xref: /dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <string.h>
6 
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13 #include <rte_errno.h>
14 
15 #include <rte_bbdev.h>
16 #include <rte_bbdev_pmd.h>
17 
18 #include <rte_hexdump.h>
19 #include <rte_log.h>
20 
21 #ifdef RTE_BBDEV_SDK_AVX2
22 #include <ipp.h>
23 #include <ipps.h>
24 #include <phy_turbo.h>
25 #include <phy_crc.h>
26 #include <phy_rate_match.h>
27 #endif
28 #ifdef RTE_BBDEV_SDK_AVX512
29 #include <bit_reverse.h>
30 #include <phy_ldpc_encoder_5gnr.h>
31 #include <phy_ldpc_decoder_5gnr.h>
32 #include <phy_LDPC_ratematch_5gnr.h>
33 #include <phy_rate_dematching_5gnr.h>
34 #endif
35 
36 #define DRIVER_NAME baseband_turbo_sw
37 
38 RTE_LOG_REGISTER_DEFAULT(bbdev_turbo_sw_logtype, NOTICE);
39 
40 /* Helper macro for logging */
41 #define rte_bbdev_log(level, fmt, ...) \
42 	rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
43 		##__VA_ARGS__)
44 
45 #define rte_bbdev_log_debug(fmt, ...) \
46 	rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
47 		##__VA_ARGS__)
48 
49 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) + 1) * 48)
50 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
51 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_TURBO_MAX_CB_SIZE + 4) * 48)
52 
53 /* private data structure */
54 struct bbdev_private {
55 	unsigned int max_nb_queues;  /**< Max number of queues */
56 };
57 
58 /*  Initialisation params structure that can be used by Turbo SW driver */
59 struct turbo_sw_params {
60 	int socket_id;  /*< Turbo SW device socket */
61 	uint16_t queues_num;  /*< Turbo SW device queues number */
62 };
63 
64 /* Accecptable params for Turbo SW devices */
65 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
66 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
67 
68 static const char * const turbo_sw_valid_params[] = {
69 	TURBO_SW_MAX_NB_QUEUES_ARG,
70 	TURBO_SW_SOCKET_ID_ARG
71 };
72 
73 /* queue */
74 struct turbo_sw_queue {
75 	/* Ring for processed (encoded/decoded) operations which are ready to
76 	 * be dequeued.
77 	 */
78 	struct rte_ring *processed_pkts;
79 	/* Stores input for turbo encoder (used when CRC attachment is
80 	 * performed
81 	 */
82 	uint8_t *enc_in;
83 	/* Stores output from turbo encoder */
84 	uint8_t *enc_out;
85 	/* Alpha gamma buf for bblib_turbo_decoder() function */
86 	int8_t *ag;
87 	/* Temp buf for bblib_turbo_decoder() function */
88 	uint16_t *code_block;
89 	/* Input buf for bblib_rate_dematching_lte() function */
90 	uint8_t *deint_input;
91 	/* Output buf for bblib_rate_dematching_lte() function */
92 	uint8_t *deint_output;
93 	/* Output buf for bblib_turbodec_adapter_lte() function */
94 	uint8_t *adapter_output;
95 	/* Operation type of this queue */
96 	enum rte_bbdev_op_type type;
97 } __rte_cache_aligned;
98 
99 
100 #ifdef RTE_BBDEV_SDK_AVX2
101 static inline char *
102 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
103 {
104 	if (unlikely(len > rte_pktmbuf_tailroom(m)))
105 		return NULL;
106 
107 	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
108 	m->data_len = (uint16_t)(m->data_len + len);
109 	m_head->pkt_len  = (m_head->pkt_len + len);
110 	return tail;
111 }
112 
113 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
114 static inline int32_t
115 compute_idx(uint16_t k)
116 {
117 	int32_t result = 0;
118 
119 	if (k < RTE_BBDEV_TURBO_MIN_CB_SIZE || k > RTE_BBDEV_TURBO_MAX_CB_SIZE)
120 		return -1;
121 
122 	if (k > 2048) {
123 		if ((k - 2048) % 64 != 0)
124 			result = -1;
125 
126 		result = 124 + (k - 2048) / 64;
127 	} else if (k <= 512) {
128 		if ((k - 40) % 8 != 0)
129 			result = -1;
130 
131 		result = (k - 40) / 8 + 1;
132 	} else if (k <= 1024) {
133 		if ((k - 512) % 16 != 0)
134 			result = -1;
135 
136 		result = 60 + (k - 512) / 16;
137 	} else { /* 1024 < k <= 2048 */
138 		if ((k - 1024) % 32 != 0)
139 			result = -1;
140 
141 		result = 92 + (k - 1024) / 32;
142 	}
143 
144 	return result;
145 }
146 #endif
147 
148 /* Read flag value 0/1 from bitmap */
149 static inline bool
150 check_bit(uint32_t bitmap, uint32_t bitmask)
151 {
152 	return bitmap & bitmask;
153 }
154 
155 /* Get device info */
156 static void
157 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
158 {
159 	struct bbdev_private *internals = dev->data->dev_private;
160 
161 	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
162 #ifdef RTE_BBDEV_SDK_AVX2
163 		{
164 			.type = RTE_BBDEV_OP_TURBO_DEC,
165 			.cap.turbo_dec = {
166 				.capability_flags =
167 					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
168 					RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
169 					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
170 					RTE_BBDEV_TURBO_CRC_TYPE_24B |
171 					RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
172 					RTE_BBDEV_TURBO_EARLY_TERMINATION,
173 				.max_llr_modulus = 16,
174 				.num_buffers_src =
175 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
176 				.num_buffers_hard_out =
177 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
178 				.num_buffers_soft_out = 0,
179 			}
180 		},
181 		{
182 			.type   = RTE_BBDEV_OP_TURBO_ENC,
183 			.cap.turbo_enc = {
184 				.capability_flags =
185 						RTE_BBDEV_TURBO_CRC_24B_ATTACH |
186 						RTE_BBDEV_TURBO_CRC_24A_ATTACH |
187 						RTE_BBDEV_TURBO_RATE_MATCH |
188 						RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
189 				.num_buffers_src =
190 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
191 				.num_buffers_dst =
192 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
193 			}
194 		},
195 #endif
196 #ifdef RTE_BBDEV_SDK_AVX512
197 		{
198 			.type   = RTE_BBDEV_OP_LDPC_ENC,
199 			.cap.ldpc_enc = {
200 				.capability_flags =
201 						RTE_BBDEV_LDPC_RATE_MATCH |
202 						RTE_BBDEV_LDPC_CRC_16_ATTACH |
203 						RTE_BBDEV_LDPC_CRC_24A_ATTACH |
204 						RTE_BBDEV_LDPC_CRC_24B_ATTACH,
205 				.num_buffers_src =
206 						RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
207 				.num_buffers_dst =
208 						RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
209 			}
210 		},
211 		{
212 		.type   = RTE_BBDEV_OP_LDPC_DEC,
213 		.cap.ldpc_dec = {
214 			.capability_flags =
215 					RTE_BBDEV_LDPC_CRC_TYPE_16_CHECK |
216 					RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
217 					RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK |
218 					RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
219 					RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
220 					RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
221 					RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE,
222 			.llr_size = 8,
223 			.llr_decimals = 4,
224 			.num_buffers_src =
225 					RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
226 			.num_buffers_hard_out =
227 					RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
228 			.num_buffers_soft_out = 0,
229 		}
230 		},
231 #endif
232 		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
233 	};
234 
235 	static struct rte_bbdev_queue_conf default_queue_conf = {
236 		.queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
237 	};
238 #ifdef RTE_BBDEV_SDK_AVX2
239 	static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
240 	dev_info->cpu_flag_reqs = &cpu_flag;
241 #else
242 	dev_info->cpu_flag_reqs = NULL;
243 #endif
244 	default_queue_conf.socket = dev->data->socket_id;
245 
246 	dev_info->driver_name = RTE_STR(DRIVER_NAME);
247 	dev_info->max_num_queues = internals->max_nb_queues;
248 	dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
249 	dev_info->hardware_accelerated = false;
250 	dev_info->max_dl_queue_priority = 0;
251 	dev_info->max_ul_queue_priority = 0;
252 	dev_info->default_queue_conf = default_queue_conf;
253 	dev_info->capabilities = bbdev_capabilities;
254 	dev_info->min_alignment = 64;
255 	dev_info->harq_buffer_size = 0;
256 	dev_info->data_endianness = RTE_LITTLE_ENDIAN;
257 
258 	rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
259 }
260 
261 /* Release queue */
262 static int
263 q_release(struct rte_bbdev *dev, uint16_t q_id)
264 {
265 	struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
266 
267 	if (q != NULL) {
268 		rte_ring_free(q->processed_pkts);
