xref: /dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c (revision 90197eb0945b50c9cd6e11f310cfc5078b28f75e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <string.h>
6 
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13 
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16 
17 #ifdef RTE_BBDEV_SDK_AVX2
18 #include <phy_turbo.h>
19 #include <phy_crc.h>
20 #include <phy_rate_match.h>
21 #endif
22 
23 #define DRIVER_NAME baseband_turbo_sw
24 
25 /* Turbo SW PMD logging ID */
26 static int bbdev_turbo_sw_logtype;
27 
28 /* Helper macro for logging */
29 #define rte_bbdev_log(level, fmt, ...) \
30 	rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
31 		##__VA_ARGS__)
32 
33 #define rte_bbdev_log_debug(fmt, ...) \
34 	rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
35 		##__VA_ARGS__)
36 
37 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
38 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
39 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
40 
41 /* private data structure */
42 struct bbdev_private {
43 	unsigned int max_nb_queues;  /**< Max number of queues */
44 };
45 
46 /*  Initialisation params structure that can be used by Turbo SW driver */
47 struct turbo_sw_params {
48 	int socket_id;  /*< Turbo SW device socket */
49 	uint16_t queues_num;  /*< Turbo SW device queues number */
50 };
51 
52 /* Accecptable params for Turbo SW devices */
53 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
54 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
55 
56 static const char * const turbo_sw_valid_params[] = {
57 	TURBO_SW_MAX_NB_QUEUES_ARG,
58 	TURBO_SW_SOCKET_ID_ARG
59 };
60 
61 /* queue */
62 struct turbo_sw_queue {
63 	/* Ring for processed (encoded/decoded) operations which are ready to
64 	 * be dequeued.
65 	 */
66 	struct rte_ring *processed_pkts;
67 	/* Stores input for turbo encoder (used when CRC attachment is
68 	 * performed
69 	 */
70 	uint8_t *enc_in;
71 	/* Stores output from turbo encoder */
72 	uint8_t *enc_out;
73 	/* Alpha gamma buf for bblib_turbo_decoder() function */
74 	int8_t *ag;
75 	/* Temp buf for bblib_turbo_decoder() function */
76 	uint16_t *code_block;
77 	/* Input buf for bblib_rate_dematching_lte() function */
78 	uint8_t *deint_input;
79 	/* Output buf for bblib_rate_dematching_lte() function */
80 	uint8_t *deint_output;
81 	/* Output buf for bblib_turbodec_adapter_lte() function */
82 	uint8_t *adapter_output;
83 	/* Operation type of this queue */
84 	enum rte_bbdev_op_type type;
85 } __rte_cache_aligned;
86 
87 #ifdef RTE_BBDEV_SDK_AVX2
88 static inline char *
89 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
90 {
91 	if (unlikely(len > rte_pktmbuf_tailroom(m)))
92 		return NULL;
93 
94 	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
95 	m->data_len = (uint16_t)(m->data_len + len);
96 	m_head->pkt_len  = (m_head->pkt_len + len);
97 	return tail;
98 }
99 
100 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
101 static inline int32_t
102 compute_idx(uint16_t k)
103 {
104 	int32_t result = 0;
105 
106 	if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
107 		return -1;
108 
109 	if (k > 2048) {
110 		if ((k - 2048) % 64 != 0)
111 			result = -1;
112 
113 		result = 124 + (k - 2048) / 64;
114 	} else if (k <= 512) {
115 		if ((k - 40) % 8 != 0)
116 			result = -1;
117 
118 		result = (k - 40) / 8 + 1;
119 	} else if (k <= 1024) {
120 		if ((k - 512) % 16 != 0)
121 			result = -1;
122 
123 		result = 60 + (k - 512) / 16;
124 	} else { /* 1024 < k <= 2048 */
125 		if ((k - 1024) % 32 != 0)
126 			result = -1;
127 
128 		result = 92 + (k - 1024) / 32;
129 	}
130 
131 	return result;
132 }
133 #endif
134 
135 /* Read flag value 0/1 from bitmap */
136 static inline bool
137 check_bit(uint32_t bitmap, uint32_t bitmask)
138 {
139 	return bitmap & bitmask;
140 }
141 
142 /* Get device info */
143 static void
144 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
145 {
146 	struct bbdev_private *internals = dev->data->dev_private;
147 
148 	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
149 #ifdef RTE_BBDEV_SDK_AVX2
150 		{
151 			.type = RTE_BBDEV_OP_TURBO_DEC,
152 			.cap.turbo_dec = {
153 				.capability_flags =
154 					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
155 					RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
156 					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
157 					RTE_BBDEV_TURBO_CRC_TYPE_24B |
158 					RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
159 					RTE_BBDEV_TURBO_EARLY_TERMINATION,
160 				.max_llr_modulus = 16,
161 				.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
162 				.num_buffers_hard_out =
163 						RTE_BBDEV_MAX_CODE_BLOCKS,
164 				.num_buffers_soft_out = 0,
165 			}
166 		},
167 		{
168 			.type   = RTE_BBDEV_OP_TURBO_ENC,
169 			.cap.turbo_enc = {
170 				.capability_flags =
171 						RTE_BBDEV_TURBO_CRC_24B_ATTACH |
172 						RTE_BBDEV_TURBO_CRC_24A_ATTACH |
173 						RTE_BBDEV_TURBO_RATE_MATCH |
174 						RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
175 				.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
176 				.num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
177 			}
178 		},
179 #endif
180 		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
181 	};
182 
183 	static struct rte_bbdev_queue_conf default_queue_conf = {
184 		.queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
185 	};
186 
