1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <string.h> 6 7 #include <rte_common.h> 8 #include <rte_bus_vdev.h> 9 #include <rte_malloc.h> 10 #include <rte_ring.h> 11 #include <rte_kvargs.h> 12 #include <rte_cycles.h> 13 #include <rte_errno.h> 14 15 #include <rte_bbdev.h> 16 #include <rte_bbdev_pmd.h> 17 18 #include <rte_hexdump.h> 19 #include <rte_log.h> 20 21 #ifdef RTE_BBDEV_SDK_AVX2 22 #include <ipp.h> 23 #include <ipps.h> 24 #include <phy_turbo.h> 25 #include <phy_crc.h> 26 #include <phy_rate_match.h> 27 #endif 28 #ifdef RTE_BBDEV_SDK_AVX512 29 #include <bit_reverse.h> 30 #include <phy_ldpc_encoder_5gnr.h> 31 #include <phy_ldpc_decoder_5gnr.h> 32 #include <phy_LDPC_ratematch_5gnr.h> 33 #include <phy_rate_dematching_5gnr.h> 34 #endif 35 36 #define DRIVER_NAME baseband_turbo_sw 37 38 RTE_LOG_REGISTER(bbdev_turbo_sw_logtype, pmd.bb.turbo_sw, NOTICE); 39 40 /* Helper macro for logging */ 41 #define rte_bbdev_log(level, fmt, ...) \ 42 rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \ 43 ##__VA_ARGS__) 44 45 #define rte_bbdev_log_debug(fmt, ...) \ 46 rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \ 47 ##__VA_ARGS__) 48 49 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) + 1) * 48) 50 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6) 51 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_TURBO_MAX_CB_SIZE + 4) * 48) 52 53 /* private data structure */ 54 struct bbdev_private { 55 unsigned int max_nb_queues; /**< Max number of queues */ 56 }; 57 58 /* Initialisation params structure that can be used by Turbo SW driver */ 59 struct turbo_sw_params { 60 int socket_id; /*< Turbo SW device socket */ 61 uint16_t queues_num; /*< Turbo SW device queues number */ 62 }; 63 64 /* Accecptable params for Turbo SW devices */ 65 #define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues" 66 #define TURBO_SW_SOCKET_ID_ARG "socket_id" 67 68 static const char * const turbo_sw_valid_params[] = { 69 TURBO_SW_MAX_NB_QUEUES_ARG, 70 TURBO_SW_SOCKET_ID_ARG 71 }; 72 73 /* queue */ 74 struct turbo_sw_queue { 75 /* Ring for processed (encoded/decoded) operations which are ready to 76 * be dequeued. 77 */ 78 struct rte_ring *processed_pkts; 79 /* Stores input for turbo encoder (used when CRC attachment is 80 * performed 81 */ 82 uint8_t *enc_in; 83 /* Stores output from turbo encoder */ 84 uint8_t *enc_out; 85 /* Alpha gamma buf for bblib_turbo_decoder() function */ 86 int8_t *ag; 87 /* Temp buf for bblib_turbo_decoder() function */ 88 uint16_t *code_block; 89 /* Input buf for bblib_rate_dematching_lte() function */ 90 uint8_t *deint_input; 91 /* Output buf for bblib_rate_dematching_lte() function */ 92 uint8_t *deint_output; 93 /* Output buf for bblib_turbodec_adapter_lte() function */ 94 uint8_t *adapter_output; 95 /* Operation type of this queue */ 96 enum rte_bbdev_op_type type; 97 } __rte_cache_aligned; 98 99 100 #ifdef RTE_BBDEV_SDK_AVX2 101 static inline char * 102 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len) 103 { 104 if (unlikely(len > rte_pktmbuf_tailroom(m))) 105 return NULL; 106 107 char *tail = (char *)m->buf_addr + m->data_off + m->data_len; 108 m->data_len = (uint16_t)(m->data_len + len); 109 m_head->pkt_len = (m_head->pkt_len + len); 110 return tail; 111 } 112 113 /* Calculate index based on Table 5.1.3-3 from TS34.212 */ 114 static inline int32_t 115 compute_idx(uint16_t k) 116 { 117 int32_t result = 0; 118 119 if (k < RTE_BBDEV_TURBO_MIN_CB_SIZE || k > RTE_BBDEV_TURBO_MAX_CB_SIZE) 120 return -1; 121 122 if (k > 2048) { 123 if ((k - 2048) % 64 != 0) 124 result = -1; 125 126 result = 124 + (k - 2048) / 64; 127 } else if (k <= 512) { 128 if ((k - 40) % 8 != 0) 129 result = -1; 130 131 result = (k - 40) / 8 + 1; 132 } else if (k <= 1024) { 133 if ((k - 512) % 16 != 0) 134 result = -1; 135 136 result = 60 + (k - 512) / 16; 137 } else { /* 1024 < k <= 2048 */ 138 if ((k - 1024) % 32 != 0) 139 result = -1; 140 141 result = 92 + (k - 1024) / 32; 142 } 143 144 return result; 145 } 146 #endif 147 148 /* Read flag value 0/1 from bitmap */ 149 static inline bool 150 check_bit(uint32_t bitmap, uint32_t bitmask) 151 { 152 return bitmap & bitmask; 153 } 154 155 /* Get device info */ 156 static void 157 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info) 158 { 159 struct bbdev_private *internals = dev->data->dev_private; 160 161 static const struct rte_bbdev_op_cap bbdev_capabilities[] = { 162 #ifdef RTE_BBDEV_SDK_AVX2 163 { 164 .type = RTE_BBDEV_OP_TURBO_DEC, 165 .cap.turbo_dec = { 166 .capability_flags = 167 RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE | 168 RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN | 169 RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN | 170 RTE_BBDEV_TURBO_CRC_TYPE_24B | 171 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP | 172 RTE_BBDEV_TURBO_EARLY_TERMINATION, 173 .max_llr_modulus = 16, 174 .num_buffers_src = 175 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, 176 .num_buffers_hard_out = 177 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, 178 .num_buffers_soft_out = 0, 179 } 180 }, 181 { 182 .type = RTE_BBDEV_OP_TURBO_ENC, 183 .cap.turbo_enc = { 184 .capability_flags = 185 RTE_BBDEV_TURBO_CRC_24B_ATTACH | 186 RTE_BBDEV_TURBO_CRC_24A_ATTACH | 187 RTE_BBDEV_TURBO_RATE_MATCH | 188 RTE_BBDEV_TURBO_RV_INDEX_BYPASS, 189 .num_buffers_src = 190 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, 191 .num_buffers_dst = 192 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, 193 } 194 }, 195 #endif 196 #ifdef RTE_BBDEV_SDK_AVX512 197 { 198 .type = RTE_BBDEV_OP_LDPC_ENC, 199 .cap.ldpc_enc = { 200 .capability_flags = 201 RTE_BBDEV_LDPC_RATE_MATCH | 202 RTE_BBDEV_LDPC_CRC_24A_ATTACH | 203 RTE_BBDEV_LDPC_CRC_24B_ATTACH, 204 .num_buffers_src = 205 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, 206 .num_buffers_dst = 207 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, 208 } 209 }, 210 { 211 .type = RTE_BBDEV_OP_LDPC_DEC, 212 .cap.ldpc_dec = { 213 .capability_flags = 214 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK | 215 RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK | 216 RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP | 217 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE | 218 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE | 219 RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE, 220 .llr_size = 8, 221 .llr_decimals = 4, 222 .num_buffers_src = 223 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, 224 .num_buffers_hard_out = 225 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, 226 .num_buffers_soft_out = 0, 227 } 228 }, 229 #endif 230 RTE_BBDEV_END_OF_CAPABILITIES_LIST() 231 }; 232 233 static struct rte_bbdev_queue_conf default_queue_conf = { 234 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT, 235 }; 236 #ifdef RTE_BBDEV_SDK_AVX2 237 static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2; 238 dev_info->cpu_flag_reqs = &cpu_flag; 239 #else 240 dev_info->cpu_flag_reqs = NULL; 241 #endif 242 default_queue_conf.socket = dev->data->socket_id; 243 244 dev_info->driver_name = RTE_STR(DRIVER_NAME); 245 dev_info->max_num_queues = internals->max_nb_queues; 246 dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT; 247 dev_info->hardware_accelerated = false; 248 dev_info->max_dl_queue_priority = 0; 249 dev_info->max_ul_queue_priority = 0; 250 dev_info->default_queue_conf = default_queue_conf; 251 dev_info->capabilities = bbdev_capabilities; 252 dev_info->min_alignment = 64; 253 dev_info->harq_buffer_size = 0; 254 255 rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id); 256 } 257 258 /* Release queue */ 259 static int 260 q_release(struct rte_bbdev *dev, uint16_t q_id) 261 { 262 struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private; 263 264 if (q != NULL) { 265 rte_ring_free(q->processed_pkts); 