xref: /dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c (revision c4b0d663763dc628e662b87b5f679fe375fede43)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <string.h>
6 
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13 
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16 
17 #ifdef RTE_BBDEV_SDK_AVX2
18 #include <phy_turbo.h>
19 #include <phy_crc.h>
20 #include <phy_rate_match.h>
21 #endif
22 
23 #define DRIVER_NAME baseband_turbo_sw
24 
25 /* Turbo SW PMD logging ID */
26 static int bbdev_turbo_sw_logtype;
27 
28 /* Helper macro for logging */
29 #define rte_bbdev_log(level, fmt, ...) \
30 	rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
31 		##__VA_ARGS__)
32 
33 #define rte_bbdev_log_debug(fmt, ...) \
34 	rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
35 		##__VA_ARGS__)
36 
37 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) + 1) * 48)
38 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
39 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_TURBO_MAX_CB_SIZE + 4) * 48)
40 
41 /* private data structure */
42 struct bbdev_private {
43 	unsigned int max_nb_queues;  /**< Max number of queues */
44 };
45 
46 /*  Initialisation params structure that can be used by Turbo SW driver */
47 struct turbo_sw_params {
48 	int socket_id;  /*< Turbo SW device socket */
49 	uint16_t queues_num;  /*< Turbo SW device queues number */
50 };
51 
52 /* Accecptable params for Turbo SW devices */
53 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
54 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
55 
56 static const char * const turbo_sw_valid_params[] = {
57 	TURBO_SW_MAX_NB_QUEUES_ARG,
58 	TURBO_SW_SOCKET_ID_ARG
59 };
60 
61 /* queue */
62 struct turbo_sw_queue {
63 	/* Ring for processed (encoded/decoded) operations which are ready to
64 	 * be dequeued.
65 	 */
66 	struct rte_ring *processed_pkts;
67 	/* Stores input for turbo encoder (used when CRC attachment is
68 	 * performed
69 	 */
70 	uint8_t *enc_in;
71 	/* Stores output from turbo encoder */
72 	uint8_t *enc_out;
73 	/* Alpha gamma buf for bblib_turbo_decoder() function */
74 	int8_t *ag;
75 	/* Temp buf for bblib_turbo_decoder() function */
76 	uint16_t *code_block;
77 	/* Input buf for bblib_rate_dematching_lte() function */
78 	uint8_t *deint_input;
79 	/* Output buf for bblib_rate_dematching_lte() function */
80 	uint8_t *deint_output;
81 	/* Output buf for bblib_turbodec_adapter_lte() function */
82 	uint8_t *adapter_output;
83 	/* Operation type of this queue */
84 	enum rte_bbdev_op_type type;
85 } __rte_cache_aligned;
86 
87 #ifdef RTE_BBDEV_SDK_AVX2
88 static inline char *
89 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
90 {
91 	if (unlikely(len > rte_pktmbuf_tailroom(m)))
92 		return NULL;
93 
94 	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
95 	m->data_len = (uint16_t)(m->data_len + len);
96 	m_head->pkt_len  = (m_head->pkt_len + len);
97 	return tail;
98 }
99 
100 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
101 static inline int32_t
102 compute_idx(uint16_t k)
103 {
104 	int32_t result = 0;
105 
106 	if (k < RTE_BBDEV_TURBO_MIN_CB_SIZE || k > RTE_BBDEV_TURBO_MAX_CB_SIZE)
107 		return -1;
108 
109 	if (k > 2048) {
110 		if ((k - 2048) % 64 != 0)
111 			result = -1;
112 
113 		result = 124 + (k - 2048) / 64;
114 	} else if (k <= 512) {
115 		if ((k - 40) % 8 != 0)
116 			result = -1;
117 
118 		result = (k - 40) / 8 + 1;
119 	} else if (k <= 1024) {
120 		if ((k - 512) % 16 != 0)
121 			result = -1;
122 
123 		result = 60 + (k - 512) / 16;
124 	} else { /* 1024 < k <= 2048 */
125 		if ((k - 1024) % 32 != 0)
126 			result = -1;
127 
128 		result = 92 + (k - 1024) / 32;
129 	}
130 
131 	return result;
132 }
133 #endif
134 
135 /* Read flag value 0/1 from bitmap */
136 static inline bool
137 check_bit(uint32_t bitmap, uint32_t bitmask)
138 {
139 	return bitmap & bitmask;
140 }
141 
142 /* Get device info */
143 static void
144 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
145 {
146 	struct bbdev_private *internals = dev->data->dev_private;
147 
148 	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
149 #ifdef RTE_BBDEV_SDK_AVX2
150 		{
151 			.type = RTE_BBDEV_OP_TURBO_DEC,
152 			.cap.turbo_dec = {
153 				.capability_flags =
154 					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
155 					RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
156 					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
157 					RTE_BBDEV_TURBO_CRC_TYPE_24B |
158 					RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
159 					RTE_BBDEV_TURBO_EARLY_TERMINATION,
160 				.max_llr_modulus = 16,
161 				.num_buffers_src =
162 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
163 				.num_buffers_hard_out =
164 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
165 				.num_buffers_soft_out = 0,
166 			}
167 		},
168 		{
169 			.type   = RTE_BBDEV_OP_TURBO_ENC,
170 			.cap.turbo_enc = {
171 				.capability_flags =
172 						RTE_BBDEV_TURBO_CRC_24B_ATTACH |
173 						RTE_BBDEV_TURBO_CRC_24A_ATTACH |
174 						RTE_BBDEV_TURBO_RATE_MATCH |
175 						RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
176 				.num_buffers_src =
177 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
178 				.num_buffers_dst =
179 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
180 			}
181 		},
182 #endif
183 		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
184 	};
185 
186 	static struct rte_bbdev_queue_conf default_queue_conf = {
