xref: /dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include <unistd.h>
6 
7 #include <rte_common.h>
8 #include <rte_log.h>
9 #include <rte_dev.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12 #include <rte_errno.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_byteorder.h>
16 #ifdef RTE_BBDEV_OFFLOAD_COST
17 #include <rte_cycles.h>
18 #endif
19 
20 #include <rte_bbdev.h>
21 #include <rte_bbdev_pmd.h>
22 
23 #include "fpga_lte_fec.h"
24 
25 #ifdef RTE_LIBRTE_BBDEV_DEBUG
26 RTE_LOG_REGISTER(fpga_lte_fec_logtype, pmd.bb.fpga_lte_fec, DEBUG);
27 #else
28 RTE_LOG_REGISTER(fpga_lte_fec_logtype, pmd.bb.fpga_lte_fec, NOTICE);
29 #endif
30 
31 /* Helper macro for logging */
32 #define rte_bbdev_log(level, fmt, ...) \
33 	rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \
34 		##__VA_ARGS__)
35 
36 #ifdef RTE_LIBRTE_BBDEV_DEBUG
37 #define rte_bbdev_log_debug(fmt, ...) \
38 		rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \
39 		##__VA_ARGS__)
40 #else
41 #define rte_bbdev_log_debug(fmt, ...)
42 #endif
43 
44 /* FPGA LTE FEC driver names */
45 #define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf
46 #define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf
47 
48 /* FPGA LTE FEC PCI vendor & device IDs */
49 #define FPGA_LTE_FEC_VENDOR_ID (0x1172)
50 #define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052)
51 #define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050)
52 
53 /* Align DMA descriptors to 256 bytes - cache-aligned */
54 #define FPGA_RING_DESC_ENTRY_LENGTH (8)
55 /* Ring size is in 256 bits (32 bytes) units */
56 #define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
57 /* Maximum size of queue */
58 #define FPGA_RING_MAX_SIZE (1024)
59 #define FPGA_FLR_TIMEOUT_UNIT (16.384)
60 
61 #define FPGA_NUM_UL_QUEUES (32)
62 #define FPGA_NUM_DL_QUEUES (32)
63 #define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
64 #define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
65 
66 #define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
67 
68 #define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
69 #define FPGA_TIMEOUT_CHECK_INTERVAL (5)
70 
71 /* FPGA LTE FEC Register mapping on BAR0 */
72 enum {
73 	FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */
74 	FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
75 	FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
76 	FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
77 	FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
78 	FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
79 	FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
80 	FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
81 	FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */
82 	FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */
83 	FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */
84 	FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */
85 	FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */
86 	FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */
87 	FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */
88 	FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */
89 	FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
90 	FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200  /* len: 2048B */
91 };
92 
93 /* FPGA LTE FEC Ring Control Registers */
94 enum {
95 	FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008,
96 	FPGA_LTE_FEC_RING_SIZE = 0x00000010,
97 	FPGA_LTE_FEC_RING_MISC = 0x00000014,
98 	FPGA_LTE_FEC_RING_ENABLE = 0x00000015,
99 	FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
100 	FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018,
101 	FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C
102 };
103 
104 /* FPGA LTE FEC DESCRIPTOR ERROR */
105 enum {
106 	DESC_ERR_NO_ERR = 0x0,
107 	DESC_ERR_K_OUT_OF_RANGE = 0x1,
108 	DESC_ERR_K_NOT_NORMAL = 0x2,
109 	DESC_ERR_KPAI_NOT_NORMAL = 0x3,
110 	DESC_ERR_DESC_OFFSET_ERR = 0x4,
111 	DESC_ERR_DESC_READ_FAIL = 0x8,
112 	DESC_ERR_DESC_READ_TIMEOUT = 0x9,
113 	DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
114 	DESC_ERR_CB_READ_FAIL = 0xC,
115 	DESC_ERR_CB_READ_TIMEOUT = 0xD,
116 	DESC_ERR_CB_READ_TLP_POISONED = 0xE
117 };
118 
119 /* FPGA LTE FEC DMA Encoding Request Descriptor */
120 struct __rte_packed fpga_dma_enc_desc {
121 	uint32_t done:1,
122 		rsrvd0:11,
123 		error:4,
124 		rsrvd1:16;
125 	uint32_t ncb:16,
126 		rsrvd2:14,
127 		rv:2;
128 	uint32_t bypass_rm:1,
129 		irq_en:1,
130 		crc_en:1,
131 		rsrvd3:13,
132 		offset:10,
133 		rsrvd4:6;
134 	uint16_t e;
135 	uint16_t k;
136 	uint32_t out_addr_lw;
137 	uint32_t out_addr_hi;
138 	uint32_t in_addr_lw;
139 	uint32_t in_addr_hi;
140 
141 	union {
142 		struct {
143 			/* Virtual addresses used to retrieve SW context info */
144 			void *op_addr;
145 			/* Stores information about total number of Code Blocks
146 			 * in currently processed Transport Block
147 			 */
148 			uint64_t cbs_in_op;
149 		};
150 
151 		uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
152 					(FPGA_RING_DESC_ENTRY_LENGTH - 1)];
153 	};
154 };
155 
156 /* FPGA LTE FEC DMA Decoding Request Descriptor */
157 struct __rte_packed fpga_dma_dec_desc {
158 	uint32_t done:1,
159 		iter:5,
160 		rsrvd0:2,
161 		crc_pass:1,
162 		rsrvd1:3,
163 		error:4,
164 		crc_type:1,
165 		rsrvd2:7,
166 		max_iter:5,
167 		rsrvd3:3;
168 	uint32_t rsrvd4;
169 	uint32_t bypass_rm:1,
170 		irq_en:1,
171 		drop_crc:1,
172 		rsrvd5:13,
173 		offset:10,
174 		rsrvd6:6;
175 	uint16_t k;
176 	uint16_t in_len;
177 	uint32_t out_addr_lw;
178 	uint32_t out_addr_hi;
179 	uint32_t in_addr_lw;
180 	uint32_t in_addr_hi;
181 
182 	union {
183 		struct {
184 			/* Virtual addresses used to retrieve SW context info */
185 			void *op_addr;
186 			/* Stores information about total number of Code Blocks
187 			 * in currently processed Transport Block
188 			 */
189 			uint8_t cbs_in_op;
190 		};
191 
192 		uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
193 	};
194 };
195 
196 /* FPGA LTE DMA Descriptor */
197 union fpga_dma_desc {
198 	struct fpga_dma_enc_desc enc_req;
199 	struct fpga_dma_dec_desc dec_req;
200 };
201 
202 /* FPGA LTE FEC Ring Control Register */
203 struct __rte_packed fpga_ring_ctrl_reg {
204 	uint64_t ring_base_addr;
205 	uint64_t ring_head_addr;
206 	uint16_t ring_size:11;
207 	uint16_t rsrvd0;
208 	union { /* Miscellaneous register */
209 		uint8_t misc;
210 		uint8_t max_ul_dec:5,
211 			max_ul_dec_en:1,
212 			rsrvd1:2;
213 	};
214 	uint8_t enable;
215 	uint8_t flush_queue_en;
216 	uint8_t rsrvd2;
217 	uint16_t shadow_tail;
218 	uint16_t rsrvd3;
219 	uint16_t head_point;
220 	uint16_t rsrvd4;
221 
222 };
223 
224 /* Private data structure for each FPGA FEC device */
225 struct fpga_lte_fec_device {
226 	/** Base address of MMIO registers (BAR0) */
227 	void *mmio_base;
228 	/** Base address of memory for sw rings */
229 	void *sw_rings;
230 	/** Physical address of sw_rings */
231 	rte_iova_t sw_rings_phys;
232 	/** Number of bytes available for each queue in device. */
233 	uint32_t sw_ring_size;
234 	/** Max number of entries available for each queue in device */
235 	uint32_t sw_ring_max_depth;
236 	/** Base address of response tail pointer buffer */
237 	uint32_t *tail_ptrs;
238 	/** Physical address of tail pointers */
239 	rte_iova_t tail_ptr_phys;
240 	/** Queues flush completion flag */
241 	uint64_t *flush_queue_status;
242 	/* Bitmap capturing which Queues are bound to the PF/VF */
243 	uint64_t q_bound_bit_map;
244 	/* Bitmap capturing which Queues have already been assigned */
245 	uint64_t q_assigned_bit_map;
246 	/** True if this is a PF FPGA FEC device */
247 	bool pf_device;
248 };
249 
250 /* Structure associated with each queue. */
251 struct __rte_cache_aligned fpga_queue {
252 	struct fpga_ring_ctrl_reg ring_ctrl_reg;  /* Ring Control Register */
253 	union fpga_dma_desc *ring_addr;  /* Virtual address of software ring */
254 	uint64_t *ring_head_addr;  /* Virtual address of completion_head */
255 	uint64_t shadow_completion_head; /* Shadow completion head value */
256 	uint16_t head_free_desc;  /* Ring head */
257 	uint16_t tail;  /* Ring tail */
258 	/* Mask used to wrap enqueued descriptors on the sw ring */
259 	uint32_t sw_ring_wrap_mask;
260 	uint32_t irq_enable;  /* Enable ops dequeue interrupts if set to 1 */
261 	uint8_t q_idx;  /* Queue index */
262 	struct fpga_lte_fec_device *d;