266 rte_free(q->enc_out); 267 rte_free(q->enc_in); 268 rte_free(q->ag); 269 rte_free(q->code_block); 270 rte_free(q->deint_input); 271 rte_free(q->deint_output); 272 rte_free(q->adapter_output); 273 rte_free(q); 274 dev->data->queues[q_id].queue_private = NULL; 275 } 276 277 rte_bbdev_log_debug("released device queue %u:%u", 278 dev->data->dev_id, q_id); 279 return 0; 280 } 281 282 /* Setup a queue */ 283 static int 284 q_setup(struct rte_bbdev *dev, uint16_t q_id, 285 const struct rte_bbdev_queue_conf *queue_conf) 286 { 287 int ret; 288 struct turbo_sw_queue *q; 289 char name[RTE_RING_NAMESIZE]; 290 291 /* Allocate the queue data structure. */ 292 q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q), 293 RTE_CACHE_LINE_SIZE, queue_conf->socket); 294 if (q == NULL) { 295 rte_bbdev_log(ERR, "Failed to allocate queue memory"); 296 return -ENOMEM; 297 } 298 299 /* Allocate memory for encoder output. */ 300 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u", 301 dev->data->dev_id, q_id); 302 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 303 rte_bbdev_log(ERR, 304 "Creating queue name for device %u queue %u failed", 305 dev->data->dev_id, q_id); 306 ret = -ENAMETOOLONG; 307 goto free_q; 308 } 309 q->enc_out = rte_zmalloc_socket(name, 310 ((RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) + 3) * 311 sizeof(*q->enc_out) * 3, 312 RTE_CACHE_LINE_SIZE, queue_conf->socket); 313 if (q->enc_out == NULL) { 314 rte_bbdev_log(ERR, 315 "Failed to allocate queue memory for %s", name); 316 ret = -ENOMEM; 317 goto free_q; 318 } 319 320 /* Allocate memory for rate matching output. */ 321 ret = snprintf(name, RTE_RING_NAMESIZE, 322 RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id, 323 q_id); 324 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 325 rte_bbdev_log(ERR, 326 "Creating queue name for device %u queue %u failed", 327 dev->data->dev_id, q_id); 328 ret = -ENAMETOOLONG; 329 goto free_q; 330 } 331 q->enc_in = rte_zmalloc_socket(name, 332 (RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in), 333 RTE_CACHE_LINE_SIZE, queue_conf->socket); 334 if (q->enc_in == NULL) { 335 rte_bbdev_log(ERR, 336 "Failed to allocate queue memory for %s", name); 337 ret = -ENOMEM; 338 goto free_q; 339 } 340 341 /* Allocate memory for Alpha Gamma temp buffer. */ 342 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u", 343 dev->data->dev_id, q_id); 344 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 345 rte_bbdev_log(ERR, 346 "Creating queue name for device %u queue %u failed", 347 dev->data->dev_id, q_id); 348 ret = -ENAMETOOLONG; 349 goto free_q; 350 } 351 q->ag = rte_zmalloc_socket(name, 352 RTE_BBDEV_TURBO_MAX_CB_SIZE * 10 * sizeof(*q->ag), 353 RTE_CACHE_LINE_SIZE, queue_conf->socket); 354 if (q->ag == NULL) { 355 rte_bbdev_log(ERR, 356 "Failed to allocate queue memory for %s", name); 357 ret = -ENOMEM; 358 goto free_q; 359 } 360 361 /* Allocate memory for code block temp buffer. */ 362 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u", 363 dev->data->dev_id, q_id); 364 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 365 rte_bbdev_log(ERR, 366 "Creating queue name for device %u queue %u failed", 367 dev->data->dev_id, q_id); 368 ret = -ENAMETOOLONG; 369 goto free_q; 370 } 371 q->code_block = rte_zmalloc_socket(name, 372 RTE_BBDEV_TURBO_MAX_CB_SIZE * sizeof(*q->code_block), 373 RTE_CACHE_LINE_SIZE, queue_conf->socket); 374 if (q->code_block == NULL) { 375 rte_bbdev_log(ERR, 376 "Failed to allocate queue memory for %s", name); 377 ret = -ENOMEM; 378 goto free_q; 379 } 380 381 /* Allocate memory for Deinterleaver input. */ 382 ret = snprintf(name, RTE_RING_NAMESIZE, 383 RTE_STR(DRIVER_NAME)"_de_i%u:%u", 384 dev->data->dev_id, q_id); 385 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 386 rte_bbdev_log(ERR, 387 "Creating queue name for device %u queue %u failed", 388 dev->data->dev_id, q_id); 389 ret = -ENAMETOOLONG; 390 goto free_q; 391 } 392 q->deint_input = rte_zmalloc_socket(name, 393 DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input), 394 RTE_CACHE_LINE_SIZE, queue_conf->socket); 395 if (q->deint_input == NULL) { 396 rte_bbdev_log(ERR, 397 "Failed to allocate queue memory for %s", name); 398 ret = -ENOMEM; 399 goto free_q; 400 } 401 402 /* Allocate memory for Deinterleaver output. */ 403 ret = snprintf(name, RTE_RING_NAMESIZE, 404 RTE_STR(DRIVER_NAME)"_de_o%u:%u", 405 dev->data->dev_id, q_id); 406 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 407 rte_bbdev_log(ERR, 408 "Creating queue name for device %u queue %u failed", 409 dev->data->dev_id, q_id); 410 ret = -ENAMETOOLONG; 411 goto free_q; 412 } 413 q->deint_output = rte_zmalloc_socket(NULL, 414 DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output), 415 RTE_CACHE_LINE_SIZE, queue_conf->socket); 416 if (q->deint_output == NULL) { 417 rte_bbdev_log(ERR, 418 "Failed to allocate queue memory for %s", name); 419 ret = -ENOMEM; 420 goto free_q; 421 } 422 423 /* Allocate memory for Adapter output. */ 424 ret = snprintf(name, RTE_RING_NAMESIZE, 425 RTE_STR(DRIVER_NAME)"_ada_o%u:%u", 426 dev->data->dev_id, q_id); 427 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 428 rte_bbdev_log(ERR, 429 "Creating queue name for device %u queue %u failed", 430 dev->data->dev_id, q_id); 431 ret = -ENAMETOOLONG; 432 goto free_q; 433 } 434 q->adapter_output = rte_zmalloc_socket(NULL, 435 ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output), 436 RTE_CACHE_LINE_SIZE, queue_conf->socket); 437 if (q->adapter_output == NULL) { 438 rte_bbdev_log(ERR, 439 "Failed to allocate queue memory for %s", name); 440 ret = -ENOMEM; 441 goto free_q; 442 } 443 444 /* Create ring for packets awaiting to be dequeued. */ 445 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u", 446 dev->data->dev_id, q_id); 447 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 448 rte_bbdev_log(ERR, 449 "Creating queue name for device %u queue %u failed", 450 dev->data->dev_id, q_id); 451 ret = -ENAMETOOLONG; 452 goto free_q; 453 } 454 q->processed_pkts = rte_ring_create(name, queue_conf->queue_size, 455 queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ); 456 if (q->processed_pkts == NULL) { 457 rte_bbdev_log(ERR, "Failed to create ring for %s", name); 458 ret = -rte_errno; 459 goto free_q; 460 } 461 462 q->type = queue_conf->op_type; 463 464 dev->data->queues[q_id].queue_private = q; 465 rte_bbdev_log_debug("setup device queue %s", name); 466 return 0; 467 468 free_q: 469 rte_ring_free(q->processed_pkts); 470 rte_free(q->enc_out); 471 rte_free(q->enc_in); 472 rte_free(q->ag); 473 rte_free(q->code_block); 474 rte_free(q->deint_input); 475 rte_free(q->deint_output); 476 rte_free(q->adapter_output); 477 rte_free(q); 478 return ret; 479 } 480 481 static const struct rte_bbdev_ops pmd_ops = { 482 .info_get = info_get, 483 .queue_setup = q_setup, 484 .queue_release = q_release 485 }; 486 487 #ifdef RTE_BBDEV_SDK_AVX2 488 #ifdef RTE_LIBRTE_BBDEV_DEBUG 489 /* Checks if the encoder input buffer is correct. 490 * Returns 0 if it's valid, -1 otherwise. 491 */ 492 static inline int 493 is_enc_input_valid(const uint16_t k, const int32_t k_idx, 494 const uint16_t in_length) 495 { 496 if (k_idx < 0) { 497 rte_bbdev_log(ERR, "K Index is invalid"); 498 return -1; 499 } 500 501 if (in_length - (k >> 3) < 0) { 502 rte_bbdev_log(ERR, 503 "Mismatch between input length (%u bytes) and K (%u bits)", 504 in_length, k); 505 return -1; 506 } 507 508 if (k > RTE_BBDEV_TURBO_MAX_CB_SIZE) { 509 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d", 510 k, RTE_BBDEV_TURBO_MAX_CB_SIZE); 511 return -1; 512 } 513 514 return 0; 515 } 516 517 /* Checks if the decoder input buffer is correct. 518 * Returns 0 if it's valid, -1 otherwise. 