { 56 TURBO_SW_MAX_NB_QUEUES_ARG, 57 TURBO_SW_SOCKET_ID_ARG 58 }; 59 60 /* queue */ 61 struct turbo_sw_queue { 62 /* Ring for processed (encoded/decoded) operations which are ready to 63 * be dequeued. 64 */ 65 struct rte_ring *processed_pkts; 66 /* Stores input for turbo encoder (used when CRC attachment is 67 * performed 68 */ 69 uint8_t *enc_in; 70 /* Stores output from turbo encoder */ 71 uint8_t *enc_out; 72 /* Alpha gamma buf for bblib_turbo_decoder() function */ 73 int8_t *ag; 74 /* Temp buf for bblib_turbo_decoder() function */ 75 uint16_t *code_block; 76 /* Input buf for bblib_rate_dematching_lte() function */ 77 uint8_t *deint_input; 78 /* Output buf for bblib_rate_dematching_lte() function */ 79 uint8_t *deint_output; 80 /* Output buf for bblib_turbodec_adapter_lte() function */ 81 uint8_t *adapter_output; 82 /* Operation type of this queue */ 83 enum rte_bbdev_op_type type; 84 } __rte_cache_aligned; 85 86 /* Calculate index based on Table 5.1.3-3 from TS34.212 */ 87 static inline int32_t 88 compute_idx(uint16_t k) 89 { 90 int32_t result = 0; 91 92 if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE) 93 return -1; 94 95 if (k > 2048) { 96 if ((k - 2048) % 64 != 0) 97 result = -1; 98 99 result = 124 + (k - 2048) / 64; 100 } else if (k <= 512) { 101 if ((k - 40) % 8 != 0) 102 result = -1; 103 104 result = (k - 40) / 8 + 1; 105 } else if (k <= 1024) { 106 if ((k - 512) % 16 != 0) 107 result = -1; 108 109 result = 60 + (k - 512) / 16; 110 } else { /* 1024 < k <= 2048 */ 111 if ((k - 1024) % 32 != 0) 112 result = -1; 113 114 result = 92 + (k - 1024) / 32; 115 } 116 117 return result; 118 } 119 120 /* Read flag value 0/1 from bitmap */ 121 static inline bool 122 check_bit(uint32_t bitmap, uint32_t bitmask) 123 { 124 return bitmap & bitmask; 125 } 126 127 /* Get device info */ 128 static void 129 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info) 130 { 131 struct bbdev_private *internals = dev->data->dev_private; 132 133 static const struct rte_bbdev_op_cap bbdev_capabilities[] = { 134 { 135 .type = RTE_BBDEV_OP_TURBO_DEC, 136 .cap.turbo_dec = { 137 .capability_flags = 138 RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE | 139 RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN | 140 RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN | 141 RTE_BBDEV_TURBO_CRC_TYPE_24B | 142 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP | 143 RTE_BBDEV_TURBO_EARLY_TERMINATION, 144 .max_llr_modulus = 16, 145 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, 146 .num_buffers_hard_out = 147 RTE_BBDEV_MAX_CODE_BLOCKS, 148 .num_buffers_soft_out = 0, 149 } 150 }, 151 { 152 .type = RTE_BBDEV_OP_TURBO_ENC, 153 .cap.turbo_enc = { 154 .capability_flags = 155 RTE_BBDEV_TURBO_CRC_24B_ATTACH | 156 RTE_BBDEV_TURBO_CRC_24A_ATTACH | 157 RTE_BBDEV_TURBO_RATE_MATCH | 158 RTE_BBDEV_TURBO_RV_INDEX_BYPASS, 159 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, 160 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS, 161 } 162 }, 163 RTE_BBDEV_END_OF_CAPABILITIES_LIST() 164 }; 165 166 static struct rte_bbdev_queue_conf default_queue_conf = { 167 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT, 168 }; 169 170 static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2; 171 172 default_queue_conf.socket = dev->data->socket_id; 173 174 dev_info->driver_name = RTE_STR(DRIVER_NAME); 175 dev_info->max_num_queues = internals->max_nb_queues; 176 dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT; 177 dev_info->hardware_accelerated = false; 178 dev_info->max_dl_queue_priority = 0; 179 dev_info->max_ul_queue_priority = 0; 180 dev_info->default_queue_conf = default_queue_conf; 181 dev_info->capabilities = bbdev_capabilities; 182 dev_info->cpu_flag_reqs = &cpu_flag; 183 dev_info->min_alignment = 64; 184 185 rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id); 186 } 187 188 /* Release queue */ 189 static int 190 q_release(struct rte_bbdev *dev, uint16_t q_id) 191 { 192 struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private; 193 194 if (q != NULL) { 195 rte_ring_free(q->processed_pkts); 196 rte_free(q->enc_out); 197 rte_free(q->enc_in); 198 rte_free(q->ag); 199 rte_free(q->code_block); 200 rte_free(q->deint_input); 201 rte_free(q->deint_output); 202 rte_free(q->adapter_output); 203 rte_free(q); 204 dev->data->queues[q_id].queue_private = NULL; 205 } 206 207 rte_bbdev_log_debug("released device queue %u:%u", 208 dev->data->dev_id, q_id); 209 return 0; 210 } 211 212 /* Setup a queue */ 213 static int 214 q_setup(struct rte_bbdev *dev, uint16_t q_id, 215 const struct rte_bbdev_queue_conf *queue_conf) 216 { 217 int ret; 218 struct turbo_sw_queue *q; 219 char name[RTE_RING_NAMESIZE]; 220 221 /* Allocate the queue data structure. */ 222 q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q), 223 RTE_CACHE_LINE_SIZE, queue_conf->socket); 224 if (q == NULL) { 225 rte_bbdev_log(ERR, "Failed to allocate queue memory"); 