xref: /dpdk/drivers/baseband/turbo_sw/bbdev_turbo_software.c (revision 10b71caecbe1cddcbb65c050ca775fba575e88db)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <string.h>
6 
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13 
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16 
17 #include <rte_hexdump.h>
18 #include <rte_log.h>
19 
20 #ifdef RTE_BBDEV_SDK_AVX2
21 #include <ipp.h>
22 #include <ipps.h>
23 #include <phy_turbo.h>
24 #include <phy_crc.h>
25 #include <phy_rate_match.h>
26 #endif
27 #ifdef RTE_BBDEV_SDK_AVX512
28 #include <bit_reverse.h>
29 #include <phy_ldpc_encoder_5gnr.h>
30 #include <phy_ldpc_decoder_5gnr.h>
31 #include <phy_LDPC_ratematch_5gnr.h>
32 #include <phy_rate_dematching_5gnr.h>
33 #endif
34 
35 #define DRIVER_NAME baseband_turbo_sw
36 
37 RTE_LOG_REGISTER(bbdev_turbo_sw_logtype, pmd.bb.turbo_sw, NOTICE);
38 
39 /* Helper macro for logging */
40 #define rte_bbdev_log(level, fmt, ...) \
41 	rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
42 		##__VA_ARGS__)
43 
44 #define rte_bbdev_log_debug(fmt, ...) \
45 	rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
46 		##__VA_ARGS__)
47 
48 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) + 1) * 48)
49 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
50 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_TURBO_MAX_CB_SIZE + 4) * 48)
51 
52 /* private data structure */
53 struct bbdev_private {
54 	unsigned int max_nb_queues;  /**< Max number of queues */
55 };
56 
57 /*  Initialisation params structure that can be used by Turbo SW driver */
58 struct turbo_sw_params {
59 	int socket_id;  /*< Turbo SW device socket */
60 	uint16_t queues_num;  /*< Turbo SW device queues number */
61 };
62 
63 /* Accecptable params for Turbo SW devices */
64 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
65 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
66 
67 static const char * const turbo_sw_valid_params[] = {
68 	TURBO_SW_MAX_NB_QUEUES_ARG,
69 	TURBO_SW_SOCKET_ID_ARG
70 };
71 
72 /* queue */
73 struct turbo_sw_queue {
74 	/* Ring for processed (encoded/decoded) operations which are ready to
75 	 * be dequeued.
76 	 */
77 	struct rte_ring *processed_pkts;
78 	/* Stores input for turbo encoder (used when CRC attachment is
79 	 * performed
80 	 */
81 	uint8_t *enc_in;
82 	/* Stores output from turbo encoder */
83 	uint8_t *enc_out;
84 	/* Alpha gamma buf for bblib_turbo_decoder() function */
85 	int8_t *ag;
86 	/* Temp buf for bblib_turbo_decoder() function */
87 	uint16_t *code_block;
88 	/* Input buf for bblib_rate_dematching_lte() function */
89 	uint8_t *deint_input;
90 	/* Output buf for bblib_rate_dematching_lte() function */
91 	uint8_t *deint_output;
92 	/* Output buf for bblib_turbodec_adapter_lte() function */
93 	uint8_t *adapter_output;
94 	/* Operation type of this queue */
95 	enum rte_bbdev_op_type type;
96 } __rte_cache_aligned;
97 
98 
99 #ifdef RTE_BBDEV_SDK_AVX2
100 static inline char *
101 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
102 {
103 	if (unlikely(len > rte_pktmbuf_tailroom(m)))
104 		return NULL;
105 
106 	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
107 	m->data_len = (uint16_t)(m->data_len + len);
108 	m_head->pkt_len  = (m_head->pkt_len + len);
109 	return tail;
110 }
111 
112 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
113 static inline int32_t
114 compute_idx(uint16_t k)
115 {
116 	int32_t result = 0;
117 
118 	if (k < RTE_BBDEV_TURBO_MIN_CB_SIZE || k > RTE_BBDEV_TURBO_MAX_CB_SIZE)
119 		return -1;
120 
121 	if (k > 2048) {
122 		if ((k - 2048) % 64 != 0)
123 			result = -1;
124 
125 		result = 124 + (k - 2048) / 64;
126 	} else if (k <= 512) {
127 		if ((k - 40) % 8 != 0)
128 			result = -1;
129 
130 		result = (k - 40) / 8 + 1;
131 	} else if (k <= 1024) {
132 		if ((k - 512) % 16 != 0)
133 			result = -1;
134 
135 		result = 60 + (k - 512) / 16;
136 	} else { /* 1024 < k <= 2048 */
137 		if ((k - 1024) % 32 != 0)
138 			result = -1;
139 
140 		result = 92 + (k - 1024) / 32;
141 	}
142 
143 	return result;
144 }
145 #endif
146 
147 /* Read flag value 0/1 from bitmap */
148 static inline bool
149 check_bit(uint32_t bitmap, uint32_t bitmask)
150 {
151 	return bitmap & bitmask;
152 }
153 
154 /* Get device info */
155 static void
156 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
157 {
158 	struct bbdev_private *internals = dev->data->dev_private;
159 
160 	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
161 #ifdef RTE_BBDEV_SDK_AVX2
162 		{
163 			.type = RTE_BBDEV_OP_TURBO_DEC,
164 			.cap.turbo_dec = {
165 				.capability_flags =
166 					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
167 					RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
168 					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
169 					RTE_BBDEV_TURBO_CRC_TYPE_24B |
170 					RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
171 					RTE_BBDEV_TURBO_EARLY_TERMINATION,
172 				.max_llr_modulus = 16,
173 				.num_buffers_src =
174 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
175 				.num_buffers_hard_out =
176 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
177 				.num_buffers_soft_out = 0,
178 			}
179 		},
180 		{
181 			.type   = RTE_BBDEV_OP_TURBO_ENC,
182 			.cap.turbo_enc = {
183 				.capability_flags =
184 						RTE_BBDEV_TURBO_CRC_24B_ATTACH |
185 						RTE_BBDEV_TURBO_CRC_24A_ATTACH |
186 						RTE_BBDEV_TURBO_RATE_MATCH |
187 						RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
188 				.num_buffers_src =
189 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
190 				.num_buffers_dst =
191 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
192 			}
193 		},
194 #endif
195 #ifdef RTE_BBDEV_SDK_AVX512
196 		{
197 			.type   = RTE_BBDEV_OP_LDPC_ENC,
198 			.cap.ldpc_enc = {
199 				.capability_flags =
200 						RTE_BBDEV_LDPC_RATE_MATCH |
201 						RTE_BBDEV_LDPC_CRC_24A_ATTACH |
202 						RTE_BBDEV_LDPC_CRC_24B_ATTACH,
203 				.num_buffers_src =
204 						RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
205 				.num_buffers_dst =
206 						RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
207 			}
208 		},
209 		{
210 		.type   = RTE_BBDEV_OP_LDPC_DEC,
211 		.cap.ldpc_dec = {
212 			.capability_flags =
213 					RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
214 					RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK |
215 					RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
216 					RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
217 					RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
218 					RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE,
219 			.llr_size = 8,
220 			.llr_decimals = 4,
221 			.num_buffers_src =
222 					RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
223 			.num_buffers_hard_out =
224 					RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
225 			.num_buffers_soft_out = 0,
226 		}
227 		},
228 #endif
229 		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
230 	};
231 
232 	static struct rte_bbdev_queue_conf default_queue_conf = {
233 		.queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
234 	};
235 #ifdef RTE_BBDEV_SDK_AVX2
236 	static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
237 	dev_info->cpu_flag_reqs = &cpu_flag;
238 #else
239 	dev_info->cpu_flag_reqs = NULL;
240 #endif
241 	default_queue_conf.socket = dev->data->socket_id;
242 
243 	dev_info->driver_name = RTE_STR(DRIVER_NAME);
244 	dev_info->max_num_queues = internals->max_nb_queues;
245 	dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
246 	dev_info->hardware_accelerated = false;
247 	dev_info->max_dl_queue_priority = 0;
248 	dev_info->max_ul_queue_priority = 0;
249 	dev_info->default_queue_conf = default_queue_conf;
250 	dev_info->capabilities = bbdev_capabilities;
251 	dev_info->min_alignment = 64;
252 	dev_info->harq_buffer_size = 0;
253 
254 	rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
255 }
256 
257 /* Release queue */
258 static int
259 q_release(struct rte_bbdev *dev, uint16_t q_id)