187 		.queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
188 	};
189 
190 #ifdef RTE_BBDEV_SDK_AVX2
191 	static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
192 	dev_info->cpu_flag_reqs = &cpu_flag;
193 #else
194 	dev_info->cpu_flag_reqs = NULL;
195 #endif
196 
197 	default_queue_conf.socket = dev->data->socket_id;
198 
199 	dev_info->driver_name = RTE_STR(DRIVER_NAME);
200 	dev_info->max_num_queues = internals->max_nb_queues;
201 	dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
202 	dev_info->hardware_accelerated = false;
203 	dev_info->max_dl_queue_priority = 0;
204 	dev_info->max_ul_queue_priority = 0;
205 	dev_info->default_queue_conf = default_queue_conf;
206 	dev_info->capabilities = bbdev_capabilities;
207 	dev_info->min_alignment = 64;
208 
209 	rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
210 }
211 
212 /* Release queue */
213 static int
214 q_release(struct rte_bbdev *dev, uint16_t q_id)
215 {
216 	struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
217 
218 	if (q != NULL) {
219 		rte_ring_free(q->processed_pkts);
220 		rte_free(q->enc_out);
221 		rte_free(q->enc_in);
222 		rte_free(q->ag);
223 		rte_free(q->code_block);
224 		rte_free(q->deint_input);
225 		rte_free(q->deint_output);
226 		rte_free(q->adapter_output);
227 		rte_free(q);
228 		dev->data->queues[q_id].queue_private = NULL;
229 	}
230 
231 	rte_bbdev_log_debug("released device queue %u:%u",
232 			dev->data->dev_id, q_id);
233 	return 0;
234 }
235 
236 /* Setup a queue */
237 static int
238 q_setup(struct rte_bbdev *dev, uint16_t q_id,
239 		const struct rte_bbdev_queue_conf *queue_conf)
240 {
241 	int ret;
242 	struct turbo_sw_queue *q;
243 	char name[RTE_RING_NAMESIZE];
244 
245 	/* Allocate the queue data structure. */
246 	q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
247 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
248 	if (q == NULL) {
249 		rte_bbdev_log(ERR, "Failed to allocate queue memory");
250 		return -ENOMEM;
251 	}
252 
253 	/* Allocate memory for encoder output. */
254 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
255 			dev->data->dev_id, q_id);
256 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
257 		rte_bbdev_log(ERR,
258 				"Creating queue name for device %u queue %u failed",
259 				dev->data->dev_id, q_id);
260 		return -ENAMETOOLONG;
261 	}
262 	q->enc_out = rte_zmalloc_socket(name,
263 			((RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) + 3) *
264 			sizeof(*q->enc_out) * 3,
265 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
266 	if (q->enc_out == NULL) {
267 		rte_bbdev_log(ERR,
268 			"Failed to allocate queue memory for %s", name);
269 		goto free_q;
270 	}
271 
272 	/* Allocate memory for rate matching output. */
273 	ret = snprintf(name, RTE_RING_NAMESIZE,
274 			RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
275 			q_id);
276 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
277 		rte_bbdev_log(ERR,
278 				"Creating queue name for device %u queue %u failed",
279 				dev->data->dev_id, q_id);
280 		return -ENAMETOOLONG;
281 	}
282 	q->enc_in = rte_zmalloc_socket(name,
283 			(RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
284 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
285 	if (q->enc_in == NULL) {
286 		rte_bbdev_log(ERR,
287 			"Failed to allocate queue memory for %s", name);
288 		goto free_q;
289 	}
290 
291 	/* Allocate memory for Aplha Gamma temp buffer. */
292 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
293 			dev->data->dev_id, q_id);
294 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
295 		rte_bbdev_log(ERR,
296 				"Creating queue name for device %u queue %u failed",
297 				dev->data->dev_id, q_id);
298 		return -ENAMETOOLONG;
299 	}
300 	q->ag = rte_zmalloc_socket(name,
301 			RTE_BBDEV_TURBO_MAX_CB_SIZE * 10 * sizeof(*q->ag),
302 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
303 	if (q->ag == NULL) {
304 		rte_bbdev_log(ERR,
305 			"Failed to allocate queue memory for %s", name);
306 		goto free_q;
307 	}
308 
309 	/* Allocate memory for code block temp buffer. */
310 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
311 			dev->data->dev_id, q_id);
312 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
313 		rte_bbdev_log(ERR,
314 				"Creating queue name for device %u queue %u failed",
315 				dev->data->dev_id, q_id);
316 		return -ENAMETOOLONG;
317 	}
318 	q->code_block = rte_zmalloc_socket(name,
319 			RTE_BBDEV_TURBO_MAX_CB_SIZE * sizeof(*q->code_block),
320 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
321 	if (q->code_block == NULL) {
322 		rte_bbdev_log(ERR,
323 			"Failed to allocate queue memory for %s", name);
324 		goto free_q;
325 	}
326 
327 	/* Allocate memory for Deinterleaver input. */
328 	ret = snprintf(name, RTE_RING_NAMESIZE,
329 			RTE_STR(DRIVER_NAME)"_de_i%u:%u",
330 			dev->data->dev_id, q_id);
331 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
332 		rte_bbdev_log(ERR,
333 				"Creating queue name for device %u queue %u failed",
334 				dev->data->dev_id, q_id);
335 		return -ENAMETOOLONG;
336 	}
337 	q->deint_input = rte_zmalloc_socket(name,
338 			DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
339 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
340 	if (q->deint_input == NULL) {
341 		rte_bbdev_log(ERR,
342 			"Failed to allocate queue memory for %s", name);
343 		goto free_q;
344 	}
345 
346 	/* Allocate memory for Deinterleaver output. */