269 		rte_free(q->enc_out);
270 		rte_free(q->enc_in);
271 		rte_free(q->ag);
272 		rte_free(q->code_block);
273 		rte_free(q->deint_input);
274 		rte_free(q->deint_output);
275 		rte_free(q->adapter_output);
276 		rte_free(q);
277 		dev->data->queues[q_id].queue_private = NULL;
278 	}
279 
280 	rte_bbdev_log_debug("released device queue %u:%u",
281 			dev->data->dev_id, q_id);
282 	return 0;
283 }
284 
285 /* Setup a queue */
286 static int
287 q_setup(struct rte_bbdev *dev, uint16_t q_id,
288 		const struct rte_bbdev_queue_conf *queue_conf)
289 {
290 	int ret;
291 	struct turbo_sw_queue *q;
292 	char name[RTE_RING_NAMESIZE];
293 
294 	/* Allocate the queue data structure. */
295 	q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
296 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
297 	if (q == NULL) {
298 		rte_bbdev_log(ERR, "Failed to allocate queue memory");
299 		return -ENOMEM;
300 	}
301 
302 	/* Allocate memory for encoder output. */
303 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
304 			dev->data->dev_id, q_id);
305 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
306 		rte_bbdev_log(ERR,
307 				"Creating queue name for device %u queue %u failed",
308 				dev->data->dev_id, q_id);
309 		ret = -ENAMETOOLONG;
310 		goto free_q;
311 	}
312 	q->enc_out = rte_zmalloc_socket(name,
313 			((RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) + 3) *
314 			sizeof(*q->enc_out) * 3,
315 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
316 	if (q->enc_out == NULL) {
317 		rte_bbdev_log(ERR,
318 			"Failed to allocate queue memory for %s", name);
319 		ret = -ENOMEM;
320 		goto free_q;
321 	}
322 
323 	/* Allocate memory for rate matching output. */
324 	ret = snprintf(name, RTE_RING_NAMESIZE,
325 			RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
326 			q_id);
327 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
328 		rte_bbdev_log(ERR,
329 				"Creating queue name for device %u queue %u failed",
330 				dev->data->dev_id, q_id);
331 		ret = -ENAMETOOLONG;
332 		goto free_q;
333 	}
334 	q->enc_in = rte_zmalloc_socket(name,
335 			(RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
336 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
337 	if (q->enc_in == NULL) {
338 		rte_bbdev_log(ERR,
339 			"Failed to allocate queue memory for %s", name);
340 		ret = -ENOMEM;
341 		goto free_q;
342 	}
343 
344 	/* Allocate memory for Alpha Gamma temp buffer. */
345 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
346 			dev->data->dev_id, q_id);
347 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
348 		rte_bbdev_log(ERR,
349 				"Creating queue name for device %u queue %u failed",
350 				dev->data->dev_id, q_id);
351 		ret = -ENAMETOOLONG;
352 		goto free_q;
353 	}
354 	q->ag = rte_zmalloc_socket(name,
355 			RTE_BBDEV_TURBO_MAX_CB_SIZE * 10 * sizeof(*q->ag),
356 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
357 	if (q->ag == NULL) {
358 		rte_bbdev_log(ERR,
359 			"Failed to allocate queue memory for %s", name);
360 		ret = -ENOMEM;
361 		goto free_q;
362 	}
363 
364 	/* Allocate memory for code block temp buffer. */
365 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
366 			dev->data->dev_id, q_id);
367 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
368 		rte_bbdev_log(ERR,
369 				"Creating queue name for device %u queue %u failed",
370 				dev->data->dev_id, q_id);
371 		ret = -ENAMETOOLONG;
372 		goto free_q;
373 	}
374 	q->code_block = rte_zmalloc_socket(name,
375 			RTE_BBDEV_TURBO_MAX_CB_SIZE * sizeof(*q->code_block),
376 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
377 	if (q->code_block == NULL) {
378 		rte_bbdev_log(ERR,
379 			"Failed to allocate queue memory for %s", name);
380 		ret = -ENOMEM;
381 		goto free_q;
382 	}
383 
384 	/* Allocate memory for Deinterleaver input. */
385 	ret = snprintf(name, RTE_RING_NAMESIZE,
386 			RTE_STR(DRIVER_NAME)"_de_i%u:%u",
387 			dev->data->dev_id, q_id);
388 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
389 		rte_bbdev_log(ERR,
390 				"Creating queue name for device %u queue %u failed",
391 				dev->data->dev_id, q_id);
392 		ret = -ENAMETOOLONG;
393 		goto free_q;
394 	}
395 	q->deint_input = rte_zmalloc_socket(name,
396 			DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
397 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
398 	if (q->deint_input == NULL) {
399 		rte_bbdev_log(ERR,
400 			"Failed to allocate queue memory for %s", name);
401 		ret = -ENOMEM;
402 		goto free_q;
403 	}
404 
405 	/* Allocate memory for Deinterleaver output. */
406 	ret = snprintf(name, RTE_RING_NAMESIZE,
407 			RTE_STR(DRIVER_NAME)"_de_o%u:%u",
408 			dev->data->dev_id, q_id);
409 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
410 		rte_bbdev_log(ERR,
411 				"Creating queue name for device %u queue %u failed",
412 				dev->data->dev_id, q_id);
413 		ret = -ENAMETOOLONG;
414 		goto free_q;
415 	}
416 	q->deint_output = rte_zmalloc_socket(NULL,
417 			DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
418 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
419 	if (q->deint_output == NULL) {
420 		rte_bbdev_log(ERR,
421 			"Failed to allocate queue memory for %s", name);
422 		ret = -ENOMEM;
423 		goto free_q;
424 	}
425 
426 	/* Allocate memory for Adapter output. */
427 	ret = snprintf(name, RTE_RING_NAMESIZE,
428 			RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
429 			dev->data->dev_id, q_id);
430 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
431 		rte_bbdev_log(ERR,
432 				"Creating queue name for device %u queue %u failed",
433 				dev->data->dev_id, q_id);
434 		ret = -ENAMETOOLONG;
435 		goto free_q;
436 	}
437 	q->adapter_output = rte_zmalloc_socket(NULL,
438 			ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
439 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
440 	if (q->adapter_output == NULL) {
441 		rte_bbdev_log(ERR,
442 			"Failed to allocate queue memory for %s", name);
443 		ret = -ENOMEM;
444 		goto free_q;
445 	}
446 
447 	/* Create ring for packets awaiting to be dequeued. */
448 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
449 			dev->data->dev_id, q_id);
450 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
451 		rte_bbdev_log(ERR,
452 				"Creating queue name for device %u queue %u failed",
453 				dev->data->dev_id, q_id);
454 		ret = -ENAMETOOLONG;
455 		goto free_q;
456 	}
457 	q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
458 			queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
459 	if (q->processed_pkts == NULL) {
460 		rte_bbdev_log(ERR, "Failed to create ring for %s", name);
461 		ret = -rte_errno;
462 		goto free_q;
463 	}
464 
465 	q->type = queue_conf->op_type;
466 
467 	dev->data->queues[q_id].queue_private = q;
468 	rte_bbdev_log_debug("setup device queue %s", name);
469 	return 0;
470 
471 free_q:
472 	rte_ring_free(q->processed_pkts);
473 	rte_free(q->enc_out);
474 	rte_free(q->enc_in);
475 	rte_free(q->ag);
476 	rte_free(q->code_block);
477 	rte_free(q->deint_input);
478 	rte_free(q->deint_output);
479 	rte_free(q->adapter_output);
480 	rte_free(q);
481 	return ret;
482 }
483 
484 static const struct rte_bbdev_ops pmd_ops = {
485 	.info_get = info_get,
486 	.queue_setup = q_setup,
487 	.queue_release = q_release
488 };
489 
490 #ifdef RTE_BBDEV_SDK_AVX2
491 #ifdef RTE_LIBRTE_BBDEV_DEBUG
492 /* Checks if the encoder input buffer is correct.
493  * Returns 0 if it's valid, -1 otherwise.
494  */
495 static inline int
496 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
497 		const uint16_t in_length)
498 {
499 	if (k_idx < 0) {
500 		rte_bbdev_log(ERR, "K Index is invalid");
501 		return -1;
502 	}
503 
504 	if (in_length - (k >> 3) < 0) {
505 		rte_bbdev_log(ERR,
506 				"Mismatch between input length (%u bytes) and K (%u bits)",
507 				in_length, k);
508 		return -1;
509 	}
510 
511 	if (k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
512 		rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
513 				k, RTE_BBDEV_TURBO_MAX_CB_SIZE);
514 		return -1;
515 	}
516 
517 	return 0;
518 }
519 
520 /* Checks if the decoder input buffer is correct.
521  * Returns 0 if it's valid, -1 otherwise.