260 {
261 	struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
262 
263 	if (q != NULL) {
264 		rte_ring_free(q->processed_pkts);
265 		rte_free(q->enc_out);
266 		rte_free(q->enc_in);
267 		rte_free(q->ag);
268 		rte_free(q->code_block);
269 		rte_free(q->deint_input);
270 		rte_free(q->deint_output);
271 		rte_free(q->adapter_output);
272 		rte_free(q);
273 		dev->data->queues[q_id].queue_private = NULL;
274 	}
275 
276 	rte_bbdev_log_debug("released device queue %u:%u",
277 			dev->data->dev_id, q_id);
278 	return 0;
279 }
280 
281 /* Setup a queue */
282 static int
283 q_setup(struct rte_bbdev *dev, uint16_t q_id,
284 		const struct rte_bbdev_queue_conf *queue_conf)
285 {
286 	int ret;
287 	struct turbo_sw_queue *q;
288 	char name[RTE_RING_NAMESIZE];
289 
290 	/* Allocate the queue data structure. */
291 	q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
292 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
293 	if (q == NULL) {
294 		rte_bbdev_log(ERR, "Failed to allocate queue memory");
295 		return -ENOMEM;
296 	}
297 
298 	/* Allocate memory for encoder output. */
299 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
300 			dev->data->dev_id, q_id);
301 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
302 		rte_bbdev_log(ERR,
303 				"Creating queue name for device %u queue %u failed",
304 				dev->data->dev_id, q_id);
305 		return -ENAMETOOLONG;
306 	}
307 	q->enc_out = rte_zmalloc_socket(name,
308 			((RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) + 3) *
309 			sizeof(*q->enc_out) * 3,
310 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
311 	if (q->enc_out == NULL) {
312 		rte_bbdev_log(ERR,
313 			"Failed to allocate queue memory for %s", name);
314 		goto free_q;
315 	}
316 
317 	/* Allocate memory for rate matching output. */
318 	ret = snprintf(name, RTE_RING_NAMESIZE,
319 			RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
320 			q_id);
321 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
322 		rte_bbdev_log(ERR,
323 				"Creating queue name for device %u queue %u failed",
324 				dev->data->dev_id, q_id);
325 		return -ENAMETOOLONG;
326 	}
327 	q->enc_in = rte_zmalloc_socket(name,
328 			(RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
329 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
330 	if (q->enc_in == NULL) {
331 		rte_bbdev_log(ERR,
332 			"Failed to allocate queue memory for %s", name);
333 		goto free_q;
334 	}
335 
336 	/* Allocate memory for Alpha Gamma temp buffer. */
337 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
338 			dev->data->dev_id, q_id);
339 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
340 		rte_bbdev_log(ERR,
341 				"Creating queue name for device %u queue %u failed",
342 				dev->data->dev_id, q_id);
343 		return -ENAMETOOLONG;
344 	}
345 	q->ag = rte_zmalloc_socket(name,
346 			RTE_BBDEV_TURBO_MAX_CB_SIZE * 10 * sizeof(*q->ag),
347 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
348 	if (q->ag == NULL) {
349 		rte_bbdev_log(ERR,
350 			"Failed to allocate queue memory for %s", name);
351 		goto free_q;
352 	}
353 
354 	/* Allocate memory for code block temp buffer. */
355 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
356 			dev->data->dev_id, q_id);
357 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
358 		rte_bbdev_log(ERR,
359 				"Creating queue name for device %u queue %u failed",
360 				dev->data->dev_id, q_id);
361 		return -ENAMETOOLONG;
362 	}
363 	q->code_block = rte_zmalloc_socket(name,
364 			RTE_BBDEV_TURBO_MAX_CB_SIZE * sizeof(*q->code_block),
365 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
366 	if (q->code_block == NULL) {
367 		rte_bbdev_log(ERR,
368 			"Failed to allocate queue memory for %s", name);
369 		goto free_q;
370 	}
371 
372 	/* Allocate memory for Deinterleaver input. */
373 	ret = snprintf(name, RTE_RING_NAMESIZE,
374 			RTE_STR(DRIVER_NAME)"_de_i%u:%u",
375 			dev->data->dev_id, q_id);
376 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
377 		rte_bbdev_log(ERR,
378 				"Creating queue name for device %u queue %u failed",
379 				dev->data->dev_id, q_id);
380 		return -ENAMETOOLONG;
381 	}
382 	q->deint_input = rte_zmalloc_socket(name,
383 			DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
384 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
385 	if (q->deint_input == NULL) {
386 		rte_bbdev_log(ERR,
387 			"Failed to allocate queue memory for %s", name);
388 		goto free_q;
389 	}
390 
391 	/* Allocate memory for Deinterleaver output. */
392 	ret = snprintf(name, RTE_RING_NAMESIZE,
393 			RTE_STR(DRIVER_NAME)"_de_o%u:%u",
394 			dev->data->dev_id, q_id);
395 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
396 		rte_bbdev_log(ERR,
397 				"Creating queue name for device %u queue %u failed",
398 				dev->data->dev_id, q_id);
399 		return -ENAMETOOLONG;
400 	}
401 	q->deint_output = rte_zmalloc_socket(NULL,
402 			DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
403 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
404 	if (q->deint_output == NULL) {
405 		rte_bbdev_log(ERR,
406 			"Failed to allocate queue memory for %s", name);
407 		goto free_q;
408 	}
409 
410 	/* Allocate memory for Adapter output. */
411 	ret = snprintf(name, RTE_RING_NAMESIZE,
412 			RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
413 			dev->data->dev_id, q_id);
414 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
415 		rte_bbdev_log(ERR,
416 				"Creating queue name for device %u queue %u failed",
417 				dev->data->dev_id, q_id);
418 		return -ENAMETOOLONG;
419 	}
420 	q->adapter_output = rte_zmalloc_socket(NULL,
421 			ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
422 			RTE_CACHE_LINE_SIZE, queue_conf->socket);
423 	if (q->adapter_output == NULL) {
424 		rte_bbdev_log(ERR,
425 			"Failed to allocate queue memory for %s", name);
426 		goto free_q;
427 	}
428 
429 	/* Create ring for packets awaiting to be dequeued. */
430 	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
431 			dev->data->dev_id, q_id);
432 	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
433 		rte_bbdev_log(ERR,
434 				"Creating queue name for device %u queue %u failed",
435 				dev->data->dev_id, q_id);
436 		return -ENAMETOOLONG;
437 	}
438 	q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
439 			queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
440 	if (q->processed_pkts == NULL) {
441 		rte_bbdev_log(ERR, "Failed to create ring for %s", name);
442 		goto free_q;
443 	}
444 
445 	q->type = queue_conf->op_type;
446 
447 	dev->data->queues[q_id].queue_private = q;
448 	rte_bbdev_log_debug("setup device queue %s", name);
449 	return 0;
450 
451 free_q:
452 	rte_ring_free(q->processed_pkts);
453 	rte_free(q->enc_out);
454 	rte_free(q->enc_in);
455 	rte_free(q->ag);
456 	rte_free(q->code_block);
457 	rte_free(q->deint_input);
458 	rte_free(q->deint_output);
459 	rte_free(q->adapter_output);
460 	rte_free(q);
461 	return -EFAULT;
462 }
463 
464 static const struct rte_bbdev_ops pmd_ops = {
465 	.info_get = info_get,
466 	.queue_setup = q_setup,
467 	.queue_release = q_release
468 };
469 
470 #ifdef RTE_BBDEV_SDK_AVX2
471 #ifdef RTE_LIBRTE_BBDEV_DEBUG
472 /* Checks if the encoder input buffer is correct.
473  * Returns 0 if it's valid, -1 otherwise.
474  */
475 static inline int
476 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
477 		const uint16_t in_length)
478 {
479 	if (k_idx < 0) {
480 		rte_bbdev_log(ERR, "K Index is invalid");
481 		return -1;
482 	}
483 
484 	if (in_length - (k >> 3) < 0) {
485 		rte_bbdev_log(ERR,
486 				"Mismatch between input length (%u bytes) and K (%u bits)",
487 				in_length, k);
488 		return -1;
489 	}
490 
491 	if (k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
492 		rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
493 				k, RTE_BBDEV_TURBO_MAX_CB_SIZE);
494 		return -1;
495 	}
496 
497 	return 0;
498 }
499 
500 /* Checks if the decoder input buffer is correct.
501  * Returns 0 if it's valid, -1 otherwise.