263 	/* MMIO register of shadow_tail used to enqueue descriptors */
264 	void *shadow_tail_addr;
265 };
266 
267 /* Write to 16 bit MMIO register address */
268 static inline void
269 mmio_write_16(void *addr, uint16_t value)
270 {
271 	*((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
272 }
273 
274 /* Write to 32 bit MMIO register address */
275 static inline void
276 mmio_write_32(void *addr, uint32_t value)
277 {
278 	*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
279 }
280 
281 /* Write to 64 bit MMIO register address */
282 static inline void
283 mmio_write_64(void *addr, uint64_t value)
284 {
285 	*((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
286 }
287 
288 /* Write a 8 bit register of a FPGA LTE FEC device */
289 static inline void
290 fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
291 {
292 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
293 	*((volatile uint8_t *)(reg_addr)) = payload;
294 }
295 
296 /* Write a 16 bit register of a FPGA LTE FEC device */
297 static inline void
298 fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
299 {
300 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
301 	mmio_write_16(reg_addr, payload);
302 }
303 
304 /* Write a 32 bit register of a FPGA LTE FEC device */
305 static inline void
306 fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
307 {
308 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
309 	mmio_write_32(reg_addr, payload);
310 }
311 
312 /* Write a 64 bit register of a FPGA LTE FEC device */
313 static inline void
314 fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
315 {
316 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
317 	mmio_write_64(reg_addr, payload);
318 }
319 
320 /* Write a ring control register of a FPGA LTE FEC device */
321 static inline void
322 fpga_ring_reg_write(void *mmio_base, uint32_t offset,
323 		struct fpga_ring_ctrl_reg payload)
324 {
325 	fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
326 	fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR,
327 			payload.ring_head_addr);
328 	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE,
329 			payload.ring_size);
330 	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
331 			payload.head_point);
332 	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN,
333 			payload.flush_queue_en);
334 	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
335 			payload.shadow_tail);
336 	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC,
337 			payload.misc);
338 	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
339 			payload.enable);
340 }
341 
342 /* Read a register of FPGA LTE FEC device */
343 static uint32_t
344 fpga_reg_read_32(void *mmio_base, uint32_t offset)
345 {
346 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
347 	uint32_t ret = *((volatile uint32_t *)(reg_addr));
348 	return rte_le_to_cpu_32(ret);
349 }
350 
351 #ifdef RTE_LIBRTE_BBDEV_DEBUG
352 /* Read a register of FPGA LTE FEC device */
353 static uint8_t
354 fpga_reg_read_8(void *mmio_base, uint32_t offset)
355 {
356 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
357 	return *((volatile uint8_t *)(reg_addr));
358 }
359 
360 /* Read a register of FPGA LTE FEC device */
361 static uint16_t
362 fpga_reg_read_16(void *mmio_base, uint32_t offset)
363 {
364 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
365 	uint16_t ret = *((volatile uint16_t *)(reg_addr));
366 	return rte_le_to_cpu_16(ret);
367 }
368 
369 /* Read a register of FPGA LTE FEC device */
370 static uint64_t
371 fpga_reg_read_64(void *mmio_base, uint32_t offset)
372 {
373 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
374 	uint64_t ret = *((volatile uint64_t *)(reg_addr));
375 	return rte_le_to_cpu_64(ret);
376 }
377 
378 /* Read Ring Control Register of FPGA LTE FEC device */
379 static inline void
380 print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
381 {
382 	rte_bbdev_log_debug(
383 		"FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
384 		PRIx32, mmio_base, offset);
385 	rte_bbdev_log_debug(
386 		"RING_BASE_ADDR = 0x%016"PRIx64,
387 		fpga_reg_read_64(mmio_base, offset));
388 	rte_bbdev_log_debug(
389 		"RING_HEAD_ADDR = 0x%016"PRIx64,
390 		fpga_reg_read_64(mmio_base, offset +
391 				FPGA_LTE_FEC_RING_HEAD_ADDR));
392 	rte_bbdev_log_debug(
393 		"RING_SIZE = 0x%04"PRIx16,
394 		fpga_reg_read_16(mmio_base, offset +
395 				FPGA_LTE_FEC_RING_SIZE));
396 	rte_bbdev_log_debug(
397 		"RING_MISC = 0x%02"PRIx8,
398 		fpga_reg_read_8(mmio_base, offset +
399 				FPGA_LTE_FEC_RING_MISC));
400 	rte_bbdev_log_debug(
401 		"RING_ENABLE = 0x%02"PRIx8,
402 		fpga_reg_read_8(mmio_base, offset +
403 				FPGA_LTE_FEC_RING_ENABLE));
404 	rte_bbdev_log_debug(
405 		"RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
406 		fpga_reg_read_8(mmio_base, offset +
407 				FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN));
408 	rte_bbdev_log_debug(
409 		"RING_SHADOW_TAIL = 0x%04"PRIx16,
410 		fpga_reg_read_16(mmio_base, offset +
411 				FPGA_LTE_FEC_RING_SHADOW_TAIL));
412 	rte_bbdev_log_debug(
413 		"RING_HEAD_POINT = 0x%04"PRIx16,
414 		fpga_reg_read_16(mmio_base, offset +
415 				FPGA_LTE_FEC_RING_HEAD_POINT));
416 }
417 
418 /* Read Static Register of FPGA LTE FEC device */
419 static inline void
420 print_static_reg_debug_info(void *mmio_base)
421 {
422 	uint16_t config = fpga_reg_read_16(mmio_base,
423 			FPGA_LTE_FEC_CONFIGURATION);
424 	uint8_t qmap_done = fpga_reg_read_8(mmio_base,
425 			FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE);
426 	uint16_t lb_factor = fpga_reg_read_16(mmio_base,
427 			FPGA_LTE_FEC_LOAD_BALANCE_FACTOR);
428 	uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
429 			FPGA_LTE_FEC_RING_DESC_LEN);
430 	uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
431 			FPGA_LTE_FEC_FLR_TIME_OUT);
432 
433 	rte_bbdev_log_debug("UL.DL Weights = %u.%u",
434 			((uint8_t)config), ((uint8_t)(config >> 8)));
435 	rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
436 			((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
437 	rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
438 			(qmap_done > 0) ? "READY" : "NOT-READY");
439 	rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
440 			ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
441 	rte_bbdev_log_debug("FLR Timeout = %f usec",
442 			(float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
443 }
444 
445 /* Print decode DMA Descriptor of FPGA LTE FEC device */
446 static void
447 print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
448 {
449 	rte_bbdev_log_debug("DMA response desc %p\n"
450 		"\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")"
451 		" | error (%"PRIu32") | crc_type(%"PRIu32")\n"
452 		"\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | "
453 		"irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n"
454 		"\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n"
455 		"\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | "
456 		"out_add (0x%08"PRIx32"%08"PRIx32")",
457 		desc,
458 		(uint32_t)desc->dec_req.done,
459 		(uint32_t)desc->dec_req.iter,
460 		(uint32_t)desc->dec_req.crc_pass,
461 		(uint32_t)desc->dec_req.error,
462 		(uint32_t)desc->dec_req.crc_type,
463 		(uint32_t)desc->dec_req.max_iter,
464 		(uint32_t)desc->dec_req.bypass_rm,
465 		(uint32_t)desc->dec_req.irq_en,
466 		(uint32_t)desc->dec_req.drop_crc,
467 		(uint32_t)desc->dec_req.offset,
468 		(uint32_t)desc->dec_req.k,
469 		(uint16_t)desc->dec_req.in_len,
470 		desc->dec_req.op_addr,
471 		(uint32_t)desc->dec_req.cbs_in_op,
472 		(uint32_t)desc->dec_req.in_addr_hi,
473 		(uint32_t)desc->dec_req.in_addr_lw,
474 		(uint32_t)desc->dec_req.out_addr_hi,
475 		(uint32_t)desc->dec_req.out_addr_lw);
476 }
477 #endif
478 
479 static int
480 fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
481 {
482 	/* Number of queues bound to a PF/VF */
483 	uint32_t hw_q_num = 0;
484 	uint32_t ring_size, payload, address, q_id, offset;
485 	rte_iova_t phys_addr;
486 	struct fpga_ring_ctrl_reg ring_reg;
487 	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
488 
489 	address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
490 	if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
491 		rte_bbdev_log(ERR,
492 				"Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
493 				dev->data->name);
494 		return -EPERM;
495 	}
496 
497 	/* Clear queue registers structure */
498 	memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
499 
500 	/* Scan queue map.