187 #ifdef RTE_BBDEV_SDK_AVX2
188 	static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
189 	dev_info->cpu_flag_reqs = &cpu_flag;
190 #else
191 	dev_info->cpu_flag_reqs = NULL;
192 #endif
193 
194 	default_queue_conf.socket = dev->data->socket_id;
195 
196 	dev_info->driver_name = RTE_STR(DRIVER_NAME);
197 	dev_info->max_num_queues = internals->max_nb_queues;
198 	dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
199 	dev_info->hardware_accelerated = false;
200 	dev_info->max_dl_queue_priority = 0;
201 	dev_info->max_ul_queue_priority = 0;
202 	dev_info->default_queue_conf = default_queue_conf;
203 	dev_info->capabilities = bbdev_capabilities;
204 	dev_info->min_alignment = 64;
205 
206 	rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
207 }
208 
209 /* Release queue */
210 static int
211 q_release(struct rte_bbdev *dev, uint16_t q_id)
212 {
213 	struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
214 
215 	if (q != NULL) {
216 		rte_ring_free(q->processed_pkts);
217 		rte_free(q->enc_out);
218 		rte_free(q->enc_in);
219 		rte_free(q->ag);
220 		rte_free(q->code_block);
221 		rte_free(q->deint_input);
222 		rte_free(q->deint_output);
223 		rte_free(q->adapter_output);
224 		rte_free(q);
225 		dev->data->queues[q_id].queue_private = NULL;
226 	}
227 
228 	rte_bbdev_log_debug("released device queue %u:%u",
229 			dev->data->dev_id, q_id);
230 	return 0;
231 }
232 
233 /* Setup a queue */
234 static int
235 q_setup(struct rte_bbdev *dev, uint16_t q_id,
236 		const struct rte_bbdev_queue_conf *queue_conf)
237 {
238 	int ret;
239 	struct turbo_sw_queue *q;
240 	char name[RTE_RING_NAMESIZE];
241 
242 	/* Allocate the queue data structure. */
243 	q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
244 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
245 	if (q == NULL) {
246 		rte_bbdev_log(ERR, "Failed to allocate queue memory");
247 		return -ENOMEM;
248 	}
249 
250 	/* Allocate memory for encoder output. */
251 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
252 			dev->data->dev_id, q_id);
253 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
254 		rte_bbdev_log(ERR,
255 				"Creating queue name for device %u queue %u failed",
256 				dev->data->dev_id, q_id);
257 		return -ENAMETOOLONG;
258 	}
259 	q->enc_out = rte_zmalloc_socket(name,
260 			((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
261 			sizeof(*q->enc_out) * 3,
262 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
263 	if (q->enc_out == NULL) {
264 		rte_bbdev_log(ERR,
265 			"Failed to allocate queue memory for %s", name);
266 		goto free_q;
267 	}
268 
269 	/* Allocate memory for rate matching output. */
270 	ret = snprintf(name, RTE_RING_NAMESIZE,
271 			RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
272 			q_id);
273 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
274 		rte_bbdev_log(ERR,
275 				"Creating queue name for device %u queue %u failed",
276 				dev->data->dev_id, q_id);
277 		return -ENAMETOOLONG;
278 	}
279 	q->enc_in = rte_zmalloc_socket(name,
280 			(RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
281 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
282 	if (q->enc_in == NULL) {
283 		rte_bbdev_log(ERR,
284 			"Failed to allocate queue memory for %s", name);
285 		goto free_q;
286 	}
287 
288 	/* Allocate memory for Aplha Gamma temp buffer. */
289 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
290 			dev->data->dev_id, q_id);
291 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
292 		rte_bbdev_log(ERR,
293 				"Creating queue name for device %u queue %u failed",
294 				dev->data->dev_id, q_id);
295 		return -ENAMETOOLONG;
296 	}
297 	q->ag = rte_zmalloc_socket(name,
298 			RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
299 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
300 	if (q->ag == NULL) {
301 		rte_bbdev_log(ERR,
302 			"Failed to allocate queue memory for %s", name);
303 		goto free_q;
304 	}
305 
306 	/* Allocate memory for code block temp buffer. */
307 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
308 			dev->data->dev_id, q_id);
309 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
310 		rte_bbdev_log(ERR,
311 				"Creating queue name for device %u queue %u failed",
312 				dev->data->dev_id, q_id);
313 		return -ENAMETOOLONG;
314 	}
315 	q->code_block = rte_zmalloc_socket(name,
316 			RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
317 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
318 	if (q->code_block == NULL) {
319 		rte_bbdev_log(ERR,
320 			"Failed to allocate queue memory for %s", name);
321 		goto free_q;
322 	}
323 
324 	/* Allocate memory for Deinterleaver input. */
325 	ret = snprintf(name, RTE_RING_NAMESIZE,
326 			RTE_STR(DRIVER_NAME)"_de_i%u:%u",
327 			dev->data->dev_id, q_id);
328 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
329 		rte_bbdev_log(ERR,
330 				"Creating queue name for device %u queue %u failed",
331 				dev->data->dev_id, q_id);
332 		return -ENAMETOOLONG;
333 	}
334 	q->deint_input = rte_zmalloc_socket(name,
335 			DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
336 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
337 	if (q->deint_input == NULL) {
338 		rte_bbdev_log(ERR,
339 			"Failed to allocate queue memory for %s", name);
340 		goto free_q;
341 	}
342 
343 	/* Allocate memory for Deinterleaver output. */
344 	ret = snprintf(name, RTE_RING_NAMESIZE,
