1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <string.h> 6 7 #include <rte_common.h> 8 #include <rte_bus_vdev.h> 9 #include <rte_malloc.h> 10 #include <rte_ring.h> 11 #include <rte_kvargs.h> 12 #include <rte_cycles.h> 13 14 #include <rte_bbdev.h> 15 #include <rte_bbdev_pmd.h> 16 17 #include <phy_turbo.h> 18 #include <phy_crc.h> 19 #include <phy_rate_match.h> 20 #include <divide.h> 21 22 #define DRIVER_NAME turbo_sw 23 24 /* Turbo SW PMD logging ID */ 25 static int bbdev_turbo_sw_logtype; 26 27 /* Helper macro for logging */ 28 #define rte_bbdev_log(level, fmt, ...) \ 29 rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \ 30 ##__VA_ARGS__) 31 32 #define rte_bbdev_log_debug(fmt, ...) \ 33 rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \ 34 ##__VA_ARGS__) 35 36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48) 37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6) 38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48) 39 40 /* private data structure */ 41 struct bbdev_private { 42 unsigned int max_nb_queues; /**< Max number of queues */ 43 }; 44 45 /* Initialisation params structure that can be used by Turbo SW driver */ 46 struct turbo_sw_params { 47 int socket_id; /*< Turbo SW device socket */ 48 uint16_t queues_num; /*< Turbo SW device queues number */ 49 }; 50 51 /* Accecptable params for Turbo SW devices */ 52 #define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues" 53 #define TURBO_SW_SOCKET_ID_ARG "socket_id" 54 55 static const char * const turbo_sw_valid_params[] = { 56 TURBO_SW_MAX_NB_QUEUES_ARG, 57 TURBO_SW_SOCKET_ID_ARG 58 }; 59 60 /* queue */ 61 struct turbo_sw_queue { 62 /* Ring for processed (encoded/decoded) operations which are ready to 63 * be dequeued. 64 */ 65 struct rte_ring *processed_pkts; 66 /* Stores input for turbo encoder (used when CRC attachment is 67 * performed 68 */ 69 uint8_t *enc_in; 70 /* Stores output from turbo encoder */ 71 uint8_t *enc_out; 72 /* Alpha gamma buf for bblib_turbo_decoder() function */ 73 int8_t *ag; 74 /* Temp buf for bblib_turbo_decoder() function */ 75 uint16_t *code_block; 76 /* Input buf for bblib_rate_dematching_lte() function */ 77 uint8_t *deint_input; 78 /* Output buf for bblib_rate_dematching_lte() function */ 79 uint8_t *deint_output; 80 /* Output buf for bblib_turbodec_adapter_lte() function */ 81 uint8_t *adapter_output; 82 /* Operation type of this queue */ 83 enum rte_bbdev_op_type type; 84 } __rte_cache_aligned; 85 86 /* Calculate index based on Table 5.1.3-3 from TS34.212 */ 87 static inline int32_t 88 compute_idx(uint16_t k) 89 { 90 int32_t result = 0; 91 92 if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE) 93 return -1; 94 95 if (k > 2048) { 96 if ((k - 2048) % 64 != 0) 97 result = -1; 98 99 result = 124 + (k - 2048) / 64; 100 } else if (k <= 512) { 101 if ((k - 40) % 8 != 0) 102 result = -1; 103 104 result = (k - 40) / 8 + 1; 105 } else if (k <= 1024) { 106 if ((k - 512) % 16 != 0) 107 result = -1; 108 109 result = 60 + (k - 512) / 16; 110 } else { /* 1024 < k <= 2048 */ 111 if ((k - 1024) % 32 != 0) 112 result = -1; 113 114 result = 92 + (k - 1024) / 32; 115 } 116 117 return result; 118 } 119 120 /* Read flag value 0/1 from bitmap */ 121 static inline bool 122 check_bit(uint32_t bitmap, uint32_t bitmask) 123 { 124 return bitmap & bitmask; 125 } 126 127 /* Get device info */ 128 static void 129 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info) 130 { 131 struct bbdev_private *internals = dev->data->dev_private; 132 133 static const struct rte_bbdev_op_cap bbdev_capabilities[] = { 134 { 135 .type = RTE_BBDEV_OP_TURBO_DEC, 136 .cap.turbo_dec = { 137 .capability_flags = 138 RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE | 139 RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN | 140 RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN | 141 RTE_BBDEV_TURBO_CRC_TYPE_24B | 142 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP | 143 RTE_BBDEV_TURBO_EARLY_TERMINATION, 144 .max_llr_modulus = 16, 145 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, 146 .num_buffers_hard_out = 147 RTE_BBDEV_MAX_CODE_BLOCKS, 148 .num_buffers_soft_out = 0, 149 } 150 }, 151 { 152 .type = RTE_BBDEV_OP_TURBO_ENC, 153 .cap.turbo_enc = { 154 .capability_flags = 155 RTE_BBDEV_TURBO_CRC_24B_ATTACH | 156 RTE_BBDEV_TURBO_CRC_24A_ATTACH | 157 RTE_BBDEV_TURBO_RATE_MATCH | 158 RTE_BBDEV_TURBO_RV_INDEX_BYPASS, 159 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, 160 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS, 161 } 162 }, 163 RTE_BBDEV_END_OF_CAPABILITIES_LIST() 164 }; 165 166 static struct rte_bbdev_queue_conf default_queue_conf = { 167 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT, 168 }; 169 170 static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2; 171 172 default_queue_conf.socket = dev->data->socket_id; 173 174 dev_info->driver_name = RTE_STR(DRIVER_NAME); 175 dev_info->max_num_queues = internals->max_nb_queues; 176 dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT; 177 dev_info->hardware_accelerated = false; 178 dev_info->max_queue_priority = 0; 179 