501 	 * If a queue is valid and mapped to a calling PF/VF the read value is
502 	 * replaced with a queue ID and if it's not then
503 	 * FPGA_INVALID_HW_QUEUE_ID is returned.
504 	 */
505 	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
506 		uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
507 				FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
508 
509 		rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
510 				dev->device->name, q_id, hw_q_id);
511 
512 		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
513 			fpga_dev->q_bound_bit_map |= (1ULL << q_id);
514 			/* Clear queue register of found queue */
515 			offset = FPGA_LTE_FEC_RING_CTRL_REGS +
516 				(sizeof(struct fpga_ring_ctrl_reg) * q_id);
517 			fpga_ring_reg_write(fpga_dev->mmio_base,
518 					offset, ring_reg);
519 			++hw_q_num;
520 		}
521 	}
522 	if (hw_q_num == 0) {
523 		rte_bbdev_log(ERR,
524 			"No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
525 		return -ENODEV;
526 	}
527 
528 	if (num_queues > hw_q_num) {
529 		rte_bbdev_log(ERR,
530 			"Not enough queues for device %s! Requested: %u, available: %u",
531 			dev->device->name, num_queues, hw_q_num);
532 		return -EINVAL;
533 	}
534 
535 	ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
536 
537 	/* Enforce 32 byte alignment */
538 	RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
539 
540 	/* Allocate memory for SW descriptor rings */
541 	fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
542 			num_queues * ring_size, RTE_CACHE_LINE_SIZE,
543 			socket_id);
544 	if (fpga_dev->sw_rings == NULL) {
545 		rte_bbdev_log(ERR,
546 				"Failed to allocate memory for %s:%u sw_rings",
547 				dev->device->driver->name, dev->data->dev_id);
548 		return -ENOMEM;
549 	}
550 
551 	fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
552 	fpga_dev->sw_ring_size = ring_size;
553 	fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
554 
555 	/* Allocate memory for ring flush status */
556 	fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
557 			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
558 	if (fpga_dev->flush_queue_status == NULL) {
559 		rte_bbdev_log(ERR,
560 				"Failed to allocate memory for %s:%u flush_queue_status",
561 				dev->device->driver->name, dev->data->dev_id);
562 		return -ENOMEM;
563 	}
564 
565 	/* Set the flush status address registers */
566 	phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
567 
568 	address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW;
569 	payload = (uint32_t)(phys_addr);
570 	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
571 
572 	address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI;
573 	payload = (uint32_t)(phys_addr >> 32);
574 	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
575 
576 	return 0;
577 }
578 
579 static int
580 fpga_dev_close(struct rte_bbdev *dev)
581 {
582 	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
583 
584 	rte_free(fpga_dev->sw_rings);
585 	rte_free(fpga_dev->flush_queue_status);
586 
587 	return 0;
588 }
589 
590 static void
591 fpga_dev_info_get(struct rte_bbdev *dev,
592 		struct rte_bbdev_driver_info *dev_info)
593 {
594 	struct fpga_lte_fec_device *d = dev->data->dev_private;
595 	uint32_t q_id = 0;
596 
597 	/* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set
598 	 * to temporary values as they are required by test application while
599 	 * validation phase.
600 	 */
601 	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
602 		{
603 			.type = RTE_BBDEV_OP_TURBO_DEC,
604 			.cap.turbo_dec = {
605 				.capability_flags =
606 					RTE_BBDEV_TURBO_CRC_TYPE_24B |
607 					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
608 					RTE_BBDEV_TURBO_DEC_INTERRUPTS |
609 					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
610 					RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP,
611 				.max_llr_modulus = INT8_MAX,
612 				.num_buffers_src =
613 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
614 				.num_buffers_hard_out =
615 					RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
616 				.num_buffers_soft_out = 0
617 			}
618 		},
619 		{
620 			.type = RTE_BBDEV_OP_TURBO_ENC,
621 			.cap.turbo_enc = {
622 				.capability_flags =
623 					RTE_BBDEV_TURBO_CRC_24B_ATTACH |
624 					RTE_BBDEV_TURBO_RATE_MATCH |
625 					RTE_BBDEV_TURBO_ENC_INTERRUPTS,
626 				.num_buffers_src =
627 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
628 				.num_buffers_dst =
629 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS
630 			}
631 		},
632 		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
633 	};
634 
635 	static struct rte_bbdev_queue_conf default_queue_conf;
636 	default_queue_conf.socket = dev->data->socket_id;
637 	default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
638 
639 
640 	dev_info->driver_name = dev->device->driver->name;
641 	dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
642 	dev_info->hardware_accelerated = true;
643 	dev_info->min_alignment = 64;
644 	dev_info->default_queue_conf = default_queue_conf;
645 	dev_info->capabilities = bbdev_capabilities;
646 	dev_info->cpu_flag_reqs = NULL;
647 
648 	/* Calculates number of queues assigned to device */
649 	dev_info->max_num_queues = 0;
650 	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
651 		uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
652 				FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
653 		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
654 			dev_info->max_num_queues++;
655 	}
656 }
657 
658 /**
659  * Find index of queue bound to current PF/VF which is unassigned. Return -1
660  * when there is no available queue
661  */
662 static int
663 fpga_find_free_queue_idx(struct rte_bbdev *dev,
664 		const struct rte_bbdev_queue_conf *conf)
665 {
666 	struct fpga_lte_fec_device *d = dev->data->dev_private;
667 	uint64_t q_idx;
668 	uint8_t i = 0;
669 	uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
670 
671 	if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) {
672 		i = FPGA_NUM_DL_QUEUES;
673 		range = FPGA_TOTAL_NUM_QUEUES;
674 	}
675 
676 	for (; i < range; ++i) {
677 		q_idx = 1ULL << i;
678 		/* Check if index of queue is bound to current PF/VF */
679 		if (d->q_bound_bit_map & q_idx)
680 			/* Check if found queue was not already assigned */
681 			if (!(d->q_assigned_bit_map & q_idx)) {
682 				d->q_assigned_bit_map |= q_idx;
683 				return i;
684 			}
685 	}
686 
687 	rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
688 
689 	return -1;
690 }
691 
692 static int
693 fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
694 		const struct rte_bbdev_queue_conf *conf)
695 {