345 			RTE_STR(DRIVER_NAME)"_de_o%u:%u",
346 			dev->data->dev_id, q_id);
347 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
348 		rte_bbdev_log(ERR,
349 				"Creating queue name for device %u queue %u failed",
350 				dev->data->dev_id, q_id);
351 		return -ENAMETOOLONG;
352 	}
353 	q->deint_output = rte_zmalloc_socket(NULL,
354 			DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
355 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
356 	if (q->deint_output == NULL) {
357 		rte_bbdev_log(ERR,
358 			"Failed to allocate queue memory for %s", name);
359 		goto free_q;
360 	}
361 
362 	/* Allocate memory for Adapter output. */
363 	ret = snprintf(name, RTE_RING_NAMESIZE,
364 			RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
365 			dev->data->dev_id, q_id);
366 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
367 		rte_bbdev_log(ERR,
368 				"Creating queue name for device %u queue %u failed",
369 				dev->data->dev_id, q_id);
370 		return -ENAMETOOLONG;
371 	}
372 	q->adapter_output = rte_zmalloc_socket(NULL,
373 			ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
374 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
375 	if (q->adapter_output == NULL) {
376 		rte_bbdev_log(ERR,
377 			"Failed to allocate queue memory for %s", name);
378 		goto free_q;
379 	}
380 
381 	/* Create ring for packets awaiting to be dequeued. */
382 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
383 			dev->data->dev_id, q_id);
384 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
385 		rte_bbdev_log(ERR,
386 				"Creating queue name for device %u queue %u failed",
387 				dev->data->dev_id, q_id);
388 		return -ENAMETOOLONG;
389 	}
390 	q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
391 			queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
392 	if (q->processed_pkts == NULL) {
393 		rte_bbdev_log(ERR, "Failed to create ring for %s", name);
394 		goto free_q;
395 	}
396 
397 	q->type = queue_conf->op_type;
398 
399 	dev->data->queues[q_id].queue_private = q;
400 	rte_bbdev_log_debug("setup device queue %s", name);
401 	return 0;
402 
403 free_q:
404 	rte_ring_free(q->processed_pkts);
405 	rte_free(q->enc_out);
406 	rte_free(q->enc_in);
407 	rte_free(q->ag);
408 	rte_free(q->code_block);
409 	rte_free(q->deint_input);
410 	rte_free(q->deint_output);
411 	rte_free(q->adapter_output);
412 	rte_free(q);
413 	return -EFAULT;
414 }
415 
416 static const struct rte_bbdev_ops pmd_ops = {
417 	.info_get = info_get,
418 	.queue_setup = q_setup,
419 	.queue_release = q_release
420 };
421 
422 #ifdef RTE_BBDEV_SDK_AVX2
423 /* Checks if the encoder input buffer is correct.
424  * Returns 0 if it's valid, -1 otherwise.
425  */
426 static inline int
427 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
428 		const uint16_t in_length)
429 {
430 	if (k_idx < 0) {
431 		rte_bbdev_log(ERR, "K Index is invalid");
432 		return -1;
433 	}
434 
435 	if (in_length - (k >> 3) < 0) {
436 		rte_bbdev_log(ERR,
437 				"Mismatch between input length (%u bytes) and K (%u bits)",
438 				in_length, k);
439 		return -1;
440 	}
441 
442 	if (k > RTE_BBDEV_MAX_CB_SIZE) {
443 		rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
444 				k, RTE_BBDEV_MAX_CB_SIZE);
445 		return -1;
446 	}
447 
448 	return 0;
449 }
450 
451 /* Checks if the decoder input buffer is correct.
452  * Returns 0 if it's valid, -1 otherwise.
453  */
454 static inline int
455 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
456 {
457 	if (k_idx < 0) {
458 		rte_bbdev_log(ERR, "K index is invalid");
459 		return -1;
460 	}
461 
462 	if (in_length < kw) {
463 		rte_bbdev_log(ERR,
464 				"Mismatch between input length (%u) and kw (%u)",
465 				in_length, kw);
466 		return -1;
467 	}
468 
469 	if (kw > RTE_BBDEV_MAX_KW) {
470 		rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
471 				kw, RTE_BBDEV_MAX_KW);
472 		return -1;
473 	}
474 
475 	return 0;
476 }
477 #endif
478 
479 static inline void
480 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
481 		uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
482 		uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
483 		struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
484 		uint16_t in_length, struct rte_bbdev_stats *q_stats)
485 {
486 #ifdef RTE_BBDEV_SDK_AVX2
487 	int ret;
488 	int16_t k_idx;
489 	uint16_t m;
490 	uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
491 	uint64_t first_3_bytes = 0;
492 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
493 	struct bblib_crc_request crc_req;
494 	struct bblib_crc_response crc_resp;
495 	struct bblib_turbo_encoder_request turbo_req;
496 	struct bblib_turbo_encoder_response turbo_resp;
497 	struct bblib_rate_match_dl_request rm_req;
498 	struct bblib_rate_match_dl_response rm_resp;
499 #ifdef RTE_BBDEV_OFFLOAD_COST
500 	uint64_t start_time;
501 #else
502 	RTE_SET_USED(q_stats);
503 #endif
504 
505 	k_idx = compute_idx(k);
506 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
507 
508 	/* CRC24A (for TB) */
509 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
510 		(enc->code_block_mode == 1)) {
511 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
512 		if (ret != 0) {
513 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
514 			return;
515 		}
516 		crc_req.data = in;
517 		crc_req.len = k - 24;
518 		/* Check if there is a room for CRC bits if not use
519 		 * the temporary buffer.