522  */
523 static inline int
524 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
525 {
526 	if (k_idx < 0) {
527 		rte_bbdev_log(ERR, "K index is invalid");
528 		return -1;
529 	}
530 
531 	if (in_length < kw) {
532 		rte_bbdev_log(ERR,
533 				"Mismatch between input length (%u) and kw (%u)",
534 				in_length, kw);
535 		return -1;
536 	}
537 
538 	if (kw > RTE_BBDEV_TURBO_MAX_KW) {
539 		rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
540 				kw, RTE_BBDEV_TURBO_MAX_KW);
541 		return -1;
542 	}
543 
544 	return 0;
545 }
546 #endif
547 #endif
548 
549 static inline void
550 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
551 		uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
552 		uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
553 		struct rte_mbuf *m_out,	uint16_t in_offset, uint16_t out_offset,
554 		uint16_t in_length, struct rte_bbdev_stats *q_stats)
555 {
556 #ifdef RTE_BBDEV_SDK_AVX2
557 #ifdef RTE_LIBRTE_BBDEV_DEBUG
558 	int ret;
559 #else
560 	RTE_SET_USED(in_length);
561 #endif
562 	int16_t k_idx;
563 	uint16_t m;
564 	uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
565 	uint64_t first_3_bytes = 0;
566 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
567 	struct bblib_crc_request crc_req;
568 	struct bblib_crc_response crc_resp;
569 	struct bblib_turbo_encoder_request turbo_req;
570 	struct bblib_turbo_encoder_response turbo_resp;
571 	struct bblib_rate_match_dl_request rm_req;
572 	struct bblib_rate_match_dl_response rm_resp;
573 #ifdef RTE_BBDEV_OFFLOAD_COST
574 	uint64_t start_time;
575 #else
576 	RTE_SET_USED(q_stats);
577 #endif
578 
579 	k_idx = compute_idx(k);
580 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
581 
582 	/* CRC24A (for TB) */
583 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
584 		(enc->code_block_mode == RTE_BBDEV_CODE_BLOCK)) {
585 #ifdef RTE_LIBRTE_BBDEV_DEBUG
586 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
587 		if (ret != 0) {
588 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
589 			return;
590 		}
591 #endif
592 
593 		crc_req.data = in;
594 		crc_req.len = k - 24;
595 		/* Check if there is a room for CRC bits if not use
596 		 * the temporary buffer.
597 		 */
598 		if (mbuf_append(m_in, m_in, 3) == NULL) {
599 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
600 			in = q->enc_in;
601 		} else {
602 			/* Store 3 first bytes of next CB as they will be
603 			 * overwritten by CRC bytes. If it is the last CB then
604 			 * there is no point to store 3 next bytes and this
605 			 * if..else branch will be omitted.
606 			 */
607 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
608 		}
609 
610 		crc_resp.data = in;
611 #ifdef RTE_BBDEV_OFFLOAD_COST
612 		start_time = rte_rdtsc_precise();
613 #endif
614 		/* CRC24A generation */
615 		bblib_lte_crc24a_gen(&crc_req, &crc_resp);
616 #ifdef RTE_BBDEV_OFFLOAD_COST
617 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
618 #endif
619 	} else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
620 		/* CRC24B */
621 #ifdef RTE_LIBRTE_BBDEV_DEBUG
622 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
623 		if (ret != 0) {
624 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
625 			return;
626 		}
627 #endif
628 
629 		crc_req.data = in;
630 		crc_req.len = k - 24;
631 		/* Check if there is a room for CRC bits if this is the last
632 		 * CB in TB. If not use temporary buffer.
633 		 */
634 		if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
635 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
636 			in = q->enc_in;
637 		} else if (c - r > 1) {
638 			/* Store 3 first bytes of next CB as they will be
639 			 * overwritten by CRC bytes. If it is the last CB then
640 			 * there is no point to store 3 next bytes and this
641 			 * if..else branch will be omitted.
642 			 */
643 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
644 		}
645 
646 		crc_resp.data = in;
647 #ifdef RTE_BBDEV_OFFLOAD_COST
648 		start_time = rte_rdtsc_precise();
649 #endif
650 		/* CRC24B generation */
651 		bblib_lte_crc24b_gen(&crc_req, &crc_resp);
652 #ifdef RTE_BBDEV_OFFLOAD_COST
653 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
654 #endif
655 	}
656 #ifdef RTE_LIBRTE_BBDEV_DEBUG
657 	else {
658 		ret = is_enc_input_valid(k, k_idx, in_length);
659 		if (ret != 0) {
660 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
661 			return;
662 		}
663 	}
664 #endif
665 
666 	/* Turbo encoder */
667 
668 	/* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
669 	 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
670 	 * So dst_data's length should be 3*(k/8) + 3 bytes.
671 	 * In Rate-matching bypass case outputs pointers passed to encoder
672 	 * (out0, out1 and out2) can directly point to addresses of output from
673 	 * turbo_enc entity.
674 	 */
675 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
676 		out0 = q->enc_out;
677 		out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
678 		out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
679 	} else {
680 		out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
681 				(k >> 3) * 3 + 2);
682 		if (out0 == NULL) {
683 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
684 			rte_bbdev_log(ERR,
685 					"Too little space in output mbuf");
686 			return;
687 		}
688 		enc->output.length += (k >> 3) * 3 + 2;
689 		/* rte_bbdev_op_data.offset can be different than the
690 		 * offset of the appended bytes
691 		 */
692 		out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
693 		out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
694 				out_offset + (k >> 3) + 1);
695 		out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
696 				out_offset + 2 * ((k >> 3) + 1));
697 	}
698 
699 	turbo_req.case_id = k_idx;
700 	turbo_req.input_win = in;
701 	turbo_req.length = k >> 3;
702 	turbo_resp.output_win_0 = out0;
703 	turbo_resp.output_win_1 = out1;
704 	turbo_resp.output_win_2 = out2;
705 
706 #ifdef RTE_BBDEV_OFFLOAD_COST
707 	start_time = rte_rdtsc_precise();
708 #endif
709 	/* Turbo encoding */
710 	if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
711 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
712 		rte_bbdev_log(ERR, "Turbo Encoder failed");
713 		return;
714 	}
715 #ifdef RTE_BBDEV_OFFLOAD_COST
716 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
717 #endif
718 
719 	/* Restore 3 first bytes of next CB if they were overwritten by CRC*/
720 	if (first_3_bytes != 0)
721 		*((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
722 
723 	/* Rate-matching */
724 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
725 		uint8_t mask_id;
726 		/* Integer round up division by 8 */
727 		uint16_t out_len = (e + 7) >> 3;
728 		/* The mask array is indexed using E%8. E is an even number so
729 		 * there are only 4 possible values.
730 		 */
731 		const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
732 
733 		/* get output data starting address */
734 		rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
735 		if (rm_out == NULL) {
736 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
737 			rte_bbdev_log(ERR,
738 					"Too little space in output mbuf");
739 			return;
740 		}
741 		/* rte_bbdev_op_data.offset can be different than the offset
742 		 * of the appended bytes
743 		 */
744 		rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
745 
746 		/* index of current code block */
747 		rm_req.r = r;
748 		/* total number of code block */
749 		rm_req.C = c;
750 		/* For DL - 1, UL - 0 */
751 		rm_req.direction = 1;
752 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
753 		 * and MDL_HARQ are used for Ncb calculation. As Ncb is already
754 		 * known we can adjust those parameters
755 		 */
756 		rm_req.Nsoft = ncb * rm_req.C;
757 		rm_req.KMIMO = 1;
758 		rm_req.MDL_HARQ = 1;
759 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
760 		 * are used for E calculation. As E is already known we can
761 		 * adjust those parameters
762 		 */
763 		rm_req.NL = e;
764 		rm_req.Qm = 1;
765 		rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
766 
767 		rm_req.rvidx = enc->rv_index;
768 		rm_req.Kidx = k_idx - 1;
769 		rm_req.nLen = k + 4;
770 		rm_req.tin0 = out0;
771 		rm_req.tin1 = out1;
772 		rm_req.tin2 = out2;
773 		rm_resp.output = rm_out;
774 		rm_resp.OutputLen = out_len;
775 		if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
776 			rm_req.bypass_rvidx = 1;
777 		else
778 			rm_req.bypass_rvidx = 0;
779 
780 #ifdef RTE_BBDEV_OFFLOAD_COST
781 		start_time = rte_rdtsc_precise();
782 #endif
783 		/* Rate-Matching */
784 		if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
785 			op->status |= 1 << RTE_BBDEV_DRV_ERROR;
786 			rte_bbdev_log(ERR, "Rate matching failed");
787 			return;
788 		}
789 #ifdef RTE_BBDEV_OFFLOAD_COST
790 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
791 #endif
792 
793 		/* SW fills an entire last byte even if E%8 != 0. Clear the
794 		 * superfluous data bits for consistency with HW device.