502  */
503 static inline int
504 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
505 {
506 	if (k_idx < 0) {
507 		rte_bbdev_log(ERR, "K index is invalid");
508 		return -1;
509 	}
510 
511 	if (in_length < kw) {
512 		rte_bbdev_log(ERR,
513 				"Mismatch between input length (%u) and kw (%u)",
514 				in_length, kw);
515 		return -1;
516 	}
517 
518 	if (kw > RTE_BBDEV_TURBO_MAX_KW) {
519 		rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
520 				kw, RTE_BBDEV_TURBO_MAX_KW);
521 		return -1;
522 	}
523 
524 	return 0;
525 }
526 #endif
527 #endif
528 
529 static inline void
530 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
531 		uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
532 		uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
533 		struct rte_mbuf *m_out,	uint16_t in_offset, uint16_t out_offset,
534 		uint16_t in_length, struct rte_bbdev_stats *q_stats)
535 {
536 #ifdef RTE_BBDEV_SDK_AVX2
537 #ifdef RTE_LIBRTE_BBDEV_DEBUG
538 	int ret;
539 #else
540 	RTE_SET_USED(in_length);
541 #endif
542 	int16_t k_idx;
543 	uint16_t m;
544 	uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
545 	uint64_t first_3_bytes = 0;
546 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
547 	struct bblib_crc_request crc_req;
548 	struct bblib_crc_response crc_resp;
549 	struct bblib_turbo_encoder_request turbo_req;
550 	struct bblib_turbo_encoder_response turbo_resp;
551 	struct bblib_rate_match_dl_request rm_req;
552 	struct bblib_rate_match_dl_response rm_resp;
553 #ifdef RTE_BBDEV_OFFLOAD_COST
554 	uint64_t start_time;
555 #else
556 	RTE_SET_USED(q_stats);
557 #endif
558 
559 	k_idx = compute_idx(k);
560 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
561 
562 	/* CRC24A (for TB) */
563 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
564 		(enc->code_block_mode == 1)) {
565 #ifdef RTE_LIBRTE_BBDEV_DEBUG
566 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
567 		if (ret != 0) {
568 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
569 			return;
570 		}
571 #endif
572 
573 		crc_req.data = in;
574 		crc_req.len = k - 24;
575 		/* Check if there is a room for CRC bits if not use
576 		 * the temporary buffer.
577 		 */
578 		if (mbuf_append(m_in, m_in, 3) == NULL) {
579 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
580 			in = q->enc_in;
581 		} else {
582 			/* Store 3 first bytes of next CB as they will be
583 			 * overwritten by CRC bytes. If it is the last CB then
584 			 * there is no point to store 3 next bytes and this
585 			 * if..else branch will be omitted.
586 			 */
587 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
588 		}
589 
590 		crc_resp.data = in;
591 #ifdef RTE_BBDEV_OFFLOAD_COST
592 		start_time = rte_rdtsc_precise();
593 #endif
594 		/* CRC24A generation */
595 		bblib_lte_crc24a_gen(&crc_req, &crc_resp);
596 #ifdef RTE_BBDEV_OFFLOAD_COST
597 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
598 #endif
599 	} else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
600 		/* CRC24B */
601 #ifdef RTE_LIBRTE_BBDEV_DEBUG
602 		ret = is_enc_input_valid(k - 24, k_idx, in_length);
603 		if (ret != 0) {
604 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
605 			return;
606 		}
607 #endif
608 
609 		crc_req.data = in;
610 		crc_req.len = k - 24;
611 		/* Check if there is a room for CRC bits if this is the last
612 		 * CB in TB. If not use temporary buffer.
613 		 */
614 		if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
615 			rte_memcpy(q->enc_in, in, (k - 24) >> 3);
616 			in = q->enc_in;
617 		} else if (c - r > 1) {
618 			/* Store 3 first bytes of next CB as they will be
619 			 * overwritten by CRC bytes. If it is the last CB then
620 			 * there is no point to store 3 next bytes and this
621 			 * if..else branch will be omitted.
622 			 */
623 			first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
624 		}
625 
626 		crc_resp.data = in;
627 #ifdef RTE_BBDEV_OFFLOAD_COST
628 		start_time = rte_rdtsc_precise();
629 #endif
630 		/* CRC24B generation */
631 		bblib_lte_crc24b_gen(&crc_req, &crc_resp);
632 #ifdef RTE_BBDEV_OFFLOAD_COST
633 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
634 #endif
635 	}
636 #ifdef RTE_LIBRTE_BBDEV_DEBUG
637 	else {
638 		ret = is_enc_input_valid(k, k_idx, in_length);
639 		if (ret != 0) {
640 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
641 			return;
642 		}
643 	}
644 #endif
645 
646 	/* Turbo encoder */
647 
648 	/* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
649 	 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
650 	 * So dst_data's length should be 3*(k/8) + 3 bytes.
651 	 * In Rate-matching bypass case outputs pointers passed to encoder
652 	 * (out0, out1 and out2) can directly point to addresses of output from
653 	 * turbo_enc entity.
654 	 */
655 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
656 		out0 = q->enc_out;
657 		out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
658 		out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
659 	} else {
660 		out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
661 				(k >> 3) * 3 + 2);
662 		if (out0 == NULL) {
663 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
664 			rte_bbdev_log(ERR,
665 					"Too little space in output mbuf");
666 			return;
667 		}
668 		enc->output.length += (k >> 3) * 3 + 2;
669 		/* rte_bbdev_op_data.offset can be different than the
670 		 * offset of the appended bytes
671 		 */
672 		out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
673 		out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
674 				out_offset + (k >> 3) + 1);
675 		out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
676 				out_offset + 2 * ((k >> 3) + 1));
677 	}
678 
679 	turbo_req.case_id = k_idx;
680 	turbo_req.input_win = in;
681 	turbo_req.length = k >> 3;
682 	turbo_resp.output_win_0 = out0;
683 	turbo_resp.output_win_1 = out1;
684 	turbo_resp.output_win_2 = out2;
685 
686 #ifdef RTE_BBDEV_OFFLOAD_COST
687 	start_time = rte_rdtsc_precise();
688 #endif
689 	/* Turbo encoding */
690 	if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
691 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
692 		rte_bbdev_log(ERR, "Turbo Encoder failed");
693 		return;
694 	}
695 #ifdef RTE_BBDEV_OFFLOAD_COST
696 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
697 #endif
698 
699 	/* Restore 3 first bytes of next CB if they were overwritten by CRC*/
700 	if (first_3_bytes != 0)
701 		*((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
702 
703 	/* Rate-matching */
704 	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
705 		uint8_t mask_id;
706 		/* Integer round up division by 8 */
707 		uint16_t out_len = (e + 7) >> 3;
708 		/* The mask array is indexed using E%8. E is an even number so
709 		 * there are only 4 possible values.
710 		 */
711 		const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
712 
713 		/* get output data starting address */
714 		rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
715 		if (rm_out == NULL) {
716 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
717 			rte_bbdev_log(ERR,
718 					"Too little space in output mbuf");
719 			return;
720 		}
721 		/* rte_bbdev_op_data.offset can be different than the offset
722 		 * of the appended bytes
723 		 */
724 		rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
725 
726 		/* index of current code block */
727 		rm_req.r = r;
728 		/* total number of code block */
729 		rm_req.C = c;
730 		/* For DL - 1, UL - 0 */
731 		rm_req.direction = 1;
732 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
733 		 * and MDL_HARQ are used for Ncb calculation. As Ncb is already
734 		 * known we can adjust those parameters
735 		 */
736 		rm_req.Nsoft = ncb * rm_req.C;
737 		rm_req.KMIMO = 1;
738 		rm_req.MDL_HARQ = 1;
739 		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
740 		 * are used for E calculation. As E is already known we can
741 		 * adjust those parameters
742 		 */
743 		rm_req.NL = e;
744 		rm_req.Qm = 1;
745 		rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
746 
747 		rm_req.rvidx = enc->rv_index;
748 		rm_req.Kidx = k_idx - 1;
749 		rm_req.nLen = k + 4;
750 		rm_req.tin0 = out0;
751 		rm_req.tin1 = out1;
752 		rm_req.tin2 = out2;
753 		rm_resp.output = rm_out;
754 		rm_resp.OutputLen = out_len;
755 		if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
756 			rm_req.bypass_rvidx = 1;
757 		else
758 			rm_req.bypass_rvidx = 0;
759 
760 #ifdef RTE_BBDEV_OFFLOAD_COST
761 		start_time = rte_rdtsc_precise();
762 #endif
763 		/* Rate-Matching */
764 		if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
765 			op->status |= 1 << RTE_BBDEV_DRV_ERROR;
766 			rte_bbdev_log(ERR, "Rate matching failed");
767 			return;
768 		}
769 #ifdef RTE_BBDEV_OFFLOAD_COST
770 		q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
771 #endif
772 
773 		/* SW fills an entire last byte even if E%8 != 0. Clear the
774 		 * superfluous data bits for consistency with HW device.