696 	uint32_t address, ring_offset;
697 	struct fpga_lte_fec_device *d = dev->data->dev_private;
698 	struct fpga_queue *q;
699 	int8_t q_idx;
700 
701 	/* Check if there is a free queue to assign */
702 	q_idx = fpga_find_free_queue_idx(dev, conf);
703 	if (q_idx == -1)
704 		return -1;
705 
706 	/* Allocate the queue data structure. */
707 	q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
708 			RTE_CACHE_LINE_SIZE, conf->socket);
709 	if (q == NULL) {
710 		/* Mark queue as un-assigned */
711 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
712 		rte_bbdev_log(ERR, "Failed to allocate queue memory");
713 		return -ENOMEM;
714 	}
715 
716 	q->d = d;
717 	q->q_idx = q_idx;
718 
719 	/* Set ring_base_addr */
720 	q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
721 	q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
722 			(d->sw_ring_size * queue_id);
723 
724 	/* Allocate memory for Completion Head variable*/
725 	q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
726 			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
727 	if (q->ring_head_addr == NULL) {
728 		/* Mark queue as un-assigned */
729 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
730 		rte_free(q);
731 		rte_bbdev_log(ERR,
732 				"Failed to allocate memory for %s:%u completion_head",
733 				dev->device->driver->name, dev->data->dev_id);
734 		return -ENOMEM;
735 	}
736 	/* Set ring_head_addr */
737 	q->ring_ctrl_reg.ring_head_addr =
738 			rte_malloc_virt2iova(q->ring_head_addr);
739 
740 	/* Clear shadow_completion_head */
741 	q->shadow_completion_head = 0;
742 
743 	/* Set ring_size */
744 	if (conf->queue_size > FPGA_RING_MAX_SIZE) {
745 		/* Mark queue as un-assigned */
746 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
747 		rte_free(q->ring_head_addr);
748 		rte_free(q);
749 		rte_bbdev_log(ERR,
750 				"Size of queue is too big %d (MAX: %d ) for %s:%u",
751 				conf->queue_size, FPGA_RING_MAX_SIZE,
752 				dev->device->driver->name, dev->data->dev_id);
753 		return -EINVAL;
754 	}
755 	q->ring_ctrl_reg.ring_size = conf->queue_size;
756 
757 	/* Set Miscellaneous FPGA register*/
758 	/* Max iteration number for TTI mitigation - todo */
759 	q->ring_ctrl_reg.max_ul_dec = 0;
760 	/* Enable max iteration number for TTI - todo */
761 	q->ring_ctrl_reg.max_ul_dec_en = 0;
762 
763 	/* Enable the ring */
764 	q->ring_ctrl_reg.enable = 1;
765 
766 	/* Set FPGA head_point and tail registers */
767 	q->ring_ctrl_reg.head_point = q->tail = 0;
768 
769 	/* Set FPGA shadow_tail register */
770 	q->ring_ctrl_reg.shadow_tail = q->tail;
771 
772 	/* Calculates the ring offset for found queue */
773 	ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS +
774 			(sizeof(struct fpga_ring_ctrl_reg) * q_idx);
775 
776 	/* Set FPGA Ring Control Registers */
777 	fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
778 
779 	/* Store MMIO register of shadow_tail */
780 	address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL;
781 	q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
782 
783 	q->head_free_desc = q->tail;
784 
785 	/* Set wrap mask */
786 	q->sw_ring_wrap_mask = conf->queue_size - 1;
787 
788 	rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
789 			dev->data->dev_id, queue_id, q->q_idx);
790 
791 	dev->data->queues[queue_id].queue_private = q;
792 
793 	rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
794 			queue_id, q_idx);
795 
796 #ifdef RTE_LIBRTE_BBDEV_DEBUG
797 	/* Read FPGA Ring Control Registers after configuration*/
798 	print_ring_reg_debug_info(d->mmio_base, ring_offset);
799 #endif
800 	return 0;
801 }
802 
803 static int
804 fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
805 {
806 	struct fpga_lte_fec_device *d = dev->data->dev_private;
807 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
808 	struct fpga_ring_ctrl_reg ring_reg;
809 	uint32_t offset;
810 
811 	rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
812 
813 	if (q != NULL) {
814 		memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
815 		offset = FPGA_LTE_FEC_RING_CTRL_REGS +
816 			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
817 		/* Disable queue */
818 		fpga_reg_write_8(d->mmio_base,
819 				offset + FPGA_LTE_FEC_RING_ENABLE, 0x00);
820 		/* Clear queue registers */
821 		fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
822 
823 		/* Mark the Queue as un-assigned */
824 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
825 		rte_free(q->ring_head_addr);
826 		rte_free(q);
827 		dev->data->queues[queue_id].queue_private = NULL;
828 	}
829 
830 	return 0;
831 }
832 
833 /* Function starts a device queue. */
834 static int
835 fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
836 {
837 	struct fpga_lte_fec_device *d = dev->data->dev_private;
838 #ifdef RTE_LIBRTE_BBDEV_DEBUG
839 	if (d == NULL) {
840 		rte_bbdev_log(ERR, "Invalid device pointer");
841 		return -1;
842 	}
843 #endif
844 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
845 	uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
846 			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
847 	uint8_t enable = 0x01;
848 	uint16_t zero = 0x0000;
849 
850 	/* Clear queue head and tail variables */
851 	q->tail = q->head_free_desc = 0;
852 
853 	/* Clear FPGA head_point and tail registers */
854 	fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
855 			zero);
856 	fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
857 			zero);
858 
859 	/* Enable queue */
860 	fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
861 			enable);
862 
863 	rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
864 	return 0;
865 }
866 
867 /* Function stops a device queue. */
868 static int
869 fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
870 {
871 	struct fpga_lte_fec_device *d = dev->data->dev_private;
872 #ifdef RTE_LIBRTE_BBDEV_DEBUG
873 	if (d == NULL) {
874 		rte_bbdev_log(ERR, "Invalid device pointer");
875 		return -1;
876 	}
877 #endif
878 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
879 	uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
880 			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
881 	uint8_t payload = 0x01;
882 	uint8_t counter = 0;
883 	uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
884 			FPGA_TIMEOUT_CHECK_INTERVAL;
885 
886 	/* Set flush_queue_en bit to trigger queue flushing */
887 	fpga_reg_write_8(d->mmio_base,
888 			offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload);
889 
890 	/** Check if queue flush is completed.
891 	 * FPGA will update the completion flag after queue flushing is
892 	 * completed. If completion flag is not updated within 1ms it is
893 	 * considered as a failure.