519 */ 520 static inline int 521 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length) 522 { 523 if (k_idx < 0) { 524 rte_bbdev_log(ERR, "K index is invalid"); 525 return -1; 526 } 527 528 if (in_length < kw) { 529 rte_bbdev_log(ERR, 530 "Mismatch between input length (%u) and kw (%u)", 531 in_length, kw); 532 return -1; 533 } 534 535 if (kw > RTE_BBDEV_TURBO_MAX_KW) { 536 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d", 537 kw, RTE_BBDEV_TURBO_MAX_KW); 538 return -1; 539 } 540 541 return 0; 542 } 543 #endif 544 #endif 545 546 static inline void 547 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 548 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb, 549 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head, 550 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset, 551 uint16_t in_length, struct rte_bbdev_stats *q_stats) 552 { 553 #ifdef RTE_BBDEV_SDK_AVX2 554 #ifdef RTE_LIBRTE_BBDEV_DEBUG 555 int ret; 556 #else 557 RTE_SET_USED(in_length); 558 #endif 559 int16_t k_idx; 560 uint16_t m; 561 uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out; 562 uint64_t first_3_bytes = 0; 563 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; 564 struct bblib_crc_request crc_req; 565 struct bblib_crc_response crc_resp; 566 struct bblib_turbo_encoder_request turbo_req; 567 struct bblib_turbo_encoder_response turbo_resp; 568 struct bblib_rate_match_dl_request rm_req; 569 struct bblib_rate_match_dl_response rm_resp; 570 #ifdef RTE_BBDEV_OFFLOAD_COST 571 uint64_t start_time; 572 #else 573 RTE_SET_USED(q_stats); 574 #endif 575 576 k_idx = compute_idx(k); 577 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 578 579 /* CRC24A (for TB) */ 580 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) && 581 (enc->code_block_mode == 1)) { 582 #ifdef RTE_LIBRTE_BBDEV_DEBUG 583 ret = is_enc_input_valid(k - 24, k_idx, in_length); 584 if (ret != 0) { 585 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 586 return; 587 } 588 #endif 589 590 crc_req.data = in; 591 crc_req.len = k - 24; 592 /* Check if there is a room for CRC bits if not use 593 * the temporary buffer. 594 */ 595 if (mbuf_append(m_in, m_in, 3) == NULL) { 596 rte_memcpy(q->enc_in, in, (k - 24) >> 3); 597 in = q->enc_in; 598 } else { 599 /* Store 3 first bytes of next CB as they will be 600 * overwritten by CRC bytes. If it is the last CB then 601 * there is no point to store 3 next bytes and this 602 * if..else branch will be omitted. 603 */ 604 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]); 605 } 606 607 crc_resp.data = in; 608 #ifdef RTE_BBDEV_OFFLOAD_COST 609 start_time = rte_rdtsc_precise(); 610 #endif 611 /* CRC24A generation */ 612 bblib_lte_crc24a_gen(&crc_req, &crc_resp); 613 #ifdef RTE_BBDEV_OFFLOAD_COST 614 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 615 #endif 616 } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) { 617 /* CRC24B */ 618 #ifdef RTE_LIBRTE_BBDEV_DEBUG 619 ret = is_enc_input_valid(k - 24, k_idx, in_length); 620 if (ret != 0) { 621 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 622 return; 623 } 624 #endif 625 626 crc_req.data = in; 627 crc_req.len = k - 24; 628 /* Check if there is a room for CRC bits if this is the last 629 * CB in TB. If not use temporary buffer. 630 */ 631 if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) { 632 rte_memcpy(q->enc_in, in, (k - 24) >> 3); 633 in = q->enc_in; 634 } else if (c - r > 1) { 635 /* Store 3 first bytes of next CB as they will be 636 * overwritten by CRC bytes. If it is the last CB then 637 * there is no point to store 3 next bytes and this 638 * if..else branch will be omitted. 639 */ 640 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]); 641 } 642 643 crc_resp.data = in; 644 #ifdef RTE_BBDEV_OFFLOAD_COST 645 start_time = rte_rdtsc_precise(); 646 #endif 647 /* CRC24B generation */ 648 bblib_lte_crc24b_gen(&crc_req, &crc_resp); 649 #ifdef RTE_BBDEV_OFFLOAD_COST 650 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 651 #endif 652 } 653 #ifdef RTE_LIBRTE_BBDEV_DEBUG 654 else { 655 ret = is_enc_input_valid(k, k_idx, in_length); 656 if (ret != 0) { 657 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 658 return; 659 } 660 } 661 #endif 662 663 /* Turbo encoder */ 664 665 /* Each bit layer output from turbo encoder is (k+4) bits long, i.e. 666 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up. 667 * So dst_data's length should be 3*(k/8) + 3 bytes. 668 * In Rate-matching bypass case outputs pointers passed to encoder 669 * (out0, out1 and out2) can directly point to addresses of output from 670 * turbo_enc entity. 671 */ 672 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { 673 out0 = q->enc_out; 674 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1); 675 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1); 676 } else { 677 out0 = (uint8_t *)mbuf_append(m_out_head, m_out, 678 (k >> 3) * 3 + 2); 679 if (out0 == NULL) { 680 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 681 rte_bbdev_log(ERR, 682 "Too little space in output mbuf"); 683 return; 684 } 685 enc->output.length += (k >> 3) * 3 + 2; 686 /* rte_bbdev_op_data.offset can be different than the 687 * offset of the appended bytes 688 */ 689 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 690 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, 691 out_offset + (k >> 3) + 1); 692 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, 693 out_offset + 2 * ((k >> 3) + 1)); 694 } 695 696 turbo_req.case_id = k_idx; 697 turbo_req.input_win = in; 698 turbo_req.length = k >> 3; 699 turbo_resp.output_win_0 = out0; 700 turbo_resp.output_win_1 = out1; 701 turbo_resp.output_win_2 = out2; 702 703 #ifdef RTE_BBDEV_OFFLOAD_COST 704 start_time = rte_rdtsc_precise(); 705 #endif 706 /* Turbo encoding */ 707 if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) { 708 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 709 rte_bbdev_log(ERR, "Turbo Encoder failed"); 710 return; 711 } 712 #ifdef RTE_BBDEV_OFFLOAD_COST 713 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 714 #endif 715 716 /* Restore 3 first bytes of next CB if they were overwritten by CRC*/ 717 if (first_3_bytes != 0) 718 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes; 719 720 /* Rate-matching */ 721 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { 722 uint8_t mask_id; 723 /* Integer round up division by 8 */ 724 uint16_t out_len = (e + 7) >> 3; 725 /* The mask array is indexed using E%8. E is an even number so 726 * there are only 4 possible values. 727 */ 728 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC}; 729 730 /* get output data starting address */ 731 rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len); 732 if (rm_out == NULL) { 733 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 734 rte_bbdev_log(ERR, 735 "Too little space in output mbuf"); 736 return; 737 } 738 /* rte_bbdev_op_data.offset can be different than the offset 739 * of the appended bytes 740 */ 741 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 742 743 /* index of current code block */ 744 rm_req.r = r; 745 /* total number of code block */ 746 rm_req.C = c; 747 /* For DL - 1, UL - 0 */ 748 rm_req.direction = 1; 749 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO 750 * and MDL_HARQ are used for Ncb calculation. As Ncb is already 751 * known we can adjust those parameters 752 */ 753 rm_req.Nsoft = ncb * rm_req.C; 754 rm_req.KMIMO = 1; 755 rm_req.MDL_HARQ = 1; 756 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G 757 * are used for E calculation. As E is already known we can 758 * adjust those parameters 759 */ 760 rm_req.NL = e; 761 rm_req.Qm = 1; 762 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C; 763 764 rm_req.rvidx = enc->rv_index; 765 rm_req.Kidx = k_idx - 1; 766 rm_req.nLen = k + 4; 767 rm_req.tin0 = out0; 768 rm_req.tin1 = out1; 769 rm_req.tin2 = out2; 770 rm_resp.output = rm_out; 771 rm_resp.OutputLen = out_len; 772 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS) 773 rm_req.bypass_rvidx = 1; 774 else 775 rm_req.bypass_rvidx = 0; 776 777 #ifdef RTE_BBDEV_OFFLOAD_COST 778 start_time = rte_rdtsc_precise(); 779 #endif 780 /* Rate-Matching */ 781 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) { 782 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 783 rte_bbdev_log(ERR, "Rate matching failed"); 784 return; 785 } 786 #ifdef RTE_BBDEV_OFFLOAD_COST 787 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 788 #endif 789 790 /* SW fills an entire last byte even if E%8 != 0. Clear the 791 * superfluous data bits for consistency with HW device. 