520 		 */
521 		if (mbuf_append(m_in, m_in, 3) == NULL) {
522 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
523 			in = q->enc_in;
524 		} else {
525 			/* Store 3 first bytes of next CB as they will be
526 			 * overwritten by CRC bytes. If it is the last CB then
527 			 * there is no point to store 3 next bytes and this
528 			 * if..else branch will be omitted.
529 			 */
530 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
531 		}
532 
533 		crc_resp.data = in;
534 #ifdef RTE_BBDEV_OFFLOAD_COST
535 		start_time = rte_rdtsc_precise();
536 #endif
537 		/* CRC24A generation */
538 		bblib_lte_crc24a_gen(&crc_req, &crc_resp);
539 #ifdef RTE_BBDEV_OFFLOAD_COST
540 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
541 #endif
542 	} else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
543 		/* CRC24B */
544 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
545 		if (ret != 0) {
546 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
547 			return;
548 		}
549 		crc_req.data = in;
550 		crc_req.len = k - 24;
551 		/* Check if there is a room for CRC bits if this is the last
552 		 * CB in TB. If not use temporary buffer.
553 		 */
554 		if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
555 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
556 			in = q->enc_in;
557 		} else if (c - r > 1) {
558 			/* Store 3 first bytes of next CB as they will be
559 			 * overwritten by CRC bytes. If it is the last CB then
560 			 * there is no point to store 3 next bytes and this
561 			 * if..else branch will be omitted.
562 			 */
563 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
564 		}
565 
566 		crc_resp.data = in;
567 #ifdef RTE_BBDEV_OFFLOAD_COST
568 		start_time = rte_rdtsc_precise();
569 #endif
570 		/* CRC24B generation */
571 		bblib_lte_crc24b_gen(&crc_req, &crc_resp);
572 #ifdef RTE_BBDEV_OFFLOAD_COST
573 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
574 #endif
575 	} else {
576 		ret = is_enc_input_valid(k, k_idx, in_length);
577 		if (ret != 0) {
578 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
579 			return;
580 		}
581 	}
582 
583 	/* Turbo encoder */
584 
585 	/* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
586 	 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
587 	 * So dst_data's length should be 3*(k/8) + 3 bytes.
588 	 * In Rate-matching bypass case outputs pointers passed to encoder
589 	 * (out0, out1 and out2) can directly point to addresses of output from
590 	 * turbo_enc entity.
591 	 */
592 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
593 		out0 = q->enc_out;
594 		out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
595 		out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
596 	} else {
597 		out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
598 				(k >> 3) * 3 + 2);
599 		if (out0 == NULL) {
600 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
601 			rte_bbdev_log(ERR,
602 					"Too little space in output mbuf");
603 			return;
604 		}
605 		enc->output.length += (k >> 3) * 3 + 2;
606 		/* rte_bbdev_op_data.offset can be different than the
607 		 * offset of the appended bytes
608 		 */
609 		out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
610 		out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
611 				out_offset + (k >> 3) + 1);
612 		out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
613 				out_offset + 2 * ((k >> 3) + 1));
614 	}
615 
616 	turbo_req.case_id = k_idx;
617 	turbo_req.input_win = in;
618 	turbo_req.length = k >> 3;
619 	turbo_resp.output_win_0 = out0;
620 	turbo_resp.output_win_1 = out1;
621 	turbo_resp.output_win_2 = out2;
622 
623 #ifdef RTE_BBDEV_OFFLOAD_COST
624 	start_time = rte_rdtsc_precise();
625 #endif
626 	/* Turbo encoding */
627 	if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
628 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
629 		rte_bbdev_log(ERR, "Turbo Encoder failed");
630 		return;
631 	}
632 #ifdef RTE_BBDEV_OFFLOAD_COST
633 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
634 #endif
635 
636 	/* Restore 3 first bytes of next CB if they were overwritten by CRC*/
637 	if (first_3_bytes != 0)
638 		*((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
639 
640 	/* Rate-matching */
641 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
642 		uint8_t mask_id;
643 		/* Integer round up division by 8 */
644 		uint16_t out_len = (e + 7) >> 3;
645 		/* The mask array is indexed using E%8. E is an even number so
646 		 * there are only 4 possible values.
647 		 */
648 		const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
649 
650 		/* get output data starting address */
651 		rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
652 		if (rm_out == NULL) {
653 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
654 			rte_bbdev_log(ERR,
655 					"Too little space in output mbuf");
656 			return;
657 		}
658 		/* rte_bbdev_op_data.offset can be different than the offset
659 		 * of the appended bytes
660 		 */
661 		rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
662 
663 		/* index of current code block */
664 		rm_req.r = r;
665 		/* total number of code block */
666 		rm_req.C = c;
667 		/* For DL - 1, UL - 0 */
668 		rm_req.direction = 1;
669 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
670 		 * and MDL_HARQ are used for Ncb calculation. As Ncb is already
671 		 * known we can adjust those parameters
672 		 */
673 		rm_req.Nsoft = ncb * rm_req.C;
674 		rm_req.KMIMO = 1;
675 		rm_req.MDL_HARQ = 1;
676 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
677 		 * are used for E calculation. As E is already known we can
678 		 * adjust those parameters
679 		 */
680 		rm_req.NL = e;
681 		rm_req.Qm = 1;
682 		rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
683 
684 		rm_req.rvidx = enc->rv_index;
685 		rm_req.Kidx = k_idx - 1;
686 		rm_req.nLen = k + 4;
687 		rm_req.tin0 = out0;
688 		rm_req.tin1 = out1;
689 		rm_req.tin2 = out2;
690 		rm_resp.output = rm_out;
691 		rm_resp.OutputLen = out_len;
692 		if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
693 			rm_req.bypass_rvidx = 1;
694 		else
695 			rm_req.bypass_rvidx = 0;
696 
697 #ifdef RTE_BBDEV_OFFLOAD_COST
698 		start_time = rte_rdtsc_precise();
699 #endif
700 		/* Rate-Matching */
701 		if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
702 			op->status |= 1 << RTE_BBDEV_DRV_ERROR;
703 			rte_bbdev_log(ERR, "Rate matching failed");
704 			return;
705 		}
706 #ifdef RTE_BBDEV_OFFLOAD_COST
707 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
708 #endif
709 
710 		/* SW fills an entire last byte even if E%8 != 0. Clear the
711 		 * superfluous data bits for consistency with HW device.