894 	 */
895 	while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx) & payload)) {
896 		if (counter > timeout) {
897 			rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
898 					queue_id);
899 			return -1;
900 		}
901 		usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
902 		counter++;
903 	}
904 
905 	/* Disable queue */
906 	payload = 0x00;
907 	fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
908 			payload);
909 
910 	rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
911 	return 0;
912 }
913 
914 static inline uint16_t
915 get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
916 {
917 	uint16_t queue_id;
918 
919 	for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
920 		struct fpga_queue *q = data->queues[queue_id].queue_private;
921 		if (q != NULL && q->q_idx == q_idx)
922 			return queue_id;
923 	}
924 
925 	return -1;
926 }
927 
928 /* Interrupt handler triggered by FPGA dev for handling specific interrupt */
929 static void
930 fpga_dev_interrupt_handler(void *cb_arg)
931 {
932 	struct rte_bbdev *dev = cb_arg;
933 	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
934 	struct fpga_queue *q;
935 	uint64_t ring_head;
936 	uint64_t q_idx;
937 	uint16_t queue_id;
938 	uint8_t i;
939 
940 	/* Scan queue assigned to this device */
941 	for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
942 		q_idx = 1ULL << i;
943 		if (fpga_dev->q_bound_bit_map & q_idx) {
944 			queue_id = get_queue_id(dev->data, i);
945 			if (queue_id == (uint16_t) -1)
946 				continue;
947 
948 			/* Check if completion head was changed */
949 			q = dev->data->queues[queue_id].queue_private;
950 			ring_head = *q->ring_head_addr;
951 			if (q->shadow_completion_head != ring_head &&
952 				q->irq_enable == 1) {
953 				q->shadow_completion_head = ring_head;
954 				rte_bbdev_pmd_callback_process(
955 						dev,
956 						RTE_BBDEV_EVENT_DEQUEUE,
957 						&queue_id);
958 			}
959 		}
960 	}
961 }
962 
963 static int
964 fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
965 {
966 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
967 
968 	if (!rte_intr_cap_multiple(dev->intr_handle))
969 		return -ENOTSUP;
970 
971 	q->irq_enable = 1;
972 
973 	return 0;
974 }
975 
976 static int
977 fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
978 {
979 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
980 	q->irq_enable = 0;
981 
982 	return 0;
983 }
984 
985 static int
986 fpga_intr_enable(struct rte_bbdev *dev)
987 {
988 	int ret;
989 	uint8_t i;
990 
991 	if (!rte_intr_cap_multiple(dev->intr_handle)) {
992 		rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
993 				dev->data->name);
994 		return -ENOTSUP;
995 	}
996 
997 	/* Create event file descriptors for each of 64 queue. Event fds will be
998 	 * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
999 	 * the IRQ number is a direct translation to the queue number.
1000 	 *
1001 	 * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
1002 	 * mapped the first IRQ to already created interrupt event file
1003 	 * descriptor (intr_handle->fd).
1004 	 */
1005 	if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
1006 		rte_bbdev_log(ERR, "Failed to create fds for %u queues",
1007 				dev->data->num_queues);
1008 		return -1;
1009 	}
1010 
1011 	/* TODO Each event file descriptor is overwritten by interrupt event
1012 	 * file descriptor. That descriptor is added to epoll observed list.
1013 	 * It ensures that callback function assigned to that descriptor will
1014 	 * invoked when any FPGA queue issues interrupt.
1015 	 */
1016 	for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
1017 		dev->intr_handle->efds[i] = dev->intr_handle->fd;
1018 
1019 	if (!dev->intr_handle->intr_vec) {
1020 		dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
1021 				dev->data->num_queues * sizeof(int), 0);
1022 		if (!dev->intr_handle->intr_vec) {
1023 			rte_bbdev_log(ERR, "Failed to allocate %u vectors",
1024 					dev->data->num_queues);
1025 			return -ENOMEM;
1026 		}
1027 	}
1028 
1029 	ret = rte_intr_enable(dev->intr_handle);
1030 	if (ret < 0) {
1031 		rte_bbdev_log(ERR,
1032 				"Couldn't enable interrupts for device: %s",
1033 				dev->data->name);
1034 		return ret;
1035 	}
1036 
1037 	ret = rte_intr_callback_register(dev->intr_handle,
1038 			fpga_dev_interrupt_handler, dev);
1039 	if (ret < 0) {
1040 		rte_bbdev_log(ERR,
1041 				"Couldn't register interrupt callback for device: %s",
1042 				dev->data->name);
1043 		return ret;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static const struct rte_bbdev_ops fpga_ops = {
1050 	.setup_queues = fpga_setup_queues,
1051 	.intr_enable = fpga_intr_enable,
1052 	.close = fpga_dev_close,
1053 	.info_get = fpga_dev_info_get,
1054 	.queue_setup = fpga_queue_setup,
1055 	.queue_stop = fpga_queue_stop,
1056 	.queue_start = fpga_queue_start,
1057 	.queue_release = fpga_queue_release,
1058 	.queue_intr_enable = fpga_queue_intr_enable,
1059 	.queue_intr_disable = fpga_queue_intr_disable
1060 };
1061 
1062 static inline void
1063 fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
1064 		struct rte_bbdev_stats *queue_stats)
1065 {
1066 #ifdef RTE_BBDEV_OFFLOAD_COST
1067 	uint64_t start_time = 0;
1068 	queue_stats->acc_offload_cycles = 0;
1069 #else
1070 	RTE_SET_USED(queue_stats);
1071 #endif
1072 
1073 	/* Update tail and shadow_tail register */
1074 	q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
1075 
1076 	rte_wmb();
1077 
1078 #ifdef RTE_BBDEV_OFFLOAD_COST
1079 	/* Start time measurement for enqueue function offload. */
1080 	start_time = rte_rdtsc_precise();
1081 #endif
1082 	mmio_write_16(q->shadow_tail_addr, q->tail);
1083 
1084 #ifdef RTE_BBDEV_OFFLOAD_COST
1085 	rte_wmb();
1086 	queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1087 #endif
1088 }
1089 
1090 /* Calculates number of CBs in processed encoder TB based on 'r' and input
1091  * length.
1092  */
1093 static inline uint8_t
1094 get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
1095 {
1096 	uint8_t c, c_neg, r, crc24_bits = 0;
1097 	uint16_t k, k_neg, k_pos;
1098 	uint8_t cbs_in_op = 0;
1099 	int32_t length;
1100 
1101 	length = turbo_enc->input.length;
1102 	r = turbo_enc->tb_params.r;
1103 	c = turbo_enc->tb_params.c;
1104 	c_neg = turbo_enc->tb_params.c_neg;
1105 	k_neg = turbo_enc->tb_params.k_neg;
1106 	k_pos = turbo_enc->tb_params.k_pos;
1107 	crc24_bits = 24;
1108 	while (length > 0 && r < c) {
1109 		k = (r < c_neg) ? k_neg : k_pos;
1110 		length -= (k - crc24_bits) >> 3;
1111 		r++;
1112 		cbs_in_op++;
1113 	}
1114 
1115 	return cbs_in_op;
1116 }
1117 
1118 /* Calculates number of CBs in processed decoder TB based on 'r' and input
1119  * length.
1120  */
1121 static inline uint16_t
1122 get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
1123 {
1124 	uint8_t c, c_neg, r = 0;
1125 	uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0;
1126 	int32_t length;
1127 
1128 	length = turbo_dec->input.length;
1129 	r = turbo_dec->tb_params.r;
1130 	c = turbo_dec->tb_params.c;
1131 	c_neg = turbo_dec->tb_params.c_neg;
1132 	k_neg = turbo_dec->tb_params.k_neg;
1133 	k_pos = turbo_dec->tb_params.k_pos;
1134 	while (length > 0 && r < c) {
1135 		k = (r < c_neg) ? k_neg : k_pos;
1136 		kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1137 		length -= kw;
1138 		r++;
1139 		cbs_in_op++;
1140 	}
1141 
1142 	return cbs_in_op;
1143 }
1144 
1145 /* Read flag value 0/1/ from bitmap */
1146 static inline bool
1147 check_bit(uint32_t bitmap, uint32_t bitmask)
1148 {
1149 	return bitmap & bitmask;
1150 }
1151 
1152 /* Print an error if a descriptor error has occurred.