226 return -ENOMEM; 227 } 228 229 /* Allocate memory for encoder output. */ 230 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u", 231 dev->data->dev_id, q_id); 232 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 233 rte_bbdev_log(ERR, 234 "Creating queue name for device %u queue %u failed", 235 dev->data->dev_id, q_id); 236 return -ENAMETOOLONG; 237 } 238 q->enc_out = rte_zmalloc_socket(name, 239 ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) * 240 sizeof(*q->enc_out) * 3, 241 RTE_CACHE_LINE_SIZE, queue_conf->socket); 242 if (q->enc_out == NULL) { 243 rte_bbdev_log(ERR, 244 "Failed to allocate queue memory for %s", name); 245 goto free_q; 246 } 247 248 /* Allocate memory for rate matching output. */ 249 ret = snprintf(name, RTE_RING_NAMESIZE, 250 RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id, 251 q_id); 252 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 253 rte_bbdev_log(ERR, 254 "Creating queue name for device %u queue %u failed", 255 dev->data->dev_id, q_id); 256 return -ENAMETOOLONG; 257 } 258 q->enc_in = rte_zmalloc_socket(name, 259 (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in), 260 RTE_CACHE_LINE_SIZE, queue_conf->socket); 261 if (q->enc_in == NULL) { 262 rte_bbdev_log(ERR, 263 "Failed to allocate queue memory for %s", name); 264 goto free_q; 265 } 266 267 /* Allocate memory for Aplha Gamma temp buffer. */ 268 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u", 269 dev->data->dev_id, q_id); 270 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 271 rte_bbdev_log(ERR, 272 "Creating queue name for device %u queue %u failed", 273 dev->data->dev_id, q_id); 274 return -ENAMETOOLONG; 275 } 276 q->ag = rte_zmalloc_socket(name, 277 RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag), 278 RTE_CACHE_LINE_SIZE, queue_conf->socket); 279 if (q->ag == NULL) { 280 rte_bbdev_log(ERR, 281 "Failed to allocate queue memory for %s", name); 282 goto free_q; 283 } 284 285 /* Allocate memory for code block temp buffer. */ 286 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u", 287 dev->data->dev_id, q_id); 288 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 289 rte_bbdev_log(ERR, 290 "Creating queue name for device %u queue %u failed", 291 dev->data->dev_id, q_id); 292 return -ENAMETOOLONG; 293 } 294 q->code_block = rte_zmalloc_socket(name, 295 RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block), 296 RTE_CACHE_LINE_SIZE, queue_conf->socket); 297 if (q->code_block == NULL) { 298 rte_bbdev_log(ERR, 299 "Failed to allocate queue memory for %s", name); 300 goto free_q; 301 } 302 303 /* Allocate memory for Deinterleaver input. */ 304 ret = snprintf(name, RTE_RING_NAMESIZE, 305 RTE_STR(DRIVER_NAME)"_deint_input%u:%u", 306 dev->data->dev_id, q_id); 307 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 308 rte_bbdev_log(ERR, 309 "Creating queue name for device %u queue %u failed", 310 dev->data->dev_id, q_id); 311 return -ENAMETOOLONG; 312 } 313 q->deint_input = rte_zmalloc_socket(name, 314 DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input), 315 RTE_CACHE_LINE_SIZE, queue_conf->socket); 316 if (q->deint_input == NULL) { 317 rte_bbdev_log(ERR, 318 "Failed to allocate queue memory for %s", name); 319 goto free_q; 320 } 321 322 /* Allocate memory for Deinterleaver output. */ 323 ret = snprintf(name, RTE_RING_NAMESIZE, 324 RTE_STR(DRIVER_NAME)"_deint_output%u:%u", 325 dev->data->dev_id, q_id); 326 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 327 rte_bbdev_log(ERR, 328 "Creating queue name for device %u queue %u failed", 329 dev->data->dev_id, q_id); 330 return -ENAMETOOLONG; 331 } 332 q->deint_output = rte_zmalloc_socket(NULL, 333 DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output), 334 RTE_CACHE_LINE_SIZE, queue_conf->socket); 335 if (q->deint_output == NULL) { 336 rte_bbdev_log(ERR, 337 "Failed to allocate queue memory for %s", name); 338 goto free_q; 339 } 340 341 /* Allocate memory for Adapter output. */ 342 ret = snprintf(name, RTE_RING_NAMESIZE, 343 RTE_STR(DRIVER_NAME)"_adapter_output%u:%u", 344 dev->data->dev_id, q_id); 345 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 346 rte_bbdev_log(ERR, 347 "Creating queue name for device %u queue %u failed", 348 dev->data->dev_id, q_id); 349 return -ENAMETOOLONG; 350 } 351 q->adapter_output = rte_zmalloc_socket(NULL, 352 ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output), 353 RTE_CACHE_LINE_SIZE, queue_conf->socket); 354 if (q->adapter_output == NULL) { 355 rte_bbdev_log(ERR, 356 "Failed to allocate queue memory for %s", name); 357 goto free_q; 358 } 359 360 /* Create ring for packets awaiting to be dequeued. */ 361 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u", 362 dev->data->dev_id, q_id); 363 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 364 rte_bbdev_log(ERR, 365 "Creating queue name for device %u queue %u failed", 366 dev->data->dev_id, q_id); 367 return -ENAMETOOLONG; 368 } 369 q->processed_pkts = rte_ring_create(name, queue_conf->queue_size, 370 queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ); 371 if (q->processed_pkts == NULL) { 372 rte_bbdev_log(ERR, "Failed to create ring for %s", name); 373 goto free_q; 374 } 375 376 q->type = queue_conf->op_type; 377 378 dev->data->queues[q_id].queue_private = q; 379 rte_bbdev_log_debug("setup device queue %s", name); 380 return 0; 381 382 free_q: 383 rte_ring_free(q->processed_pkts); 384 rte_free(q->enc_out); 385 rte_free(q->enc_in); 386 rte_free(q->ag); 387 rte_free(q->code_block); 388 rte_free(q->deint_input); 389 rte_free(q->deint_output); 390 rte_free(q->adapter_output); 391 rte_free(q); 392 return -EFAULT; 393 } 394 395 static const struct rte_bbdev_ops pmd_ops = { 396 .info_get = info_get, 397 .queue_setup = q_setup, 398 .queue_release = q_release 399 }; 400 401 /* Checks if the encoder input buffer is correct. 402 * Returns 0 if it's valid, -1 otherwise. 403 */ 404 static inline int 405 is_enc_input_valid(const uint16_t k, const int32_t k_idx, 406 const uint16_t in_length) 407 { 408 if (k_idx < 0) { 409 rte_bbdev_log(ERR, "K Index is invalid"); 410 return -1; 411 } 412 413 if (in_length - (k >> 3) < 0) { 414 rte_bbdev_log(ERR, 415 "Mismatch between input length (%u bytes) and K (%u bits)", 416 in_length, k); 417 return -1; 418 } 419 420 if (k > RTE_BBDEV_MAX_CB_SIZE) { 421 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d", 422 k, RTE_BBDEV_MAX_CB_SIZE); 423 return -1; 424 } 425 426 return 0; 427 } 428 429 /* Checks if the decoder input buffer is correct. 430 * Returns 0 if it's valid, -1 otherwise. 431 */ 432 static inline int 433 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length) 434 { 435 if (k_idx < 0) { 436 rte_bbdev_log(ERR, "K index is invalid"); 437 return -1; 438 } 439 440 if (in_length - kw < 0) { 441 rte_bbdev_log(ERR, 442 "Mismatch between input length (%u) and kw (%u)", 443 in_length, kw); 444 return -1; 445 } 446 447 if (kw > RTE_BBDEV_MAX_KW) { 448 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d", 449 kw, RTE_BBDEV_MAX_KW); 450 return -1; 451 } 452 453 return 0; 454 } 455 456 static inline void 457 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 458 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb, 459 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out, 460 uint16_t in_offset, uint16_t out_offset, uint16_t total_left, 461 struct rte_bbdev_stats *q_stats) 462 { 463 int ret; 464 int16_t k_idx; 465 uint16_t m; 466 uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out; 467 uint64_t first_3_bytes = 0; 468 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; 469 struct bblib_crc_request crc_req; 470 struct bblib_crc_response crc_resp; 471 struct bblib_turbo_encoder_request turbo_req; 472 struct bblib_turbo_encoder_response turbo_resp; 473 struct bblib_rate_match_dl_request rm_req; 474 struct bblib_rate_match_dl_response rm_resp; 475 #ifdef RTE_BBDEV_OFFLOAD_COST 476 uint64_t start_time; 477 #else 478 RTE_SET_USED(q_stats); 479 #endif 480 481 k_idx = compute_idx(k); 482 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 483 484 /* CRC24A (for TB) */ 485 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) && 486 (enc->code_block_mode == 1)) { 487 ret = is_enc_input_valid(k - 24, k_idx, total_left); 488 if (ret != 0) { 489 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 490 return; 491 } 492 crc_req.data = in; 493 crc_req.len = (k - 24) >> 3; 494 /* Check if there is a room for CRC bits. If not use 495 * the temporary buffer. 496 */ 497 if (rte_pktmbuf_append(m_in, 3) == NULL) { 498 rte_memcpy(q->enc_in, in, (k - 24) >> 3); 499 in = q->enc_in; 500 } else { 501 /* Store 3 first bytes of next CB as they will be 502 * overwritten by CRC bytes. If it is the last CB then 503 * there is no point to store 3 next bytes and this 504 * if..else branch will be omitted. 505 */ 506 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]); 507 } 508 509 crc_resp.data = in; 510 #ifdef RTE_BBDEV_OFFLOAD_COST 511 start_time = rte_rdtsc_precise(); 512 #endif 513 bblib_lte_crc24a_gen(&crc_req, &crc_resp); 514 #ifdef RTE_BBDEV_OFFLOAD_COST 515 q_stats->offload_time += rte_rdtsc_precise() - start_time; 516 #endif 517 } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) { 518 /* CRC24B */ 519 ret = is_enc_input_valid(k - 24, k_idx, total_left); 520 if (ret != 0) { 521 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 522 return; 523 } 524 crc_req.data = in; 525 crc_req.len = (k - 24) >> 3; 526 /* Check if there is a room for CRC bits. If this is the last 527 * CB in TB. If not use temporary buffer. 528 */ 529 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) { 530 rte_memcpy(q->enc_in, in, (k - 24) >> 3); 531 in = q->enc_in; 532 } else if (c - r > 1) { 533 /* Store 3 first bytes of next CB as they will be 534 * overwritten by CRC bytes. If it is the last CB then 535 * there is no point to store 3 next bytes and this 536 * if..else branch will be omitted. 