712 		 */
713 		mask_id = (e & 7) >> 1;
714 		rm_out[out_len - 1] &= mask_out[mask_id];
715 		enc->output.length += rm_resp.OutputLen;
716 	} else {
717 		/* Rate matching is bypassed */
718 
719 		/* Completing last byte of out0 (where 4 tail bits are stored)
720 		 * by moving first 4 bits from out1
721 		 */
722 		tmp_out = (uint8_t *) --out1;
723 		*tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
724 		tmp_out++;
725 		/* Shifting out1 data by 4 bits to the left */
726 		for (m = 0; m < k >> 3; ++m) {
727 			uint8_t *first = tmp_out;
728 			uint8_t second = *(tmp_out + 1);
729 			*first = (*first << 4) | ((second & 0xF0) >> 4);
730 			tmp_out++;
731 		}
732 		/* Shifting out2 data by 8 bits to the left */
733 		for (m = 0; m < (k >> 3) + 1; ++m) {
734 			*tmp_out = *(tmp_out + 1);
735 			tmp_out++;
736 		}
737 		*tmp_out = 0;
738 	}
739 #else
740 	RTE_SET_USED(q);
741 	RTE_SET_USED(op);
742 	RTE_SET_USED(r);
743 	RTE_SET_USED(c);
744 	RTE_SET_USED(k);
745 	RTE_SET_USED(ncb);
746 	RTE_SET_USED(e);
747 	RTE_SET_USED(m_in);
748 	RTE_SET_USED(m_out_head);
749 	RTE_SET_USED(m_out);
750 	RTE_SET_USED(in_offset);
751 	RTE_SET_USED(out_offset);
752 	RTE_SET_USED(in_length);
753 	RTE_SET_USED(q_stats);
754 #endif
755 }
756 
757 static inline void
758 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
759 		struct rte_bbdev_stats *queue_stats)
760 {
761 	uint8_t c, r, crc24_bits = 0;
762 	uint16_t k, ncb;
763 	uint32_t e;
764 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
765 	uint16_t in_offset = enc->input.offset;
766 	uint16_t out_offset = enc->output.offset;
767 	struct rte_mbuf *m_in = enc->input.data;
768 	struct rte_mbuf *m_out = enc->output.data;
769 	struct rte_mbuf *m_out_head = enc->output.data;
770 	uint32_t in_length, mbuf_total_left = enc->input.length;
771 	uint16_t seg_total_left;
772 
773 	/* Clear op status */
774 	op->status = 0;
775 
776 	if (mbuf_total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
777 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
778 				mbuf_total_left, RTE_BBDEV_MAX_TB_SIZE);
779 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
780 		return;
781 	}
782 
783 	if (m_in == NULL || m_out == NULL) {
784 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
785 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
786 		return;
787 	}
788 
789 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
790 		(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
791 		crc24_bits = 24;
792 
793 	if (enc->code_block_mode == 0) { /* For Transport Block mode */
794 		c = enc->tb_params.c;
795 		r = enc->tb_params.r;
796 	} else {/* For Code Block mode */
797 		c = 1;
798 		r = 0;
799 	}
800 
801 	while (mbuf_total_left > 0 && r < c) {
802 
803 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
804 
805 		if (enc->code_block_mode == 0) {
806 			k = (r < enc->tb_params.c_neg) ?
807 				enc->tb_params.k_neg : enc->tb_params.k_pos;
808 			ncb = (r < enc->tb_params.c_neg) ?
809 				enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
810 			e = (r < enc->tb_params.cab) ?