1153  *  Return 0 on success, 1 on failure
1154  */
1155 static inline int
1156 check_desc_error(uint32_t error_code) {
1157 	switch (error_code) {
1158 	case DESC_ERR_NO_ERR:
1159 		return 0;
1160 	case DESC_ERR_K_OUT_OF_RANGE:
1161 		rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)");
1162 		break;
1163 	case DESC_ERR_K_NOT_NORMAL:
1164 		rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range");
1165 		break;
1166 	case DESC_ERR_KPAI_NOT_NORMAL:
1167 		rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only");
1168 		break;
1169 	case DESC_ERR_DESC_OFFSET_ERR:
1170 		rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA");
1171 		break;
1172 	case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR):
1173 		rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error");
1174 		break;
1175 	case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
1176 		rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error");
1177 		break;
1178 	case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
1179 		rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error");
1180 		break;
1181 	case DESC_ERR_DESC_READ_FAIL:
1182 		rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
1183 		break;
1184 	case DESC_ERR_DESC_READ_TIMEOUT:
1185 		rte_bbdev_log(ERR, "Descriptor read time-out");
1186 		break;
1187 	case DESC_ERR_DESC_READ_TLP_POISONED:
1188 		rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
1189 		break;
1190 	case DESC_ERR_CB_READ_FAIL:
1191 		rte_bbdev_log(ERR, "Unsuccessful completion for code block");
1192 		break;
1193 	case DESC_ERR_CB_READ_TIMEOUT:
1194 		rte_bbdev_log(ERR, "Code block read time-out");
1195 		break;
1196 	case DESC_ERR_CB_READ_TLP_POISONED:
1197 		rte_bbdev_log(ERR, "Code block read TLP poisoned");
1198 		break;
1199 	default:
1200 		rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
1201 				error_code);
1202 		break;
1203 	}
1204 	return 1;
1205 }
1206 
1207 /**
1208  * Set DMA descriptor for encode operation (1 Code Block)
1209  *
1210  * @param op
1211  *   Pointer to a single encode operation.
1212  * @param desc
1213  *   Pointer to DMA descriptor.
1214  * @param input
1215  *   Pointer to pointer to input data which will be decoded.
1216  * @param k
1217  *   K value (length of input in bits).
1218  * @param e
1219  *   E value (length of output in bits).
1220  * @param ncb
1221  *   Ncb value (size of the soft buffer).
1222  * @param out_length
1223  *   Length of output buffer
1224  * @param in_offset
1225  *   Input offset in rte_mbuf structure. It is used for calculating the point
1226  *   where data is starting.
1227  * @param out_offset
1228  *   Output offset in rte_mbuf structure. It is used for calculating the point
1229  *   where hard output data will be stored.
1230  * @param cbs_in_op
1231  *   Number of CBs contained in one operation.
1232  */
1233 static inline int
1234 fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
1235 		struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
1236 		struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb,
1237 		uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
1238 		uint8_t cbs_in_op)
1239 
1240 {
1241 	/* reset */
1242 	desc->done = 0;
1243 	desc->crc_en = check_bit(op->turbo_enc.op_flags,
1244 		RTE_BBDEV_TURBO_CRC_24B_ATTACH);
1245 	desc->bypass_rm = !check_bit(op->turbo_enc.op_flags,
1246 		RTE_BBDEV_TURBO_RATE_MATCH);
1247 	desc->k = k;
1248 	desc->e = e;
1249 	desc->ncb = ncb;
1250 	desc->rv = op->turbo_enc.rv_index;
1251 	desc->offset = desc_offset;
1252 	/* Set inbound data buffer address */
1253 	desc->in_addr_hi = (uint32_t)(
1254 			rte_pktmbuf_iova_offset(input, in_offset) >> 32);
1255 	desc->in_addr_lw = (uint32_t)(
1256 			rte_pktmbuf_iova_offset(input, in_offset));
1257 
1258 	desc->out_addr_hi = (uint32_t)(
1259 			rte_pktmbuf_iova_offset(output, out_offset) >> 32);
1260 	desc->out_addr_lw = (uint32_t)(
1261 			rte_pktmbuf_iova_offset(output, out_offset));
1262 
1263 	/* Save software context needed for dequeue */
1264 	desc->op_addr = op;
1265 
1266 	/* Set total number of CBs in an op */
1267 	desc->cbs_in_op = cbs_in_op;
1268 
1269 	return 0;
1270 }
1271 
1272 /**
1273  * Set DMA descriptor for encode operation (1 Code Block)
1274  *
1275  * @param op
1276  *   Pointer to a single encode operation.
1277  * @param desc
1278  *   Pointer to DMA descriptor.
1279  * @param input
1280  *   Pointer to pointer to input data which will be decoded.
1281  * @param in_length
1282  *   Length of an input.
1283  * @param k
1284  *   K value (length of an output in bits).
1285  * @param in_offset
1286  *   Input offset in rte_mbuf structure. It is used for calculating the point
1287  *   where data is starting.
1288  * @param out_offset
1289  *   Output offset in rte_mbuf structure. It is used for calculating the point
1290  *   where hard output data will be stored.
1291  * @param cbs_in_op
1292  *   Number of CBs contained in one operation.
1293  */
1294 static inline int
1295 fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
1296 		struct fpga_dma_dec_desc *desc, struct rte_mbuf *input,
1297 		struct rte_mbuf *output, uint16_t in_length, uint16_t k,
1298 		uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
1299 		uint8_t cbs_in_op)
1300 {
1301 	/* reset */
1302 	desc->done = 0;
1303 	/* Set inbound data buffer address */
1304 	desc->in_addr_hi = (uint32_t)(
1305 			rte_pktmbuf_iova_offset(input, in_offset) >> 32);
1306 	desc->in_addr_lw = (uint32_t)(
1307 			rte_pktmbuf_iova_offset(input, in_offset));
1308 	desc->in_len = in_length;
1309 	desc->k = k;
1310 	desc->crc_type = !check_bit(op->turbo_dec.op_flags,
1311 			RTE_BBDEV_TURBO_CRC_TYPE_24B);
1312 	if ((op->turbo_dec.code_block_mode == 0)
1313 		&& !check_bit(op->turbo_dec.op_flags,
1314 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1315 		desc->drop_crc = 1;
1316 	desc->max_iter = op->turbo_dec.iter_max * 2;
1317 	desc->offset = desc_offset;
1318 	desc->out_addr_hi = (uint32_t)(
1319 			rte_pktmbuf_iova_offset(output, out_offset) >> 32);
1320 	desc->out_addr_lw = (uint32_t)(
1321 			rte_pktmbuf_iova_offset(output, out_offset));
1322 
1323 	/* Save software context needed for dequeue */
1324 	desc->op_addr = op;
1325 
1326 	/* Set total number of CBs in an op */
1327 	desc->cbs_in_op = cbs_in_op;
1328 
1329 	return 0;
1330 }
1331 
1332 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1333 /* Validates turbo encoder parameters */
1334 static int
1335 validate_enc_op(struct rte_bbdev_enc_op *op)
1336 {
1337 	struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
1338 	struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
1339 	struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
1340 	uint16_t kw, kw_neg, kw_pos;
1341 
1342 	if (turbo_enc->input.length >
1343 			RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1344 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1345 				turbo_enc->input.length,
1346 				RTE_BBDEV_TURBO_MAX_TB_SIZE);
1347 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1348 		return -1;
1349 	}
1350 
1351 	if (op->mempool == NULL) {
1352 		rte_bbdev_log(ERR, "Invalid mempool pointer");
1353 		return -1;
1354 	}
1355 	if (turbo_enc->input.data == NULL) {
1356 		rte_bbdev_log(ERR, "Invalid input pointer");
1357 		return -1;
1358 	}
1359 	if (turbo_enc->output.data == NULL) {
1360 		rte_bbdev_log(ERR, "Invalid output pointer");
1361 		return -1;
1362 	}
1363 	if (turbo_enc->rv_index > 3) {
1364 		rte_bbdev_log(ERR,
1365 				"rv_index (%u) is out of range 0 <= value <= 3",
1366 				turbo_enc->rv_index);
1367 		return -1;
1368 	}
1369 	if (turbo_enc->code_block_mode != 0 &&
1370 			turbo_enc->code_block_mode != 1) {
1371 		rte_bbdev_log(ERR,