792 */ 793 mask_id = (e & 7) >> 1; 794 rm_out[out_len - 1] &= mask_out[mask_id]; 795 enc->output.length += rm_resp.OutputLen; 796 } else { 797 /* Rate matching is bypassed */ 798 799 /* Completing last byte of out0 (where 4 tail bits are stored) 800 * by moving first 4 bits from out1 801 */ 802 tmp_out = (uint8_t *) --out1; 803 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4); 804 tmp_out++; 805 /* Shifting out1 data by 4 bits to the left */ 806 for (m = 0; m < k >> 3; ++m) { 807 uint8_t *first = tmp_out; 808 uint8_t second = *(tmp_out + 1); 809 *first = (*first << 4) | ((second & 0xF0) >> 4); 810 tmp_out++; 811 } 812 /* Shifting out2 data by 8 bits to the left */ 813 for (m = 0; m < (k >> 3) + 1; ++m) { 814 *tmp_out = *(tmp_out + 1); 815 tmp_out++; 816 } 817 *tmp_out = 0; 818 } 819 #else 820 RTE_SET_USED(q); 821 RTE_SET_USED(op); 822 RTE_SET_USED(r); 823 RTE_SET_USED(c); 824 RTE_SET_USED(k); 825 RTE_SET_USED(ncb); 826 RTE_SET_USED(e); 827 RTE_SET_USED(m_in); 828 RTE_SET_USED(m_out_head); 829 RTE_SET_USED(m_out); 830 RTE_SET_USED(in_offset); 831 RTE_SET_USED(out_offset); 832 RTE_SET_USED(in_length); 833 RTE_SET_USED(q_stats); 834 #endif 835 } 836 837 838 static inline void 839 process_ldpc_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 840 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head, 841 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset, 842 uint16_t seg_total_left, struct rte_bbdev_stats *q_stats) 843 { 844 #ifdef RTE_BBDEV_SDK_AVX512 845 RTE_SET_USED(seg_total_left); 846 uint8_t *in, *rm_out; 847 struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc; 848 struct bblib_ldpc_encoder_5gnr_request ldpc_req; 849 struct bblib_ldpc_encoder_5gnr_response ldpc_resp; 850 struct bblib_LDPC_ratematch_5gnr_request rm_req; 851 struct bblib_LDPC_ratematch_5gnr_response rm_resp; 852 struct bblib_crc_request crc_req; 853 struct bblib_crc_response crc_resp; 854 uint16_t msgLen, puntBits, parity_offset, out_len; 855 uint16_t K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c; 856 uint16_t in_length_in_bits = K - enc->n_filler; 857 uint16_t in_length_in_bytes = (in_length_in_bits + 7) >> 3; 858 859 #ifdef RTE_BBDEV_OFFLOAD_COST 860 uint64_t start_time = rte_rdtsc_precise(); 861 #else 862 RTE_SET_USED(q_stats); 863 #endif 864 865 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 866 867 /* Masking the Filler bits explicitly */ 868 memset(q->enc_in + (in_length_in_bytes - 3), 0, 869 ((K + 7) >> 3) - (in_length_in_bytes - 3)); 870 /* CRC Generation */ 871 if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) { 872 rte_memcpy(q->enc_in, in, in_length_in_bytes - 3); 873 crc_req.data = in; 874 crc_req.len = in_length_in_bits - 24; 875 crc_resp.data = q->enc_in; 876 bblib_lte_crc24a_gen(&crc_req, &crc_resp); 877 } else if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH) { 878 rte_memcpy(q->enc_in, in, in_length_in_bytes - 3); 879 crc_req.data = in; 880 crc_req.len = in_length_in_bits - 24; 881 crc_resp.data = q->enc_in; 882 bblib_lte_crc24b_gen(&crc_req, &crc_resp); 883 } else 884 rte_memcpy(q->enc_in, in, in_length_in_bytes); 885 886 /* LDPC Encoding */ 887 ldpc_req.Zc = enc->z_c; 888 ldpc_req.baseGraph = enc->basegraph; 889 /* Number of rows set to maximum */ 890 ldpc_req.nRows = ldpc_req.baseGraph == 1 ? 46 : 42; 891 ldpc_req.numberCodeblocks = 1; 892 ldpc_req.input[0] = (int8_t *) q->enc_in; 893 ldpc_resp.output[0] = (int8_t *) q->enc_out; 894 895 bblib_bit_reverse(ldpc_req.input[0], in_length_in_bytes << 3); 896 897 if (bblib_ldpc_encoder_5gnr(&ldpc_req, &ldpc_resp) != 0) { 898 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 899 rte_bbdev_log(ERR, "LDPC Encoder failed"); 900 return; 901 } 902 903 /* 904 * Systematic + Parity : Recreating stream with filler bits, ideally 905 * the bit select could handle this in the RM SDK 906 */ 907 msgLen = (ldpc_req.baseGraph == 1 ? 22 : 10) * ldpc_req.Zc; 908 puntBits = 2 * ldpc_req.Zc; 909 parity_offset = msgLen - puntBits; 910 ippsCopyBE_1u(((uint8_t *) ldpc_req.input[0]) + (puntBits / 8), 911 puntBits%8, q->adapter_output, 0, parity_offset); 912 ippsCopyBE_1u(q->enc_out, 0, q->adapter_output + (parity_offset / 8), 913 parity_offset % 8, ldpc_req.nRows * ldpc_req.Zc); 914 915 out_len = (e + 7) >> 3; 916 /* get output data starting address */ 917 rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len); 918 if (rm_out == NULL) { 919 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 920 rte_bbdev_log(ERR, 921 "Too little space in output mbuf"); 922 return; 923 } 924 /* 925 * rte_bbdev_op_data.offset can be different than the offset 926 * of the appended bytes 927 */ 928 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 929 930 /* Rate-Matching */ 931 rm_req.E = e; 932 rm_req.Ncb = enc->n_cb; 933 rm_req.Qm = enc->q_m; 934 rm_req.Zc = enc->z_c; 935 rm_req.baseGraph = enc->basegraph; 936 rm_req.input = q->adapter_output; 937 rm_req.nLen = enc->n_filler; 938 rm_req.nullIndex = parity_offset - enc->n_filler; 939 rm_req.rvidx = enc->rv_index; 940 rm_resp.output = q->deint_output; 941 942 if (bblib_LDPC_ratematch_5gnr(&rm_req, &rm_resp) != 0) { 943 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 944 rte_bbdev_log(ERR, "Rate matching failed"); 945 return; 946 } 947 948 /* RM SDK may provide non zero bits on last byte */ 949 if ((e % 8) != 0) 950 q->deint_output[out_len-1] &= (1 << (e % 8)) - 1; 951 952 bblib_bit_reverse((int8_t *) q->deint_output, out_len << 3); 953 954 rte_memcpy(rm_out, q->deint_output, out_len); 955 enc->output.length += out_len; 956 957 #ifdef RTE_BBDEV_OFFLOAD_COST 958 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 959 #endif 960 #else 961 RTE_SET_USED(q); 962 RTE_SET_USED(op); 963 RTE_SET_USED(e); 964 RTE_SET_USED(m_in); 965 RTE_SET_USED(m_out_head); 966 RTE_SET_USED(m_out); 967 RTE_SET_USED(in_offset); 968 RTE_SET_USED(out_offset); 969 RTE_SET_USED(seg_total_left); 970 RTE_SET_USED(q_stats); 971 #endif 972 } 973 974 static inline void 975 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 976 struct rte_bbdev_stats *queue_stats) 977 { 978 uint8_t c, r, crc24_bits = 0; 979 uint16_t k, ncb; 980 uint32_t e; 981 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; 982 uint16_t in_offset = enc->input.offset; 983 uint16_t out_offset = enc->output.offset; 984 struct rte_mbuf *m_in = enc->input.data; 985 struct rte_mbuf *m_out = enc->output.data; 986 struct rte_mbuf *m_out_head = enc->output.data; 987 uint32_t in_length, mbuf_total_left = enc->input.length; 988 uint16_t seg_total_left; 989 990 /* Clear op status */ 991 op->status = 0; 992 993 if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) { 994 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d", 995 mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE); 996 op->status = 1 << RTE_BBDEV_DATA_ERROR; 997 return; 998 } 999 1000 if (m_in == NULL || m_out == NULL) { 1001 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 1002 op->status = 1 << RTE_BBDEV_DATA_ERROR; 1003 return; 1004 } 1005 1006 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) || 1007 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH)) 1008 crc24_bits = 24; 1009 1010 if (enc->code_block_mode == 0) { /* For Transport Block mode */ 1011 c = enc->tb_params.c; 1012 r = enc->tb_params.r; 1013 } else {/* For Code Block mode */ 1014 c = 1; 1015 r = 0; 1016 } 1017 1018 while (mbuf_total_left > 0 && r < c) { 1019 1020 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset; 1021 1022 if (enc->code_block_mode == 0) { 1023 k = (r < enc->tb_params.c_neg) ? 