dev_info->default_queue_conf = default_queue_conf; 180 dev_info->capabilities = bbdev_capabilities; 181 dev_info->cpu_flag_reqs = &cpu_flag; 182 dev_info->min_alignment = 64; 183 184 rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id); 185 } 186 187 /* Release queue */ 188 static int 189 q_release(struct rte_bbdev *dev, uint16_t q_id) 190 { 191 struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private; 192 193 if (q != NULL) { 194 rte_ring_free(q->processed_pkts); 195 rte_free(q->enc_out); 196 rte_free(q->enc_in); 197 rte_free(q->ag); 198 rte_free(q->code_block); 199 rte_free(q->deint_input); 200 rte_free(q->deint_output); 201 rte_free(q->adapter_output); 202 rte_free(q); 203 dev->data->queues[q_id].queue_private = NULL; 204 } 205 206 rte_bbdev_log_debug("released device queue %u:%u", 207 dev->data->dev_id, q_id); 208 return 0; 209 } 210 211 /* Setup a queue */ 212 static int 213 q_setup(struct rte_bbdev *dev, uint16_t q_id, 214 const struct rte_bbdev_queue_conf *queue_conf) 215 { 216 int ret; 217 struct turbo_sw_queue *q; 218 char name[RTE_RING_NAMESIZE]; 219 220 /* Allocate the queue data structure. */ 221 q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q), 222 RTE_CACHE_LINE_SIZE, queue_conf->socket); 223 if (q == NULL) { 224 rte_bbdev_log(ERR, "Failed to allocate queue memory"); 225 return -ENOMEM; 226 } 227 228 /* Allocate memory for encoder output. */ 229 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u", 230 dev->data->dev_id, q_id); 231 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 232 rte_bbdev_log(ERR, 233 "Creating queue name for device %u queue %u failed", 234 dev->data->dev_id, q_id); 235 return -ENAMETOOLONG; 236 } 237 q->enc_out = rte_zmalloc_socket(name, 238 ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) * 239 sizeof(*q->enc_out) * 3, 240 RTE_CACHE_LINE_SIZE, queue_conf->socket); 241 if (q->enc_out == NULL) { 242 rte_bbdev_log(ERR, 243 "Failed to allocate queue memory for %s", name); 244 goto free_q; 245 } 246 247 /* Allocate memory for rate matching output. */ 248 ret = snprintf(name, RTE_RING_NAMESIZE, 249 RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id, 250 q_id); 251 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 252 rte_bbdev_log(ERR, 253 "Creating queue name for device %u queue %u failed", 254 dev->data->dev_id, q_id); 255 return -ENAMETOOLONG; 256 } 257 q->enc_in = rte_zmalloc_socket(name, 258 (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in), 259 RTE_CACHE_LINE_SIZE, queue_conf->socket); 260 if (q->enc_in == NULL) { 261 rte_bbdev_log(ERR, 262 "Failed to allocate queue memory for %s", name); 263 goto free_q; 264 } 265 266 /* Allocate memory for Aplha Gamma temp buffer. */ 267 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u", 268 dev->data->dev_id, q_id); 269 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 270 rte_bbdev_log(ERR, 271 "Creating queue name for device %u queue %u failed", 272 dev->data->dev_id, q_id); 273 return -ENAMETOOLONG; 274 } 275 q->ag = rte_zmalloc_socket(name, 276 RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag), 277 RTE_CACHE_LINE_SIZE, queue_conf->socket); 278 if (q->ag == NULL) { 279 rte_bbdev_log(ERR, 280 "Failed to allocate queue memory for %s", name); 281 goto free_q; 282 } 283 284 /* Allocate memory for code block temp buffer. */ 285 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u", 286 dev->data->dev_id, q_id); 287 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 288 rte_bbdev_log(ERR, 289 "Creating queue name for device %u queue %u failed", 290 dev->data->dev_id, q_id); 291 return -ENAMETOOLONG; 292 } 293 q->code_block = rte_zmalloc_socket(name, 294 RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block), 295 RTE_CACHE_LINE_SIZE, queue_conf->socket); 296 if (q->code_block == NULL) { 297 rte_bbdev_log(ERR, 298 "Failed to allocate queue memory for %s", name); 299 goto free_q; 300 } 301 302 /* Allocate memory for Deinterleaver input. */ 303 ret = snprintf(name, RTE_RING_NAMESIZE, 304 RTE_STR(DRIVER_NAME)"_deint_input%u:%u", 305 dev->data->dev_id, q_id); 306 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 307 rte_bbdev_log(ERR, 308 "Creating queue name for device %u queue %u failed", 309 dev->data->dev_id, q_id); 310 return -ENAMETOOLONG; 311 } 312 q->deint_input = rte_zmalloc_socket(name, 313 DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input), 314 RTE_CACHE_LINE_SIZE, queue_conf->socket); 315 if (q->deint_input == NULL) { 316 rte_bbdev_log(ERR, 317 "Failed to allocate queue memory for %s", name); 318 goto free_q; 319 } 320 321 /* Allocate memory for Deinterleaver output. */ 322 ret = snprintf(name, RTE_RING_NAMESIZE, 323 RTE_STR(DRIVER_NAME)"_deint_output%u:%u", 324 dev->data->dev_id, q_id); 325 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 326 rte_bbdev_log(ERR, 327 "Creating queue name for device %u queue %u failed", 328 dev->data->dev_id, q_id); 329 return -ENAMETOOLONG; 330 } 331 q->deint_output = rte_zmalloc_socket(NULL, 332 DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output), 333 RTE_CACHE_LINE_SIZE, queue_conf->socket); 334 if (q->deint_output == NULL) { 335 rte_bbdev_log(ERR, 336 "Failed to allocate queue memory for %s", name); 337 goto free_q; 338 } 339 340 /* Allocate memory for Adapter output. */ 341 ret = snprintf(name, RTE_RING_NAMESIZE, 342 RTE_STR(DRIVER_NAME)"_adapter_output%u:%u", 343 dev->data->dev_id, q_id); 344 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 345 rte_bbdev_log(ERR, 346 "Creating queue name for device %u queue %u failed", 347 dev->data->dev_id, q_id); 348 return -ENAMETOOLONG; 349 } 350 q->adapter_output = rte_zmalloc_socket(NULL, 351 ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output), 352 RTE_CACHE_LINE_SIZE, queue_conf->socket); 353 if (q->adapter_output == NULL) { 354 rte_bbdev_log(ERR, 355 "Failed to allocate queue memory for %s", name); 356 goto free_q; 357 } 358 359 /* Create ring for packets awaiting to be dequeued. */ 360 ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u", 361 dev->data->dev_id, q_id); 362 if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { 363 rte_bbdev_log(ERR, 364 "Creating queue name for device %u queue %u failed", 365 dev->data->dev_id, q_id); 366 return -ENAMETOOLONG; 367 } 368 q->processed_pkts = rte_ring_create(name, queue_conf->queue_size, 369 queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ); 370 if (q->processed_pkts == NULL) { 371 rte_bbdev_log(ERR, "Failed to create ring for %s", name); 372 goto free_q; 373 } 374 375 q->type = queue_conf->op_type; 376 377 dev->data->queues[q_id].queue_private = q; 378 rte_bbdev_log_debug("setup device queue %s", name); 379 return 0; 380 381 free_q: 382 rte_ring_free(q->processed_pkts); 383 rte_free(q->enc_out); 384 rte_free(q->enc_in); 385 rte_free(q->ag); 386 rte_free(q->code_block); 387 rte_free(q->deint_input); 388 rte_free(q->deint_output); 389 rte_free(q->adapter_output); 390 rte_free(q); 391 return -EFAULT; 392 } 393 394 static const struct rte_bbdev_ops pmd_ops = { 395 .info_get = info_get, 396 .queue_setup = q_setup, 397 .queue_release = q_release 398 }; 399 400 /* Checks if the encoder input buffer is correct. 401 * Returns 0 if it's valid, -1 otherwise. 402 */ 403 static inline int 404 is_enc_input_valid(const uint16_t k, const int32_t k_idx, 405 const uint16_t in_length) 406 { 407 if (k_idx < 0) { 408 rte_bbdev_log(ERR, "K Index is invalid"); 409 return -1; 410 } 411 412 if (in_length - (k >> 3) < 0) { 413 rte_bbdev_log(ERR, 414 "Mismatch between input length (%u bytes) and K (%u bits)", 415 in_length, k); 416 return -1; 417 } 418 419 if (k > RTE_BBDEV_MAX_CB_SIZE) { 420 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d", 421 k, RTE_BBDEV_MAX_CB_SIZE); 422 return -1; 423 } 424 425 return 0; 426 } 427 428 /* Checks if the decoder input buffer is correct. 429 * Returns 0 if it's valid, -1 otherwise. 430 */ 431 static inline int 432 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length) 433 { 434 if (k_idx < 0) { 435 rte_bbdev_log(ERR, "K index is invalid"); 436 return -1; 437 } 438 439 if (in_length - kw < 0) { 440 rte_bbdev_log(ERR, 441 "Mismatch between input length (%u) and kw (%u)", 442 in_length, kw); 443 return -1; 444 } 445 446 if (kw > RTE_BBDEV_MAX_KW) { 447 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d", 448 kw, RTE_BBDEV_MAX_KW); 449 return -1; 450 } 451 452 return 0; 453 } 454 455 static inline void 456 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 457 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb, 458 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out, 459 uint16_t in_offset, uint16_t out_offset, uint16_t total_left, 460 struct rte_bbdev_stats *q_stats) 461 { 462 int ret; 463 int16_t k_idx; 464 uint16_t m; 465 uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out; 466 uint64_t first_3_bytes = 0; 467 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; 468 struct bblib_crc_request crc_req; 469 struct bblib_crc_response crc_resp; 470 struct bblib_turbo_encoder_request turbo_req; 471 struct bblib_turbo_encoder_response turbo_resp; 472 struct bblib_rate_match_dl_request rm_req; 473 struct bblib_rate_match_dl_response rm_resp; 474 #ifdef RTE_BBDEV_OFFLOAD_COST 475 uint64_t start_time; 476 #else 477 RTE_SET_USED(q_stats); 478 #endif 479 480 k_idx = compute_idx(k); 481 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 482 483 /* CRC24A (for TB) */ 484 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) && 485 (enc->code_block_mode == 1)) { 486 ret = is_enc_input_valid(k - 24, k_idx, total_left); 487 if (ret != 0) { 488 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 489 return; 490 } 491 crc_req.data = in; 492 crc_req.len = (k - 24) >> 3; 493 /* Check if there is a room for CRC bits. If not use 494 * the temporary buffer. 495 */ 496 if (rte_pktmbuf_append(m_in, 3) == NULL) { 497 rte_memcpy(q->enc_in, in, (k - 24) >> 3); 498 in = q->enc_in; 499 } else { 500 /* Store 3 first bytes of next CB as they will be 501 * overwritten by CRC bytes. If it is the last CB then 502 * there is no point to store 3 next bytes and this 503 * if..else branch will be omitted. 