347 	ret = snprintf(name, RTE_RING_NAMESIZE,
348 			RTE_STR(DRIVER_NAME)"_de_o%u:%u",
349 			dev->data->dev_id, q_id);
350 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
351 		rte_bbdev_log(ERR,
352 				"Creating queue name for device %u queue %u failed",
353 				dev->data->dev_id, q_id);
354 		return -ENAMETOOLONG;
355 	}
356 	q->deint_output = rte_zmalloc_socket(NULL,
357 			DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
358 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
359 	if (q->deint_output == NULL) {
360 		rte_bbdev_log(ERR,
361 			"Failed to allocate queue memory for %s", name);
362 		goto free_q;
363 	}
364 
365 	/* Allocate memory for Adapter output. */
366 	ret = snprintf(name, RTE_RING_NAMESIZE,
367 			RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
368 			dev->data->dev_id, q_id);
369 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
370 		rte_bbdev_log(ERR,
371 				"Creating queue name for device %u queue %u failed",
372 				dev->data->dev_id, q_id);
373 		return -ENAMETOOLONG;
374 	}
375 	q->adapter_output = rte_zmalloc_socket(NULL,
376 			ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
377 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
378 	if (q->adapter_output == NULL) {
379 		rte_bbdev_log(ERR,
380 			"Failed to allocate queue memory for %s", name);
381 		goto free_q;
382 	}
383 
384 	/* Create ring for packets awaiting to be dequeued. */
385 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
386 			dev->data->dev_id, q_id);
387 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
388 		rte_bbdev_log(ERR,
389 				"Creating queue name for device %u queue %u failed",
390 				dev->data->dev_id, q_id);
391 		return -ENAMETOOLONG;
392 	}
393 	q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
394 			queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
395 	if (q->processed_pkts == NULL) {
396 		rte_bbdev_log(ERR, "Failed to create ring for %s", name);
397 		goto free_q;
398 	}
399 
400 	q->type = queue_conf->op_type;
401 
402 	dev->data->queues[q_id].queue_private = q;
403 	rte_bbdev_log_debug("setup device queue %s", name);
404 	return 0;
405 
406 free_q:
407 	rte_ring_free(q->processed_pkts);
408 	rte_free(q->enc_out);
409 	rte_free(q->enc_in);
410 	rte_free(q->ag);
411 	rte_free(q->code_block);
412 	rte_free(q->deint_input);
413 	rte_free(q->deint_output);
414 	rte_free(q->adapter_output);
415 	rte_free(q);
416 	return -EFAULT;
417 }
418 
419 static const struct rte_bbdev_ops pmd_ops = {
420 	.info_get = info_get,
421 	.queue_setup = q_setup,
422 	.queue_release = q_release
423 };
424 
425 #ifdef RTE_BBDEV_SDK_AVX2
426 /* Checks if the encoder input buffer is correct.
427  * Returns 0 if it's valid, -1 otherwise.
428  */
429 static inline int
430 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
431 		const uint16_t in_length)
432 {
433 	if (k_idx < 0) {
434 		rte_bbdev_log(ERR, "K Index is invalid");
435 		return -1;
436 	}
437 
438 	if (in_length - (k >> 3) < 0) {
439 		rte_bbdev_log(ERR,
440 				"Mismatch between input length (%u bytes) and K (%u bits)",
441 				in_length, k);
442 		return -1;
443 	}
444 
445 	if (k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
446 		rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
447 				k, RTE_BBDEV_TURBO_MAX_CB_SIZE);
448 		return -1;
449 	}
450 
451 	return 0;
452 }
453 
454 /* Checks if the decoder input buffer is correct.
455  * Returns 0 if it's valid, -1 otherwise.
456  */
457 static inline int
458 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
459 {
460 	if (k_idx < 0) {
461 		rte_bbdev_log(ERR, "K index is invalid");
462 		return -1;
463 	}
464 
465 	if (in_length < kw) {
466 		rte_bbdev_log(ERR,
467 				"Mismatch between input length (%u) and kw (%u)",
468 				in_length, kw);
469 		return -1;
470 	}
471 
472 	if (kw > RTE_BBDEV_TURBO_MAX_KW) {
473 		rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
474 				kw, RTE_BBDEV_TURBO_MAX_KW);
475 		return -1;
476 	}
477 
478 	return 0;
479 }
480 #endif
481 
482 static inline void
483 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
484 		uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
485 		uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
486 		struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
487 		uint16_t in_length, struct rte_bbdev_stats *q_stats)
488 {
489 #ifdef RTE_BBDEV_SDK_AVX2
490 	int ret;
491 	int16_t k_idx;
492 	uint16_t m;
493 	uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
494 	uint64_t first_3_bytes = 0;
495 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
496 	struct bblib_crc_request crc_req;
497 	struct bblib_crc_response crc_resp;
498 	struct bblib_turbo_encoder_request turbo_req;
499 	struct bblib_turbo_encoder_response turbo_resp;
500 	struct bblib_rate_match_dl_request rm_req;
501 	struct bblib_rate_match_dl_response rm_resp;
502 #ifdef RTE_BBDEV_OFFLOAD_COST
503 	uint64_t start_time;
504 #else
505 	RTE_SET_USED(q_stats);
506 #endif
507 
508 	k_idx = compute_idx(k);
509 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
510 
511 	/* CRC24A (for TB) */
512 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
513 		(enc->code_block_mode == 1)) {
514 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
515 		if (ret != 0) {
516 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
517 			return;
518 		}
519 		crc_req.data = in;
520 		crc_req.len = k - 24;
521 		/* Check if there is a room for CRC bits if not use
522 		 * the temporary buffer.