1024 enc->tb_params.k_neg : enc->tb_params.k_pos; 1025 ncb = (r < enc->tb_params.c_neg) ? 1026 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos; 1027 e = (r < enc->tb_params.cab) ? 1028 enc->tb_params.ea : enc->tb_params.eb; 1029 } else { 1030 k = enc->cb_params.k; 1031 ncb = enc->cb_params.ncb; 1032 e = enc->cb_params.e; 1033 } 1034 1035 process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head, 1036 m_out, in_offset, out_offset, seg_total_left, 1037 queue_stats); 1038 /* Update total_left */ 1039 in_length = ((k - crc24_bits) >> 3); 1040 mbuf_total_left -= in_length; 1041 /* Update offsets for next CBs (if exist) */ 1042 in_offset += (k - crc24_bits) >> 3; 1043 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) 1044 out_offset += e >> 3; 1045 else 1046 out_offset += (k >> 3) * 3 + 2; 1047 1048 /* Update offsets */ 1049 if (seg_total_left == in_length) { 1050 /* Go to the next mbuf */ 1051 m_in = m_in->next; 1052 m_out = m_out->next; 1053 in_offset = 0; 1054 out_offset = 0; 1055 } 1056 r++; 1057 } 1058 1059 /* check if all input data was processed */ 1060 if (mbuf_total_left != 0) { 1061 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1062 rte_bbdev_log(ERR, 1063 "Mismatch between mbuf length and included CBs sizes"); 1064 } 1065 } 1066 1067 1068 static inline void 1069 enqueue_ldpc_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 1070 struct rte_bbdev_stats *queue_stats) 1071 { 1072 uint8_t c, r, crc24_bits = 0; 1073 uint32_t e; 1074 struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc; 1075 uint16_t in_offset = enc->input.offset; 1076 uint16_t out_offset = enc->output.offset; 1077 struct rte_mbuf *m_in = enc->input.data; 1078 struct rte_mbuf *m_out = enc->output.data; 1079 struct rte_mbuf *m_out_head = enc->output.data; 1080 uint32_t in_length, mbuf_total_left = enc->input.length; 1081 1082 uint16_t seg_total_left; 1083 1084 /* Clear op status */ 1085 op->status = 0; 1086 1087 if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) { 1088 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d", 1089 mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE); 1090 op->status = 1 << RTE_BBDEV_DATA_ERROR; 1091 return; 1092 } 1093 1094 if (m_in == NULL || m_out == NULL) { 1095 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 1096 op->status = 1 << RTE_BBDEV_DATA_ERROR; 1097 return; 1098 } 1099 1100 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) || 1101 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH)) 1102 crc24_bits = 24; 1103 1104 if (enc->code_block_mode == 0) { /* For Transport Block mode */ 1105 c = enc->tb_params.c; 1106 r = enc->tb_params.r; 1107 } else { /* For Code Block mode */ 1108 c = 1; 1109 r = 0; 1110 } 1111 1112 while (mbuf_total_left > 0 && r < c) { 1113 1114 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset; 1115 1116 if (enc->code_block_mode == 0) { 1117 e = (r < enc->tb_params.cab) ? 1118 enc->tb_params.ea : enc->tb_params.eb; 1119 } else { 1120 e = enc->cb_params.e; 1121 } 1122 1123 process_ldpc_enc_cb(q, op, e, m_in, m_out_head, 1124 m_out, in_offset, out_offset, seg_total_left, 1125 queue_stats); 1126 /* Update total_left */ 1127 in_length = (enc->basegraph == 1 ? 22 : 10) * enc->z_c; 1128 in_length = ((in_length - crc24_bits - enc->n_filler) >> 3); 1129 mbuf_total_left -= in_length; 1130 /* Update offsets for next CBs (if exist) */ 1131 in_offset += in_length; 1132 out_offset += (e + 7) >> 3; 1133 1134 /* Update offsets */ 1135 if (seg_total_left == in_length) { 1136 /* Go to the next mbuf */ 1137 m_in = m_in->next; 1138 m_out = m_out->next; 1139 in_offset = 0; 1140 out_offset = 0; 1141 } 1142 r++; 1143 } 1144 1145 /* check if all input data was processed */ 1146 if (mbuf_total_left != 0) { 1147 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1148 rte_bbdev_log(ERR, 1149 "Mismatch between mbuf length and included CBs sizes %d", 1150 mbuf_total_left); 1151 } 1152 } 1153 1154 static inline uint16_t 1155 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops, 1156 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats) 1157 { 1158 uint16_t i; 1159 #ifdef RTE_BBDEV_OFFLOAD_COST 1160 queue_stats->acc_offload_cycles = 0; 1161 #endif 1162 1163 for (i = 0; i < nb_ops; ++i) 1164 enqueue_enc_one_op(q, ops[i], queue_stats); 1165 1166 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 1167 NULL); 1168 } 1169 1170 static inline uint16_t 1171 enqueue_ldpc_enc_all_ops(struct turbo_sw_queue *q, 1172 struct rte_bbdev_enc_op **ops, 1173 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats) 1174 { 1175 uint16_t i; 1176 #ifdef RTE_BBDEV_OFFLOAD_COST 1177 queue_stats->acc_offload_cycles = 0; 1178 #endif 1179 1180 for (i = 0; i < nb_ops; ++i) 1181 enqueue_ldpc_enc_one_op(q, ops[i], queue_stats); 1182 1183 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 1184 NULL); 1185 } 1186 1187 #ifdef RTE_BBDEV_SDK_AVX2 1188 static inline void 1189 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k, 1190 uint16_t ncb) 1191 { 1192 uint16_t d = k + 4; 1193 uint16_t kpi = ncb / 3; 1194 uint16_t nd = kpi - d; 1195 1196 rte_memcpy(&out[nd], in, d); 1197 rte_memcpy(&out[nd + kpi + 64], &in[kpi], d); 1198 rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d); 1199 } 1200 #endif 1201 1202 static inline void 1203 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, 1204 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in, 1205 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out, 1206 uint16_t in_offset, uint16_t out_offset, bool check_crc_24b, 1207 uint16_t crc24_overlap, uint16_t in_length, 1208 struct rte_bbdev_stats *q_stats) 1209 { 1210 #ifdef RTE_BBDEV_SDK_AVX2 1211 #ifdef RTE_LIBRTE_BBDEV_DEBUG 1212 int ret; 1213 #else 1214 RTE_SET_USED(in_length); 1215 #endif 1216 int32_t k_idx; 1217 int32_t iter_cnt; 1218 uint8_t *in, *out, *adapter_input; 1219 int32_t ncb, ncb_without_null; 1220 struct bblib_turbo_adapter_ul_response adapter_resp; 1221 struct bblib_turbo_adapter_ul_request adapter_req; 1222 struct bblib_turbo_decoder_request turbo_req; 1223 struct bblib_turbo_decoder_response turbo_resp; 1224 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; 1225 #ifdef RTE_BBDEV_OFFLOAD_COST 1226 uint64_t start_time; 1227 #else 1228 RTE_SET_USED(q_stats); 1229 #endif 1230 1231 k_idx = compute_idx(k); 1232 1233 #ifdef RTE_LIBRTE_BBDEV_DEBUG 1234 ret = is_dec_input_valid(k_idx, kw, in_length); 1235 if (ret != 0) { 1236 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1237 return; 1238 } 1239 #endif 1240 1241 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 1242 ncb = kw; 1243 ncb_without_null = (k + 4) * 3; 1244 1245 if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) { 1246 struct bblib_deinterleave_ul_request deint_req; 1247 struct bblib_deinterleave_ul_response deint_resp; 1248 1249 deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER; 1250 deint_req.pharqbuffer = in; 1251 deint_req.ncb = ncb; 1252 deint_resp.pinteleavebuffer = q->deint_output; 1253 1254 #ifdef RTE_BBDEV_OFFLOAD_COST 1255 start_time = rte_rdtsc_precise(); 1256 #endif 1257 /* Sub-block De-Interleaving */ 1258 bblib_deinterleave_ul(&deint_req, &deint_resp); 1259 #ifdef RTE_BBDEV_OFFLOAD_COST 1260 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 1261 #endif 1262 } else 1263 move_padding_bytes(in, q->deint_output, k, ncb); 1264 1265 adapter_input = q->deint_output; 1266 1267 if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN) 1268 adapter_req.isinverted = 1; 1269 else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN) 1270 adapter_req.isinverted = 0; 1271 else { 1272 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 1273 rte_bbdev_log(ERR, "LLR format wasn't specified"); 1274 return; 1275 } 1276 1277 adapter_req.ncb = ncb_without_null; 1278 adapter_req.pinteleavebuffer = adapter_input; 1279 adapter_resp.pharqout = q->adapter_output; 1280 1281 #ifdef RTE_BBDEV_OFFLOAD_COST 1282 start_time = rte_rdtsc_precise(); 1283 #endif 1284 /* Turbo decode adaptation */ 1285 bblib_turbo_adapter_ul(&adapter_req, &adapter_resp); 1286 #ifdef RTE_BBDEV_OFFLOAD_COST 1287 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 1288 #endif 1289 1290 out = (uint8_t *)mbuf_append(m_out_head, m_out, 1291 ((k - crc24_overlap) >> 3)); 1292 if (out == NULL) { 1293 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1294 rte_bbdev_log(ERR, "Too little space in output mbuf"); 1295 return; 1296 } 1297 /* rte_bbdev_op_data.offset can be different than the offset of the 1298 * appended bytes 1299 */ 1300 out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 1301 if (check_crc_24b) 1302 turbo_req.c = c + 1; 1303 else 1304 turbo_req.c = c; 1305 turbo_req.input = (int8_t *)q->adapter_output; 1306 turbo_req.k = k; 1307 turbo_req.k_idx = k_idx; 1308 turbo_req.max_iter_num = dec->iter_max; 1309 turbo_req.early_term_disable = !check_bit(dec->op_flags, 1310 RTE_BBDEV_TURBO_EARLY_TERMINATION); 1311 turbo_resp.ag_buf = q->ag; 1312 turbo_resp.cb_buf = q->code_block; 1313 turbo_resp.output = out; 1314 1315 #ifdef RTE_BBDEV_OFFLOAD_COST 1316 start_time = rte_rdtsc_precise(); 1317 #endif 1318 /* Turbo decode */ 1319 iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp); 1320 #ifdef RTE_BBDEV_OFFLOAD_COST 1321 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 1322 #endif 1323 dec->hard_output.length += (k >> 3); 1324 1325 if (iter_cnt > 0) { 1326 /* Temporary solution for returned iter_count from SDK */ 1327 iter_cnt = (iter_cnt - 1) >> 1; 1328 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count); 1329 } else { 1330 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1331 rte_bbdev_log(ERR, "Turbo Decoder failed"); 1332 return; 1333 } 1334 #else 1335 RTE_SET_USED(q); 1336 RTE_SET_USED(op); 1337 RTE_SET_USED(c); 1338 RTE_SET_USED(k); 1339 RTE_SET_USED(kw); 1340 RTE_SET_USED(m_in); 1341 RTE_SET_USED(m_out_head); 1342 RTE_SET_USED(m_out); 1343 RTE_SET_USED(in_offset); 1344 RTE_SET_USED(out_offset); 1345 RTE_SET_USED(check_crc_24b); 1346 RTE_SET_USED(crc24_overlap); 1347 RTE_SET_USED(in_length); 1348 RTE_SET_USED(q_stats); 1349 #endif 1350 } 1351 1352 static inline void 1353 process_ldpc_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, 1354 uint8_t c, uint16_t out_length, uint32_t e, 1355 struct rte_mbuf *m_in, 1356 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out, 1357 struct rte_mbuf *m_harq_in, 1358 struct rte_mbuf *m_harq_out_head, struct rte_mbuf *m_harq_out, 1359 uint16_t in_offset, uint16_t out_offset, 1360 uint16_t harq_in_offset, uint16_t harq_out_offset, 1361 bool check_crc_24b, 1362 uint16_t crc24_overlap, uint16_t in_length, 1363 struct rte_bbdev_stats *q_stats) 1364 { 1365 #ifdef RTE_BBDEV_SDK_AVX512 1366 RTE_SET_USED(in_length); 1367 RTE_SET_USED(c); 1368 uint8_t *in, *out, *harq_in, *harq_out, *adapter_input; 1369 struct bblib_rate_dematching_5gnr_request derm_req; 1370 struct bblib_rate_dematching_5gnr_response derm_resp; 1371 struct bblib_ldpc_decoder_5gnr_request dec_req; 1372 struct bblib_ldpc_decoder_5gnr_response dec_resp; 1373 struct bblib_crc_request crc_req; 1374 struct bblib_crc_response crc_resp; 1375 struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec; 1376 uint16_t K, parity_offset, sys_cols, outLenWithCrc; 1377 int16_t deRmOutSize, numRows; 1378 1379 /* Compute some LDPC BG lengths */ 1380 outLenWithCrc = out_length + (crc24_overlap >> 3); 1381 sys_cols = (dec->basegraph == 1) ? 22 : 10; 1382 K = sys_cols * dec->z_c; 1383 parity_offset = K - 2 * dec->z_c; 1384 1385 #ifdef RTE_BBDEV_OFFLOAD_COST 1386 uint64_t start_time = rte_rdtsc_precise(); 1387 #else 1388 RTE_SET_USED(q_stats); 1389 #endif 1390 1391 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 1392 1393 if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) { 1394 /** 1395 * Single contiguous block from the first LLR of the 1396 * circular buffer. 1397 */ 1398 harq_in = NULL; 1399 if (m_harq_in != NULL) 1400 harq_in = rte_pktmbuf_mtod_offset(m_harq_in, 1401 uint8_t *, harq_in_offset); 1402 if (harq_in == NULL) { 1403 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1404 rte_bbdev_log(ERR, "No space in harq input mbuf"); 1405 return; 1406 } 1407 uint16_t harq_in_length = RTE_MIN( 1408 dec->harq_combined_input.length, 1409 (uint32_t) dec->n_cb); 1410 memset(q->ag + harq_in_length, 0, 1411 dec->n_cb - harq_in_length); 1412 rte_memcpy(q->ag, harq_in, harq_in_length); 1413 } 1414 1415 derm_req.p_in = (int8_t *) in; 1416 derm_req.p_harq = q->ag; /* This doesn't include the filler bits */ 1417 derm_req.base_graph = dec->basegraph; 1418 derm_req.zc = dec->z_c; 1419 derm_req.ncb = dec->n_cb; 1420 derm_req.e = e; 1421 derm_req.k0 = 0; /* Actual output from SDK */ 1422 derm_req.isretx = check_bit(dec->op_flags, 1423 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE); 1424 derm_req.rvid = dec->rv_index; 1425 derm_req.modulation_order = dec->q_m; 1426 derm_req.start_null_index = parity_offset - dec->n_filler; 1427 derm_req.num_of_null = dec->n_filler; 1428 1429 bblib_rate_dematching_5gnr(&derm_req, &derm_resp); 1430 1431 /* Compute RM out size and number of rows */ 1432 deRmOutSize = RTE_MIN( 1433 derm_req.k0 + derm_req.e - 1434 ((derm_req.k0 < derm_req.start_null_index) ? 1435 0 : dec->n_filler), 1436 dec->n_cb - dec->n_filler); 1437 if (m_harq_in != NULL) 1438 deRmOutSize = RTE_MAX(deRmOutSize, 1439 RTE_MIN(dec->n_cb - dec->n_filler, 1440 m_harq_in->data_len)); 1441 numRows = ((deRmOutSize + dec->n_filler + dec->z_c - 1) / dec->z_c) 1442 - sys_cols + 2; 1443 numRows = RTE_MAX(4, numRows); 1444 1445 /* get output data starting address */ 1446 out = (uint8_t *)mbuf_append(m_out_head, m_out, out_length); 1447 if (out == NULL) { 1448 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1449 rte_bbdev_log(ERR, 1450 "Too little space in LDPC decoder output mbuf"); 1451 return; 1452 } 1453 1454 /* rte_bbdev_op_data.offset can be different than the offset 1455 * of the appended bytes 1456 */ 1457 out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 1458 adapter_input = q->enc_out; 1459 1460 dec_req.Zc = dec->z_c; 1461 dec_req.baseGraph = dec->basegraph; 1462 dec_req.nRows = numRows; 1463 dec_req.numChannelLlrs = deRmOutSize; 1464 dec_req.varNodes = derm_req.p_harq; 1465 dec_req.numFillerBits = dec->n_filler; 1466 dec_req.maxIterations = dec->iter_max; 1467 dec_req.enableEarlyTermination = check_bit(dec->op_flags, 1468 RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE); 1469 dec_resp.varNodes = (int16_t *) q->adapter_output; 1470 dec_resp.compactedMessageBytes = q->enc_out; 1471 1472 bblib_ldpc_decoder_5gnr(&dec_req, &dec_resp); 1473 1474 dec->iter_count = RTE_MAX(dec_resp.iterationAtTermination, 1475 dec->iter_count); 1476 if (!dec_resp.parityPassedAtTermination) 1477 op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR; 1478 1479 bblib_bit_reverse((int8_t *) q->enc_out, outLenWithCrc << 3); 1480 1481 if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK) || 1482 check_bit(dec->op_flags, 1483 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK)) { 1484 crc_req.data = adapter_input; 1485 crc_req.len = K - dec->n_filler - 24; 1486 crc_resp.check_passed = false; 1487 crc_resp.data = adapter_input; 1488 if (check_crc_24b) 1489 bblib_lte_crc24b_check(&crc_req, &crc_resp); 1490 else 1491 bblib_lte_crc24a_check(&crc_req, &crc_resp); 1492 