811 				enc->tb_params.ea : enc->tb_params.eb;
812 		} else {
813 			k = enc->cb_params.k;
814 			ncb = enc->cb_params.ncb;
815 			e = enc->cb_params.e;
816 		}
817 
818 		process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
819 				m_out, in_offset, out_offset, seg_total_left,
820 				queue_stats);
821 		/* Update total_left */
822 		in_length = ((k - crc24_bits) >> 3);
823 		mbuf_total_left -= in_length;
824 		/* Update offsets for next CBs (if exist) */
825 		in_offset += (k - crc24_bits) >> 3;
826 		if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
827 			out_offset += e >> 3;
828 		else
829 			out_offset += (k >> 3) * 3 + 2;
830 
831 		/* Update offsets */
832 		if (seg_total_left == in_length) {
833 			/* Go to the next mbuf */
834 			m_in = m_in->next;
835 			m_out = m_out->next;
836 			in_offset = 0;
837 			out_offset = 0;
838 		}
839 		r++;
840 	}
841 
842 	/* check if all input data was processed */
843 	if (mbuf_total_left != 0) {
844 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
845 		rte_bbdev_log(ERR,
846 				"Mismatch between mbuf length and included CBs sizes");
847 	}
848 }
849 
850 static inline uint16_t
851 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
852 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
853 {
854 	uint16_t i;
855 #ifdef RTE_BBDEV_OFFLOAD_COST
856 	queue_stats->acc_offload_cycles = 0;
857 #endif
858 
859 	for (i = 0; i < nb_ops; ++i)
860 		enqueue_enc_one_op(q, ops[i], queue_stats);
861 
862 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
863 			NULL);
864 }
865 
866 #ifdef RTE_BBDEV_SDK_AVX2
867 static inline void
868 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
869 		uint16_t ncb)
870 {
871 	uint16_t d = k + 4;
872 	uint16_t kpi = ncb / 3;
873 	uint16_t nd = kpi - d;
874 
875 	rte_memcpy(&out[nd], in, d);
876 	rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
877 	rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
878 }
879 #endif
880 
881 static inline void
882 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
883 		uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
884 		struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
885 		uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
886 		uint16_t crc24_overlap, uint16_t in_length,
887 		struct rte_bbdev_stats *q_stats)
888 {
889 #ifdef RTE_BBDEV_SDK_AVX2
890 	int ret;
891 	int32_t k_idx;
892 	int32_t iter_cnt;
893 	uint8_t *in, *out, *adapter_input;
894 	int32_t ncb, ncb_without_null;
895 	struct bblib_turbo_adapter_ul_response adapter_resp;
896 	struct bblib_turbo_adapter_ul_request adapter_req;
897 	struct bblib_turbo_decoder_request turbo_req;
898 	struct bblib_turbo_decoder_response turbo_resp;
899 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
900 #ifdef RTE_BBDEV_OFFLOAD_COST
901 	uint64_t start_time;
902 #else
903 	RTE_SET_USED(q_stats);
904 #endif
905 
906 	k_idx = compute_idx(k);
907 
908 	ret = is_dec_input_valid(k_idx, kw, in_length);
909 	if (ret != 0) {
910 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
911 		return;
912 	}
913 
914 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
915 	ncb = kw;
916 	ncb_without_null = (k + 4) * 3;
917 
918 	if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
919 		struct bblib_deinterleave_ul_request deint_req;
920 		struct bblib_deinterleave_ul_response deint_resp;
921 
922 		deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
923 		deint_req.pharqbuffer = in;
924 		deint_req.ncb = ncb;
925 		deint_resp.pinteleavebuffer = q->deint_output;
926 
927 #ifdef RTE_BBDEV_OFFLOAD_COST
928 		start_time = rte_rdtsc_precise();
929 #endif
930 		bblib_deinterleave_ul(&deint_req, &deint_resp);
931 #ifdef RTE_BBDEV_OFFLOAD_COST
932 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
933 #endif
934 	} else
935 		move_padding_bytes(in, q->deint_output, k, ncb);
936 
937 	adapter_input = q->deint_output;
938 
939 	if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
940 		adapter_req.isinverted = 1;
941 	else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
942 		adapter_req.isinverted = 0;
943 	else {
944 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
945 		rte_bbdev_log(ERR, "LLR format wasn't specified");
946 		return;
947 	}
948 
949 	adapter_req.ncb = ncb_without_null;
950 	adapter_req.pinteleavebuffer = adapter_input;
951 	adapter_resp.pharqout = q->adapter_output;
952 
953 #ifdef RTE_BBDEV_OFFLOAD_COST
954 	start_time = rte_rdtsc_precise();
955 #endif
956 	/* Turbo decode adaptation */
957 	bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
958 #ifdef RTE_BBDEV_OFFLOAD_COST
959 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
960 #endif
961 
962 	out = (uint8_t *)mbuf_append(m_out_head, m_out,
963 			((k - crc24_overlap) >> 3));
964 	if (out == NULL) {
965 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
966 		rte_bbdev_log(ERR, "Too little space in output mbuf");
967 		return;
968 	}
969 	/* rte_bbdev_op_data.offset can be different than the offset of the
970 	 * appended bytes
971 	 */
972 	out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
973 	if (check_crc_24b)
974 		turbo_req.c = c + 1;
975 	else
976 		turbo_req.c = c;
977 	turbo_req.input = (int8_t *)q->adapter_output;
978 	turbo_req.k = k;
979 	turbo_req.k_idx = k_idx;
980 	turbo_req.max_iter_num = dec->iter_max;
981 	turbo_req.early_term_disable = !check_bit(dec->op_flags,
982 			RTE_BBDEV_TURBO_EARLY_TERMINATION);
983 	turbo_resp.ag_buf = q->ag;
984 	turbo_resp.cb_buf = q->code_block;