504 */ 505 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]); 506 } 507 508 crc_resp.data = in; 509 #ifdef RTE_BBDEV_OFFLOAD_COST 510 start_time = rte_rdtsc_precise(); 511 #endif 512 bblib_lte_crc24a_gen(&crc_req, &crc_resp); 513 #ifdef RTE_BBDEV_OFFLOAD_COST 514 q_stats->offload_time += rte_rdtsc_precise() - start_time; 515 #endif 516 } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) { 517 /* CRC24B */ 518 ret = is_enc_input_valid(k - 24, k_idx, total_left); 519 if (ret != 0) { 520 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 521 return; 522 } 523 crc_req.data = in; 524 crc_req.len = (k - 24) >> 3; 525 /* Check if there is a room for CRC bits. If this is the last 526 * CB in TB. If not use temporary buffer. 527 */ 528 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) { 529 rte_memcpy(q->enc_in, in, (k - 24) >> 3); 530 in = q->enc_in; 531 } else if (c - r > 1) { 532 /* Store 3 first bytes of next CB as they will be 533 * overwritten by CRC bytes. If it is the last CB then 534 * there is no point to store 3 next bytes and this 535 * if..else branch will be omitted. 536 */ 537 first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]); 538 } 539 540 crc_resp.data = in; 541 #ifdef RTE_BBDEV_OFFLOAD_COST 542 start_time = rte_rdtsc_precise(); 543 #endif 544 bblib_lte_crc24b_gen(&crc_req, &crc_resp); 545 #ifdef RTE_BBDEV_OFFLOAD_COST 546 q_stats->offload_time += rte_rdtsc_precise() - start_time; 547 #endif 548 } else { 549 ret = is_enc_input_valid(k, k_idx, total_left); 550 if (ret != 0) { 551 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 552 return; 553 } 554 } 555 556 /* Turbo encoder */ 557 558 /* Each bit layer output from turbo encoder is (k+4) bits long, i.e. 559 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up. 560 * So dst_data's length should be 3*(k/8) + 3 bytes. 561 * In Rate-matching bypass case outputs pointers passed to encoder 562 * (out0, out1 and out2) can directly point to addresses of output from 563 * turbo_enc entity. 564 */ 565 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { 566 out0 = q->enc_out; 567 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1); 568 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1); 569 } else { 570 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2); 571 if (out0 == NULL) { 572 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 573 rte_bbdev_log(ERR, 574 "Too little space in output mbuf"); 575 return; 576 } 577 enc->output.length += (k >> 3) * 3 + 2; 578 /* rte_bbdev_op_data.offset can be different than the 579 * offset of the appended bytes 580 */ 581 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 582 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, 583 out_offset + (k >> 3) + 1); 584 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, 585 out_offset + 2 * ((k >> 3) + 1)); 586 } 587 588 turbo_req.case_id = k_idx; 589 turbo_req.input_win = in; 590 turbo_req.length = k >> 3; 591 turbo_resp.output_win_0 = out0; 592 turbo_resp.output_win_1 = out1; 593 turbo_resp.output_win_2 = out2; 594 595 #ifdef RTE_BBDEV_OFFLOAD_COST 596 start_time = rte_rdtsc_precise(); 597 #endif 598 599 if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) { 600 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 601 rte_bbdev_log(ERR, "Turbo Encoder failed"); 602 return; 603 } 604 605 #ifdef RTE_BBDEV_OFFLOAD_COST 606 q_stats->offload_time += rte_rdtsc_precise() - start_time; 607 #endif 608 609 /* Restore 3 first bytes of next CB if they were overwritten by CRC*/ 610 if (first_3_bytes != 0) 611 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes; 612 613 /* Rate-matching */ 614 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { 615 uint8_t mask_id; 616 /* Integer round up division by 8 */ 617 uint16_t out_len = (e + 7) >> 3; 618 /* The mask array is indexed using E%8. E is an even number so 619 * there are only 4 possible values. 620 */ 621 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC}; 622 623 /* get output data starting address */ 624 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len); 625 if (rm_out == NULL) { 626 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 627 rte_bbdev_log(ERR, 628 "Too little space in output mbuf"); 629 return; 630 } 631 /* rte_bbdev_op_data.offset can be different than the offset 632 * of the appended bytes 633 */ 634 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 635 636 /* index of current code block */ 637 rm_req.r = r; 638 /* total number of code block */ 639 rm_req.C = c; 640 /* For DL - 1, UL - 0 */ 641 rm_req.direction = 1; 642 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO 643 * and MDL_HARQ are used for Ncb calculation. As Ncb is already 644 * known we can adjust those parameters 645 */ 646 rm_req.Nsoft = ncb * rm_req.C; 647 rm_req.KMIMO = 1; 648 rm_req.MDL_HARQ = 1; 649 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G 650 * are used for E calculation. As E is already known we can 651 * adjust those parameters 652 */ 653 rm_req.NL = e; 654 rm_req.Qm = 1; 655 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C; 656 657 rm_req.rvidx = enc->rv_index; 658 rm_req.Kidx = k_idx - 1; 659 rm_req.nLen = k + 4; 660 rm_req.tin0 = out0; 661 rm_req.tin1 = out1; 662 rm_req.tin2 = out2; 663 rm_resp.output = rm_out; 664 rm_resp.OutputLen = out_len; 665 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS) 666 rm_req.bypass_rvidx = 1; 667 else 668 rm_req.bypass_rvidx = 0; 669 670 #ifdef RTE_BBDEV_OFFLOAD_COST 671 start_time = rte_rdtsc_precise(); 672 #endif 673 674 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) { 675 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 676 rte_bbdev_log(ERR, "Rate matching failed"); 677 return; 678 } 679 680 /* SW fills an entire last byte even if E%8 != 0. Clear the 681 * superfluous data bits for consistency with HW device. 