795 		 */
796 		mask_id = (e & 7) >> 1;
797 		rm_out[out_len - 1] &= mask_out[mask_id];
798 		enc->output.length += rm_resp.OutputLen;
799 	} else {
800 		/* Rate matching is bypassed */
801 
802 		/* Completing last byte of out0 (where 4 tail bits are stored)
803 		 * by moving first 4 bits from out1
804 		 */
805 		tmp_out = (uint8_t *) --out1;
806 		*tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
807 		tmp_out++;
808 		/* Shifting out1 data by 4 bits to the left */
809 		for (m = 0; m < k >> 3; ++m) {
810 			uint8_t *first = tmp_out;
811 			uint8_t second = *(tmp_out + 1);
812 			*first = (*first << 4) | ((second & 0xF0) >> 4);
813 			tmp_out++;
814 		}
815 		/* Shifting out2 data by 8 bits to the left */
816 		for (m = 0; m < (k >> 3) + 1; ++m) {
817 			*tmp_out = *(tmp_out + 1);
818 			tmp_out++;
819 		}
820 		*tmp_out = 0;
821 	}
822 #else
823 	RTE_SET_USED(q);
824 	RTE_SET_USED(op);
825 	RTE_SET_USED(r);
826 	RTE_SET_USED(c);
827 	RTE_SET_USED(k);
828 	RTE_SET_USED(ncb);
829 	RTE_SET_USED(e);
830 	RTE_SET_USED(m_in);
831 	RTE_SET_USED(m_out_head);
832 	RTE_SET_USED(m_out);
833 	RTE_SET_USED(in_offset);
834 	RTE_SET_USED(out_offset);
835 	RTE_SET_USED(in_length);
836 	RTE_SET_USED(q_stats);
837 #endif
838 }
839 
840 
841 static inline void
842 process_ldpc_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
843 		uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
844 		struct rte_mbuf *m_out,	uint16_t in_offset, uint16_t out_offset,
845 		uint16_t seg_total_left, struct rte_bbdev_stats *q_stats)
846 {
847 #ifdef RTE_BBDEV_SDK_AVX512
848 	RTE_SET_USED(seg_total_left);
849 	uint8_t *in, *rm_out;
850 	struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
851 	struct bblib_ldpc_encoder_5gnr_request ldpc_req;
852 	struct bblib_ldpc_encoder_5gnr_response ldpc_resp;
853 	struct bblib_LDPC_ratematch_5gnr_request rm_req;
854 	struct bblib_LDPC_ratematch_5gnr_response rm_resp;
855 	struct bblib_crc_request crc_req;
856 	struct bblib_crc_response crc_resp;
857 	uint16_t msgLen, puntBits, parity_offset, out_len;
858 	uint16_t K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
859 	uint16_t in_length_in_bits = K - enc->n_filler;
860 	uint16_t in_length_in_bytes = (in_length_in_bits + 7) >> 3;
861 
862 #ifdef RTE_BBDEV_OFFLOAD_COST
863 	uint64_t start_time = rte_rdtsc_precise();
864 #else
865 	RTE_SET_USED(q_stats);
866 #endif
867 
868 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
869 
870 	/* Masking the Filler bits explicitly */
871 	memset(q->enc_in  + (in_length_in_bytes - 3), 0,
872 			((K + 7) >> 3) - (in_length_in_bytes - 3));
873 	/* CRC Generation */
874 	if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) {
875 		rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
876 		crc_req.data = in;
877 		crc_req.len = in_length_in_bits - 24;
878 		crc_resp.data = q->enc_in;
879 		bblib_lte_crc24a_gen(&crc_req, &crc_resp);
880 	} else if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH) {
881 		rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
882 		crc_req.data = in;
883 		crc_req.len = in_length_in_bits - 24;
884 		crc_resp.data = q->enc_in;
885 		bblib_lte_crc24b_gen(&crc_req, &crc_resp);
886 	} else if (enc->op_flags & RTE_BBDEV_LDPC_CRC_16_ATTACH) {
887 		rte_memcpy(q->enc_in, in, in_length_in_bytes - 2);
888 		crc_req.data = in;
889 		crc_req.len = in_length_in_bits - 16;
890 		crc_resp.data = q->enc_in;
891 		bblib_lte_crc16_gen(&crc_req, &crc_resp);
892 	} else
893 		rte_memcpy(q->enc_in, in, in_length_in_bytes);
894 
895 	/* LDPC Encoding */
896 	ldpc_req.Zc = enc->z_c;
897 	ldpc_req.baseGraph = enc->basegraph;
898 	/* Number of rows set to maximum */
899 	ldpc_req.nRows = ldpc_req.baseGraph == 1 ? 46 : 42;
900 	ldpc_req.numberCodeblocks = 1;
901 	ldpc_req.input[0] = (int8_t *) q->enc_in;
902 	ldpc_resp.output[0] = (int8_t *) q->enc_out;
903 
904 	bblib_bit_reverse(ldpc_req.input[0], in_length_in_bytes << 3);
905 
906 	if (bblib_ldpc_encoder_5gnr(&ldpc_req, &ldpc_resp) != 0) {
907 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
908 		rte_bbdev_log(ERR, "LDPC Encoder failed");
909 		return;
910 	}
911 
912 	/*
913 	 * Systematic + Parity : Recreating stream with filler bits, ideally
914 	 * the bit select could handle this in the RM SDK
915 	 */
916 	msgLen = (ldpc_req.baseGraph == 1 ? 22 : 10) * ldpc_req.Zc;
917 	puntBits = 2 * ldpc_req.Zc;
918 	parity_offset = msgLen - puntBits;
919 	ippsCopyBE_1u(((uint8_t *) ldpc_req.input[0]) + (puntBits / 8),
920 			puntBits%8, q->adapter_output, 0, parity_offset);
921 	ippsCopyBE_1u(q->enc_out, 0, q->adapter_output + (parity_offset / 8),
922 			parity_offset % 8, ldpc_req.nRows * ldpc_req.Zc);
923 
924 	out_len = (e + 7) >> 3;
925 	/* get output data starting address */
926 	rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
927 	if (rm_out == NULL) {
928 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
929 		rte_bbdev_log(ERR,
930 				"Too little space in output mbuf");
931 		return;
932 	}
933 	/*
934 	 * rte_bbdev_op_data.offset can be different than the offset
935 	 * of the appended bytes
936 	 */
937 	rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
938 
939 	/* Rate-Matching */
940 	rm_req.E = e;
941 	rm_req.Ncb = enc->n_cb;
942 	rm_req.Qm = enc->q_m;
943 	rm_req.Zc = enc->z_c;
944 	rm_req.baseGraph = enc->basegraph;
945 	rm_req.input = q->adapter_output;
946 	rm_req.nLen = enc->n_filler;
947 	rm_req.nullIndex = parity_offset - enc->n_filler;
948 	rm_req.rvidx = enc->rv_index;
949 	rm_resp.output = q->deint_output;
950 
951 	if (bblib_LDPC_ratematch_5gnr(&rm_req, &rm_resp) != 0) {
952 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
953 		rte_bbdev_log(ERR, "Rate matching failed");
954 		return;
955 	}
956 
957 	/* RM SDK may provide non zero bits on last byte */
958 	if ((e % 8) != 0)
959 		q->deint_output[out_len-1] &= (1 << (e % 8)) - 1;
960 
961 	bblib_bit_reverse((int8_t *) q->deint_output, out_len << 3);
962 
963 	rte_memcpy(rm_out, q->deint_output, out_len);
964 	enc->output.length += out_len;
965 
966 #ifdef RTE_BBDEV_OFFLOAD_COST
967 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
968 #endif
969 #else
970 	RTE_SET_USED(q);
971 	RTE_SET_USED(op);
972 	RTE_SET_USED(e);
973 	RTE_SET_USED(m_in);
974 	RTE_SET_USED(m_out_head);
975 	RTE_SET_USED(m_out);
976 	RTE_SET_USED(in_offset);
977 	RTE_SET_USED(out_offset);
978 	RTE_SET_USED(seg_total_left);
979 	RTE_SET_USED(q_stats);
980 #endif
981 }
982 
983 static inline void
984 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
985 		struct rte_bbdev_stats *queue_stats)
986 {
987 	uint8_t c, r, crc24_bits = 0;
988 	uint16_t k, ncb;
989 	uint32_t e;
990 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
991 	uint16_t in_offset = enc->input.offset;
992 	uint16_t out_offset = enc->output.offset;
993 	struct rte_mbuf *m_in = enc->input.data;
994 	struct rte_mbuf *m_out = enc->output.data;
995 	struct rte_mbuf *m_out_head = enc->output.data;
996 	uint32_t in_length, mbuf_total_left = enc->input.length;
997 	uint16_t seg_total_left;
998 
999 	/* Clear op status */
1000 	op->status = 0;
1001 
1002 	if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1003 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1004 				mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
1005 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1006 		return;
1007 	}
1008 
1009 	if (m_in == NULL || m_out == NULL) {
1010 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1011 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1012 		return;
1013 	}
1014 
1015 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
1016 		(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
1017 		crc24_bits = 24;
1018 
1019 	if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1020 		c = enc->tb_params.c;
1021 		r = enc->tb_params.r;
1022 	} else {/* For Code Block mode */
1023 		c = 1;
1024 		r = 0;
1025 	}
1026 
1027 	while (mbuf_total_left > 0 && r < c) {
1028 
1029 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1030 
1031 		if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1032 			k = (r < enc->tb_params.c_neg) ?
1033 				enc->tb_params.k_neg : enc->tb_params.k_pos;
1034 			ncb = (r < enc->tb_params.c_neg) ?
1035 				enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
1036 			e = (r < enc->tb_params.cab) ?