1372 				"code_block_mode (%u) is out of range 0 <= value <= 1",
1373 				turbo_enc->code_block_mode);
1374 		return -1;
1375 	}
1376 
1377 	if (turbo_enc->code_block_mode == 0) {
1378 		tb = &turbo_enc->tb_params;
1379 		if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
1380 				|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1381 				&& tb->c_neg > 0) {
1382 			rte_bbdev_log(ERR,
1383 					"k_neg (%u) is out of range %u <= value <= %u",
1384 					tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1385 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1386 			return -1;
1387 		}
1388 		if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
1389 				|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1390 			rte_bbdev_log(ERR,
1391 					"k_pos (%u) is out of range %u <= value <= %u",
1392 					tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1393 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1394 			return -1;
1395 		}
1396 		if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
1397 			rte_bbdev_log(ERR,
1398 					"c_neg (%u) is out of range 0 <= value <= %u",
1399 					tb->c_neg,
1400 					RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
1401 		if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
1402 			rte_bbdev_log(ERR,
1403 					"c (%u) is out of range 1 <= value <= %u",
1404 					tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
1405 			return -1;
1406 		}
1407 		if (tb->cab > tb->c) {
1408 			rte_bbdev_log(ERR,
1409 					"cab (%u) is greater than c (%u)",
1410 					tb->cab, tb->c);
1411 			return -1;
1412 		}
1413 		if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
1414 				&& tb->r < tb->cab) {
1415 			rte_bbdev_log(ERR,
1416 					"ea (%u) is less than %u or it is not even",
1417 					tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1418 			return -1;
1419 		}
1420 		if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
1421 				&& tb->c > tb->cab) {
1422 			rte_bbdev_log(ERR,
1423 					"eb (%u) is less than %u or it is not even",
1424 					tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1425 			return -1;
1426 		}
1427 
1428 		kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
1429 					RTE_BBDEV_TURBO_C_SUBBLOCK);
1430 		if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
1431 			rte_bbdev_log(ERR,
1432 					"ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
1433 					tb->ncb_neg, tb->k_neg, kw_neg);
1434 			return -1;
1435 		}
1436 
1437 		kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
1438 					RTE_BBDEV_TURBO_C_SUBBLOCK);
1439 		if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
1440 			rte_bbdev_log(ERR,
1441 					"ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
1442 					tb->ncb_pos, tb->k_pos, kw_pos);
1443 			return -1;
1444 		}
1445 		if (tb->r > (tb->c - 1)) {
1446 			rte_bbdev_log(ERR,
1447 					"r (%u) is greater than c - 1 (%u)",
1448 					tb->r, tb->c - 1);
1449 			return -1;
1450 		}
1451 	} else {
1452 		cb = &turbo_enc->cb_params;
1453 		if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
1454 				|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1455 			rte_bbdev_log(ERR,
1456 					"k (%u) is out of range %u <= value <= %u",
1457 					cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1458 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1459 			return -1;
1460 		}
1461 
1462 		if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
1463 			rte_bbdev_log(ERR,
1464 					"e (%u) is less than %u or it is not even",
1465 					cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1466 			return -1;
1467 		}
1468 
1469 		kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1470 		if (cb->ncb < cb->k || cb->ncb > kw) {
1471 			rte_bbdev_log(ERR,
1472 					"ncb (%u) is out of range (%u) k <= value <= (%u) kw",
1473 					cb->ncb, cb->k, kw);
1474 			return -1;
1475 		}
1476 	}
1477 
1478 	return 0;
1479 }
1480 #endif
1481 
1482 static inline char *
1483 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
1484 {
1485 	if (unlikely(len > rte_pktmbuf_tailroom(m)))
1486 		return NULL;
1487 
1488 	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
1489 	m->data_len = (uint16_t)(m->data_len + len);
1490 	m_head->pkt_len  = (m_head->pkt_len + len);
1491 	return tail;
1492 }
1493 
1494 static inline int
1495 enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
1496 		uint16_t desc_offset)
1497 {
1498 	union fpga_dma_desc *desc;
1499 	struct rte_mbuf *input;
1500 	struct rte_mbuf *output;
1501 	int ret;
1502 	uint16_t k, e, ncb, ring_offset;
1503 	uint32_t total_left, in_length, out_length, in_offset, out_offset;
1504 
1505 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1506 	/* Validate op structure */
1507 	if (validate_enc_op(op) == -1) {
1508 		rte_bbdev_log(ERR, "Turbo encoder validation failed");
1509 		return -EINVAL;
1510 	}
1511 #endif
1512 
1513 	input = op->turbo_enc.input.data;
1514 	output = op->turbo_enc.output.data;
1515 	in_offset = op->turbo_enc.input.offset;
1516 	out_offset = op->turbo_enc.output.offset;
1517 	total_left = op->turbo_enc.input.length;
1518 	k = op->turbo_enc.cb_params.k;
1519 	e = op->turbo_enc.cb_params.e;
1520 	ncb = op->turbo_enc.cb_params.ncb;
1521 
1522 	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1523 		in_length = ((k - 24) >> 3);
1524 	else
1525 		in_length = k >> 3;
1526 
1527 	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
1528 		out_length = (e + 7) >> 3;
1529 	else
1530 		out_length = (k >> 3) * 3 + 2;
1531 
1532 	mbuf_append(output, output, out_length);
1533 
1534 	/* Offset into the ring */
1535 	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1536 	/* Setup DMA Descriptor */
1537 	desc = q->ring_addr + ring_offset;
1538 
1539 	ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e,
1540 			ncb, in_offset, out_offset, ring_offset, 1);
1541 	if (unlikely(ret < 0))
1542 		return ret;
1543 
1544 	/* Update lengths */
1545 	total_left -= in_length;
1546 	op->turbo_enc.output.length += out_length;
1547 
1548 	if (total_left > 0) {
1549 		rte_bbdev_log(ERR,
1550 			"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1551 				total_left, in_length);
1552 		return -1;
1553 	}
1554 
1555 	return 1;
1556 }
1557 
1558 static inline int
1559 enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
1560 		uint16_t desc_offset, uint8_t cbs_in_op)
1561 {
1562 	union fpga_dma_desc *desc;
1563 	struct rte_mbuf *input, *output_head, *output;
1564 	int ret;
1565 	uint8_t r, c, crc24_bits = 0;
1566 	uint16_t k, e, ncb, ring_offset;
1567 	uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset;
1568 	uint32_t seg_total_left;
1569 	uint16_t current_enqueued_cbs = 0;
1570 
1571 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1572 	/* Validate op structure */
1573 	if (validate_enc_op(op) == -1) {
1574 		rte_bbdev_log(ERR, "Turbo encoder validation failed");
1575 		return -EINVAL;
1576 	}
1577 #endif
1578 
1579 	input = op->turbo_enc.input.data;
1580 	output_head = output = op->turbo_enc.output.data;
1581 	in_offset = op->turbo_enc.input.offset;
1582 	out_offset = op->turbo_enc.output.offset;
1583 	mbuf_total_left = op->turbo_enc.input.length;
1584 
1585 	c = op->turbo_enc.tb_params.c;
1586 	r = op->turbo_enc.tb_params.r;
1587 
1588 	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1589 		crc24_bits = 24;
1590 
1591 	while (mbuf_total_left > 0 && r < c && input != NULL) {
1592 		seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
1593 
1594 		e = (r < op->turbo_enc.tb_params.cab) ?
1595 				op->turbo_enc.tb_params.ea :
1596 				op->turbo_enc.tb_params.eb;
1597 		k = (r < op->turbo_enc.tb_params.c_neg) ?
1598 				op->turbo_enc.tb_params.k_neg :
1599 				op->turbo_enc.tb_params.k_pos;
1600 		ncb = (r < op->turbo_enc.tb_params.c_neg) ?