775 		 */
776 		mask_id = (e & 7) >> 1;
777 		rm_out[out_len - 1] &= mask_out[mask_id];
778 		enc->output.length += rm_resp.OutputLen;
779 	} else {
780 		/* Rate matching is bypassed */
781 
782 		/* Completing last byte of out0 (where 4 tail bits are stored)
783 		 * by moving first 4 bits from out1
784 		 */
785 		tmp_out = (uint8_t *) --out1;
786 		*tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
787 		tmp_out++;
788 		/* Shifting out1 data by 4 bits to the left */
789 		for (m = 0; m < k >> 3; ++m) {
790 			uint8_t *first = tmp_out;
791 			uint8_t second = *(tmp_out + 1);
792 			*first = (*first << 4) | ((second & 0xF0) >> 4);
793 			tmp_out++;
794 		}
795 		/* Shifting out2 data by 8 bits to the left */
796 		for (m = 0; m < (k >> 3) + 1; ++m) {
797 			*tmp_out = *(tmp_out + 1);
798 			tmp_out++;
799 		}
800 		*tmp_out = 0;
801 	}
802 #else
803 	RTE_SET_USED(q);
804 	RTE_SET_USED(op);
805 	RTE_SET_USED(r);
806 	RTE_SET_USED(c);
807 	RTE_SET_USED(k);
808 	RTE_SET_USED(ncb);
809 	RTE_SET_USED(e);
810 	RTE_SET_USED(m_in);
811 	RTE_SET_USED(m_out_head);
812 	RTE_SET_USED(m_out);
813 	RTE_SET_USED(in_offset);
814 	RTE_SET_USED(out_offset);
815 	RTE_SET_USED(in_length);
816 	RTE_SET_USED(q_stats);
817 #endif
818 }
819 
820 
821 static inline void
822 process_ldpc_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
823 		uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
824 		struct rte_mbuf *m_out,	uint16_t in_offset, uint16_t out_offset,
825 		uint16_t seg_total_left, struct rte_bbdev_stats *q_stats)
826 {
827 #ifdef RTE_BBDEV_SDK_AVX512
828 	RTE_SET_USED(seg_total_left);
829 	uint8_t *in, *rm_out;
830 	struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
831 	struct bblib_ldpc_encoder_5gnr_request ldpc_req;
832 	struct bblib_ldpc_encoder_5gnr_response ldpc_resp;
833 	struct bblib_LDPC_ratematch_5gnr_request rm_req;
834 	struct bblib_LDPC_ratematch_5gnr_response rm_resp;
835 	struct bblib_crc_request crc_req;
836 	struct bblib_crc_response crc_resp;
837 	uint16_t msgLen, puntBits, parity_offset, out_len;
838 	uint16_t K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
839 	uint16_t in_length_in_bits = K - enc->n_filler;
840 	uint16_t in_length_in_bytes = (in_length_in_bits + 7) >> 3;
841 
842 #ifdef RTE_BBDEV_OFFLOAD_COST
843 	uint64_t start_time = rte_rdtsc_precise();
844 #else
845 	RTE_SET_USED(q_stats);
846 #endif
847 
848 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
849 
850 	/* Masking the Filler bits explicitly */
851 	memset(q->enc_in  + (in_length_in_bytes - 3), 0,
852 			((K + 7) >> 3) - (in_length_in_bytes - 3));
853 	/* CRC Generation */
854 	if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) {
855 		rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
856 		crc_req.data = in;
857 		crc_req.len = in_length_in_bits - 24;
858 		crc_resp.data = q->enc_in;
859 		bblib_lte_crc24a_gen(&crc_req, &crc_resp);
860 	} else if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH) {
861 		rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
862 		crc_req.data = in;
863 		crc_req.len = in_length_in_bits - 24;
864 		crc_resp.data = q->enc_in;
865 		bblib_lte_crc24b_gen(&crc_req, &crc_resp);
866 	} else
867 		rte_memcpy(q->enc_in, in, in_length_in_bytes);
868 
869 	/* LDPC Encoding */
870 	ldpc_req.Zc = enc->z_c;
871 	ldpc_req.baseGraph = enc->basegraph;
872 	/* Number of rows set to maximum */
873 	ldpc_req.nRows = ldpc_req.baseGraph == 1 ? 46 : 42;
874 	ldpc_req.numberCodeblocks = 1;
875 	ldpc_req.input[0] = (int8_t *) q->enc_in;
876 	ldpc_resp.output[0] = (int8_t *) q->enc_out;
877 
878 	bblib_bit_reverse(ldpc_req.input[0], in_length_in_bytes << 3);
879 
880 	if (bblib_ldpc_encoder_5gnr(&ldpc_req, &ldpc_resp) != 0) {
881 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
882 		rte_bbdev_log(ERR, "LDPC Encoder failed");
883 		return;
884 	}
885 
886 	/*
887 	 * Systematic + Parity : Recreating stream with filler bits, ideally
888 	 * the bit select could handle this in the RM SDK
889 	 */
890 	msgLen = (ldpc_req.baseGraph == 1 ? 22 : 10) * ldpc_req.Zc;
891 	puntBits = 2 * ldpc_req.Zc;
892 	parity_offset = msgLen - puntBits;
893 	ippsCopyBE_1u(((uint8_t *) ldpc_req.input[0]) + (puntBits / 8),
894 			puntBits%8, q->adapter_output, 0, parity_offset);
895 	ippsCopyBE_1u(q->enc_out, 0, q->adapter_output + (parity_offset / 8),
896 			parity_offset % 8, ldpc_req.nRows * ldpc_req.Zc);
897 
898 	out_len = (e + 7) >> 3;
899 	/* get output data starting address */
900 	rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
901 	if (rm_out == NULL) {
902 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
903 		rte_bbdev_log(ERR,
904 				"Too little space in output mbuf");
905 		return;
906 	}
907 	/*
908 	 * rte_bbdev_op_data.offset can be different than the offset
909 	 * of the appended bytes
910 	 */
911 	rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
912 
913 	/* Rate-Matching */
914 	rm_req.E = e;
915 	rm_req.Ncb = enc->n_cb;
916 	rm_req.Qm = enc->q_m;
917 	rm_req.Zc = enc->z_c;
918 	rm_req.baseGraph = enc->basegraph;
919 	rm_req.input = q->adapter_output;
920 	rm_req.nLen = enc->n_filler;
921 	rm_req.nullIndex = parity_offset - enc->n_filler;
922 	rm_req.rvidx = enc->rv_index;
923 	rm_resp.output = q->deint_output;
924 
925 	if (bblib_LDPC_ratematch_5gnr(&rm_req, &rm_resp) != 0) {
926 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
927 		rte_bbdev_log(ERR, "Rate matching failed");
928 		return;
929 	}
930 
931 	/* RM SDK may provide non zero bits on last byte */
932 	if ((e % 8) != 0)
933 		q->deint_output[out_len-1] &= (1 << (e % 8)) - 1;
934 
935 	bblib_bit_reverse((int8_t *) q->deint_output, out_len << 3);
936 
937 	rte_memcpy(rm_out, q->deint_output, out_len);
938 	enc->output.length += out_len;
939 
940 #ifdef RTE_BBDEV_OFFLOAD_COST
941 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
942 #endif
943 #else
944 	RTE_SET_USED(q);
945 	RTE_SET_USED(op);
946 	RTE_SET_USED(e);
947 	RTE_SET_USED(m_in);
948 	RTE_SET_USED(m_out_head);
949 	RTE_SET_USED(m_out);
950 	RTE_SET_USED(in_offset);
951 	RTE_SET_USED(out_offset);
952 	RTE_SET_USED(seg_total_left);
953 	RTE_SET_USED(q_stats);
954 #endif
955 }
956 
957 static inline void
958 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
959 		struct rte_bbdev_stats *queue_stats)
960 {
961 	uint8_t c, r, crc24_bits = 0;
962 	uint16_t k, ncb;
963 	uint32_t e;
964 	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
965 	uint16_t in_offset = enc->input.offset;
966 	uint16_t out_offset = enc->output.offset;
967 	struct rte_mbuf *m_in = enc->input.data;
968 	struct rte_mbuf *m_out = enc->output.data;
969 	struct rte_mbuf *m_out_head = enc->output.data;
970 	uint32_t in_length, mbuf_total_left = enc->input.length;
971 	uint16_t seg_total_left;
972 
973 	/* Clear op status */
974 	op->status = 0;
975 
976 	if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
977 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
978 				mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
979 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
980 		return;
981 	}
982 
983 	if (m_in == NULL || m_out == NULL) {
984 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
985 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
986 		return;
987 	}
988 
989 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
990 		(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
991 		crc24_bits = 24;
992 
993 	if (enc->code_block_mode == 0) { /* For Transport Block mode */
994 		c = enc->tb_params.c;
995 		r = enc->tb_params.r;
996 	} else {/* For Code Block mode */
997 		c = 1;
998 		r = 0;
999 	}
1000 
1001 	while (mbuf_total_left > 0 && r < c) {
1002 
1003 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1004 
1005 		if (enc->code_block_mode == 0) {
1006 			k = (r < enc->tb_params.c_neg) ?
1007 				enc->tb_params.k_neg : enc->tb_params.k_pos;
1008 			ncb = (r < enc->tb_params.c_neg) ?
1009 				enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
1010 			e = (r < enc->tb_params.cab) ?