1037 				enc->tb_params.ea : enc->tb_params.eb;
1038 		} else {
1039 			k = enc->cb_params.k;
1040 			ncb = enc->cb_params.ncb;
1041 			e = enc->cb_params.e;
1042 		}
1043 
1044 		process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
1045 				m_out, in_offset, out_offset, seg_total_left,
1046 				queue_stats);
1047 		/* Update total_left */
1048 		in_length = ((k - crc24_bits) >> 3);
1049 		mbuf_total_left -= in_length;
1050 		/* Update offsets for next CBs (if exist) */
1051 		in_offset += (k - crc24_bits) >> 3;
1052 		if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
1053 			out_offset += e >> 3;
1054 		else
1055 			out_offset += (k >> 3) * 3 + 2;
1056 
1057 		/* Update offsets */
1058 		if (seg_total_left == in_length) {
1059 			/* Go to the next mbuf */
1060 			m_in = m_in->next;
1061 			m_out = m_out->next;
1062 			in_offset = 0;
1063 			out_offset = 0;
1064 		}
1065 		r++;
1066 	}
1067 
1068 	/* check if all input data was processed */
1069 	if (mbuf_total_left != 0) {
1070 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1071 		rte_bbdev_log(ERR,
1072 				"Mismatch between mbuf length and included CBs sizes");
1073 	}
1074 }
1075 
1076 
1077 static inline void
1078 enqueue_ldpc_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
1079 		struct rte_bbdev_stats *queue_stats)
1080 {
1081 	uint8_t c, r, crc24_bits = 0;
1082 	uint32_t e;
1083 	struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1084 	uint16_t in_offset = enc->input.offset;
1085 	uint16_t out_offset = enc->output.offset;
1086 	struct rte_mbuf *m_in = enc->input.data;
1087 	struct rte_mbuf *m_out = enc->output.data;
1088 	struct rte_mbuf *m_out_head = enc->output.data;
1089 	uint32_t in_length, mbuf_total_left = enc->input.length;
1090 
1091 	uint16_t seg_total_left;
1092 
1093 	/* Clear op status */
1094 	op->status = 0;
1095 
1096 	if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1097 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1098 				mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
1099 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1100 		return;
1101 	}
1102 
1103 	if (m_in == NULL || m_out == NULL) {
1104 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1105 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1106 		return;
1107 	}
1108 
1109 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
1110 		(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
1111 		crc24_bits = 24;
1112 
1113 	if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1114 		c = enc->tb_params.c;
1115 		r = enc->tb_params.r;
1116 	} else { /* For Code Block mode */
1117 		c = 1;
1118 		r = 0;
1119 	}
1120 
1121 	while (mbuf_total_left > 0 && r < c) {
1122 
1123 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1124 
1125 		if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1126 			e = (r < enc->tb_params.cab) ?
1127 				enc->tb_params.ea : enc->tb_params.eb;
1128 		} else {
1129 			e = enc->cb_params.e;
1130 		}
1131 
1132 		process_ldpc_enc_cb(q, op, e, m_in, m_out_head,
1133 				m_out, in_offset, out_offset, seg_total_left,
1134 				queue_stats);
1135 		/* Update total_left */
1136 		in_length = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1137 		in_length = ((in_length - crc24_bits - enc->n_filler) >> 3);
1138 		mbuf_total_left -= in_length;
1139 		/* Update offsets for next CBs (if exist) */
1140 		in_offset += in_length;
1141 		out_offset += (e + 7) >> 3;
1142 
1143 		/* Update offsets */
1144 		if (seg_total_left == in_length) {
1145 			/* Go to the next mbuf */
1146 			m_in = m_in->next;
1147 			m_out = m_out->next;
1148 			in_offset = 0;
1149 			out_offset = 0;
1150 		}
1151 		r++;
1152 	}
1153 
1154 	/* check if all input data was processed */
1155 	if (mbuf_total_left != 0) {
1156 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1157 		rte_bbdev_log(ERR,
1158 				"Mismatch between mbuf length and included CBs sizes %d",
1159 				mbuf_total_left);
1160 	}
1161 }
1162 
1163 static inline uint16_t
1164 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
1165 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1166 {
1167 	uint16_t i;
1168 #ifdef RTE_BBDEV_OFFLOAD_COST
1169 	queue_stats->acc_offload_cycles = 0;
1170 #endif
1171 
1172 	for (i = 0; i < nb_ops; ++i)
1173 		enqueue_enc_one_op(q, ops[i], queue_stats);
1174 
1175 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1176 			NULL);
1177 }
1178 
1179 static inline uint16_t
1180 enqueue_ldpc_enc_all_ops(struct turbo_sw_queue *q,
1181 		struct rte_bbdev_enc_op **ops,
1182 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1183 {
1184 	uint16_t i;
1185 #ifdef RTE_BBDEV_OFFLOAD_COST
1186 	queue_stats->acc_offload_cycles = 0;
1187 #endif
1188 
1189 	for (i = 0; i < nb_ops; ++i)
1190 		enqueue_ldpc_enc_one_op(q, ops[i], queue_stats);
1191 
1192 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1193 			NULL);
1194 }
1195 
1196 #ifdef RTE_BBDEV_SDK_AVX2
1197 static inline void
1198 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
1199 		uint16_t ncb)
1200 {
1201 	uint16_t d = k + 4;
1202 	uint16_t kpi = ncb / 3;
1203 	uint16_t nd = kpi - d;
1204 
1205 	rte_memcpy(&out[nd], in, d);
1206 	rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
1207 	rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
1208 }
1209 #endif
1210 
1211 static inline void
1212 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1213 		uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
1214 		struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1215 		uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
1216 		uint16_t crc24_overlap, uint16_t in_length,
1217 		struct rte_bbdev_stats *q_stats)
1218 {
1219 #ifdef RTE_BBDEV_SDK_AVX2
1220 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1221 	int ret;
1222 #else
1223 	RTE_SET_USED(in_length);
1224 #endif
1225 	int32_t k_idx;
1226 	int32_t iter_cnt;
1227 	uint8_t *in, *out, *adapter_input;
1228 	int32_t ncb, ncb_without_null;
1229 	struct bblib_turbo_adapter_ul_response adapter_resp;
1230 	struct bblib_turbo_adapter_ul_request adapter_req;
1231 	struct bblib_turbo_decoder_request turbo_req;
1232 	struct bblib_turbo_decoder_response turbo_resp;
1233 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1234 #ifdef RTE_BBDEV_OFFLOAD_COST
1235 	uint64_t start_time;
1236 #else
1237 	RTE_SET_USED(q_stats);
1238 #endif
1239 
1240 	k_idx = compute_idx(k);
1241 
1242 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1243 	ret = is_dec_input_valid(k_idx, kw, in_length);
1244 	if (ret != 0) {
1245 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1246 		return;
1247 	}
1248 #endif
1249 
1250 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1251 	ncb = kw;
1252 	ncb_without_null = (k + 4) * 3;
1253 
1254 	if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
1255 		struct bblib_deinterleave_ul_request deint_req;
1256 		struct bblib_deinterleave_ul_response deint_resp;
1257 
1258 		deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
1259 		deint_req.pharqbuffer = in;
1260 		deint_req.ncb = ncb;
1261 		deint_resp.pinteleavebuffer = q->deint_output;
1262 
1263 #ifdef RTE_BBDEV_OFFLOAD_COST
1264 	start_time = rte_rdtsc_precise();
1265 #endif
1266 		/* Sub-block De-Interleaving */
1267 		bblib_deinterleave_ul(&deint_req, &deint_resp);
1268 #ifdef RTE_BBDEV_OFFLOAD_COST
1269 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1270 #endif
1271 	} else
1272 		move_padding_bytes(in, q->deint_output, k, ncb);
1273 
1274 	adapter_input = q->deint_output;
1275 
1276 	if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
1277 		adapter_req.isinverted = 1;
1278 	else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
1279 		adapter_req.isinverted = 0;
1280 	else {