537 */ 538 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]); 539 } 540 541 crc_resp.data = in; 542 #ifdef RTE_BBDEV_OFFLOAD_COST 543 start_time = rte_rdtsc_precise(); 544 #endif 545 bblib_lte_crc24b_gen(&crc_req, &crc_resp); 546 #ifdef RTE_BBDEV_OFFLOAD_COST 547 q_stats->offload_time += rte_rdtsc_precise() - start_time; 548 #endif 549 } else { 550 ret = is_enc_input_valid(k, k_idx, total_left); 551 if (ret != 0) { 552 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 553 return; 554 } 555 } 556 557 /* Turbo encoder */ 558 559 /* Each bit layer output from turbo encoder is (k+4) bits long, i.e. 560 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up. 561 * So dst_data's length should be 3*(k/8) + 3 bytes. 562 * In Rate-matching bypass case outputs pointers passed to encoder 563 * (out0, out1 and out2) can directly point to addresses of output from 564 * turbo_enc entity. 565 */ 566 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { 567 out0 = q->enc_out; 568 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1); 569 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1); 570 } else { 571 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2); 572 if (out0 == NULL) { 573 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 574 rte_bbdev_log(ERR, 575 "Too little space in output mbuf"); 576 return; 577 } 578 enc->output.length += (k >> 3) * 3 + 2; 579 /* rte_bbdev_op_data.offset can be different than the 580 * offset of the appended bytes 581 */ 582 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 583 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, 584 out_offset + (k >> 3) + 1); 585 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, 586 out_offset + 2 * ((k >> 3) + 1)); 587 } 588 589 turbo_req.case_id = k_idx; 590 turbo_req.input_win = in; 591 turbo_req.length = k >> 3; 592 turbo_resp.output_win_0 = out0; 593 turbo_resp.output_win_1 = out1; 594 turbo_resp.output_win_2 = out2; 595 596 #ifdef RTE_BBDEV_OFFLOAD_COST 597 start_time = rte_rdtsc_precise(); 598 #endif 599 600 if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) { 601 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 602 rte_bbdev_log(ERR, "Turbo Encoder failed"); 603 return; 604 } 605 606 #ifdef RTE_BBDEV_OFFLOAD_COST 607 q_stats->offload_time += rte_rdtsc_precise() - start_time; 608 #endif 609 610 /* Restore 3 first bytes of next CB if they were overwritten by CRC*/ 611 if (first_3_bytes != 0) 612 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes; 613 614 /* Rate-matching */ 615 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { 616 uint8_t mask_id; 617 /* Integer round up division by 8 */ 618 uint16_t out_len = (e + 7) >> 3; 619 /* The mask array is indexed using E%8. E is an even number so 620 * there are only 4 possible values. 621 */ 622 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC}; 623 624 /* get output data starting address */ 625 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len); 626 if (rm_out == NULL) { 627 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 628 rte_bbdev_log(ERR, 629 "Too little space in output mbuf"); 630 return; 631 } 632 /* rte_bbdev_op_data.offset can be different than the offset 633 * of the appended bytes 634 */ 635 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 636 637 /* index of current code block */ 638 rm_req.r = r; 639 /* total number of code block */ 640 rm_req.C = c; 641 /* For DL - 1, UL - 0 */ 642 rm_req.direction = 1; 643 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO 644 * and MDL_HARQ are used for Ncb calculation. As Ncb is already 645 * known we can adjust those parameters 646 */ 647 rm_req.Nsoft = ncb * rm_req.C; 648 rm_req.KMIMO = 1; 649 rm_req.MDL_HARQ = 1; 650 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G 651 * are used for E calculation. As E is already known we can 652 * adjust those parameters 653 */ 654 rm_req.NL = e; 655 rm_req.Qm = 1; 656 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C; 657 658 rm_req.rvidx = enc->rv_index; 659 rm_req.Kidx = k_idx - 1; 660 rm_req.nLen = k + 4; 661 rm_req.tin0 = out0; 662 rm_req.tin1 = out1; 663 rm_req.tin2 = out2; 664 rm_resp.output = rm_out; 665 rm_resp.OutputLen = out_len; 666 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS) 667 rm_req.bypass_rvidx = 1; 668 else 669 rm_req.bypass_rvidx = 0; 670 671 #ifdef RTE_BBDEV_OFFLOAD_COST 672 start_time = rte_rdtsc_precise(); 673 #endif 674 675 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) { 676 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 677 rte_bbdev_log(ERR, "Rate matching failed"); 678 return; 679 } 680 681 /* SW fills an entire last byte even if E%8 != 0. Clear the 682 * superfluous data bits for consistency with HW device. 