1011 				enc->tb_params.ea : enc->tb_params.eb;
1012 		} else {
1013 			k = enc->cb_params.k;
1014 			ncb = enc->cb_params.ncb;
1015 			e = enc->cb_params.e;
1016 		}
1017 
1018 		process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
1019 				m_out, in_offset, out_offset, seg_total_left,
1020 				queue_stats);
1021 		/* Update total_left */
1022 		in_length = ((k - crc24_bits) >> 3);
1023 		mbuf_total_left -= in_length;
1024 		/* Update offsets for next CBs (if exist) */
1025 		in_offset += (k - crc24_bits) >> 3;
1026 		if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
1027 			out_offset += e >> 3;
1028 		else
1029 			out_offset += (k >> 3) * 3 + 2;
1030 
1031 		/* Update offsets */
1032 		if (seg_total_left == in_length) {
1033 			/* Go to the next mbuf */
1034 			m_in = m_in->next;
1035 			m_out = m_out->next;
1036 			in_offset = 0;
1037 			out_offset = 0;
1038 		}
1039 		r++;
1040 	}
1041 
1042 	/* check if all input data was processed */
1043 	if (mbuf_total_left != 0) {
1044 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1045 		rte_bbdev_log(ERR,
1046 				"Mismatch between mbuf length and included CBs sizes");
1047 	}
1048 }
1049 
1050 
1051 static inline void
1052 enqueue_ldpc_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
1053 		struct rte_bbdev_stats *queue_stats)
1054 {
1055 	uint8_t c, r, crc24_bits = 0;
1056 	uint32_t e;
1057 	struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1058 	uint16_t in_offset = enc->input.offset;
1059 	uint16_t out_offset = enc->output.offset;
1060 	struct rte_mbuf *m_in = enc->input.data;
1061 	struct rte_mbuf *m_out = enc->output.data;
1062 	struct rte_mbuf *m_out_head = enc->output.data;
1063 	uint32_t in_length, mbuf_total_left = enc->input.length;
1064 
1065 	uint16_t seg_total_left;
1066 
1067 	/* Clear op status */
1068 	op->status = 0;
1069 
1070 	if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1071 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1072 				mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
1073 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1074 		return;
1075 	}
1076 
1077 	if (m_in == NULL || m_out == NULL) {
1078 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1079 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1080 		return;
1081 	}
1082 
1083 	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
1084 		(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
1085 		crc24_bits = 24;
1086 
1087 	if (enc->code_block_mode == 0) { /* For Transport Block mode */
1088 		c = enc->tb_params.c;
1089 		r = enc->tb_params.r;
1090 	} else { /* For Code Block mode */
1091 		c = 1;
1092 		r = 0;
1093 	}
1094 
1095 	while (mbuf_total_left > 0 && r < c) {
1096 
1097 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1098 
1099 		if (enc->code_block_mode == 0) {
1100 			e = (r < enc->tb_params.cab) ?
1101 				enc->tb_params.ea : enc->tb_params.eb;
1102 		} else {
1103 			e = enc->cb_params.e;
1104 		}
1105 
1106 		process_ldpc_enc_cb(q, op, e, m_in, m_out_head,
1107 				m_out, in_offset, out_offset, seg_total_left,
1108 				queue_stats);
1109 		/* Update total_left */
1110 		in_length = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1111 		in_length = ((in_length - crc24_bits - enc->n_filler) >> 3);
1112 		mbuf_total_left -= in_length;
1113 		/* Update offsets for next CBs (if exist) */
1114 		in_offset += in_length;
1115 		out_offset += (e + 7) >> 3;
1116 
1117 		/* Update offsets */
1118 		if (seg_total_left == in_length) {
1119 			/* Go to the next mbuf */
1120 			m_in = m_in->next;
1121 			m_out = m_out->next;
1122 			in_offset = 0;
1123 			out_offset = 0;
1124 		}
1125 		r++;
1126 	}
1127 
1128 	/* check if all input data was processed */
1129 	if (mbuf_total_left != 0) {
1130 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1131 		rte_bbdev_log(ERR,
1132 				"Mismatch between mbuf length and included CBs sizes %d",
1133 				mbuf_total_left);
1134 	}
1135 }
1136 
1137 static inline uint16_t
1138 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
1139 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1140 {
1141 	uint16_t i;
1142 #ifdef RTE_BBDEV_OFFLOAD_COST
1143 	queue_stats->acc_offload_cycles = 0;
1144 #endif
1145 
1146 	for (i = 0; i < nb_ops; ++i)
1147 		enqueue_enc_one_op(q, ops[i], queue_stats);
1148 
1149 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1150 			NULL);
1151 }
1152 
1153 static inline uint16_t
1154 enqueue_ldpc_enc_all_ops(struct turbo_sw_queue *q,
1155 		struct rte_bbdev_enc_op **ops,
1156 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1157 {
1158 	uint16_t i;
1159 #ifdef RTE_BBDEV_OFFLOAD_COST
1160 	queue_stats->acc_offload_cycles = 0;
1161 #endif
1162 
1163 	for (i = 0; i < nb_ops; ++i)
1164 		enqueue_ldpc_enc_one_op(q, ops[i], queue_stats);
1165 
1166 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1167 			NULL);
1168 }
1169 
1170 #ifdef RTE_BBDEV_SDK_AVX2
1171 static inline void
1172 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
1173 		uint16_t ncb)
1174 {
1175 	uint16_t d = k + 4;
1176 	uint16_t kpi = ncb / 3;
1177 	uint16_t nd = kpi - d;
1178 
1179 	rte_memcpy(&out[nd], in, d);
1180 	rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
1181 	rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
1182 }
1183 #endif
1184 
1185 static inline void
1186 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1187 		uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
1188 		struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1189 		uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
1190 		uint16_t crc24_overlap, uint16_t in_length,
1191 		struct rte_bbdev_stats *q_stats)
1192 {
1193 #ifdef RTE_BBDEV_SDK_AVX2
1194 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1195 	int ret;
1196 #else
1197 	RTE_SET_USED(in_length);
1198 #endif
1199 	int32_t k_idx;
1200 	int32_t iter_cnt;
1201 	uint8_t *in, *out, *adapter_input;
1202 	int32_t ncb, ncb_without_null;
1203 	struct bblib_turbo_adapter_ul_response adapter_resp;
1204 	struct bblib_turbo_adapter_ul_request adapter_req;
1205 	struct bblib_turbo_decoder_request turbo_req;
1206 	struct bblib_turbo_decoder_response turbo_resp;
1207 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1208 #ifdef RTE_BBDEV_OFFLOAD_COST
1209 	uint64_t start_time;
1210 #else
1211 	RTE_SET_USED(q_stats);
1212 #endif
1213 
1214 	k_idx = compute_idx(k);
1215 
1216 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1217 	ret = is_dec_input_valid(k_idx, kw, in_length);
1218 	if (ret != 0) {
1219 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1220 		return;
1221 	}
1222 #endif
1223 
1224 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1225 	ncb = kw;
1226 	ncb_without_null = (k + 4) * 3;
1227 
1228 	if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
1229 		struct bblib_deinterleave_ul_request deint_req;
1230 		struct bblib_deinterleave_ul_response deint_resp;
1231 
1232 		deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
1233 		deint_req.pharqbuffer = in;
1234 		deint_req.ncb = ncb;
1235 		deint_resp.pinteleavebuffer = q->deint_output;
1236 
1237 #ifdef RTE_BBDEV_OFFLOAD_COST
1238 	start_time = rte_rdtsc_precise();
1239 #endif
1240 		/* Sub-block De-Interleaving */
1241 		bblib_deinterleave_ul(&deint_req, &deint_resp);
1242 #ifdef RTE_BBDEV_OFFLOAD_COST
1243 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1244 #endif
1245 	} else
1246 		move_padding_bytes(in, q->deint_output, k, ncb);
1247 
1248 	adapter_input = q->deint_output;
1249 
1250 	if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
1251 		adapter_req.isinverted = 1;