1281 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
1282 		rte_bbdev_log(ERR, "LLR format wasn't specified");
1283 		return;
1284 	}
1285 
1286 	adapter_req.ncb = ncb_without_null;
1287 	adapter_req.pinteleavebuffer = adapter_input;
1288 	adapter_resp.pharqout = q->adapter_output;
1289 
1290 #ifdef RTE_BBDEV_OFFLOAD_COST
1291 	start_time = rte_rdtsc_precise();
1292 #endif
1293 	/* Turbo decode adaptation */
1294 	bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
1295 #ifdef RTE_BBDEV_OFFLOAD_COST
1296 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1297 #endif
1298 
1299 	out = (uint8_t *)mbuf_append(m_out_head, m_out,
1300 			((k - crc24_overlap) >> 3));
1301 	if (out == NULL) {
1302 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1303 		rte_bbdev_log(ERR, "Too little space in output mbuf");
1304 		return;
1305 	}
1306 	/* rte_bbdev_op_data.offset can be different than the offset of the
1307 	 * appended bytes
1308 	 */
1309 	out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1310 	if (check_crc_24b)
1311 		turbo_req.c = c + 1;
1312 	else
1313 		turbo_req.c = c;
1314 	turbo_req.input = (int8_t *)q->adapter_output;
1315 	turbo_req.k = k;
1316 	turbo_req.k_idx = k_idx;
1317 	turbo_req.max_iter_num = dec->iter_max;
1318 	turbo_req.early_term_disable = !check_bit(dec->op_flags,
1319 			RTE_BBDEV_TURBO_EARLY_TERMINATION);
1320 	turbo_resp.ag_buf = q->ag;
1321 	turbo_resp.cb_buf = q->code_block;
1322 	turbo_resp.output = out;
1323 
1324 #ifdef RTE_BBDEV_OFFLOAD_COST
1325 	start_time = rte_rdtsc_precise();
1326 #endif
1327 	/* Turbo decode */
1328 	iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
1329 #ifdef RTE_BBDEV_OFFLOAD_COST
1330 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1331 #endif
1332 	dec->hard_output.length += (k >> 3);
1333 
1334 	if (iter_cnt > 0) {
1335 		/* Temporary solution for returned iter_count from SDK */
1336 		iter_cnt = (iter_cnt - 1) >> 1;
1337 		dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
1338 	} else {
1339 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1340 		rte_bbdev_log(ERR, "Turbo Decoder failed");
1341 		return;
1342 	}
1343 #else
1344 	RTE_SET_USED(q);
1345 	RTE_SET_USED(op);
1346 	RTE_SET_USED(c);
1347 	RTE_SET_USED(k);
1348 	RTE_SET_USED(kw);
1349 	RTE_SET_USED(m_in);
1350 	RTE_SET_USED(m_out_head);
1351 	RTE_SET_USED(m_out);
1352 	RTE_SET_USED(in_offset);
1353 	RTE_SET_USED(out_offset);
1354 	RTE_SET_USED(check_crc_24b);
1355 	RTE_SET_USED(crc24_overlap);
1356 	RTE_SET_USED(in_length);
1357 	RTE_SET_USED(q_stats);
1358 #endif
1359 }
1360 
1361 static inline void
1362 process_ldpc_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1363 		uint8_t c, uint16_t out_length, uint32_t e,
1364 		struct rte_mbuf *m_in,
1365 		struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1366 		struct rte_mbuf *m_harq_in,
1367 		struct rte_mbuf *m_harq_out_head, struct rte_mbuf *m_harq_out,
1368 		uint16_t in_offset, uint16_t out_offset,
1369 		uint16_t harq_in_offset, uint16_t harq_out_offset,
1370 		bool check_crc_24b,
1371 		uint16_t crc24_overlap, uint16_t in_length,
1372 		struct rte_bbdev_stats *q_stats)
1373 {
1374 #ifdef RTE_BBDEV_SDK_AVX512
1375 	RTE_SET_USED(in_length);
1376 	RTE_SET_USED(c);
1377 	uint8_t *in, *out, *harq_in, *harq_out, *adapter_input;
1378 	struct bblib_rate_dematching_5gnr_request derm_req;
1379 	struct bblib_rate_dematching_5gnr_response derm_resp;
1380 	struct bblib_ldpc_decoder_5gnr_request dec_req;
1381 	struct bblib_ldpc_decoder_5gnr_response dec_resp;
1382 	struct bblib_crc_request crc_req;
1383 	struct bblib_crc_response crc_resp;
1384 	struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1385 	uint16_t K, parity_offset, sys_cols, outLenWithCrc;
1386 	int16_t deRmOutSize, numRows;
1387 
1388 	/* Compute some LDPC BG lengths */
1389 	outLenWithCrc = out_length + (crc24_overlap >> 3);
1390 	sys_cols = (dec->basegraph == 1) ? 22 : 10;
1391 	K = sys_cols * dec->z_c;
1392 	parity_offset = K - 2 * dec->z_c;
1393 
1394 #ifdef RTE_BBDEV_OFFLOAD_COST
1395 	uint64_t start_time = rte_rdtsc_precise();
1396 #else
1397 	RTE_SET_USED(q_stats);
1398 #endif
1399 
1400 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1401 
1402 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1403 		/**
1404 		 *  Single contiguous block from the first LLR of the
1405 		 *  circular buffer.
1406 		 */
1407 		harq_in = NULL;
1408 		if (m_harq_in != NULL)
1409 			harq_in = rte_pktmbuf_mtod_offset(m_harq_in,
1410 				uint8_t *, harq_in_offset);
1411 		if (harq_in == NULL) {
1412 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1413 			rte_bbdev_log(ERR, "No space in harq input mbuf");
1414 			return;
1415 		}
1416 		uint16_t harq_in_length = RTE_MIN(
1417 				dec->harq_combined_input.length,
1418 				(uint32_t) dec->n_cb);
1419 		memset(q->ag + harq_in_length, 0,
1420 				dec->n_cb - harq_in_length);
1421 		rte_memcpy(q->ag, harq_in, harq_in_length);
1422 	}
1423 
1424 	derm_req.p_in = (int8_t *) in;
1425 	derm_req.p_harq = q->ag; /* This doesn't include the filler bits */
1426 	derm_req.base_graph = dec->basegraph;
1427 	derm_req.zc = dec->z_c;
1428 	derm_req.ncb = dec->n_cb;
1429 	derm_req.e = e;
1430 	derm_req.k0 = 0; /* Actual output from SDK */
1431 	derm_req.isretx = check_bit(dec->op_flags,
1432 			RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1433 	derm_req.rvid = dec->rv_index;
1434 	derm_req.modulation_order = dec->q_m;
1435 	derm_req.start_null_index = parity_offset - dec->n_filler;
1436 	derm_req.num_of_null = dec->n_filler;
1437 
1438 	bblib_rate_dematching_5gnr(&derm_req, &derm_resp);
1439 
1440 	/* Compute RM out size and number of rows */
1441 	deRmOutSize = RTE_MIN(
1442 			derm_req.k0 + derm_req.e -
1443 			((derm_req.k0 < derm_req.start_null_index) ?
1444 					0 : dec->n_filler),
1445 			dec->n_cb - dec->n_filler);
1446 	if (m_harq_in != NULL)
1447 		deRmOutSize = RTE_MAX(deRmOutSize,
1448 				RTE_MIN(dec->n_cb - dec->n_filler,
1449 						m_harq_in->data_len));
1450 	numRows = ((deRmOutSize + dec->n_filler + dec->z_c - 1) / dec->z_c)
1451 			- sys_cols + 2;
1452 	numRows = RTE_MAX(4, numRows);
1453 
1454 	/* get output data starting address */
1455 	out = (uint8_t *)mbuf_append(m_out_head, m_out, out_length);
1456 	if (out == NULL) {
1457 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1458 		rte_bbdev_log(ERR,
1459 				"Too little space in LDPC decoder output mbuf");
1460 		return;
1461 	}
1462 
1463 	/* rte_bbdev_op_data.offset can be different than the offset
1464 	 * of the appended bytes
1465 	 */
1466 	out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1467 	adapter_input = q->enc_out;
1468 
1469 	dec_req.Zc = dec->z_c;
1470 	dec_req.baseGraph = dec->basegraph;
1471 	dec_req.nRows = numRows;
1472 	dec_req.numChannelLlrs = deRmOutSize;
1473 	dec_req.varNodes = derm_req.p_harq;
1474 	dec_req.numFillerBits = dec->n_filler;
1475 	dec_req.maxIterations = dec->iter_max;
1476 	dec_req.enableEarlyTermination = check_bit(dec->op_flags,
1477 			RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1478 	dec_resp.varNodes = (int16_t *) q->adapter_output;
1479 	dec_resp.compactedMessageBytes = q->enc_out;
1480 
1481 	bblib_ldpc_decoder_5gnr(&dec_req, &dec_resp);
1482 
1483 	dec->iter_count = RTE_MAX(dec_resp.iterationAtTermination,
1484 			dec->iter_count);
1485 	if (!dec_resp.parityPassedAtTermination)
1486 		op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
1487 
1488 	bblib_bit_reverse((int8_t *) q->enc_out, outLenWithCrc << 3);
1489 
1490 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK) ||
1491 			check_bit(dec->op_flags,
1492 					RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK)) {
1493 		crc_req.data = adapter_input;
1494 		crc_req.len  = K - dec->n_filler - 24;