683 */ 684 mask_id = (e & 7) >> 1; 685 rm_out[out_len - 1] &= mask_out[mask_id]; 686 687 #ifdef RTE_BBDEV_OFFLOAD_COST 688 q_stats->offload_time += rte_rdtsc_precise() - start_time; 689 #endif 690 691 enc->output.length += rm_resp.OutputLen; 692 } else { 693 /* Rate matching is bypassed */ 694 695 /* Completing last byte of out0 (where 4 tail bits are stored) 696 * by moving first 4 bits from out1 697 */ 698 tmp_out = (uint8_t *) --out1; 699 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4); 700 tmp_out++; 701 /* Shifting out1 data by 4 bits to the left */ 702 for (m = 0; m < k >> 3; ++m) { 703 uint8_t *first = tmp_out; 704 uint8_t second = *(tmp_out + 1); 705 *first = (*first << 4) | ((second & 0xF0) >> 4); 706 tmp_out++; 707 } 708 /* Shifting out2 data by 8 bits to the left */ 709 for (m = 0; m < (k >> 3) + 1; ++m) { 710 *tmp_out = *(tmp_out + 1); 711 tmp_out++; 712 } 713 *tmp_out = 0; 714 } 715 } 716 717 static inline void 718 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 719 struct rte_bbdev_stats *queue_stats) 720 { 721 uint8_t c, r, crc24_bits = 0; 722 uint16_t k, ncb; 723 uint32_t e; 724 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; 725 uint16_t in_offset = enc->input.offset; 726 uint16_t out_offset = enc->output.offset; 727 struct rte_mbuf *m_in = enc->input.data; 728 struct rte_mbuf *m_out = enc->output.data; 729 uint16_t total_left = enc->input.length; 730 731 /* Clear op status */ 732 op->status = 0; 733 734 if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) { 735 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d", 736 total_left, RTE_BBDEV_MAX_TB_SIZE); 737 op->status = 1 << RTE_BBDEV_DATA_ERROR; 738 return; 739 } 740 741 if (m_in == NULL || m_out == NULL) { 742 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 743 op->status = 1 << RTE_BBDEV_DATA_ERROR; 744 return; 745 } 746 747 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) || 748 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH)) 749 crc24_bits = 24; 750 751 if (enc->code_block_mode == 0) { /* For Transport Block mode */ 752 c = enc->tb_params.c; 753 r = enc->tb_params.r; 754 } else {/* For Code Block mode */ 755 c = 1; 756 r = 0; 757 } 758 759 while (total_left > 0 && r < c) { 760 if (enc->code_block_mode == 0) { 761 k = (r < enc->tb_params.c_neg) ? 762 enc->tb_params.k_neg : enc->tb_params.k_pos; 763 ncb = (r < enc->tb_params.c_neg) ? 764 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos; 765 e = (r < enc->tb_params.cab) ? 766 enc->tb_params.ea : enc->tb_params.eb; 767 } else { 768 k = enc->cb_params.k; 769 ncb = enc->cb_params.ncb; 770 e = enc->cb_params.e; 771 } 772 773 process_enc_cb(q, op, r, c, k, ncb, e, m_in, 774 m_out, in_offset, out_offset, total_left, 775 queue_stats); 776 /* Update total_left */ 777 total_left -= (k - crc24_bits) >> 3; 778 /* Update offsets for next CBs (if exist) */ 779 in_offset += (k - crc24_bits) >> 3; 780 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) 781 out_offset += e >> 3; 782 else 783 out_offset += (k >> 3) * 3 + 2; 784 r++; 785 } 786 787 /* check if all input data was processed */ 788 if (total_left != 0) { 789 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 790 rte_bbdev_log(ERR, 791 "Mismatch between mbuf length and included CBs sizes"); 792 } 793 } 794 795 static inline uint16_t 796 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops, 797 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats) 798 { 799 uint16_t i; 800 #ifdef RTE_BBDEV_OFFLOAD_COST 801 queue_stats->offload_time = 0; 802 #endif 803 804 for (i = 0; i < nb_ops; ++i) 805 enqueue_enc_one_op(q, ops[i], queue_stats); 806 807 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 808 NULL); 809 } 810 811 /* Remove the padding bytes from a cyclic buffer. 812 * The input buffer is a data stream wk as described in 3GPP TS 36.212 section 813 * 5.1.4.1.2 starting from w0 and with length Ncb bytes. 814 * The output buffer is a data stream wk with pruned padding bytes. It's length 815 * is 3*D bytes and the order of non-padding bytes is preserved. 816 */ 817 static inline void 818 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k, 819 uint16_t ncb) 820 { 821 uint32_t in_idx, out_idx, c_idx; 822 const uint32_t d = k + 4; 823 const uint32_t kw = (ncb / 3); 824 const uint32_t nd = kw - d; 825 const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK; 826 /* Inter-column permutation pattern */ 827 const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 828 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 829 29, 3, 19, 11, 27, 7, 23, 15, 31}; 830 in_idx = 0; 831 out_idx = 0; 832 833 /* The padding bytes are at the first Nd positions in the first row. */ 834 for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) { 835 if (P[c_idx] < nd) { 836 rte_memcpy(&out[out_idx], &in[in_idx + 1], 837 r_subblock - 1); 838 out_idx += r_subblock - 1; 839 } else { 840 rte_memcpy(&out[out_idx], &in[in_idx], r_subblock); 841 out_idx += r_subblock; 842 } 843 } 844 845 /* First and second parity bits sub-blocks are interlaced. */ 