523 		 */
524 		if (mbuf_append(m_in, m_in, 3) == NULL) {
525 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
526 			in = q->enc_in;
527 		} else {
528 			/* Store 3 first bytes of next CB as they will be
529 			 * overwritten by CRC bytes. If it is the last CB then
530 			 * there is no point to store 3 next bytes and this
531 			 * if..else branch will be omitted.
532 			 */
533 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
534 		}
535 
536 		crc_resp.data = in;
537 #ifdef RTE_BBDEV_OFFLOAD_COST
538 		start_time = rte_rdtsc_precise();
539 #endif
540 		/* CRC24A generation */
541 		bblib_lte_crc24a_gen(&crc_req, &crc_resp);
542 #ifdef RTE_BBDEV_OFFLOAD_COST
543 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
544 #endif
545 	} else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
546 		/* CRC24B */
547 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
548 		if (ret != 0) {
549 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
550 			return;
551 		}
552 		crc_req.data = in;
553 		crc_req.len = k - 24;
554 		/* Check if there is a room for CRC bits if this is the last
555 		 * CB in TB. If not use temporary buffer.
556 		 */
557 		if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
558 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
559 			in = q->enc_in;
560 		} else if (c - r > 1) {
561 			/* Store 3 first bytes of next CB as they will be
562 			 * overwritten by CRC bytes. If it is the last CB then
563 			 * there is no point to store 3 next bytes and this
564 			 * if..else branch will be omitted.
565 			 */
566 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
567 		}
568 
569 		crc_resp.data = in;
570 #ifdef RTE_BBDEV_OFFLOAD_COST
571 		start_time = rte_rdtsc_precise();
572 #endif
573 		/* CRC24B generation */
574 		bblib_lte_crc24b_gen(&crc_req, &crc_resp);
575 #ifdef RTE_BBDEV_OFFLOAD_COST
576 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
577 #endif
578 	} else {
579 		ret = is_enc_input_valid(k, k_idx, in_length);
580 		if (ret != 0) {
581 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
582 			return;
583 		}
584 	}
585 
586 	/* Turbo encoder */
587 
588 	/* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
589 	 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
590 	 * So dst_data's length should be 3*(k/8) + 3 bytes.
591 	 * In Rate-matching bypass case outputs pointers passed to encoder
592 	 * (out0, out1 and out2) can directly point to addresses of output from
593 	 * turbo_enc entity.
594 	 */
595 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
596 		out0 = q->enc_out;
597 		out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
598 		out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
599 	} else {
600 		out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
601 				(k >> 3) * 3 + 2);
602 		if (out0 == NULL) {
603 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
604 			rte_bbdev_log(ERR,
605 					"Too little space in output mbuf");
606 			return;
607 		}
608 		enc->output.length += (k >> 3) * 3 + 2;
609 		/* rte_bbdev_op_data.offset can be different than the
610 		 * offset of the appended bytes
611 		 */
612 		out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
613 		out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
614 				out_offset + (k >> 3) + 1);
615 		out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
616 				out_offset + 2 * ((k >> 3) + 1));
617 	}
618 
619 	turbo_req.case_id = k_idx;
620 	turbo_req.input_win = in;
621 	turbo_req.length = k >> 3;
622 	turbo_resp.output_win_0 = out0;
623 	turbo_resp.output_win_1 = out1;
624 	turbo_resp.output_win_2 = out2;
625 
626 #ifdef RTE_BBDEV_OFFLOAD_COST
627 	start_time = rte_rdtsc_precise();
628 #endif
629 	/* Turbo encoding */
630 	if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
631 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
632 		rte_bbdev_log(ERR, "Turbo Encoder failed");
633 		return;
634 	}
635 #ifdef RTE_BBDEV_OFFLOAD_COST
636 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
637 #endif
638 
639 	/* Restore 3 first bytes of next CB if they were overwritten by CRC*/
640 	if (first_3_bytes != 0)
641 		*((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
642 
643 	/* Rate-matching */
644 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
645 		uint8_t mask_id;
646 		/* Integer round up division by 8 */
647 		uint16_t out_len = (e + 7) >> 3;
648 		/* The mask array is indexed using E%8. E is an even number so
649 		 * there are only 4 possible values.