682 */ 683 mask_id = (e & 7) >> 1; 684 rm_out[out_len - 1] &= mask_out[mask_id]; 685 686 #ifdef RTE_BBDEV_OFFLOAD_COST 687 q_stats->offload_time += rte_rdtsc_precise() - start_time; 688 #endif 689 690 enc->output.length += rm_resp.OutputLen; 691 } else { 692 /* Rate matching is bypassed */ 693 694 /* Completing last byte of out0 (where 4 tail bits are stored) 695 * by moving first 4 bits from out1 696 */ 697 tmp_out = (uint8_t *) --out1; 698 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4); 699 tmp_out++; 700 /* Shifting out1 data by 4 bits to the left */ 701 for (m = 0; m < k >> 3; ++m) { 702 uint8_t *first = tmp_out; 703 uint8_t second = *(tmp_out + 1); 704 *first = (*first << 4) | ((second & 0xF0) >> 4); 705 tmp_out++; 706 } 707 /* Shifting out2 data by 8 bits to the left */ 708 for (m = 0; m < (k >> 3) + 1; ++m) { 709 *tmp_out = *(tmp_out + 1); 710 tmp_out++; 711 } 712 *tmp_out = 0; 713 } 714 } 715 716 static inline void 717 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, 718 struct rte_bbdev_stats *queue_stats) 719 { 720 uint8_t c, r, crc24_bits = 0; 721 uint16_t k, ncb; 722 uint32_t e; 723 struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; 724 uint16_t in_offset = enc->input.offset; 725 uint16_t out_offset = enc->output.offset; 726 struct rte_mbuf *m_in = enc->input.data; 727 struct rte_mbuf *m_out = enc->output.data; 728 uint16_t total_left = enc->input.length; 729 730 /* Clear op status */ 731 op->status = 0; 732 733 if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) { 734 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d", 735 total_left, RTE_BBDEV_MAX_TB_SIZE); 736 op->status = 1 << RTE_BBDEV_DATA_ERROR; 737 return; 738 } 739 740 if (m_in == NULL || m_out == NULL) { 741 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 742 op->status = 1 << RTE_BBDEV_DATA_ERROR; 743 return; 744 } 745 746 if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) || 747 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH)) 748 crc24_bits = 24; 749 750 if (enc->code_block_mode == 0) { /* For Transport Block mode */ 751 c = enc->tb_params.c; 752 r = enc->tb_params.r; 753 } else {/* For Code Block mode */ 754 c = 1; 755 r = 0; 756 } 757 758 while (total_left > 0 && r < c) { 759 if (enc->code_block_mode == 0) { 760 k = (r < enc->tb_params.c_neg) ? 761 enc->tb_params.k_neg : enc->tb_params.k_pos; 762 ncb = (r < enc->tb_params.c_neg) ? 763 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos; 764 e = (r < enc->tb_params.cab) ? 765 enc->tb_params.ea : enc->tb_params.eb; 766 } else { 767 k = enc->cb_params.k; 768 ncb = enc->cb_params.ncb; 769 e = enc->cb_params.e; 770 } 771 772 process_enc_cb(q, op, r, c, k, ncb, e, m_in, 773 m_out, in_offset, out_offset, total_left, 774 queue_stats); 775 /* Update total_left */ 776 total_left -= (k - crc24_bits) >> 3; 777 /* Update offsets for next CBs (if exist) */ 778 in_offset += (k - crc24_bits) >> 3; 779 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) 780 out_offset += e >> 3; 781 else 782 out_offset += (k >> 3) * 3 + 2; 783 r++; 784 } 785 786 /* check if all input data was processed */ 787 if (total_left != 0) { 788 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 789 rte_bbdev_log(ERR, 790 "Mismatch between mbuf length and included CBs sizes"); 791 } 792 } 793 794 static inline uint16_t 795 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops, 796 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats) 797 { 798 uint16_t i; 799 #ifdef RTE_BBDEV_OFFLOAD_COST 800 queue_stats->offload_time = 0; 801 #endif 802 803 for (i = 0; i < nb_ops; ++i) 804 enqueue_enc_one_op(q, ops[i], queue_stats); 805 806 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 807 NULL); 808 } 809 810 /* Remove the padding bytes from a cyclic buffer. 811 * The input buffer is a data stream wk as described in 3GPP TS 36.212 section 812 * 5.1.4.1.2 starting from w0 and with length Ncb bytes. 813 * The output buffer is a data stream wk with pruned padding bytes. It's length 814 * is 3*D bytes and the order of non-padding bytes is preserved. 