846 for (c_idx = 0; in_idx < ncb - 2 * r_subblock; 847 in_idx += 2 * r_subblock, ++c_idx) { 848 uint32_t second_block_c_idx = P[c_idx]; 849 uint32_t third_block_c_idx = P[c_idx] + 1; 850 851 if (second_block_c_idx < nd && third_block_c_idx < nd) { 852 rte_memcpy(&out[out_idx], &in[in_idx + 2], 853 2 * r_subblock - 2); 854 out_idx += 2 * r_subblock - 2; 855 } else if (second_block_c_idx >= nd && 856 third_block_c_idx >= nd) { 857 rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock); 858 out_idx += 2 * r_subblock; 859 } else if (second_block_c_idx < nd) { 860 out[out_idx++] = in[in_idx]; 861 rte_memcpy(&out[out_idx], &in[in_idx + 2], 862 2 * r_subblock - 2); 863 out_idx += 2 * r_subblock - 2; 864 } else { 865 rte_memcpy(&out[out_idx], &in[in_idx + 1], 866 2 * r_subblock - 1); 867 out_idx += 2 * r_subblock - 1; 868 } 869 } 870 871 /* Last interlaced row is different - its last byte is the only padding 872 * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block. 873 * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1 874 * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes 875 * (moving to another column). 2nd parity sub-block uses the same 876 * inter-column permutation pattern as the systematic and 1st parity 877 * sub-blocks but it adds '1' to the resulting index and calculates the 878 * modulus of the result and Kw. Last column is mapped to itself (id 31) 879 * so the first byte taken from the 2nd parity sub-block will be the 880 * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the 881 * last byte will be the first byte from the sub-block: 882 * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller 883 * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the 884 * padding bytes. The bytes from the 1st parity sub-block are the bytes 885 * from the 31st column - Nd can't be greater than 28 so we are sure 886 * that there are no padding bytes in 31st column. 887 */ 888 rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1); 889 } 890 891 static inline void 892 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k, 893 uint16_t ncb) 894 { 895 uint16_t d = k + 4; 896 uint16_t kpi = ncb / 3; 897 uint16_t nd = kpi - d; 898 899 rte_memcpy(&out[nd], in, d); 900 rte_memcpy(&out[nd + kpi + 64], &in[kpi], d); 901 rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d); 902 } 903 904 static inline void 905 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, 906 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in, 907 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset, 908 bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left) 909 { 910 int ret; 911 int32_t k_idx; 912 int32_t iter_cnt; 913 uint8_t *in, *out, *adapter_input; 914 int32_t ncb, ncb_without_null; 915 struct bblib_turbo_adapter_ul_response adapter_resp; 916 struct bblib_turbo_adapter_ul_request adapter_req; 917 struct bblib_turbo_decoder_request turbo_req; 918 struct bblib_turbo_decoder_response turbo_resp; 919 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; 920 921 k_idx = compute_idx(k); 922 923 ret = is_dec_input_valid(k_idx, kw, total_left); 924 if (ret != 0) { 925 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 926 return; 927 } 928 929 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 930 ncb = kw; 931 ncb_without_null = (k + 4) * 3; 932 933 if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) { 934 struct bblib_deinterleave_ul_request deint_req; 935 struct bblib_deinterleave_ul_response deint_resp; 936 937 /* SW decoder accepts only a circular buffer without NULL bytes 938 * so the input needs to be converted. 939 */ 940 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb); 941 942 deint_req.pharqbuffer = q->deint_input; 943 deint_req.ncb = ncb_without_null; 944 deint_resp.pinteleavebuffer = q->deint_output; 945 bblib_deinterleave_ul(&deint_req, &deint_resp); 946 } else 947 move_padding_bytes(in, q->deint_output, k, ncb); 948 949 adapter_input = q->deint_output; 950 951 if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN) 952 adapter_req.isinverted = 1; 953 else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN) 954 adapter_req.isinverted = 0; 955 else { 956 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 957 rte_bbdev_log(ERR, "LLR format wasn't specified"); 958 return; 959 } 960 961 adapter_req.ncb = ncb_without_null; 962 adapter_req.pinteleavebuffer = adapter_input; 963 adapter_resp.pharqout = q->adapter_output; 964 bblib_turbo_adapter_ul(&adapter_req, &adapter_resp); 965 966 out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3)); 967 if (out == NULL) { 968 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 969 rte_bbdev_log(ERR, "Too little space in output mbuf"); 970 return; 971 } 972 /* rte_bbdev_op_data.offset can be different than the offset of the 973 * appended bytes 974 */ 975 out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 976 if (check_crc_24b) 977 turbo_req.c = c + 1; 978 else 979 turbo_req.c = c; 980 turbo_req.input = (int8_t *)q->adapter_output; 981 turbo_req.k = k; 982 turbo_req.k_idx = k_idx; 983 turbo_req.max_iter_num = dec->iter_max; 984 turbo_req.early_term_disable = !check_bit(dec->op_flags, 985 RTE_BBDEV_TURBO_EARLY_TERMINATION); 986 turbo_resp.ag_buf = q->ag; 987 turbo_resp.cb_buf = q->code_block; 988 turbo_resp.output = out; 989 iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp); 990 dec->hard_output.length += (k >> 3); 991 992 if (iter_cnt > 0) { 993 /* Temporary solution for returned iter_count from SDK */ 994 iter_cnt = (iter_cnt - 1) / 2; 995 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count); 996 } else { 997 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 998 rte_bbdev_log(ERR, "Turbo Decoder failed"); 999 return; 1000 } 1001 } 1002 1003 static inline void 1004 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op) 1005 { 1006 uint8_t c, r = 0; 1007 uint16_t kw, k = 0; 1008 uint16_t crc24_overlap = 0; 1009 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; 1010 struct rte_mbuf *m_in = dec->input.data; 1011 struct rte_mbuf *m_out = dec->hard_output.data; 1012 uint16_t in_offset = dec->input.offset; 1013 uint16_t total_left = dec->input.length; 1014 uint16_t out_offset = dec->hard_output.offset; 1015 1016 /* Clear op status */ 1017 op->status = 0; 1018 1019 if (m_in == NULL || m_out == NULL) { 1020 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 1021 op->status = 1 << RTE_BBDEV_DATA_ERROR; 1022 return; 1023 } 1024 1025 if (dec->code_block_mode == 0) { /* For Transport Block mode */ 1026 c = dec->tb_params.c; 1027 } else { /* For Code Block mode */ 1028 k = dec->cb_params.k; 1029 c = 1; 1030 } 1031 1032 if ((c > 1) && !check_bit(dec->op_flags, 1033 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP)) 1034 crc24_overlap = 24; 1035 1036 while (total_left > 0) { 1037 if (dec->code_block_mode == 0) 1038 k = (r < dec->tb_params.c_neg) ? 1039 dec->tb_params.k_neg : dec->tb_params.k_pos; 1040 1041 /* Calculates circular buffer size (Kw). 1042 * According to 3gpp 36.212 section 5.1.4.2 1043 * Kw = 3 * Kpi, 1044 * where: 1045 * Kpi = nCol * nRow 1046 * where nCol is 32 and nRow can be calculated from: 1047 * D =< nCol * nRow 1048 * where D is the size of each output from turbo encoder block 1049 * (k + 4). 1050 */ 1051 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3; 1052 1053 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset, 1054 out_offset, check_bit(dec->op_flags, 1055 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap, 1056 total_left); 1057 /* To keep CRC24 attached to end of Code block, use 1058 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it 1059 * removed by default once verified. 1060 */ 1061 1062 /* Update total_left */ 1063 total_left -= kw; 1064 /* Update offsets for next CBs (if exist) */ 1065 in_offset += kw; 1066 out_offset += ((k - crc24_overlap) >> 3); 1067 r++; 1068 } 1069 if (total_left != 0) { 1070 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1071 rte_bbdev_log(ERR, 1072 "Mismatch between mbuf length and included Circular buffer sizes"); 1073 } 1074 } 1075 1076 static inline uint16_t 1077 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops, 1078 uint16_t nb_ops) 1079 { 1080 uint16_t i; 1081 1082 for (i = 0; i < nb_ops; ++i) 1083 enqueue_dec_one_op(q, ops[i]); 1084 1085 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 1086 NULL); 1087 } 1088 1089 /* Enqueue burst */ 1090 static uint16_t 1091 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data, 1092 struct rte_bbdev_enc_op **ops, uint16_t nb_ops) 1093 { 1094 void *queue = q_data->queue_private; 1095 struct turbo_sw_queue *q = queue; 1096 uint16_t nb_enqueued = 0; 1097 1098 nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats); 1099 1100 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1101 q_data->queue_stats.enqueued_count += nb_enqueued; 1102 1103 return nb_enqueued; 1104 } 1105 1106 /* Enqueue burst */ 1107 static uint16_t 1108 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data, 1109 struct rte_bbdev_dec_op **ops, uint16_t nb_ops) 1110 { 1111 void *queue = q_data->queue_private; 1112 struct turbo_sw_queue *q = queue; 1113 uint16_t nb_enqueued = 0; 1114 1115 nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops); 1116 1117 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1118 q_data->queue_stats.enqueued_count += nb_enqueued; 1119 1120 return nb_enqueued; 1121 } 1122 1123 /* Dequeue decode burst */ 1124 static uint16_t 1125 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data, 1126 struct rte_bbdev_dec_op **ops, uint16_t nb_ops) 1127 { 1128 struct turbo_sw_queue *q = q_data->queue_private; 1129 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, 1130 (void **)ops, nb_ops, NULL); 1131 q_data->queue_stats.dequeued_count += nb_dequeued; 1132 1133 return nb_dequeued; 1134 } 1135 1136 /* Dequeue encode