1252 	else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
1253 		adapter_req.isinverted = 0;
1254 	else {
1255 		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
1256 		rte_bbdev_log(ERR, "LLR format wasn't specified");
1257 		return;
1258 	}
1259 
1260 	adapter_req.ncb = ncb_without_null;
1261 	adapter_req.pinteleavebuffer = adapter_input;
1262 	adapter_resp.pharqout = q->adapter_output;
1263 
1264 #ifdef RTE_BBDEV_OFFLOAD_COST
1265 	start_time = rte_rdtsc_precise();
1266 #endif
1267 	/* Turbo decode adaptation */
1268 	bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
1269 #ifdef RTE_BBDEV_OFFLOAD_COST
1270 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1271 #endif
1272 
1273 	out = (uint8_t *)mbuf_append(m_out_head, m_out,
1274 			((k - crc24_overlap) >> 3));
1275 	if (out == NULL) {
1276 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1277 		rte_bbdev_log(ERR, "Too little space in output mbuf");
1278 		return;
1279 	}
1280 	/* rte_bbdev_op_data.offset can be different than the offset of the
1281 	 * appended bytes
1282 	 */
1283 	out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1284 	if (check_crc_24b)
1285 		turbo_req.c = c + 1;
1286 	else
1287 		turbo_req.c = c;
1288 	turbo_req.input = (int8_t *)q->adapter_output;
1289 	turbo_req.k = k;
1290 	turbo_req.k_idx = k_idx;
1291 	turbo_req.max_iter_num = dec->iter_max;
1292 	turbo_req.early_term_disable = !check_bit(dec->op_flags,
1293 			RTE_BBDEV_TURBO_EARLY_TERMINATION);
1294 	turbo_resp.ag_buf = q->ag;
1295 	turbo_resp.cb_buf = q->code_block;
1296 	turbo_resp.output = out;
1297 
1298 #ifdef RTE_BBDEV_OFFLOAD_COST
1299 	start_time = rte_rdtsc_precise();
1300 #endif
1301 	/* Turbo decode */
1302 	iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
1303 #ifdef RTE_BBDEV_OFFLOAD_COST
1304 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1305 #endif
1306 	dec->hard_output.length += (k >> 3);
1307 
1308 	if (iter_cnt > 0) {
1309 		/* Temporary solution for returned iter_count from SDK */
1310 		iter_cnt = (iter_cnt - 1) >> 1;
1311 		dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
1312 	} else {
1313 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1314 		rte_bbdev_log(ERR, "Turbo Decoder failed");
1315 		return;
1316 	}
1317 #else
1318 	RTE_SET_USED(q);
1319 	RTE_SET_USED(op);
1320 	RTE_SET_USED(c);
1321 	RTE_SET_USED(k);
1322 	RTE_SET_USED(kw);
1323 	RTE_SET_USED(m_in);
1324 	RTE_SET_USED(m_out_head);
1325 	RTE_SET_USED(m_out);
1326 	RTE_SET_USED(in_offset);
1327 	RTE_SET_USED(out_offset);
1328 	RTE_SET_USED(check_crc_24b);
1329 	RTE_SET_USED(crc24_overlap);
1330 	RTE_SET_USED(in_length);
1331 	RTE_SET_USED(q_stats);
1332 #endif
1333 }
1334 
1335 static inline void
1336 process_ldpc_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1337 		uint8_t c, uint16_t out_length, uint32_t e,
1338 		struct rte_mbuf *m_in,
1339 		struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1340 		struct rte_mbuf *m_harq_in,
1341 		struct rte_mbuf *m_harq_out_head, struct rte_mbuf *m_harq_out,
1342 		uint16_t in_offset, uint16_t out_offset,
1343 		uint16_t harq_in_offset, uint16_t harq_out_offset,
1344 		bool check_crc_24b,
1345 		uint16_t crc24_overlap, uint16_t in_length,
1346 		struct rte_bbdev_stats *q_stats)
1347 {
1348 #ifdef RTE_BBDEV_SDK_AVX512
1349 	RTE_SET_USED(in_length);
1350 	RTE_SET_USED(c);
1351 	uint8_t *in, *out, *harq_in, *harq_out, *adapter_input;
1352 	struct bblib_rate_dematching_5gnr_request derm_req;
1353 	struct bblib_rate_dematching_5gnr_response derm_resp;
1354 	struct bblib_ldpc_decoder_5gnr_request dec_req;
1355 	struct bblib_ldpc_decoder_5gnr_response dec_resp;
1356 	struct bblib_crc_request crc_req;
1357 	struct bblib_crc_response crc_resp;
1358 	struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1359 	uint16_t K, parity_offset, sys_cols, outLenWithCrc;
1360 	int16_t deRmOutSize, numRows;
1361 
1362 	/* Compute some LDPC BG lengths */
1363 	outLenWithCrc = out_length + (crc24_overlap >> 3);
1364 	sys_cols = (dec->basegraph == 1) ? 22 : 10;
1365 	K = sys_cols * dec->z_c;
1366 	parity_offset = K - 2 * dec->z_c;
1367 
1368 #ifdef RTE_BBDEV_OFFLOAD_COST
1369 	uint64_t start_time = rte_rdtsc_precise();
1370 #else
1371 	RTE_SET_USED(q_stats);
1372 #endif
1373 
1374 	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1375 
1376 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1377 		/**
1378 		 *  Single contiguous block from the first LLR of the
1379 		 *  circular buffer.
1380 		 */
1381 		harq_in = NULL;
1382 		if (m_harq_in != NULL)
1383 			harq_in = rte_pktmbuf_mtod_offset(m_harq_in,
1384 				uint8_t *, harq_in_offset);
1385 		if (harq_in == NULL) {
1386 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1387 			rte_bbdev_log(ERR, "No space in harq input mbuf");
1388 			return;
1389 		}
1390 		uint16_t harq_in_length = RTE_MIN(
1391 				dec->harq_combined_input.length,
1392 				(uint32_t) dec->n_cb);
1393 		memset(q->ag + harq_in_length, 0,
1394 				dec->n_cb - harq_in_length);
1395 		rte_memcpy(q->ag, harq_in, harq_in_length);
1396 	}
1397 
1398 	derm_req.p_in = (int8_t *) in;
1399 	derm_req.p_harq = q->ag; /* This doesn't include the filler bits */
1400 	derm_req.base_graph = dec->basegraph;
1401 	derm_req.zc = dec->z_c;
1402 	derm_req.ncb = dec->n_cb;
1403 	derm_req.e = e;
1404 	derm_req.k0 = 0; /* Actual output from SDK */
1405 	derm_req.isretx = check_bit(dec->op_flags,
1406 			RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1407 	derm_req.rvid = dec->rv_index;
1408 	derm_req.modulation_order = dec->q_m;
1409 	derm_req.start_null_index = parity_offset - dec->n_filler;
1410 	derm_req.num_of_null = dec->n_filler;
1411 
1412 	bblib_rate_dematching_5gnr(&derm_req, &derm_resp);
1413 
1414 	/* Compute RM out size and number of rows */
1415 	deRmOutSize = RTE_MIN(
1416 			derm_req.k0 + derm_req.e -
1417 			((derm_req.k0 < derm_req.start_null_index) ?
1418 					0 : dec->n_filler),
1419 			dec->n_cb - dec->n_filler);
1420 	if (m_harq_in != NULL)
1421 		deRmOutSize = RTE_MAX(deRmOutSize,
1422 				RTE_MIN(dec->n_cb - dec->n_filler,
1423 						m_harq_in->data_len));
1424 	numRows = ((deRmOutSize + dec->n_filler + dec->z_c - 1) / dec->z_c)
1425 			- sys_cols + 2;
1426 	numRows = RTE_MAX(4, numRows);
1427 
1428 	/* get output data starting address */
1429 	out = (uint8_t *)mbuf_append(m_out_head, m_out, out_length);
1430 	if (out == NULL) {
1431 		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1432 		rte_bbdev_log(ERR,
1433 				"Too little space in LDPC decoder output mbuf");
1434 		return;
1435 	}
1436 
1437 	/* rte_bbdev_op_data.offset can be different than the offset
1438 	 * of the appended bytes
1439 	 */
1440 	out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1441 	adapter_input = q->enc_out;
1442 
1443 	dec_req.Zc = dec->z_c;
1444 	dec_req.baseGraph = dec->basegraph;
1445 	dec_req.nRows = numRows;
1446 	dec_req.numChannelLlrs = deRmOutSize;
1447 	dec_req.varNodes = derm_req.p_harq;
1448 	dec_req.numFillerBits = dec->n_filler;
1449 	dec_req.maxIterations = dec->iter_max;
1450 	dec_req.enableEarlyTermination = check_bit(dec->op_flags,
1451 			RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1452 	dec_resp.varNodes = (int16_t *) q->adapter_output;
1453 	dec_resp.compactedMessageBytes = q->enc_out;
1454 
1455 	bblib_ldpc_decoder_5gnr(&dec_req, &dec_resp);
1456 
1457 	dec->iter_count = RTE_MAX(dec_resp.iterationAtTermination,
1458 			dec->iter_count);
1459 	if (!dec_resp.parityPassedAtTermination)
1460 		op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
1461 
1462 	bblib_bit_reverse((int8_t *) q->enc_out, outLenWithCrc << 3);