815 */ 816 static inline void 817 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k, 818 uint16_t ncb) 819 { 820 uint32_t in_idx, out_idx, c_idx; 821 const uint32_t d = k + 4; 822 const uint32_t kw = (ncb / 3); 823 const uint32_t nd = kw - d; 824 const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK; 825 /* Inter-column permutation pattern */ 826 const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 827 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 828 29, 3, 19, 11, 27, 7, 23, 15, 31}; 829 in_idx = 0; 830 out_idx = 0; 831 832 /* The padding bytes are at the first Nd positions in the first row. */ 833 for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) { 834 if (P[c_idx] < nd) { 835 rte_memcpy(&out[out_idx], &in[in_idx + 1], 836 r_subblock - 1); 837 out_idx += r_subblock - 1; 838 } else { 839 rte_memcpy(&out[out_idx], &in[in_idx], r_subblock); 840 out_idx += r_subblock; 841 } 842 } 843 844 /* First and second parity bits sub-blocks are interlaced. */ 845 for (c_idx = 0; in_idx < ncb - 2 * r_subblock; 846 in_idx += 2 * r_subblock, ++c_idx) { 847 uint32_t second_block_c_idx = P[c_idx]; 848 uint32_t third_block_c_idx = P[c_idx] + 1; 849 850 if (second_block_c_idx < nd && third_block_c_idx < nd) { 851 rte_memcpy(&out[out_idx], &in[in_idx + 2], 852 2 * r_subblock - 2); 853 out_idx += 2 * r_subblock - 2; 854 } else if (second_block_c_idx >= nd && 855 third_block_c_idx >= nd) { 856 rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock); 857 out_idx += 2 * r_subblock; 858 } else if (second_block_c_idx < nd) { 859 out[out_idx++] = in[in_idx]; 860 rte_memcpy(&out[out_idx], &in[in_idx + 2], 861 2 * r_subblock - 2); 862 out_idx += 2 * r_subblock - 2; 863 } else { 864 rte_memcpy(&out[out_idx], &in[in_idx + 1], 865 2 * r_subblock - 1); 866 out_idx += 2 * r_subblock - 1; 867 } 868 } 869 870 /* Last interlaced row is different - its last byte is the only padding 871 * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block. 872 * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1 873 * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes 874 * (moving to another column). 2nd parity sub-block uses the same 875 * inter-column permutation pattern as the systematic and 1st parity 876 * sub-blocks but it adds '1' to the resulting index and calculates the 877 * modulus of the result and Kw. Last column is mapped to itself (id 31) 878 * so the first byte taken from the 2nd parity sub-block will be the 879 * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the 880 * last byte will be the first byte from the sub-block: 881 * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller 882 * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the 883 * padding bytes. The bytes from the 1st parity sub-block are the bytes 884 * from the 31st column - Nd can't be greater than 28 so we are sure 885 * that there are no padding bytes in 31st column. 886 */ 887 rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1); 888 } 889 890 static inline void 891 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k, 892 uint16_t ncb) 893 { 894 uint16_t d = k + 4; 895 uint16_t kpi = ncb / 3; 896 uint16_t nd = kpi - d; 897 898 rte_memcpy(&out[nd], in, d); 899 rte_memcpy(&out[nd + kpi + 64], &in[kpi], d); 900 rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d); 901 } 902 903 static inline void 904 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, 905 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in, 906 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset, 907 bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left) 908 { 909 int ret; 910 int32_t k_idx; 911 int32_t iter_cnt; 912 uint8_t *in, *out, *adapter_input; 913 int32_t ncb, ncb_without_null; 914 struct bblib_turbo_adapter_ul_response adapter_resp; 915 struct bblib_turbo_adapter_ul_request adapter_req; 916 struct bblib_turbo_decoder_request turbo_req; 917 struct bblib_turbo_decoder_response turbo_resp; 918 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; 919 920 k_idx = compute_idx(k); 921 922 ret = is_dec_input_valid(k_idx, kw, total_left); 923 if (ret != 0) { 924 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 925 return; 926 } 927 928 in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); 929 ncb = kw; 930 ncb_without_null = (k + 4) * 3; 931 932 if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) { 933 struct bblib_deinterleave_ul_request deint_req; 934 struct bblib_deinterleave_ul_response deint_resp; 935 936 /* SW decoder accepts only a circular buffer without NULL bytes 937 * so the input needs to be converted. 938 */ 939 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb); 940 941 deint_req.pharqbuffer = q->deint_input; 942 deint_req.ncb = ncb_without_null; 943 deint_resp.pinteleavebuffer = q->deint_output; 944 bblib_deinterleave_ul(&deint_req, &deint_resp); 945 } else 946 move_padding_bytes(in, q->deint_output, k, ncb); 947 948 adapter_input = q->deint_output; 949 950 if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN) 951 adapter_req.isinverted = 1; 952 else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN) 953 adapter_req.isinverted = 0; 954 else { 955 op->status |= 1 << RTE_BBDEV_DRV_ERROR; 956 rte_bbdev_log(ERR, "LLR format wasn't specified"); 957 return; 958 } 959 960 adapter_req.ncb = ncb_without_null; 961 adapter_req.pinteleavebuffer = adapter_input; 962 adapter_resp.pharqout = q->adapter_output; 963 bblib_turbo_adapter_ul(&adapter_req, &adapter_resp); 