1495 		crc_resp.check_passed = false;
1496 		crc_resp.data = adapter_input;
1497 		if (check_crc_24b)
1498 			bblib_lte_crc24b_check(&crc_req, &crc_resp);
1499 		else
1500 			bblib_lte_crc24a_check(&crc_req, &crc_resp);
1501 		if (!crc_resp.check_passed)
1502 			op->status |= 1 << RTE_BBDEV_CRC_ERROR;
1503 	} else if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_16_CHECK)) {
1504 		crc_req.data = adapter_input;
1505 		crc_req.len  = K - dec->n_filler - 16;
1506 		crc_resp.check_passed = false;
1507 		crc_resp.data = adapter_input;
1508 		bblib_lte_crc16_check(&crc_req, &crc_resp);
1509 		if (!crc_resp.check_passed)
1510 			op->status |= 1 << RTE_BBDEV_CRC_ERROR;
1511 	}
1512 
1513 #ifdef RTE_BBDEV_OFFLOAD_COST
1514 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1515 #endif
1516 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1517 		harq_out = NULL;
1518 		if (m_harq_out != NULL) {
1519 			/* Initialize HARQ data length since we overwrite */
1520 			m_harq_out->data_len = 0;
1521 			/* Check there is enough space
1522 			 * in the HARQ outbound buffer
1523 			 */
1524 			harq_out = (uint8_t *)mbuf_append(m_harq_out_head,
1525 					m_harq_out, deRmOutSize);
1526 		}
1527 		if (harq_out == NULL) {
1528 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1529 			rte_bbdev_log(ERR, "No space in HARQ output mbuf");
1530 			return;
1531 		}
1532 		/* get output data starting address and overwrite the data */
1533 		harq_out = rte_pktmbuf_mtod_offset(m_harq_out, uint8_t *,
1534 				harq_out_offset);
1535 		rte_memcpy(harq_out, derm_req.p_harq, deRmOutSize);
1536 		dec->harq_combined_output.length += deRmOutSize;
1537 	}
1538 
1539 	rte_memcpy(out, adapter_input, out_length);
1540 	dec->hard_output.length += out_length;
1541 #else
1542 	RTE_SET_USED(q);
1543 	RTE_SET_USED(op);
1544 	RTE_SET_USED(c);
1545 	RTE_SET_USED(out_length);
1546 	RTE_SET_USED(e);
1547 	RTE_SET_USED(m_in);
1548 	RTE_SET_USED(m_out_head);
1549 	RTE_SET_USED(m_out);
1550 	RTE_SET_USED(m_harq_in);
1551 	RTE_SET_USED(m_harq_out_head);
1552 	RTE_SET_USED(m_harq_out);
1553 	RTE_SET_USED(harq_in_offset);
1554 	RTE_SET_USED(harq_out_offset);
1555 	RTE_SET_USED(in_offset);
1556 	RTE_SET_USED(out_offset);
1557 	RTE_SET_USED(check_crc_24b);
1558 	RTE_SET_USED(crc24_overlap);
1559 	RTE_SET_USED(in_length);
1560 	RTE_SET_USED(q_stats);
1561 #endif
1562 }
1563 
1564 
1565 static inline void
1566 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1567 		struct rte_bbdev_stats *queue_stats)
1568 {
1569 	uint8_t c, r = 0;
1570 	uint16_t kw, k = 0;
1571 	uint16_t crc24_overlap = 0;
1572 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1573 	struct rte_mbuf *m_in = dec->input.data;
1574 	struct rte_mbuf *m_out = dec->hard_output.data;
1575 	struct rte_mbuf *m_out_head = dec->hard_output.data;
1576 	uint16_t in_offset = dec->input.offset;
1577 	uint16_t out_offset = dec->hard_output.offset;
1578 	uint32_t mbuf_total_left = dec->input.length;
1579 	uint16_t seg_total_left;
1580 
1581 	/* Clear op status */
1582 	op->status = 0;
1583 
1584 	if (m_in == NULL || m_out == NULL) {
1585 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1586 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1587 		return;
1588 	}
1589 
1590 	if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1591 		c = dec->tb_params.c;
1592 	} else { /* For Code Block mode */
1593 		k = dec->cb_params.k;
1594 		c = 1;
1595 	}
1596 
1597 	if ((c > 1) && !check_bit(dec->op_flags,
1598 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1599 		crc24_overlap = 24;
1600 
1601 	while (mbuf_total_left > 0) {
1602 		if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1603 			k = (r < dec->tb_params.c_neg) ?
1604 				dec->tb_params.k_neg : dec->tb_params.k_pos;
1605 
1606 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1607 
1608 		/* Calculates circular buffer size (Kw).
1609 		 * According to 3gpp 36.212 section 5.1.4.2
1610 		 *   Kw = 3 * Kpi,
1611 		 * where:
1612 		 *   Kpi = nCol * nRow
1613 		 * where nCol is 32 and nRow can be calculated from:
1614 		 *   D =< nCol * nRow
1615 		 * where D is the size of each output from turbo encoder block
1616 		 * (k + 4).
1617 		 */
1618 		kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1619 
1620 		process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1621 				in_offset, out_offset, check_bit(dec->op_flags,
1622 				RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1623 				seg_total_left, queue_stats);
1624 
1625 		/* To keep CRC24 attached to end of Code block, use
1626 		 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1627 		 * removed by default once verified.
1628 		 */
1629 
1630 		mbuf_total_left -= kw;
1631 
1632 		/* Update offsets */
1633 		if (seg_total_left == kw) {
1634 			/* Go to the next mbuf */
1635 			m_in = m_in->next;
1636 			m_out = m_out->next;
1637 			in_offset = 0;
1638 			out_offset = 0;
1639 		} else {
1640 			/* Update offsets for next CBs (if exist) */
1641 			in_offset += kw;
1642 			out_offset += ((k - crc24_overlap) >> 3);
1643 		}
1644 		r++;
1645 	}
1646 }
1647 
1648 static inline void
1649 enqueue_ldpc_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1650 		struct rte_bbdev_stats *queue_stats)
1651 {
1652 	uint8_t c, r = 0;
1653 	uint32_t e;
1654 	uint16_t out_length, crc24_overlap = 0;
1655 	struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1656 	struct rte_mbuf *m_in = dec->input.data;
1657 	struct rte_mbuf *m_harq_in = dec->harq_combined_input.data;
1658 	struct rte_mbuf *m_harq_out = dec->harq_combined_output.data;
1659 	struct rte_mbuf *m_harq_out_head = dec->harq_combined_output.data;
1660 	struct rte_mbuf *m_out = dec->hard_output.data;
1661 	struct rte_mbuf *m_out_head = dec->hard_output.data;
1662 	uint16_t in_offset = dec->input.offset;
1663 	uint16_t harq_in_offset = dec->harq_combined_input.offset;
1664 	uint16_t harq_out_offset = dec->harq_combined_output.offset;
1665 	uint16_t out_offset = dec->hard_output.offset;
1666 	uint32_t mbuf_total_left = dec->input.length;
1667 	uint16_t seg_total_left;
1668 
1669 	/* Clear op status */
1670 	op->status = 0;
1671 
1672 	if (m_in == NULL || m_out == NULL) {
1673 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1674 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1675 		return;
1676 	}
1677 
1678 	if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1679 		c = dec->tb_params.c;
1680 		e = dec->tb_params.ea;
1681 	} else { /* For Code Block mode */
1682 		c = 1;
1683 		e = dec->cb_params.e;
1684 	}
1685 
1686 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1687 		crc24_overlap = 24;
1688 
1689 	out_length = (dec->basegraph == 1 ? 22 : 10) * dec->z_c; /* K */
1690 	out_length = ((out_length - crc24_overlap - dec->n_filler) >> 3);
1691 
1692 	while (mbuf_total_left > 0) {
1693 		if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1694 			e = (r < dec->tb_params.cab) ?
1695 				dec->tb_params.ea : dec->tb_params.eb;
1696 		/* Special case handling when overusing mbuf */
1697 		if (e < RTE_BBDEV_LDPC_E_MAX_MBUF)
1698 			seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1699 		else
1700 			seg_total_left = e;
1701 
1702 		process_ldpc_dec_cb(q, op, c, out_length, e,
1703 				m_in, m_out_head, m_out,
1704 				m_harq_in, m_harq_out_head, m_harq_out,
1705 				in_offset, out_offset, harq_in_offset,
1706 				harq_out_offset,
1707 				check_bit(dec->op_flags,
1708 				RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK),
1709 				crc24_overlap,
1710 				seg_total_left, queue_stats);
1711 
1712 		/* To keep CRC24 attached to end of Code block, use
1713 		 * RTE_BBDEV_LDPC_DEC_TB_CRC_24B_KEEP flag as it
1714 		 * removed by default once verified.