if (!crc_resp.check_passed) 1493 op->status |= 1 << RTE_BBDEV_CRC_ERROR; 1494 } 1495 1496 #ifdef RTE_BBDEV_OFFLOAD_COST 1497 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; 1498 #endif 1499 if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) { 1500 harq_out = NULL; 1501 if (m_harq_out != NULL) { 1502 /* Initialize HARQ data length since we overwrite */ 1503 m_harq_out->data_len = 0; 1504 /* Check there is enough space 1505 * in the HARQ outbound buffer 1506 */ 1507 harq_out = (uint8_t *)mbuf_append(m_harq_out_head, 1508 m_harq_out, deRmOutSize); 1509 } 1510 if (harq_out == NULL) { 1511 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1512 rte_bbdev_log(ERR, "No space in HARQ output mbuf"); 1513 return; 1514 } 1515 /* get output data starting address and overwrite the data */ 1516 harq_out = rte_pktmbuf_mtod_offset(m_harq_out, uint8_t *, 1517 harq_out_offset); 1518 rte_memcpy(harq_out, derm_req.p_harq, deRmOutSize); 1519 dec->harq_combined_output.length += deRmOutSize; 1520 } 1521 1522 rte_memcpy(out, adapter_input, out_length); 1523 dec->hard_output.length += out_length; 1524 #else 1525 RTE_SET_USED(q); 1526 RTE_SET_USED(op); 1527 RTE_SET_USED(c); 1528 RTE_SET_USED(out_length); 1529 RTE_SET_USED(e); 1530 RTE_SET_USED(m_in); 1531 RTE_SET_USED(m_out_head); 1532 RTE_SET_USED(m_out); 1533 RTE_SET_USED(m_harq_in); 1534 RTE_SET_USED(m_harq_out_head); 1535 RTE_SET_USED(m_harq_out); 1536 RTE_SET_USED(harq_in_offset); 1537 RTE_SET_USED(harq_out_offset); 1538 RTE_SET_USED(in_offset); 1539 RTE_SET_USED(out_offset); 1540 RTE_SET_USED(check_crc_24b); 1541 RTE_SET_USED(crc24_overlap); 1542 RTE_SET_USED(in_length); 1543 RTE_SET_USED(q_stats); 1544 #endif 1545 } 1546 1547 1548 static inline void 1549 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, 1550 struct rte_bbdev_stats *queue_stats) 1551 { 1552 uint8_t c, r = 0; 1553 uint16_t kw, k = 0; 1554 uint16_t crc24_overlap = 0; 1555 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; 1556 struct rte_mbuf *m_in = dec->input.data; 1557 struct rte_mbuf *m_out = dec->hard_output.data; 1558 struct rte_mbuf *m_out_head = dec->hard_output.data; 1559 uint16_t in_offset = dec->input.offset; 1560 uint16_t out_offset = dec->hard_output.offset; 1561 uint32_t mbuf_total_left = dec->input.length; 1562 uint16_t seg_total_left; 1563 1564 /* Clear op status */ 1565 op->status = 0; 1566 1567 if (m_in == NULL || m_out == NULL) { 1568 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 1569 op->status = 1 << RTE_BBDEV_DATA_ERROR; 1570 return; 1571 } 1572 1573 if (dec->code_block_mode == 0) { /* For Transport Block mode */ 1574 c = dec->tb_params.c; 1575 } else { /* For Code Block mode */ 1576 k = dec->cb_params.k; 1577 c = 1; 1578 } 1579 1580 if ((c > 1) && !check_bit(dec->op_flags, 1581 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP)) 1582 crc24_overlap = 24; 1583 1584 while (mbuf_total_left > 0) { 1585 if (dec->code_block_mode == 0) 1586 k = (r < dec->tb_params.c_neg) ? 1587 dec->tb_params.k_neg : dec->tb_params.k_pos; 1588 1589 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset; 1590 1591 /* Calculates circular buffer size (Kw). 1592 * According to 3gpp 36.212 section 5.1.4.2 1593 * Kw = 3 * Kpi, 1594 * where: 1595 * Kpi = nCol * nRow 1596 * where nCol is 32 and nRow can be calculated from: 1597 * D =< nCol * nRow 1598 * where D is the size of each output from turbo encoder block 1599 * (k + 4). 1600 */ 1601 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3; 1602 1603 process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out, 1604 in_offset, out_offset, check_bit(dec->op_flags, 1605 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap, 1606 seg_total_left, queue_stats); 1607 1608 /* To keep CRC24 attached to end of Code block, use 1609 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it 1610 * removed by default once verified. 1611 */ 1612 1613 mbuf_total_left -= kw; 1614 1615 /* Update offsets */ 1616 if (seg_total_left == kw) { 1617 /* Go to the next mbuf */ 1618 m_in = m_in->next; 1619 m_out = m_out->next; 1620 in_offset = 0; 1621 out_offset = 0; 1622 } else { 1623 /* Update offsets for next CBs (if exist) */ 1624 in_offset += kw; 1625 out_offset += ((k - crc24_overlap) >> 3); 1626 } 1627 r++; 1628 } 1629 } 1630 1631 static inline void 1632 enqueue_ldpc_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, 1633 struct rte_bbdev_stats *queue_stats) 1634 { 1635 uint8_t c, r = 0; 1636 uint32_t e; 1637 uint16_t out_length, crc24_overlap = 0; 1638 struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec; 1639 struct rte_mbuf *m_in = dec->input.data; 1640 struct rte_mbuf *m_harq_in = dec->harq_combined_input.data; 1641 struct rte_mbuf *m_harq_out = dec->harq_combined_output.data; 1642 struct rte_mbuf *m_harq_out_head = dec->harq_combined_output.data; 1643 struct rte_mbuf *m_out = dec->hard_output.data; 1644 struct rte_mbuf *m_out_head = dec->hard_output.data; 1645 uint16_t in_offset = dec->input.offset; 1646 uint16_t harq_in_offset = dec->harq_combined_input.offset; 1647 uint16_t harq_out_offset = dec->harq_combined_output.offset; 1648 uint16_t out_offset = dec->hard_output.offset; 1649 uint32_t mbuf_total_left = dec->input.length; 1650 uint16_t seg_total_left; 1651 1652 /* Clear op status */ 1653 op->status = 0; 1654 1655 if (m_in == NULL || m_out == NULL) { 1656 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 1657 op->status = 1 << RTE_BBDEV_DATA_ERROR; 1658 return; 1659 } 1660 1661 if (dec->code_block_mode == 0) { /* For Transport Block mode */ 1662 c = dec->tb_params.c; 1663 e = dec->tb_params.ea; 1664 } else { /* For Code Block mode */ 1665 c = 1; 1666 e = dec->cb_params.e; 1667 } 1668 1669 if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP)) 1670 crc24_overlap = 24; 1671 1672 out_length = (dec->basegraph == 1 ? 22 : 10) * dec->z_c; /* K */ 1673 out_length = ((out_length - crc24_overlap - dec->n_filler) >> 3); 1674 1675 while (mbuf_total_left > 0) { 1676 if (dec->code_block_mode == 0) 1677 e = (r < dec->tb_params.cab) ? 1678 dec->tb_params.ea : dec->tb_params.eb; 1679 /* Special case handling when overusing mbuf */ 1680 if (e < RTE_BBDEV_LDPC_E_MAX_MBUF) 1681 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset; 1682 else 1683 seg_total_left = e; 1684 1685 process_ldpc_dec_cb(q, op, c, out_length, e, 1686 m_in, m_out_head, m_out, 1687 m_harq_in, m_harq_out_head, m_harq_out, 1688 in_offset, out_offset, harq_in_offset, 1689 harq_out_offset, 1690 check_bit(dec->op_flags, 1691 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK), 1692 crc24_overlap, 1693 seg_total_left, queue_stats); 1694 1695 /* To keep CRC24 attached to end of Code block, use 1696 * RTE_BBDEV_LDPC_DEC_TB_CRC_24B_KEEP flag as it 1697 * removed by default once verified. 