650 		 */
651 		const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
652 
653 		/* get output data starting address */
654 		rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
655 		if (rm_out == NULL) {
656 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
657 			rte_bbdev_log(ERR,
658 					"Too little space in output mbuf");
659 			return;
660 		}
661 		/* rte_bbdev_op_data.offset can be different than the offset
662 		 * of the appended bytes
663 		 */
664 		rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
665 
666 		/* index of current code block */
667 		rm_req.r = r;
668 		/* total number of code block */
669 		rm_req.C = c;
670 		/* For DL - 1, UL - 0 */
671 		rm_req.direction = 1;
672 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
673 		 * and MDL_HARQ are used for Ncb calculation. As Ncb is already
674 		 * known we can adjust those parameters
675 		 */
676 		rm_req.Nsoft = ncb * rm_req.C;
677 		rm_req.KMIMO = 1;
678 		rm_req.MDL_HARQ = 1;
679 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
680 		 * are used for E calculation. As E is already known we can
681 		 * adjust those parameters
682 		 */
683 		rm_req.NL = e;
684 		rm_req.Qm = 1;
685 		rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
686 
687 		rm_req.rvidx = enc->rv_index;
688 		rm_req.Kidx = k_idx - 1;
689 		rm_req.nLen = k + 4;
690 		rm_req.tin0 = out0;
691 		rm_req.tin1 = out1;
692 		rm_req.tin2 = out2;
693 		rm_resp.output = rm_out;
694 		rm_resp.OutputLen = out_len;
695 		if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
696 			rm_req.bypass_rvidx = 1;
697 		else
698 			rm_req.bypass_rvidx = 0;
699 
700 #ifdef RTE_BBDEV_OFFLOAD_COST
701 		start_time = rte_rdtsc_precise();
702 #endif
703 		/* Rate-Matching */
704 		if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
705 			op->status |= 1 << RTE_BBDEV_DRV_ERROR;
706 			rte_bbdev_log(ERR, "Rate matching failed");
707 			return;
708 		}
709 #ifdef RTE_BBDEV_OFFLOAD_COST
710 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
711 #endif
712 
713 		/* SW fills an entire last byte even if E%8 != 0. Clear the
714 		 * superfluous data bits for consistency with HW device.
715 		 */
716 		mask_id = (e & 7) >> 1;
717 		rm_out[out_len - 1] &= mask_out[mask_id];
718 		enc->output.length += rm_resp.OutputLen;
719 	} else {
720 		/* Rate matching is bypassed */
721 
722 		/* Completing last byte of out0 (where 4 tail bits are stored)
723 		 * by moving first 4 bits from out1
724 		 */
725 		tmp_out = (uint8_t *) --out1;
726 		*tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
727 		tmp_out++;
728 		/* Shifting out1 data by 4 bits to the left */
729 		for (m = 0; m < k >> 3; ++m) {
730 			uint8_t *first = tmp_out;
731 			uint8_t second = *(tmp_out + 1);
732 			*first = (*first << 4) | ((second & 0xF0) >> 4);
733 			tmp_out++;
734 		}
735 		/* Shifting out2 data by 8 bits to the left */
736 		for (m = 0; m < (k >> 3) + 1; ++m) {
737 			*tmp_out = *(tmp_out + 1);
738 			tmp_out++;
739 		}
740 		*tmp_out = 0;
741 	}
742 #else
743 	RTE_SET_USED(q);
744 	RTE_SET_USED(op);
745 	RTE_SET_USED(r);
746 	RTE_SET_USED(c);
747 	RTE_SET_USED(k);
748 	RTE_SET_USED(ncb);
749 	RTE_SET_USED(e);
750 	RTE_SET_USED(m_in);
751 	RTE_SET_USED(m_out_head);
752 	RTE_SET_USED(m_out);
753 	RTE_SET_USED(in_offset);
754 	RTE_SET_USED(out_offset);
755 	RTE_SET_USED(in_length);
756 	RTE_SET_USED(q_stats);
757 #endif
758 }
759 
760 static inline void
761 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
762 		struct rte_bbdev_stats *queue_stats)
763 {
764 	uint8_t c, r, crc24_bits = 0;
765 	uint16_t k, ncb;
766 	uint32_t e;
767 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
768 	uint16_t in_offset = enc->input.offset;
769 	uint16_t out_offset = enc->output.offset;
770 	struct rte_mbuf *m_in = enc->input.data;
771 	struct rte_mbuf *m_out = enc->output.data;
772 	struct rte_mbuf *m_out_head = enc->output.data;
773 	uint32_t in_length, mbuf_total_left = enc->input.length;
774 	uint16_t seg_total_left;
775 
776 	/* Clear op status */
777 	op->status = 0;
778 
779 	if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
780 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
781 				mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
782 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
783 		return;
784 	}
785 
786 	if (m_in == NULL || m_out == NULL) {
787 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
788 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
789 		return;
790 	}
791 
792 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
793 		(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
794 		crc24_bits = 24;
795 
796 	if (enc->code_block_mode == 0) { /* For Transport Block mode */
797 		c = enc->tb_params.c;
798 		r = enc->tb_params.r;
799 	} else {/* For Code Block mode */
800 		c = 1;
801 		r = 0;
802 	}
803 
804 	while (mbuf_total_left > 0 && r < c) {
805 
806 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
807 
808 		if (enc->code_block_mode == 0) {
809 			k = (r < enc->tb_params.c_neg) ?
810 				enc->tb_params.k_neg : enc->tb_params.k_pos;
811 			ncb = (r < enc->tb_params.c_neg) ?
812 				enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
813 			e = (r < enc->tb_params.cab) ?