985 	turbo_resp.output = out;
986 
987 #ifdef RTE_BBDEV_OFFLOAD_COST
988 	start_time = rte_rdtsc_precise();
989 #endif
990 	/* Turbo decode */
991 	iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
992 #ifdef RTE_BBDEV_OFFLOAD_COST
993 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
994 #endif
995 	dec->hard_output.length += (k >> 3);
996 
997 	if (iter_cnt > 0) {
998 		/* Temporary solution for returned iter_count from SDK */
999 		iter_cnt = (iter_cnt - 1) >> 1;
1000 		dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
1001 	} else {
1002 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1003 		rte_bbdev_log(ERR, "Turbo Decoder failed");
1004 		return;
1005 	}
1006 #else
1007 	RTE_SET_USED(q);
1008 	RTE_SET_USED(op);
1009 	RTE_SET_USED(c);
1010 	RTE_SET_USED(k);
1011 	RTE_SET_USED(kw);
1012 	RTE_SET_USED(m_in);
1013 	RTE_SET_USED(m_out_head);
1014 	RTE_SET_USED(m_out);
1015 	RTE_SET_USED(in_offset);
1016 	RTE_SET_USED(out_offset);
1017 	RTE_SET_USED(check_crc_24b);
1018 	RTE_SET_USED(crc24_overlap);
1019 	RTE_SET_USED(in_length);
1020 	RTE_SET_USED(q_stats);
1021 #endif
1022 }
1023 
1024 static inline void
1025 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1026 		struct rte_bbdev_stats *queue_stats)
1027 {
1028 	uint8_t c, r = 0;
1029 	uint16_t kw, k = 0;
1030 	uint16_t crc24_overlap = 0;
1031 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1032 	struct rte_mbuf *m_in = dec->input.data;
1033 	struct rte_mbuf *m_out = dec->hard_output.data;
1034 	struct rte_mbuf *m_out_head = dec->hard_output.data;
1035 	uint16_t in_offset = dec->input.offset;
1036 	uint16_t out_offset = dec->hard_output.offset;
1037 	uint32_t mbuf_total_left = dec->input.length;
1038 	uint16_t seg_total_left;
1039 
1040 	/* Clear op status */
1041 	op->status = 0;
1042 
1043 	if (m_in == NULL || m_out == NULL) {
1044 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1045 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1046 		return;
1047 	}
1048 
1049 	if (dec->code_block_mode == 0) { /* For Transport Block mode */
1050 		c = dec->tb_params.c;
1051 	} else { /* For Code Block mode */
1052 		k = dec->cb_params.k;
1053 		c = 1;
1054 	}
1055 
1056 	if ((c > 1) && !check_bit(dec->op_flags,
1057 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1058 		crc24_overlap = 24;
1059 
1060 	while (mbuf_total_left > 0) {
1061 		if (dec->code_block_mode == 0)
1062 			k = (r < dec->tb_params.c_neg) ?
1063 				dec->tb_params.k_neg : dec->tb_params.k_pos;
1064 
1065 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1066 
1067 		/* Calculates circular buffer size (Kw).
1068 		 * According to 3gpp 36.212 section 5.1.4.2
1069 		 *   Kw = 3 * Kpi,
1070 		 * where:
1071 		 *   Kpi = nCol * nRow
1072 		 * where nCol is 32 and nRow can be calculated from:
1073 		 *   D =< nCol * nRow
1074 		 * where D is the size of each output from turbo encoder block
1075 		 * (k + 4).
1076 		 */
1077 		kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
1078 
1079 		process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1080 				in_offset, out_offset, check_bit(dec->op_flags,
1081 				RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1082 				seg_total_left, queue_stats);
1083 		/* To keep CRC24 attached to end of Code block, use
1084 		 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1085 		 * removed by default once verified.
1086 		 */
1087 
1088 		mbuf_total_left -= kw;
1089 
1090 		/* Update offsets */
1091 		if (seg_total_left == kw) {
1092 			/* Go to the next mbuf */
1093 			m_in = m_in->next;
1094 			m_out = m_out->next;
1095 			in_offset = 0;
1096 			out_offset = 0;
1097 		} else {
1098 			/* Update offsets for next CBs (if exist) */
1099 			in_offset += kw;
1100 			out_offset += ((k - crc24_overlap) >> 3);
1101 		}
1102 		r++;
1103 	}
1104 	if (mbuf_total_left != 0) {
1105 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1106 		rte_bbdev_log(ERR,
1107 				"Mismatch between mbuf length and included Circular buffer sizes");
1108 	}
1109 }
1110 
1111 static inline uint16_t
1112 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1113 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1114 {
1115 	uint16_t i;
1116 #ifdef RTE_BBDEV_OFFLOAD_COST
1117 	queue_stats->acc_offload_cycles = 0;
1118 #endif
1119 
1120 	for (i = 0; i < nb_ops; ++i)
1121 		enqueue_dec_one_op(q, ops[i], queue_stats);
1122 
1123 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1124 			NULL);
1125 }
1126 
1127 /* Enqueue burst */
1128 static uint16_t
1129 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1130 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1131 {
1132 	void *queue = q_data->queue_private;
1133 	struct turbo_sw_queue *q = queue;
1134 	uint16_t nb_enqueued = 0;
1135 
1136 	nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1137 
1138 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1139 	q_data->queue_stats.enqueued_count += nb_enqueued;
1140 
1141 	return nb_enqueued;
1142 }
1143 
1144 /* Enqueue burst */
1145 static uint16_t
1146 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1147 		 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1148 {
1149 	void *queue = q_data->queue_private;
1150 	struct turbo_sw_queue *q = queue;
1151 	uint16_t nb_enqueued = 0;
1152 
1153 	nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1154 
1155 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1156 	q_data->queue_stats.enqueued_count += nb_enqueued;
1157 
1158 	return nb_enqueued;
1159 }