burst */ 1137 static uint16_t 1138 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data, 1139 struct rte_bbdev_enc_op **ops, uint16_t nb_ops) 1140 { 1141 struct turbo_sw_queue *q = q_data->queue_private; 1142 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, 1143 (void **)ops, nb_ops, NULL); 1144 q_data->queue_stats.dequeued_count += nb_dequeued; 1145 1146 return nb_dequeued; 1147 } 1148 1149 /* Parse 16bit integer from string argument */ 1150 static inline int 1151 parse_u16_arg(const char *key, const char *value, void *extra_args) 1152 { 1153 uint16_t *u16 = extra_args; 1154 unsigned int long result; 1155 1156 if ((value == NULL) || (extra_args == NULL)) 1157 return -EINVAL; 1158 errno = 0; 1159 result = strtoul(value, NULL, 0); 1160 if ((result >= (1 << 16)) || (errno != 0)) { 1161 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key); 1162 return -ERANGE; 1163 } 1164 *u16 = (uint16_t)result; 1165 return 0; 1166 } 1167 1168 /* Parse parameters used to create device */ 1169 static int 1170 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args) 1171 { 1172 struct rte_kvargs *kvlist = NULL; 1173 int ret = 0; 1174 1175 if (params == NULL) 1176 return -EINVAL; 1177 if (input_args) { 1178 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params); 1179 if (kvlist == NULL) 1180 return -EFAULT; 1181 1182 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0], 1183 &parse_u16_arg, ¶ms->queues_num); 1184 if (ret < 0) 1185 goto exit; 1186 1187 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1], 1188 &parse_u16_arg, ¶ms->socket_id); 1189 if (ret < 0) 1190 goto exit; 1191 1192 if (params->socket_id >= RTE_MAX_NUMA_NODES) { 1193 rte_bbdev_log(ERR, "Invalid socket, must be < %u", 1194 RTE_MAX_NUMA_NODES); 1195 goto exit; 1196 } 1197 } 1198 1199 exit: 1200 if (kvlist) 1201 rte_kvargs_free(kvlist); 1202 return ret; 1203 } 1204 1205 /* Create device */ 1206 static int 1207 turbo_sw_bbdev_create(struct rte_vdev_device *vdev, 1208 struct turbo_sw_params *init_params) 1209 { 1210 struct rte_bbdev *bbdev; 1211 const char *name = rte_vdev_device_name(vdev); 1212 1213 bbdev = rte_bbdev_allocate(name); 1214 if (bbdev == NULL) 1215 return -ENODEV; 1216 1217 bbdev->data->dev_private = rte_zmalloc_socket(name, 1218 sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE, 1219 init_params->socket_id); 1220 if (bbdev->data->dev_private == NULL) { 1221 rte_bbdev_release(bbdev); 1222 return -ENOMEM; 1223 } 1224 1225 bbdev->dev_ops = &pmd_ops; 1226 bbdev->device = &vdev->device; 1227 bbdev->data->socket_id = init_params->socket_id; 1228 bbdev->intr_handle = NULL; 1229 1230 /* register rx/tx burst functions for data path */ 1231 bbdev->dequeue_enc_ops = dequeue_enc_ops; 1232 bbdev->dequeue_dec_ops = dequeue_dec_ops; 1233 bbdev->enqueue_enc_ops = enqueue_enc_ops; 1234 bbdev->enqueue_dec_ops = enqueue_dec_ops; 1235 ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues = 1236 init_params->queues_num; 1237 1238 return 0; 1239 } 1240 1241 /* Initialise device */ 1242 static int 1243 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev) 1244 { 1245 struct turbo_sw_params init_params = { 1246 rte_socket_id(), 1247 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES 1248 }; 1249 const char *name; 1250 const char *input_args; 1251 1252 if (vdev == NULL) 1253 return -EINVAL; 1254 1255 name = rte_vdev_device_name(vdev); 1256 if (name == NULL) 1257 return -EINVAL; 1258 input_args = rte_vdev_device_args(vdev); 1259 parse_turbo_sw_params(&init_params, input_args); 1260 1261 rte_bbdev_log_debug( 1262 "Initialising %s on NUMA node %d with max queues: %d\n", 1263 name, init_params.socket_id, init_params.queues_num); 1264 1265 return turbo_sw_bbdev_create(vdev, &init_params); 1266 } 1267 1268 /* Uninitialise device */ 1269 static int 1270 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev) 1271 { 1272 struct rte_bbdev *bbdev; 1273 const char *name; 1274 1275 if (vdev == NULL) 1276 return -EINVAL; 1277 1278 name = rte_vdev_device_name(vdev); 1279 if (name == NULL) 1280 return -EINVAL; 1281 1282 bbdev = rte_bbdev_get_named_dev(name); 1283 if (bbdev == NULL) 1284 return -EINVAL; 1285 1286 rte_free(bbdev->data->dev_private); 1287 1288 return rte_bbdev_release(bbdev); 1289 } 1290 1291 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = { 1292 .probe = turbo_sw_bbdev_probe, 1293 .remove = turbo_sw_bbdev_remove 1294 }; 1295 1296 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv); 1297 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME, 1298 TURBO_SW_MAX_NB_QUEUES_ARG"=<int> " 1299 TURBO_SW_SOCKET_ID_ARG"=<int>"); 1300 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw); 1301 1302 RTE_INIT(null_bbdev_init_log); 1303 static void 1304 null_bbdev_init_log(void) 1305 { 1306 bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw"); 1307 if (bbdev_turbo_sw_logtype >= 0) 1308 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE); 1309 } 1310