814 				enc->tb_params.ea : enc->tb_params.eb;
815 		} else {
816 			k = enc->cb_params.k;
817 			ncb = enc->cb_params.ncb;
818 			e = enc->cb_params.e;
819 		}
820 
821 		process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
822 				m_out, in_offset, out_offset, seg_total_left,
823 				queue_stats);
824 		/* Update total_left */
825 		in_length = ((k - crc24_bits) >> 3);
826 		mbuf_total_left -= in_length;
827 		/* Update offsets for next CBs (if exist) */
828 		in_offset += (k - crc24_bits) >> 3;
829 		if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
830 			out_offset += e >> 3;
831 		else
832 			out_offset += (k >> 3) * 3 + 2;
833 
834 		/* Update offsets */
835 		if (seg_total_left == in_length) {
836 			/* Go to the next mbuf */
837 			m_in = m_in->next;
838 			m_out = m_out->next;
839 			in_offset = 0;
840 			out_offset = 0;
841 		}
842 		r++;
843 	}
844 
845 	/* check if all input data was processed */
846 	if (mbuf_total_left != 0) {
847 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
848 		rte_bbdev_log(ERR,
849 				"Mismatch between mbuf length and included CBs sizes");
850 	}
851 }
852 
853 static inline uint16_t
854 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
855 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
856 {
857 	uint16_t i;
858 #ifdef RTE_BBDEV_OFFLOAD_COST
859 	queue_stats->acc_offload_cycles = 0;
860 #endif
861 
862 	for (i = 0; i < nb_ops; ++i)
863 		enqueue_enc_one_op(q, ops[i], queue_stats);
864 
865 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
866 			NULL);
867 }
868 
869 #ifdef RTE_BBDEV_SDK_AVX2
870 static inline void
871 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
872 		uint16_t ncb)
873 {
874 	uint16_t d = k + 4;
875 	uint16_t kpi = ncb / 3;
876 	uint16_t nd = kpi - d;
877 
878 	rte_memcpy(&out[nd], in, d);
879 	rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
880 	rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
881 }
882 #endif
883 
884 static inline void
885 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
886 		uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
887 		struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
888 		uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
889 		uint16_t crc24_overlap, uint16_t in_length,
890 		struct rte_bbdev_stats *q_stats)
891 {
892 #ifdef RTE_BBDEV_SDK_AVX2
893 	int ret;
894 	int32_t k_idx;
895 	int32_t iter_cnt;
896 	uint8_t *in, *out, *adapter_input;
897 	int32_t ncb, ncb_without_null;
898 	struct bblib_turbo_adapter_ul_response adapter_resp;
899 	struct bblib_turbo_adapter_ul_request adapter_req;
900 	struct bblib_turbo_decoder_request turbo_req;
901 	struct bblib_turbo_decoder_response turbo_resp;
902 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
903 #ifdef RTE_BBDEV_OFFLOAD_COST
904 	uint64_t start_time;
905 #else
906 	RTE_SET_USED(q_stats);
907 #endif
908 
909 	k_idx = compute_idx(k);
910 
911 	ret = is_dec_input_valid(k_idx, kw, in_length);
912 	if (ret != 0) {
913 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
914 		return;
915 	}
916 
917 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
918 	ncb = kw;
919 	ncb_without_null = (k + 4) * 3;
920 
921 	if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
922 		struct bblib_deinterleave_ul_request deint_req;
923 		struct bblib_deinterleave_ul_response deint_resp;
924 
925 		deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
926 		deint_req.pharqbuffer = in;
927 		deint_req.ncb = ncb;
928 		deint_resp.pinteleavebuffer = q->deint_output;
929 
930 #ifdef RTE_BBDEV_OFFLOAD_COST
931 		start_time = rte_rdtsc_precise();
932 #endif
933 		bblib_deinterleave_ul(&deint_req, &deint_resp);
934 #ifdef RTE_BBDEV_OFFLOAD_COST
935 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
936 #endif
937 	} else
938 		move_padding_bytes(in, q->deint_output, k, ncb);
939 
940 	adapter_input = q->deint_output;
941 
942 	if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
943 		adapter_req.isinverted = 1;
944 	else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
945 		adapter_req.isinverted = 0;
946 	else {
947 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
948 		rte_bbdev_log(ERR, "LLR format wasn't specified");
949 		return;
950 	}
951 
952 	adapter_req.ncb = ncb_without_null;
953 	adapter_req.pinteleavebuffer = adapter_input;
954 	adapter_resp.pharqout = q->adapter_output;
955 
956 #ifdef RTE_BBDEV_OFFLOAD_COST
957 	start_time = rte_rdtsc_precise();
958 #endif
959 	/* Turbo decode adaptation */
960 	bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
961 #ifdef RTE_BBDEV_OFFLOAD_COST
962 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
963 #endif
964 
965 	out = (uint8_t *)mbuf_append(m_out_head, m_out,
966 			((k - crc24_overlap) >> 3));
967 	if (out == NULL) {
968 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
969 		rte_bbdev_log(ERR, "Too little space in output mbuf");
970 		return;
971 	}
972 	/* rte_bbdev_op_data.offset can be different than the offset of the
973 	 * appended bytes
974 	 */
975 	out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
976 	if (check_crc_24b)
977 		turbo_req.c = c + 1;
978 	else
979 		turbo_req.c = c;
980 	turbo_req.input = (int8_t *)q->adapter_output;
981 	turbo_req.k = k;
982 	turbo_req.k_idx = k_idx;
983 	turbo_req.max_iter_num = dec->iter_max;
984 	turbo_req.early_term_disable = !check_bit(dec->op_flags,
985 			RTE_BBDEV_TURBO_EARLY_TERMINATION);
986 	turbo_resp.ag_buf = q->ag;
987 	turbo_resp.cb_buf = q->code_block;