1463 
1464 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK) ||
1465 			check_bit(dec->op_flags,
1466 					RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK)) {
1467 		crc_req.data = adapter_input;
1468 		crc_req.len  = K - dec->n_filler - 24;
1469 		crc_resp.check_passed = false;
1470 		crc_resp.data = adapter_input;
1471 		if (check_crc_24b)
1472 			bblib_lte_crc24b_check(&crc_req, &crc_resp);
1473 		else
1474 			bblib_lte_crc24a_check(&crc_req, &crc_resp);
1475 		if (!crc_resp.check_passed)
1476 			op->status |= 1 << RTE_BBDEV_CRC_ERROR;
1477 	}
1478 
1479 #ifdef RTE_BBDEV_OFFLOAD_COST
1480 	q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1481 #endif
1482 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1483 		harq_out = NULL;
1484 		if (m_harq_out != NULL) {
1485 			/* Initialize HARQ data length since we overwrite */
1486 			m_harq_out->data_len = 0;
1487 			/* Check there is enough space
1488 			 * in the HARQ outbound buffer
1489 			 */
1490 			harq_out = (uint8_t *)mbuf_append(m_harq_out_head,
1491 					m_harq_out, deRmOutSize);
1492 		}
1493 		if (harq_out == NULL) {
1494 			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1495 			rte_bbdev_log(ERR, "No space in HARQ output mbuf");
1496 			return;
1497 		}
1498 		/* get output data starting address and overwrite the data */
1499 		harq_out = rte_pktmbuf_mtod_offset(m_harq_out, uint8_t *,
1500 				harq_out_offset);
1501 		rte_memcpy(harq_out, derm_req.p_harq, deRmOutSize);
1502 		dec->harq_combined_output.length += deRmOutSize;
1503 	}
1504 
1505 	rte_memcpy(out, adapter_input, out_length);
1506 	dec->hard_output.length += out_length;
1507 #else
1508 	RTE_SET_USED(q);
1509 	RTE_SET_USED(op);
1510 	RTE_SET_USED(c);
1511 	RTE_SET_USED(out_length);
1512 	RTE_SET_USED(e);
1513 	RTE_SET_USED(m_in);
1514 	RTE_SET_USED(m_out_head);
1515 	RTE_SET_USED(m_out);
1516 	RTE_SET_USED(m_harq_in);
1517 	RTE_SET_USED(m_harq_out_head);
1518 	RTE_SET_USED(m_harq_out);
1519 	RTE_SET_USED(harq_in_offset);
1520 	RTE_SET_USED(harq_out_offset);
1521 	RTE_SET_USED(in_offset);
1522 	RTE_SET_USED(out_offset);
1523 	RTE_SET_USED(check_crc_24b);
1524 	RTE_SET_USED(crc24_overlap);
1525 	RTE_SET_USED(in_length);
1526 	RTE_SET_USED(q_stats);
1527 #endif
1528 }
1529 
1530 
1531 static inline void
1532 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1533 		struct rte_bbdev_stats *queue_stats)
1534 {
1535 	uint8_t c, r = 0;
1536 	uint16_t kw, k = 0;
1537 	uint16_t crc24_overlap = 0;
1538 	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1539 	struct rte_mbuf *m_in = dec->input.data;
1540 	struct rte_mbuf *m_out = dec->hard_output.data;
1541 	struct rte_mbuf *m_out_head = dec->hard_output.data;
1542 	uint16_t in_offset = dec->input.offset;
1543 	uint16_t out_offset = dec->hard_output.offset;
1544 	uint32_t mbuf_total_left = dec->input.length;
1545 	uint16_t seg_total_left;
1546 
1547 	/* Clear op status */
1548 	op->status = 0;
1549 
1550 	if (m_in == NULL || m_out == NULL) {
1551 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1552 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1553 		return;
1554 	}
1555 
1556 	if (dec->code_block_mode == 0) { /* For Transport Block mode */
1557 		c = dec->tb_params.c;
1558 	} else { /* For Code Block mode */
1559 		k = dec->cb_params.k;
1560 		c = 1;
1561 	}
1562 
1563 	if ((c > 1) && !check_bit(dec->op_flags,
1564 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1565 		crc24_overlap = 24;
1566 
1567 	while (mbuf_total_left > 0) {
1568 		if (dec->code_block_mode == 0)
1569 			k = (r < dec->tb_params.c_neg) ?
1570 				dec->tb_params.k_neg : dec->tb_params.k_pos;
1571 
1572 		seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1573 
1574 		/* Calculates circular buffer size (Kw).
1575 		 * According to 3gpp 36.212 section 5.1.4.2
1576 		 *   Kw = 3 * Kpi,
1577 		 * where:
1578 		 *   Kpi = nCol * nRow
1579 		 * where nCol is 32 and nRow can be calculated from:
1580 		 *   D =< nCol * nRow
1581 		 * where D is the size of each output from turbo encoder block
1582 		 * (k + 4).
1583 		 */
1584 		kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1585 
1586 		process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1587 				in_offset, out_offset, check_bit(dec->op_flags,
1588 				RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1589 				seg_total_left, queue_stats);
1590 
1591 		/* To keep CRC24 attached to end of Code block, use
1592 		 * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1593 		 * removed by default once verified.
1594 		 */
1595 
1596 		mbuf_total_left -= kw;
1597 
1598 		/* Update offsets */
1599 		if (seg_total_left == kw) {
1600 			/* Go to the next mbuf */
1601 			m_in = m_in->next;
1602 			m_out = m_out->next;
1603 			in_offset = 0;
1604 			out_offset = 0;
1605 		} else {
1606 			/* Update offsets for next CBs (if exist) */
1607 			in_offset += kw;
1608 			out_offset += ((k - crc24_overlap) >> 3);
1609 		}
1610 		r++;
1611 	}
1612 }
1613 
1614 static inline void
1615 enqueue_ldpc_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1616 		struct rte_bbdev_stats *queue_stats)
1617 {
1618 	uint8_t c, r = 0;
1619 	uint32_t e;
1620 	uint16_t out_length, crc24_overlap = 0;
1621 	struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1622 	struct rte_mbuf *m_in = dec->input.data;
1623 	struct rte_mbuf *m_harq_in = dec->harq_combined_input.data;
1624 	struct rte_mbuf *m_harq_out = dec->harq_combined_output.data;
1625 	struct rte_mbuf *m_harq_out_head = dec->harq_combined_output.data;
1626 	struct rte_mbuf *m_out = dec->hard_output.data;
1627 	struct rte_mbuf *m_out_head = dec->hard_output.data;
1628 	uint16_t in_offset = dec->input.offset;
1629 	uint16_t harq_in_offset = dec->harq_combined_input.offset;
1630 	uint16_t harq_out_offset = dec->harq_combined_output.offset;
1631 	uint16_t out_offset = dec->hard_output.offset;
1632 	uint32_t mbuf_total_left = dec->input.length;
1633 	uint16_t seg_total_left;
1634 
1635 	/* Clear op status */
1636 	op->status = 0;
1637 
1638 	if (m_in == NULL || m_out == NULL) {
1639 		rte_bbdev_log(ERR, "Invalid mbuf pointer");
1640 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1641 		return;
1642 	}
1643 
1644 	if (dec->code_block_mode == 0) { /* For Transport Block mode */
1645 		c = dec->tb_params.c;
1646 		e = dec->tb_params.ea;
1647 	} else { /* For Code Block mode */
1648 		c = 1;
1649 		e = dec->cb_params.e;
1650 	}
1651 
1652 	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1653 		crc24_overlap = 24;
1654 
1655 	out_length = (dec->basegraph == 1 ? 22 : 10) * dec->z_c; /* K */
1656 	out_length = ((out_length - crc24_overlap - dec->n_filler) >> 3);
1657 
1658 	while (mbuf_total_left > 0) {
1659 		if (dec->code_block_mode == 0)
1660 			e = (r < dec->tb_params.cab) ?
1661 				dec->tb_params.ea : dec->tb_params.eb;
1662 		/* Special case handling when overusing mbuf */
1663 		if (e < RTE_BBDEV_LDPC_E_MAX_MBUF)
1664 			seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1665 		else
1666 			seg_total_left = e;
1667 
1668 		process_ldpc_dec_cb(q, op, c, out_length, e,
1669 				m_in, m_out_head, m_out,
1670 				m_harq_in, m_harq_out_head, m_harq_out,
1671 				in_offset, out_offset, harq_in_offset,
1672 				harq_out_offset,
1673 				check_bit(dec->op_flags,
1674 				RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK),
1675 				crc24_overlap,
1676 				seg_total_left, queue_stats);
1677 
1678 		/* To keep CRC24 attached to end of Code block, use
1679 		 * RTE_BBDEV_LDPC_DEC_TB_CRC_24B_KEEP flag as it
1680 		 * removed by default once verified.