964 965 out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3)); 966 if (out == NULL) { 967 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 968 rte_bbdev_log(ERR, "Too little space in output mbuf"); 969 return; 970 } 971 /* rte_bbdev_op_data.offset can be different than the offset of the 972 * appended bytes 973 */ 974 out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); 975 if (check_crc_24b) 976 turbo_req.c = c + 1; 977 else 978 turbo_req.c = c; 979 turbo_req.input = (int8_t *)q->adapter_output; 980 turbo_req.k = k; 981 turbo_req.k_idx = k_idx; 982 turbo_req.max_iter_num = dec->iter_max; 983 turbo_req.early_term_disable = !check_bit(dec->op_flags, 984 RTE_BBDEV_TURBO_EARLY_TERMINATION); 985 turbo_resp.ag_buf = q->ag; 986 turbo_resp.cb_buf = q->code_block; 987 turbo_resp.output = out; 988 iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp); 989 dec->hard_output.length += (k >> 3); 990 991 if (iter_cnt > 0) { 992 /* Temporary solution for returned iter_count from SDK */ 993 iter_cnt = (iter_cnt - 1) / 2; 994 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count); 995 } else { 996 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 997 rte_bbdev_log(ERR, "Turbo Decoder failed"); 998 return; 999 } 1000 } 1001 1002 static inline void 1003 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op) 1004 { 1005 uint8_t c, r = 0; 1006 uint16_t kw, k = 0; 1007 uint16_t crc24_overlap = 0; 1008 struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; 1009 struct rte_mbuf *m_in = dec->input.data; 1010 struct rte_mbuf *m_out = dec->hard_output.data; 1011 uint16_t in_offset = dec->input.offset; 1012 uint16_t total_left = dec->input.length; 1013 uint16_t out_offset = dec->hard_output.offset; 1014 1015 /* Clear op status */ 1016 op->status = 0; 1017 1018 if (m_in == NULL || m_out == NULL) { 1019 rte_bbdev_log(ERR, "Invalid mbuf pointer"); 1020 op->status = 1 << RTE_BBDEV_DATA_ERROR; 1021 return; 1022 } 1023 1024 if (dec->code_block_mode == 0) { /* For Transport Block mode */ 1025 c = dec->tb_params.c; 1026 } else { /* For Code Block mode */ 1027 k = dec->cb_params.k; 1028 c = 1; 1029 } 1030 1031 if ((c > 1) && !check_bit(dec->op_flags, 1032 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP)) 1033 crc24_overlap = 24; 1034 1035 while (total_left > 0) { 1036 if (dec->code_block_mode == 0) 1037 k = (r < dec->tb_params.c_neg) ? 1038 dec->tb_params.k_neg : dec->tb_params.k_pos; 1039 1040 /* Calculates circular buffer size (Kw). 1041 * According to 3gpp 36.212 section 5.1.4.2 1042 * Kw = 3 * Kpi, 1043 * where: 1044 * Kpi = nCol * nRow 1045 * where nCol is 32 and nRow can be calculated from: 1046 * D =< nCol * nRow 1047 * where D is the size of each output from turbo encoder block 1048 * (k + 4). 1049 */ 1050 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3; 1051 1052 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset, 1053 out_offset, check_bit(dec->op_flags, 1054 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap, 1055 total_left); 1056 /* To keep CRC24 attached to end of Code block, use 1057 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it 1058 * removed by default once verified. 1059 */ 1060 1061 /* Update total_left */ 1062 total_left -= kw; 1063 /* Update offsets for next CBs (if exist) */ 1064 in_offset += kw; 1065 out_offset += ((k - crc24_overlap) >> 3); 1066 r++; 1067 } 1068 if (total_left != 0) { 1069 op->status |= 1 << RTE_BBDEV_DATA_ERROR; 1070 rte_bbdev_log(ERR, 1071 "Mismatch between mbuf length and included Circular buffer sizes"); 1072 } 1073 } 1074 1075 static inline uint16_t 1076 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops, 1077 uint16_t nb_ops) 1078 { 1079 uint16_t i; 1080 1081 for (i = 0; i < nb_ops; ++i) 1082 enqueue_dec_one_op(q, ops[i]); 1083 1084 return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, 1085 NULL); 1086 } 1087 1088 /* Enqueue burst */ 1089 static uint16_t 1090 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data, 1091 struct rte_bbdev_enc_op **ops, uint16_t nb_ops) 1092 { 1093 void *queue = q_data->queue_private; 1094 struct turbo_sw_queue *q = queue; 1095 uint16_t nb_enqueued = 0; 1096 1097 nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats); 1098 1099 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1100 q_data->queue_stats.enqueued_count += nb_enqueued; 1101 1102 return nb_enqueued; 1103 } 1104 1105 /* Enqueue burst */ 1106 static uint16_t 1107 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data, 1108 struct rte_bbdev_dec_op **ops, uint16_t nb_ops) 1109 { 1110 void *queue = q_data->queue_private; 1111 struct turbo_sw_queue *q = queue; 1112 uint16_t nb_enqueued = 0; 1113 1114 nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops); 1115 1116 q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; 1117 q_data->queue_stats.enqueued_count += nb_enqueued; 1118 1119 return nb_enqueued; 1120 } 1121 1122 /* Dequeue decode burst */ 1123 static uint16_t 1124 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data, 1125 struct rte_bbdev_dec_op **ops, uint16_t nb_ops) 1126 { 1127 struct turbo_sw_queue *q = q_data->queue_private; 1128 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, 1129 (void **)ops, nb_ops, NULL); 1130 q_data->queue_stats.dequeued_count += nb_dequeued; 1131 1132 return nb_dequeued; 1133 } 1134 1135 /* Dequeue encode burst */ 1136 static uint16_t 1137 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data, 1138 struct rte_bbdev_enc_op **ops, uint16_t nb_ops) 1139 { 1140 struct turbo_sw_queue *q = q_data->queue_private; 1141 uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, 1142 (void **)ops, nb_ops, NULL); 1143 q_data->queue_stats.dequeued_count += nb_dequeued; 1144 1145 return nb_dequeued; 1146 } 1147 1148 /* Parse 16bit integer from string argument */ 1149 static inline int 1150 parse_u16_arg(const char *key, const char *value, void *extra_args) 1151 { 1152 uint16_t *u16 = extra_args; 1153 unsigned int long result; 1154 1155 if ((value == NULL) || (extra_args == NULL)) 1156 return -EINVAL; 1157 errno = 0; 1158 result = strtoul(value, NULL, 0); 1159 if ((result >= (1 << 16)) || (errno != 0)) { 1160 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key); 1161 return -ERANGE; 1162 } 1163 *u16 = (uint16_t)result; 1164 return 0; 1165 } 1166 1167 /* Parse parameters used to create device */ 1168 static int 1169 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args) 1170 { 1171 struct rte_kvargs *kvlist = NULL; 1172 int ret = 0; 1173 1174 if (params == NULL) 1175 return -EINVAL; 1176 if (input_args) { 1177 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params); 1178 if (kvlist == NULL) 1179 return -EFAULT; 1180 1181 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0], 1182 &parse_u16_arg, ¶ms->queues_num); 1183 if (ret < 0) 1184 goto exit; 1185 1186 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1], 1187 &parse_u16_arg, ¶ms->socket_id); 1188 if (ret < 0) 1189 goto exit; 1190 1191 if (params->socket_id >= RTE_MAX_NUMA_NODES) { 1192 rte_bbdev_log(ERR, "Invalid socket, must be < %u", 1193 RTE_MAX_NUMA_NODES); 1194 goto exit; 1195 } 1196 } 1197 1198 exit: 1199 if (kvlist) 1200 rte_kvargs_free(kvlist); 1201 return ret; 1202 } 1203 1204 /* Create device */ 1205 static int 1206 turbo_sw_bbdev_create(struct rte_vdev_device *vdev, 1207 struct turbo_sw_params *init_params) 1208 { 1209 struct rte_bbdev *bbdev; 1210 const char *name = rte_vdev_device_name(vdev); 1211 1212 bbdev = rte_bbdev_allocate(name); 1213 if (bbdev == NULL) 1214 return -ENODEV; 1215 1216 bbdev->data->dev_private = rte_zmalloc_socket(name, 1217 sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE, 1218 init_params->socket_id); 1219 if (bbdev->data->dev_private == NULL) { 1220 rte_bbdev_release(bbdev); 1221 return -ENOMEM; 1222 } 1223 1224 bbdev->dev_ops = &pmd_ops; 1225 bbdev->device = &vdev->device; 1226 bbdev->data->socket_id = init_params->socket_id; 1227 bbdev->intr_handle = NULL; 1228 1229 /* register rx/tx burst functions for data path */ 1230 bbdev->dequeue_enc_ops = dequeue_enc_ops; 1231 bbdev->dequeue_dec_ops = dequeue_dec_ops; 1232 bbdev->enqueue_enc_ops = enqueue_enc_ops; 1233 bbdev->enqueue_dec_ops = enqueue_dec_ops; 1234 ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues = 1235 init_params->queues_num; 1236 1237 return 0; 1238 } 1239 1240 /* Initialise device */ 1241 static int 1242 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev) 1243 { 1244 struct turbo_sw_params init_params = { 1245 rte_socket_id(), 1246 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES 1247 }; 1248 const char *name; 1249 const char *input_args; 1250 1251 if (vdev == NULL) 1252 return -EINVAL; 1253 1254 name = rte_vdev_device_name(vdev); 1255 if (name == NULL) 1256 return -EINVAL; 1257 input_args = rte_vdev_device_args(vdev); 1258 parse_turbo_sw_params(&init_params, input_args); 1259 1260 rte_bbdev_log_debug( 1261 "Initialising %s on NUMA node %d with max queues: %d\n", 1262 name, init_params.socket_id, init_params.queues_num); 1263 1264 return turbo_sw_bbdev_create(vdev, &init_params); 1265 } 1266 1267 /* Uninitialise device */ 1268 static int 1269 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev) 1270 { 1271 struct rte_bbdev *bbdev; 1272 const char *name; 1273 1274 if (vdev == NULL) 1275 return -EINVAL; 1276 1277 name = rte_vdev_device_name(vdev); 1278 if (name == NULL) 1279 return -EINVAL; 1280 1281 bbdev = rte_bbdev_get_named_dev(name); 1282 if (bbdev == NULL) 1283 return -EINVAL; 1284 1285 rte_free(bbdev->data->dev_private); 1286 1287 return rte_bbdev_release(bbdev); 1288 } 1289 1290 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = { 1291 .probe = turbo_sw_bbdev_probe, 1292 .remove = turbo_sw_bbdev_remove 1293 }; 1294 1295 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv); 1296 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME, 1297 TURBO_SW_MAX_NB_QUEUES_ARG"=<int> " 1298 TURBO_SW_SOCKET_ID_ARG"=<int>"); 1299 1300 RTE_INIT(null_bbdev_init_log); 1301 static void 1302 null_bbdev_init_log(void) 1303 { 1304 bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw"); 1305 if (bbdev_turbo_sw_logtype >= 0) 1306 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE); 1307 } 1308