988 	turbo_resp.output = out;
989 
990 #ifdef RTE_BBDEV_OFFLOAD_COST
991 	start_time = rte_rdtsc_precise();
992 #endif
993 	/* Turbo decode */
994 	iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
995 #ifdef RTE_BBDEV_OFFLOAD_COST
996 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
997 #endif
998 	dec->hard_output.length += (k >> 3);
999 
1000 	if (iter_cnt > 0) {
1001 		/* Temporary solution for returned iter_count from SDK */
1002 		iter_cnt = (iter_cnt - 1) >> 1;
1003 		dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
1004 	} else {
1005 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1006 		rte_bbdev_log(ERR, "Turbo Decoder failed");
1007 		return;
1008 	}
1009 #else
1010 	RTE_SET_USED(q);
1011 	RTE_SET_USED(op);
1012 	RTE_SET_USED(c);
1013 	RTE_SET_USED(k);
1014 	RTE_SET_USED(kw);
1015 	RTE_SET_USED(m_in);
1016 	RTE_SET_USED(m_out_head);
1017 	RTE_SET_USED(m_out);
1018 	RTE_SET_USED(in_offset);
1019 	RTE_SET_USED(out_offset);
1020 	RTE_SET_USED(check_crc_24b);
1021 	RTE_SET_USED(crc24_overlap);
1022 	RTE_SET_USED(in_length);
1023 	RTE_SET_USED(q_stats);
1024 #endif
1025 }
1026 
1027 static inline void
1028 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1029 		struct rte_bbdev_stats *queue_stats)
1030 {
1031 	uint8_t c, r = 0;
1032 	uint16_t kw, k = 0;
1033 	uint16_t crc24_overlap = 0;
1034 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1035 	struct rte_mbuf *m_in = dec->input.data;
1036 	struct rte_mbuf *m_out = dec->hard_output.data;
1037 	struct rte_mbuf *m_out_head = dec->hard_output.data;
1038 	uint16_t in_offset = dec->input.offset;
1039 	uint16_t out_offset = dec->hard_output.offset;
1040 	uint32_t mbuf_total_left = dec->input.length;
1041 	uint16_t seg_total_left;
1042 
1043 	/* Clear op status */
1044 	op->status = 0;
1045 
1046 	if (m_in == NULL || m_out == NULL) {
1047 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1048 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1049 		return;
1050 	}
1051 
1052 	if (dec->code_block_mode == 0) { /* For Transport Block mode */
1053 		c = dec->tb_params.c;
1054 	} else { /* For Code Block mode */
1055 		k = dec->cb_params.k;
1056 		c = 1;
1057 	}
1058 
1059 	if ((c > 1) && !check_bit(dec->op_flags,
1060 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1061 		crc24_overlap = 24;
1062 
1063 	while (mbuf_total_left > 0) {
1064 		if (dec->code_block_mode == 0)
1065 			k = (r < dec->tb_params.c_neg) ?
1066 				dec->tb_params.k_neg : dec->tb_params.k_pos;
1067 
1068 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1069 
1070 		/* Calculates circular buffer size (Kw).
1071 		 * According to 3gpp 36.212 section 5.1.4.2
1072 		 *   Kw = 3 * Kpi,
1073 		 * where:
1074 		 *   Kpi = nCol * nRow
1075 		 * where nCol is 32 and nRow can be calculated from:
1076 		 *   D =< nCol * nRow
1077 		 * where D is the size of each output from turbo encoder block
1078 		 * (k + 4).
1079 		 */
1080 		kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1081 
1082 		process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1083 				in_offset, out_offset, check_bit(dec->op_flags,
1084 				RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1085 				seg_total_left, queue_stats);
1086 		/* To keep CRC24 attached to end of Code block, use
1087 		 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1088 		 * removed by default once verified.
1089 		 */
1090 
1091 		mbuf_total_left -= kw;
1092 
1093 		/* Update offsets */
1094 		if (seg_total_left == kw) {
1095 			/* Go to the next mbuf */
1096 			m_in = m_in->next;
1097 			m_out = m_out->next;
1098 			in_offset = 0;
1099 			out_offset = 0;
1100 		} else {
1101 			/* Update offsets for next CBs (if exist) */
1102 			in_offset += kw;
1103 			out_offset += ((k - crc24_overlap) >> 3);
1104 		}
1105 		r++;
1106 	}
1107 	if (mbuf_total_left != 0) {
1108 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1109 		rte_bbdev_log(ERR,
1110 				"Mismatch between mbuf length and included Circular buffer sizes");
1111 	}
1112 }
1113 
1114 static inline uint16_t
1115 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1116 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1117 {
1118 	uint16_t i;
1119 #ifdef RTE_BBDEV_OFFLOAD_COST
1120 	queue_stats->acc_offload_cycles = 0;
1121 #endif
1122 
1123 	for (i = 0; i < nb_ops; ++i)
1124 		enqueue_dec_one_op(q, ops[i], queue_stats);
1125 
1126 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1127 			NULL);
1128 }
1129 
1130 /* Enqueue burst */
1131 static uint16_t
1132 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1133 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1134 {
1135 	void *queue = q_data->queue_private;
1136 	struct turbo_sw_queue *q = queue;
1137 	uint16_t nb_enqueued = 0;
1138 
1139 	nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1140 
1141 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1142 	q_data->queue_stats.enqueued_count += nb_enqueued;
1143 
1144 	return nb_enqueued;
1145 }
1146 
1147 /* Enqueue burst */
1148 static uint16_t
1149 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1150 		 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1151 {
1152 	void *queue = q_data->queue_private;
1153 	struct turbo_sw_queue *q = queue;
1154 	uint16_t nb_enqueued = 0;
1155 
1156 	nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1157 
1158 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1159 	q_data->queue_stats.enqueued_count += nb_enqueued;
1160 
1161 	return nb_enqueued;
1162 }