1698 */ 1699 1700 mbuf_total_left -= e; 1701 1702 /* Update offsets */ 1703 if (seg_total_left == e) { 1704 /* Go to the next mbuf */ 1705 m_in = m_in->next; 1706 m_out = m_out->next; 1707 if (m_harq_in != NULL) 1708 m_harq_in = m_harq_in->next; 1709 if (m_harq_out != NULL) 1710 m_harq_out = m_harq_out->next; 1711 in_offset = 0; 1712 out_offset = 0; 1713 harq_in_offset = 0; 1714 harq_out_offset = 0; 1715 } else { 1716 /* Update offsets for next CBs (if exist) */ 1717 in_offset += e; 1718 out_offset += out_length; 1719 } 1720 r++; 1721 } 1722 } 1723 1724 static inline uint16_t 1725 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops, 1726 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats) 1727 { 1728 uint16_t i; 1729 #ifdef RTE_BBDEV_OFFLOAD_COST 1730 queue_stats->acc_offload_cycles = 0; 1731 #endif 1732 1733 for (i = 0; i < nb_ops; ++i) 1734 enqueue_dec_one_op(q, ops[i], queue_stats); 1735 1736 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 1737 NULL); 1738 } 1739 1740 static inline uint16_t 1741 enqueue_ldpc_dec_all_ops(struct turbo_sw_queue *q, 1742 struct rte_bbdev_dec_op **ops, 1743 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats) 1744 { 1745 uint16_t i; 1746 #ifdef RTE_BBDEV_OFFLOAD_COST 1747 queue_stats->acc_offload_cycles = 0; 1748 #endif 1749 1750 for (i = 0; i < nb_ops; ++i) 1751 enqueue_ldpc_dec_one_op(q, ops[i], queue_stats); 1752 1753 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 1754 NULL); 1755 } 1756 1757 /* Enqueue burst */ 1758 static uint16_t 1759 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data, 1760 struct rte_bbdev_enc_op **ops, uint16_t nb_ops) 1761 { 1762 void *queue = q_data->queue_private; 1763 struct turbo_sw_queue *q = queue; 1764 uint16_t nb_enqueued = 0; 1765 1766 nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats); 1767 1768 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1769 q_data->queue_stats.enqueued_count += nb_enqueued; 1770 1771 return nb_enqueued; 1772 } 1773 1774 /* Enqueue burst */ 1775 static uint16_t 1776 enqueue_ldpc_enc_ops(struct rte_bbdev_queue_data *q_data, 1777 struct rte_bbdev_enc_op **ops, uint16_t nb_ops) 1778 { 1779 void *queue = q_data->queue_private; 1780 struct turbo_sw_queue *q = queue; 1781 uint16_t nb_enqueued = 0; 1782 1783 nb_enqueued = enqueue_ldpc_enc_all_ops( 1784 q, ops, nb_ops, &q_data->queue_stats); 1785 1786 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1787 q_data->queue_stats.enqueued_count += nb_enqueued; 1788 1789 return nb_enqueued; 1790 } 1791 1792 /* Enqueue burst */ 1793 static uint16_t 1794 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data, 1795 struct rte_bbdev_dec_op **ops, uint16_t nb_ops) 1796 { 1797 void *queue = q_data->queue_private; 1798 struct turbo_sw_queue *q = queue; 1799 uint16_t nb_enqueued = 0; 1800 1801 nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats); 1802 1803 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1804 q_data->queue_stats.enqueued_count += nb_enqueued; 1805 1806 return nb_enqueued; 1807 } 1808 1809 /* Enqueue burst */ 1810 static uint16_t 1811 enqueue_ldpc_dec_ops(struct rte_bbdev_queue_data *q_data, 1812 struct rte_bbdev_dec_op **ops, uint16_t nb_ops) 1813 { 1814 void *queue = q_data->queue_private; 1815 struct turbo_sw_queue *q = queue; 1816 uint16_t nb_enqueued = 0; 1817 1818 nb_enqueued = enqueue_ldpc_dec_all_ops(q, ops, nb_ops, 1819 &q_data->queue_stats); 1820 1821 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1822 q_data->queue_stats.enqueued_count += nb_enqueued; 1823 1824 return nb_enqueued; 1825 } 1826 1827 /* Dequeue decode burst */ 1828 static uint16_t 1829 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data, 1830 struct rte_bbdev_dec_op **ops, uint16_t nb_ops) 1831 { 1832 struct turbo_sw_queue *q = q_data->queue_private; 1833 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, 1834 (void **)ops, nb_ops, NULL); 1835 q_data->queue_stats.dequeued_count += nb_dequeued; 1836 1837 return nb_dequeued; 1838 } 1839 1840 /* Dequeue encode burst */ 1841 static uint16_t 1842 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data, 1843 struct rte_bbdev_enc_op **ops, uint16_t nb_ops) 1844 { 1845 struct turbo_sw_queue *q = q_data->queue_private; 1846 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, 1847 (void **)ops, nb_ops, NULL); 1848 q_data->queue_stats.dequeued_count += nb_dequeued; 1849 1850 return nb_dequeued; 1851 } 1852 1853 /* Parse 16bit integer from string argument */ 1854 static inline int 1855 parse_u16_arg(const char *key, const char *value, void *extra_args) 1856 { 1857 uint16_t *u16 = extra_args; 1858 unsigned int long result; 1859 1860 if ((value == NULL) || (extra_args == NULL)) 1861 return -EINVAL; 1862 errno = 0; 1863 result = strtoul(value, NULL, 0); 1864 if ((result >= (1 << 16)) || (errno != 0)) { 1865 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key); 1866 return -ERANGE; 1867 } 1868 *u16 = (uint16_t)result; 1869 return 0; 1870 } 1871 1872 /* Parse parameters used to create device */ 1873 static int 1874 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args) 1875 { 1876 struct rte_kvargs *kvlist = NULL; 1877 int ret = 0; 1878 1879 if (params == NULL) 1880 return -EINVAL; 1881 if (input_args) { 1882 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params); 1883 if (kvlist == NULL) 1884 return -EFAULT; 1885 1886 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0], 1887 &parse_u16_arg, ¶ms->queues_num); 1888 if (ret < 0) 1889 goto exit; 1890 1891 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1], 1892 &parse_u16_arg, ¶ms->socket_id); 1893 if (ret < 0) 1894 goto exit; 1895 1896 if (params->socket_id >= RTE_MAX_NUMA_NODES) { 1897 rte_bbdev_log(ERR, "Invalid socket, must be < %u", 1898 RTE_MAX_NUMA_NODES); 1899 goto exit; 1900 } 1901 } 1902 1903 exit: 1904 if (kvlist) 1905 rte_kvargs_free(kvlist); 1906 return ret; 1907 } 1908 1909 /* Create device */ 1910 static int 1911 turbo_sw_bbdev_create(struct rte_vdev_device *vdev, 1912 struct turbo_sw_params *init_params) 1913 { 1914 struct rte_bbdev *bbdev; 1915 const char *name = rte_vdev_device_name(vdev); 1916 1917 bbdev = rte_bbdev_allocate(name); 1918 if (bbdev == NULL) 1919 return -ENODEV; 1920 1921 bbdev->data->dev_private = rte_zmalloc_socket(name, 1922 sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE, 1923 init_params->socket_id); 1924 if (bbdev->data->dev_private == NULL) { 1925 rte_bbdev_release(bbdev); 1926 return -ENOMEM; 1927 } 1928 1929 bbdev->dev_ops = &pmd_ops; 1930 bbdev->device = &vdev->device; 1931 bbdev->data->socket_id = init_params->socket_id; 1932 bbdev->intr_handle = NULL; 1933 1934 /* register rx/tx burst functions for data path */ 1935 bbdev->dequeue_enc_ops = dequeue_enc_ops; 1936 bbdev->dequeue_dec_ops = dequeue_dec_ops; 1937 bbdev->enqueue_enc_ops = enqueue_enc_ops; 1938 bbdev->enqueue_dec_ops = enqueue_dec_ops; 1939 bbdev->dequeue_ldpc_enc_ops = dequeue_enc_ops; 1940 bbdev->dequeue_ldpc_dec_ops = dequeue_dec_ops; 1941 bbdev->enqueue_ldpc_enc_ops = enqueue_ldpc_enc_ops; 1942 bbdev->enqueue_ldpc_dec_ops = enqueue_ldpc_dec_ops; 1943 ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues = 1944 init_params->queues_num; 1945 1946 return 0; 1947 } 1948 1949 /* Initialise device */ 1950 static int 1951 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev) 1952 { 1953 struct turbo_sw_params init_params = { 1954 rte_socket_id(), 1955 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES 1956 }; 1957 const char *name; 1958 const char *input_args; 1959 1960 if (vdev == NULL) 1961 return -EINVAL; 1962 1963 name = rte_vdev_device_name(vdev); 1964 if (name == NULL) 1965 return -EINVAL; 1966 input_args = rte_vdev_device_args(vdev); 1967 parse_turbo_sw_params(&init_params, input_args); 1968 1969 rte_bbdev_log_debug( 1970 "Initialising %s on NUMA node %d with max queues: %d\n", 1971 name, init_params.socket_id, init_params.queues_num); 1972 1973 return turbo_sw_bbdev_create(vdev, &init_params); 1974 } 1975 1976 /* Uninitialise device */ 1977 static int 1978 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev) 1979 { 1980 struct rte_bbdev *bbdev; 1981 const char *name; 1982 1983 if (vdev == NULL) 1984 return -EINVAL; 1985 1986 name = rte_vdev_device_name(vdev); 1987 if (name == NULL) 1988 return -EINVAL; 1989 1990 bbdev = rte_bbdev_get_named_dev(name); 1991 if (bbdev == NULL) 1992 return -EINVAL; 1993 1994 rte_free(bbdev->data->dev_private); 1995 1996 return rte_bbdev_release(bbdev); 1997 } 1998 1999 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = { 2000 .probe = turbo_sw_bbdev_probe, 2001 .remove = turbo_sw_bbdev_remove 2002 }; 2003 2004 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv); 2005 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME, 2006 TURBO_SW_MAX_NB_QUEUES_ARG"=<int> " 2007 TURBO_SW_SOCKET_ID_ARG"=<int>"); 2008 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw); 2009