1681 		 */
1682 
1683 		mbuf_total_left -= e;
1684 
1685 		/* Update offsets */
1686 		if (seg_total_left == e) {
1687 			/* Go to the next mbuf */
1688 			m_in = m_in->next;
1689 			m_out = m_out->next;
1690 			if (m_harq_in != NULL)
1691 				m_harq_in = m_harq_in->next;
1692 			if (m_harq_out != NULL)
1693 				m_harq_out = m_harq_out->next;
1694 			in_offset = 0;
1695 			out_offset = 0;
1696 			harq_in_offset = 0;
1697 			harq_out_offset = 0;
1698 		} else {
1699 			/* Update offsets for next CBs (if exist) */
1700 			in_offset += e;
1701 			out_offset += out_length;
1702 		}
1703 		r++;
1704 	}
1705 }
1706 
1707 static inline uint16_t
1708 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1709 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1710 {
1711 	uint16_t i;
1712 #ifdef RTE_BBDEV_OFFLOAD_COST
1713 	queue_stats->acc_offload_cycles = 0;
1714 #endif
1715 
1716 	for (i = 0; i < nb_ops; ++i)
1717 		enqueue_dec_one_op(q, ops[i], queue_stats);
1718 
1719 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1720 			NULL);
1721 }
1722 
1723 static inline uint16_t
1724 enqueue_ldpc_dec_all_ops(struct turbo_sw_queue *q,
1725 		struct rte_bbdev_dec_op **ops,
1726 		uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1727 {
1728 	uint16_t i;
1729 #ifdef RTE_BBDEV_OFFLOAD_COST
1730 	queue_stats->acc_offload_cycles = 0;
1731 #endif
1732 
1733 	for (i = 0; i < nb_ops; ++i)
1734 		enqueue_ldpc_dec_one_op(q, ops[i], queue_stats);
1735 
1736 	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1737 			NULL);
1738 }
1739 
1740 /* Enqueue burst */
1741 static uint16_t
1742 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1743 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1744 {
1745 	void *queue = q_data->queue_private;
1746 	struct turbo_sw_queue *q = queue;
1747 	uint16_t nb_enqueued = 0;
1748 
1749 	nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1750 
1751 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1752 	q_data->queue_stats.enqueued_count += nb_enqueued;
1753 
1754 	return nb_enqueued;
1755 }
1756 
1757 /* Enqueue burst */
1758 static uint16_t
1759 enqueue_ldpc_enc_ops(struct rte_bbdev_queue_data *q_data,
1760 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1761 {
1762 	void *queue = q_data->queue_private;
1763 	struct turbo_sw_queue *q = queue;
1764 	uint16_t nb_enqueued = 0;
1765 
1766 	nb_enqueued = enqueue_ldpc_enc_all_ops(
1767 			q, ops, nb_ops, &q_data->queue_stats);
1768 
1769 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1770 	q_data->queue_stats.enqueued_count += nb_enqueued;
1771 
1772 	return nb_enqueued;
1773 }
1774 
1775 /* Enqueue burst */
1776 static uint16_t
1777 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1778 		 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1779 {
1780 	void *queue = q_data->queue_private;
1781 	struct turbo_sw_queue *q = queue;
1782 	uint16_t nb_enqueued = 0;
1783 
1784 	nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1785 
1786 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1787 	q_data->queue_stats.enqueued_count += nb_enqueued;
1788 
1789 	return nb_enqueued;
1790 }
1791 
1792 /* Enqueue burst */
1793 static uint16_t
1794 enqueue_ldpc_dec_ops(struct rte_bbdev_queue_data *q_data,
1795 		 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1796 {
1797 	void *queue = q_data->queue_private;
1798 	struct turbo_sw_queue *q = queue;
1799 	uint16_t nb_enqueued = 0;
1800 
1801 	nb_enqueued = enqueue_ldpc_dec_all_ops(q, ops, nb_ops,
1802 			&q_data->queue_stats);
1803 
1804 	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1805 	q_data->queue_stats.enqueued_count += nb_enqueued;
1806 
1807 	return nb_enqueued;
1808 }
1809 
1810 /* Dequeue decode burst */
1811 static uint16_t
1812 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1813 		struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1814 {
1815 	struct turbo_sw_queue *q = q_data->queue_private;
1816 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1817 			(void **)ops, nb_ops, NULL);
1818 	q_data->queue_stats.dequeued_count += nb_dequeued;
1819 
1820 	return nb_dequeued;
1821 }
1822 
1823 /* Dequeue encode burst */
1824 static uint16_t
1825 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1826 		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1827 {
1828 	struct turbo_sw_queue *q = q_data->queue_private;
1829 	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1830 			(void **)ops, nb_ops, NULL);
1831 	q_data->queue_stats.dequeued_count += nb_dequeued;
1832 
1833 	return nb_dequeued;
1834 }
1835 
1836 /* Parse 16bit integer from string argument */
1837 static inline int
1838 parse_u16_arg(const char *key, const char *value, void *extra_args)
1839 {
1840 	uint16_t *u16 = extra_args;
1841 	unsigned int long result;
1842 
1843 	if ((value == NULL) || (extra_args == NULL))
1844 		return -EINVAL;
1845 	errno = 0;
1846 	result = strtoul(value, NULL, 0);
1847 	if ((result >= (1 << 16)) || (errno != 0)) {
1848 		rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1849 		return -ERANGE;
1850 	}
1851 	*u16 = (uint16_t)result;
1852 	return 0;
1853 }
1854 
1855 /* Parse parameters used to create device */
1856 static int
1857 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1858 {
1859 	struct rte_kvargs *kvlist = NULL;
1860 	int ret = 0;
1861 
1862 	if (params == NULL)
1863 		return -EINVAL;
1864 	if (input_args) {
1865 		kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1866 		if (kvlist == NULL)
1867 			return -EFAULT;
1868 
1869 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1870 					&parse_u16_arg, &params->queues_num);
1871 		if (ret < 0)
1872 			goto exit;
1873 
1874 		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1875 					&parse_u16_arg, &params->socket_id);
1876 		if (ret < 0)
1877 			goto exit;
1878 
1879 		if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1880 			rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1881 					RTE_MAX_NUMA_NODES);
1882 			goto exit;
1883 		}
1884 	}
1885 
1886 exit:
1887 	if (kvlist)
1888 		rte_kvargs_free(kvlist);
1889 	return ret;
1890 }
1891 
1892 /* Create device */
1893 static int
1894 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1895 		struct turbo_sw_params *init_params)
1896 {
1897 	struct rte_bbdev *bbdev;
1898 	const char *name = rte_vdev_device_name(vdev);
1899 
1900 	bbdev = rte_bbdev_allocate(name);
1901 	if (bbdev == NULL)
1902 		return -ENODEV;
1903 
1904 	bbdev->data->dev_private = rte_zmalloc_socket(name,
1905 			sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1906 			init_params->socket_id);
1907 	if (bbdev->data->dev_private == NULL) {
1908 		rte_bbdev_release(bbdev);
1909 		return -ENOMEM;
1910 	}
1911 
1912 	bbdev->dev_ops = &pmd_ops;
1913 	bbdev->device = &vdev->device;
1914 	bbdev->data->socket_id = init_params->socket_id;
1915 	bbdev->intr_handle = NULL;
1916 
1917 	/* register rx/tx burst functions for data path */
1918 	bbdev->dequeue_enc_ops = dequeue_enc_ops;
1919 	bbdev->dequeue_dec_ops = dequeue_dec_ops;
1920 	bbdev->enqueue_enc_ops = enqueue_enc_ops;
1921 	bbdev->enqueue_dec_ops = enqueue_dec_ops;
1922 	bbdev->dequeue_ldpc_enc_ops = dequeue_enc_ops;
1923 	bbdev->dequeue_ldpc_dec_ops = dequeue_dec_ops;
1924 	bbdev->enqueue_ldpc_enc_ops = enqueue_ldpc_enc_ops;
1925 	bbdev->enqueue_ldpc_dec_ops = enqueue_ldpc_dec_ops;
1926 	((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1927 			init_params->queues_num;
1928 
1929 	return 0;
1930 }
1931 
1932 /* Initialise device */
1933 static int
1934 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1935 {
1936 	struct turbo_sw_params init_params = {
1937 		rte_socket_id(),
1938 		RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1939 	};
1940 	const char *name;
1941 	const char *input_args;
1942 
1943 	if (vdev == NULL)
1944 		return -EINVAL;
1945 
1946 	name = rte_vdev_device_name(vdev);
1947 	if (name == NULL)
1948 		return -EINVAL;
1949 	input_args = rte_vdev_device_args(vdev);
1950 	parse_turbo_sw_params(&init_params, input_args);
1951 
1952 	rte_bbdev_log_debug(
1953 			"Initialising %s on NUMA node %d with max queues: %d\n",
1954 			name, init_params.socket_id, init_params.queues_num);
1955 
1956 	return turbo_sw_bbdev_create(vdev, &init_params);
1957 }
1958 
1959 /* Uninitialise device */
1960 static int
1961 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1962 {
1963 	struct rte_bbdev *bbdev;
1964 	const char *name;
1965 
1966 	if (vdev == NULL)
1967 		return -EINVAL;
1968 
1969 	name = rte_vdev_device_name(vdev);
1970 	if (name == NULL)
1971 		return -EINVAL;
1972 
1973 	bbdev = rte_bbdev_get_named_dev(name);
1974 	if (bbdev == NULL)
1975 		return -EINVAL;
1976 
1977 	rte_free(bbdev->data->dev_private);
1978 
1979 	return rte_bbdev_release(bbdev);
1980 }
1981 
1982 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1983 	.probe = turbo_sw_bbdev_probe,
1984 	.remove = turbo_sw_bbdev_remove
1985 };
1986 
1987 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1988 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1989 	TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1990 	TURBO_SW_SOCKET_ID_ARG"=<int>");
1991 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1992