1163 
1164 /* Dequeue decode burst */
1165 static uint16_t
1166 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1167 		struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1168 {
1169 	struct turbo_sw_queue *q = q_data->queue_private;
1170 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1171 			(void **)ops, nb_ops, NULL);
1172 	q_data->queue_stats.dequeued_count += nb_dequeued;
1173 
1174 	return nb_dequeued;
1175 }
1176 
1177 /* Dequeue encode burst */
1178 static uint16_t
1179 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1180 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1181 {
1182 	struct turbo_sw_queue *q = q_data->queue_private;
1183 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1184 			(void **)ops, nb_ops, NULL);
1185 	q_data->queue_stats.dequeued_count += nb_dequeued;
1186 
1187 	return nb_dequeued;
1188 }
1189 
1190 /* Parse 16bit integer from string argument */
1191 static inline int
1192 parse_u16_arg(const char *key, const char *value, void *extra_args)
1193 {
1194 	uint16_t *u16 = extra_args;
1195 	unsigned int long result;
1196 
1197 	if ((value == NULL) || (extra_args == NULL))
1198 		return -EINVAL;
1199 	errno = 0;
1200 	result = strtoul(value, NULL, 0);
1201 	if ((result >= (1 << 16)) || (errno != 0)) {
1202 		rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1203 		return -ERANGE;
1204 	}
1205 	*u16 = (uint16_t)result;
1206 	return 0;
1207 }
1208 
1209 /* Parse parameters used to create device */
1210 static int
1211 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1212 {
1213 	struct rte_kvargs *kvlist = NULL;
1214 	int ret = 0;
1215 
1216 	if (params == NULL)
1217 		return -EINVAL;
1218 	if (input_args) {
1219 		kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1220 		if (kvlist == NULL)
1221 			return -EFAULT;
1222 
1223 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1224 					&parse_u16_arg, &params->queues_num);
1225 		if (ret < 0)
1226 			goto exit;
1227 
1228 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1229 					&parse_u16_arg, &params->socket_id);
1230 		if (ret < 0)
1231 			goto exit;
1232 
1233 		if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1234 			rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1235 					RTE_MAX_NUMA_NODES);
1236 			goto exit;
1237 		}
1238 	}
1239 
1240 exit:
1241 	if (kvlist)
1242 		rte_kvargs_free(kvlist);
1243 	return ret;
1244 }
1245 
1246 /* Create device */
1247 static int
1248 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1249 		struct turbo_sw_params *init_params)
1250 {
1251 	struct rte_bbdev *bbdev;
1252 	const char *name = rte_vdev_device_name(vdev);
1253 
1254 	bbdev = rte_bbdev_allocate(name);
1255 	if (bbdev == NULL)
1256 		return -ENODEV;
1257 
1258 	bbdev->data->dev_private = rte_zmalloc_socket(name,
1259 			sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1260 			init_params->socket_id);
1261 	if (bbdev->data->dev_private == NULL) {
1262 		rte_bbdev_release(bbdev);
1263 		return -ENOMEM;
1264 	}
1265 
1266 	bbdev->dev_ops = &pmd_ops;
1267 	bbdev->device = &vdev->device;
1268 	bbdev->data->socket_id = init_params->socket_id;
1269 	bbdev->intr_handle = NULL;
1270 
1271 	/* register rx/tx burst functions for data path */
1272 	bbdev->dequeue_enc_ops = dequeue_enc_ops;
1273 	bbdev->dequeue_dec_ops = dequeue_dec_ops;
1274 	bbdev->enqueue_enc_ops = enqueue_enc_ops;
1275 	bbdev->enqueue_dec_ops = enqueue_dec_ops;
1276 	((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1277 			init_params->queues_num;
1278 
1279 	return 0;
1280 }
1281 
1282 /* Initialise device */
1283 static int
1284 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1285 {
1286 	struct turbo_sw_params init_params = {
1287 		rte_socket_id(),
1288 		RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1289 	};
1290 	const char *name;
1291 	const char *input_args;
1292 
1293 	if (vdev == NULL)
1294 		return -EINVAL;
1295 
1296 	name = rte_vdev_device_name(vdev);
1297 	if (name == NULL)
1298 		return -EINVAL;
1299 	input_args = rte_vdev_device_args(vdev);
1300 	parse_turbo_sw_params(&init_params, input_args);
1301 
1302 	rte_bbdev_log_debug(
1303 			"Initialising %s on NUMA node %d with max queues: %d\n",
1304 			name, init_params.socket_id, init_params.queues_num);
1305 
1306 	return turbo_sw_bbdev_create(vdev, &init_params);
1307 }
1308 
1309 /* Uninitialise device */
1310 static int
1311 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1312 {
1313 	struct rte_bbdev *bbdev;
1314 	const char *name;
1315 
1316 	if (vdev == NULL)
1317 		return -EINVAL;
1318 
1319 	name = rte_vdev_device_name(vdev);
1320 	if (name == NULL)
1321 		return -EINVAL;
1322 
1323 	bbdev = rte_bbdev_get_named_dev(name);
1324 	if (bbdev == NULL)
1325 		return -EINVAL;
1326 
1327 	rte_free(bbdev->data->dev_private);
1328 
1329 	return rte_bbdev_release(bbdev);
1330 }
1331 
1332 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1333 	.probe = turbo_sw_bbdev_probe,
1334 	.remove = turbo_sw_bbdev_remove
1335 };
1336 
1337 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1338 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1339 	TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1340 	TURBO_SW_SOCKET_ID_ARG"=<int>");
1341 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1342 
1343 RTE_INIT(turbo_sw_bbdev_init_log)
1344 {
1345 	bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1346 	if (bbdev_turbo_sw_logtype >= 0)
1347 		rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1348 }
1349