1160 
1161 /* Dequeue decode burst */
1162 static uint16_t
1163 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1164 		struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1165 {
1166 	struct turbo_sw_queue *q = q_data->queue_private;
1167 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1168 			(void **)ops, nb_ops, NULL);
1169 	q_data->queue_stats.dequeued_count += nb_dequeued;
1170 
1171 	return nb_dequeued;
1172 }
1173 
1174 /* Dequeue encode burst */
1175 static uint16_t
1176 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1177 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1178 {
1179 	struct turbo_sw_queue *q = q_data->queue_private;
1180 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1181 			(void **)ops, nb_ops, NULL);
1182 	q_data->queue_stats.dequeued_count += nb_dequeued;
1183 
1184 	return nb_dequeued;
1185 }
1186 
1187 /* Parse 16bit integer from string argument */
1188 static inline int
1189 parse_u16_arg(const char *key, const char *value, void *extra_args)
1190 {
1191 	uint16_t *u16 = extra_args;
1192 	unsigned int long result;
1193 
1194 	if ((value == NULL) || (extra_args == NULL))
1195 		return -EINVAL;
1196 	errno = 0;
1197 	result = strtoul(value, NULL, 0);
1198 	if ((result >= (1 << 16)) || (errno != 0)) {
1199 		rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1200 		return -ERANGE;
1201 	}
1202 	*u16 = (uint16_t)result;
1203 	return 0;
1204 }
1205 
1206 /* Parse parameters used to create device */
1207 static int
1208 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1209 {
1210 	struct rte_kvargs *kvlist = NULL;
1211 	int ret = 0;
1212 
1213 	if (params == NULL)
1214 		return -EINVAL;
1215 	if (input_args) {
1216 		kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1217 		if (kvlist == NULL)
1218 			return -EFAULT;
1219 
1220 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1221 					&parse_u16_arg, &params->queues_num);
1222 		if (ret < 0)
1223 			goto exit;
1224 
1225 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1226 					&parse_u16_arg, &params->socket_id);
1227 		if (ret < 0)
1228 			goto exit;
1229 
1230 		if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1231 			rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1232 					RTE_MAX_NUMA_NODES);
1233 			goto exit;
1234 		}
1235 	}
1236 
1237 exit:
1238 	if (kvlist)
1239 		rte_kvargs_free(kvlist);
1240 	return ret;
1241 }
1242 
1243 /* Create device */
1244 static int
1245 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1246 		struct turbo_sw_params *init_params)
1247 {
1248 	struct rte_bbdev *bbdev;
1249 	const char *name = rte_vdev_device_name(vdev);
1250 
1251 	bbdev = rte_bbdev_allocate(name);
1252 	if (bbdev == NULL)
1253 		return -ENODEV;
1254 
1255 	bbdev->data->dev_private = rte_zmalloc_socket(name,
1256 			sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1257 			init_params->socket_id);
1258 	if (bbdev->data->dev_private == NULL) {
1259 		rte_bbdev_release(bbdev);
1260 		return -ENOMEM;
1261 	}
1262 
1263 	bbdev->dev_ops = &pmd_ops;
1264 	bbdev->device = &vdev->device;
1265 	bbdev->data->socket_id = init_params->socket_id;
1266 	bbdev->intr_handle = NULL;
1267 
1268 	/* register rx/tx burst functions for data path */
1269 	bbdev->dequeue_enc_ops = dequeue_enc_ops;
1270 	bbdev->dequeue_dec_ops = dequeue_dec_ops;
1271 	bbdev->enqueue_enc_ops = enqueue_enc_ops;
1272 	bbdev->enqueue_dec_ops = enqueue_dec_ops;
1273 	((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1274 			init_params->queues_num;
1275 
1276 	return 0;
1277 }
1278 
1279 /* Initialise device */
1280 static int
1281 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1282 {
1283 	struct turbo_sw_params init_params = {
1284 		rte_socket_id(),
1285 		RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1286 	};
1287 	const char *name;
1288 	const char *input_args;
1289 
1290 	if (vdev == NULL)
1291 		return -EINVAL;
1292 
1293 	name = rte_vdev_device_name(vdev);
1294 	if (name == NULL)
1295 		return -EINVAL;
1296 	input_args = rte_vdev_device_args(vdev);
1297 	parse_turbo_sw_params(&init_params, input_args);
1298 
1299 	rte_bbdev_log_debug(
1300 			"Initialising %s on NUMA node %d with max queues: %d\n",
1301 			name, init_params.socket_id, init_params.queues_num);
1302 
1303 	return turbo_sw_bbdev_create(vdev, &init_params);
1304 }
1305 
1306 /* Uninitialise device */
1307 static int
1308 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1309 {
1310 	struct rte_bbdev *bbdev;
1311 	const char *name;
1312 
1313 	if (vdev == NULL)
1314 		return -EINVAL;
1315 
1316 	name = rte_vdev_device_name(vdev);
1317 	if (name == NULL)
1318 		return -EINVAL;
1319 
1320 	bbdev = rte_bbdev_get_named_dev(name);
1321 	if (bbdev == NULL)
1322 		return -EINVAL;
1323 
1324 	rte_free(bbdev->data->dev_private);
1325 
1326 	return rte_bbdev_release(bbdev);
1327 }
1328 
1329 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1330 	.probe = turbo_sw_bbdev_probe,
1331 	.remove = turbo_sw_bbdev_remove
1332 };
1333 
1334 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1335 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1336 	TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1337 	TURBO_SW_SOCKET_ID_ARG"=<int>");
1338 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1339 
1340 RTE_INIT(turbo_sw_bbdev_init_log)
1341 {
1342 	bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1343 	if (bbdev_turbo_sw_logtype >= 0)
1344 		rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1345 }
1346