1715 		 */
1716 
1717 		mbuf_total_left -= e;
1718 
1719 		/* Update offsets */
1720 		if (seg_total_left == e) {
1721 			/* Go to the next mbuf */
1722 			m_in = m_in->next;
1723 			m_out = m_out->next;
1724 			if (m_harq_in != NULL)
1725 				m_harq_in = m_harq_in->next;
1726 			if (m_harq_out != NULL)
1727 				m_harq_out = m_harq_out->next;
1728 			in_offset = 0;
1729 			out_offset = 0;
1730 			harq_in_offset = 0;
1731 			harq_out_offset = 0;
1732 		} else {
1733 			/* Update offsets for next CBs (if exist) */
1734 			in_offset += e;
1735 			out_offset += out_length;
1736 		}
1737 		r++;
1738 	}
1739 }
1740 
1741 static inline uint16_t
1742 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1743 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1744 {
1745 	uint16_t i;
1746 #ifdef RTE_BBDEV_OFFLOAD_COST
1747 	queue_stats->acc_offload_cycles = 0;
1748 #endif
1749 
1750 	for (i = 0; i < nb_ops; ++i)
1751 		enqueue_dec_one_op(q, ops[i], queue_stats);
1752 
1753 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1754 			NULL);
1755 }
1756 
1757 static inline uint16_t
1758 enqueue_ldpc_dec_all_ops(struct turbo_sw_queue *q,
1759 		struct rte_bbdev_dec_op **ops,
1760 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1761 {
1762 	uint16_t i;
1763 #ifdef RTE_BBDEV_OFFLOAD_COST
1764 	queue_stats->acc_offload_cycles = 0;
1765 #endif
1766 
1767 	for (i = 0; i < nb_ops; ++i)
1768 		enqueue_ldpc_dec_one_op(q, ops[i], queue_stats);
1769 
1770 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1771 			NULL);
1772 }
1773 
1774 /* Enqueue burst */
1775 static uint16_t
1776 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1777 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1778 {
1779 	void *queue = q_data->queue_private;
1780 	struct turbo_sw_queue *q = queue;
1781 	uint16_t nb_enqueued = 0;
1782 
1783 	nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1784 
1785 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1786 	q_data->queue_stats.enqueued_count += nb_enqueued;
1787 
1788 	return nb_enqueued;
1789 }
1790 
1791 /* Enqueue burst */
1792 static uint16_t
1793 enqueue_ldpc_enc_ops(struct rte_bbdev_queue_data *q_data,
1794 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1795 {
1796 	void *queue = q_data->queue_private;
1797 	struct turbo_sw_queue *q = queue;
1798 	uint16_t nb_enqueued = 0;
1799 
1800 	nb_enqueued = enqueue_ldpc_enc_all_ops(
1801 			q, ops, nb_ops, &q_data->queue_stats);
1802 
1803 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1804 	q_data->queue_stats.enqueued_count += nb_enqueued;
1805 
1806 	return nb_enqueued;
1807 }
1808 
1809 /* Enqueue burst */
1810 static uint16_t
1811 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1812 		 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1813 {
1814 	void *queue = q_data->queue_private;
1815 	struct turbo_sw_queue *q = queue;
1816 	uint16_t nb_enqueued = 0;
1817 
1818 	nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1819 
1820 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1821 	q_data->queue_stats.enqueued_count += nb_enqueued;
1822 
1823 	return nb_enqueued;
1824 }
1825 
1826 /* Enqueue burst */
1827 static uint16_t
1828 enqueue_ldpc_dec_ops(struct rte_bbdev_queue_data *q_data,
1829 		 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1830 {
1831 	void *queue = q_data->queue_private;
1832 	struct turbo_sw_queue *q = queue;
1833 	uint16_t nb_enqueued = 0;
1834 
1835 	nb_enqueued = enqueue_ldpc_dec_all_ops(q, ops, nb_ops,
1836 			&q_data->queue_stats);
1837 
1838 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1839 	q_data->queue_stats.enqueued_count += nb_enqueued;
1840 
1841 	return nb_enqueued;
1842 }
1843 
1844 /* Dequeue decode burst */
1845 static uint16_t
1846 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1847 		struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1848 {
1849 	struct turbo_sw_queue *q = q_data->queue_private;
1850 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1851 			(void **)ops, nb_ops, NULL);
1852 	q_data->queue_stats.dequeued_count += nb_dequeued;
1853 
1854 	return nb_dequeued;
1855 }
1856 
1857 /* Dequeue encode burst */
1858 static uint16_t
1859 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1860 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1861 {
1862 	struct turbo_sw_queue *q = q_data->queue_private;
1863 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1864 			(void **)ops, nb_ops, NULL);
1865 	q_data->queue_stats.dequeued_count += nb_dequeued;
1866 
1867 	return nb_dequeued;
1868 }
1869 
1870 /* Parse 16bit integer from string argument */
1871 static inline int
1872 parse_u16_arg(const char *key, const char *value, void *extra_args)
1873 {
1874 	uint16_t *u16 = extra_args;
1875 	unsigned int long result;
1876 
1877 	if ((value == NULL) || (extra_args == NULL))
1878 		return -EINVAL;
1879 	errno = 0;
1880 	result = strtoul(value, NULL, 0);
1881 	if ((result >= (1 << 16)) || (errno != 0)) {
1882 		rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1883 		return -ERANGE;
1884 	}
1885 	*u16 = (uint16_t)result;
1886 	return 0;
1887 }
1888 
1889 /* Parse parameters used to create device */
1890 static int
1891 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1892 {
1893 	struct rte_kvargs *kvlist = NULL;
1894 	int ret = 0;
1895 
1896 	if (params == NULL)
1897 		return -EINVAL;
1898 	if (input_args) {
1899 		kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1900 		if (kvlist == NULL)
1901 			return -EFAULT;
1902 
1903 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1904 					&parse_u16_arg, &params->queues_num);
1905 		if (ret < 0)
1906 			goto exit;
1907 
1908 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1909 					&parse_u16_arg, &params->socket_id);
1910 		if (ret < 0)
1911 			goto exit;
1912 
1913 		if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1914 			rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1915 					RTE_MAX_NUMA_NODES);
1916 			goto exit;
1917 		}
1918 	}
1919 
1920 exit:
1921 	if (kvlist)
1922 		rte_kvargs_free(kvlist);
1923 	return ret;
1924 }
1925 
1926 /* Create device */
1927 static int
1928 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1929 		struct turbo_sw_params *init_params)
1930 {
1931 	struct rte_bbdev *bbdev;
1932 	const char *name = rte_vdev_device_name(vdev);
1933 
1934 	bbdev = rte_bbdev_allocate(name);
1935 	if (bbdev == NULL)
1936 		return -ENODEV;
1937 
1938 	bbdev->data->dev_private = rte_zmalloc_socket(name,
1939 			sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1940 			init_params->socket_id);
1941 	if (bbdev->data->dev_private == NULL) {
1942 		rte_bbdev_release(bbdev);
1943 		return -ENOMEM;
1944 	}
1945 
1946 	bbdev->dev_ops = &pmd_ops;
1947 	bbdev->device = &vdev->device;
1948 	bbdev->data->socket_id = init_params->socket_id;
1949 	bbdev->intr_handle = NULL;
1950 
1951 	/* register rx/tx burst functions for data path */
1952 	bbdev->dequeue_enc_ops = dequeue_enc_ops;
1953 	bbdev->dequeue_dec_ops = dequeue_dec_ops;
1954 	bbdev->enqueue_enc_ops = enqueue_enc_ops;
1955 	bbdev->enqueue_dec_ops = enqueue_dec_ops;
1956 	bbdev->dequeue_ldpc_enc_ops = dequeue_enc_ops;
1957 	bbdev->dequeue_ldpc_dec_ops = dequeue_dec_ops;
1958 	bbdev->enqueue_ldpc_enc_ops = enqueue_ldpc_enc_ops;
1959 	bbdev->enqueue_ldpc_dec_ops = enqueue_ldpc_dec_ops;
1960 	((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1961 			init_params->queues_num;
1962 
1963 	return 0;
1964 }
1965 
1966 /* Initialise device */
1967 static int
1968 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1969 {
1970 	struct turbo_sw_params init_params = {
1971 		rte_socket_id(),
1972 		RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1973 	};
1974 	const char *name;
1975 	const char *input_args;
1976 
1977 	if (vdev == NULL)
1978 		return -EINVAL;
1979 
1980 	name = rte_vdev_device_name(vdev);
1981 	if (name == NULL)
1982 		return -EINVAL;
1983 	input_args = rte_vdev_device_args(vdev);
1984 	parse_turbo_sw_params(&init_params, input_args);
1985 
1986 	rte_bbdev_log_debug(
1987 			"Initialising %s on NUMA node %d with max queues: %d\n",
1988 			name, init_params.socket_id, init_params.queues_num);
1989 
1990 	return turbo_sw_bbdev_create(vdev, &init_params);
1991 }
1992 
1993 /* Uninitialise device */
1994 static int
1995 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1996 {
1997 	struct rte_bbdev *bbdev;
1998 	const char *name;
1999 
2000 	if (vdev == NULL)
2001 		return -EINVAL;
2002 
2003 	name = rte_vdev_device_name(vdev);
2004 	if (name == NULL)
2005 		return -EINVAL;
2006 
2007 	bbdev = rte_bbdev_get_named_dev(name);
2008 	if (bbdev == NULL)
2009 		return -EINVAL;
2010 
2011 	rte_free(bbdev->data->dev_private);
2012 
2013 	return rte_bbdev_release(bbdev);
2014 }
2015 
2016 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
2017 	.probe = turbo_sw_bbdev_probe,
2018 	.remove = turbo_sw_bbdev_remove
2019 };
2020 
2021 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
2022 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
2023 	TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
2024 	TURBO_SW_SOCKET_ID_ARG"=<int>");
2025 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
2026