1601 				op->turbo_enc.tb_params.ncb_neg :
1602 				op->turbo_enc.tb_params.ncb_pos;
1603 
1604 		in_length = ((k - crc24_bits) >> 3);
1605 
1606 		if (check_bit(op->turbo_enc.op_flags,
1607 			RTE_BBDEV_TURBO_RATE_MATCH))
1608 			out_length = (e + 7) >> 3;
1609 		else
1610 			out_length = (k >> 3) * 3 + 2;
1611 
1612 		mbuf_append(output_head, output, out_length);
1613 
1614 		/* Setup DMA Descriptor */
1615 		ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1616 		desc = q->ring_addr + ring_offset;
1617 		ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output,
1618 				k, e, ncb, in_offset, out_offset, ring_offset,
1619 				cbs_in_op);
1620 		if (unlikely(ret < 0))
1621 			return ret;
1622 
1623 		rte_bbdev_log_debug("DMA request desc %p", desc);
1624 
1625 		/* Update lengths */
1626 		op->turbo_enc.output.length += out_length;
1627 		mbuf_total_left -= in_length;
1628 
1629 		/* Update offsets */
1630 		if (seg_total_left == in_length) {
1631 			/* Go to the next mbuf */
1632 			input = input->next;
1633 			output = output->next;
1634 			in_offset = 0;
1635 			out_offset = 0;
1636 		} else {
1637 			in_offset += in_length;
1638 			out_offset += out_length;
1639 		}
1640 
1641 		r++;
1642 		desc_offset++;
1643 		current_enqueued_cbs++;
1644 	}
1645 
1646 	if (mbuf_total_left > 0) {
1647 		rte_bbdev_log(ERR,
1648 				"Some date still left for processing: mbuf_total_left = %u",
1649 				mbuf_total_left);
1650 		return -1;
1651 	}
1652 
1653 	return current_enqueued_cbs;
1654 }
1655 
1656 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1657 /* Validates turbo decoder parameters */
1658 static int
1659 validate_dec_op(struct rte_bbdev_dec_op *op)
1660 {
1661 	struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
1662 	struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
1663 	struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
1664 
1665 	if (op->mempool == NULL) {
1666 		rte_bbdev_log(ERR, "Invalid mempool pointer");
1667 		return -1;
1668 	}
1669 	if (turbo_dec->input.data == NULL) {
1670 		rte_bbdev_log(ERR, "Invalid input pointer");
1671 		return -1;
1672 	}
1673 	if (turbo_dec->hard_output.data == NULL) {
1674 		rte_bbdev_log(ERR, "Invalid hard_output pointer");
1675 		return -1;
1676 	}
1677 	if (turbo_dec->rv_index > 3) {
1678 		rte_bbdev_log(ERR,
1679 				"rv_index (%u) is out of range 0 <= value <= 3",
1680 				turbo_dec->rv_index);
1681 		return -1;
1682 	}
1683 	if (turbo_dec->iter_min < 1) {
1684 		rte_bbdev_log(ERR,
1685 				"iter_min (%u) is less than 1",
1686 				turbo_dec->iter_min);
1687 		return -1;
1688 	}
1689 	if (turbo_dec->iter_max <= 2) {
1690 		rte_bbdev_log(ERR,
1691 				"iter_max (%u) is less than or equal to 2",
1692 				turbo_dec->iter_max);
1693 		return -1;
1694 	}
1695 	if (turbo_dec->iter_min > turbo_dec->iter_max) {
1696 		rte_bbdev_log(ERR,
1697 				"iter_min (%u) is greater than iter_max (%u)",
1698 				turbo_dec->iter_min, turbo_dec->iter_max);
1699 		return -1;
1700 	}
1701 	if (turbo_dec->code_block_mode != 0 &&
1702 			turbo_dec->code_block_mode != 1) {
1703 		rte_bbdev_log(ERR,
1704 				"code_block_mode (%u) is out of range 0 <= value <= 1",
1705 				turbo_dec->code_block_mode);
1706 		return -1;
1707 	}
1708 
1709 	if (turbo_dec->code_block_mode == 0) {
1710 
1711 		if ((turbo_dec->op_flags &
1712 			RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) &&
1713 			!(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) {
1714 			rte_bbdev_log(ERR,
1715 				"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B");
1716 			return -1;
1717 		}
1718 
1719 		tb = &turbo_dec->tb_params;
1720 		if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
1721 				|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1722 				&& tb->c_neg > 0) {
1723 			rte_bbdev_log(ERR,
1724 					"k_neg (%u) is out of range %u <= value <= %u",
1725 					tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1726 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1727 			return -1;
1728 		}
1729 		if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
1730 				|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1731 				&& tb->c > tb->c_neg) {
1732 			rte_bbdev_log(ERR,
1733 					"k_pos (%u) is out of range %u <= value <= %u",
1734 					tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1735 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1736 			return -1;
1737 		}
1738 		if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
1739 			rte_bbdev_log(ERR,
1740 					"c_neg (%u) is out of range 0 <= value <= %u",
1741 					tb->c_neg,
1742 					RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
1743 		if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
1744 			rte_bbdev_log(ERR,
1745 					"c (%u) is out of range 1 <= value <= %u",
1746 					tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
1747 			return -1;
1748 		}
1749 		if (tb->cab > tb->c) {
1750 			rte_bbdev_log(ERR,
1751 					"cab (%u) is greater than c (%u)",
1752 					tb->cab, tb->c);
1753 			return -1;
1754 		}
1755 	} else {
1756 
1757 		if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) {
1758 			rte_bbdev_log(ERR,
1759 					"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode");
1760 			return -1;
1761 		}
1762 
1763 		cb = &turbo_dec->cb_params;
1764 		if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
1765 				|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1766 			rte_bbdev_log(ERR,
1767 					"k (%u) is out of range %u <= value <= %u",
1768 					cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1769 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1770 			return -1;
1771 		}
1772 	}
1773 
1774 	return 0;
1775 }
1776 #endif
1777 
1778 static inline int
1779 enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
1780 		uint16_t desc_offset)
1781 {
1782 	union fpga_dma_desc *desc;
1783 	struct rte_mbuf *input;
1784 	struct rte_mbuf *output;
1785 	int ret;
1786 	uint16_t k, kw, ring_offset;
1787 	uint32_t total_left, in_length, out_length, in_offset, out_offset;
1788 
1789 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1790 	/* Validate op structure */
1791 	if (validate_dec_op(op) == -1) {
1792 		rte_bbdev_log(ERR, "Turbo decoder validation failed");
1793 		return -EINVAL;
1794 	}
1795 #endif
1796 
1797 	input = op->turbo_dec.input.data;
1798 	output = op->turbo_dec.hard_output.data;
1799 	total_left = op->turbo_dec.input.length;
1800 	in_offset = op->turbo_dec.input.offset;
1801 	out_offset = op->turbo_dec.hard_output.offset;
1802 
1803 	k = op->turbo_dec.cb_params.k;
1804 	kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1805 	in_length = kw;
1806 	out_length = k >> 3;
1807 
1808 	mbuf_append(output, output, out_length);
1809 
1810 	/* Setup DMA Descriptor */
1811 	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1812 	desc = q->ring_addr + ring_offset;
1813 	ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
1814 			in_length, k, in_offset, out_offset, ring_offset, 1);
1815 	if (unlikely(ret < 0))
1816 		return ret;
1817 
1818 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1819 	print_dma_dec_desc_debug_info(desc);
1820 #endif
1821 
1822 	/* Update lengths */
1823 	total_left -= in_length;
1824 	op->turbo_dec.hard_output.length += out_length;
1825 
1826 	if (total_left > 0) {
1827 		rte_bbdev_log(ERR,
1828 				"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1829 				total_left, in_length);
1830 		return -1;
1831 	}
1832 
1833 	return 1;
1834 }
1835 
1836 
1837 static inline int
1838 enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
1839 		uint16_t desc_offset, uint8_t cbs_in_op)
1840 {
1841 	union fpga_dma_desc *desc;
1842 	struct rte_mbuf *input, *output_head, *output;
1843 	int ret;
1844 	uint8_t r, c;
1845 	uint16_t k, kw, in_length, out_length, ring_offset;
1846 	uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset;
1847 	uint16_t current_enqueued_cbs = 0;
1848 	uint16_t crc24_overlap = 0;
1849 
1850 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1851 	/* Validate op structure */
1852 	if (validate_dec_op(op) == -1) {
1853 		rte_bbdev_log(ERR, "Turbo decoder validation failed");
1854 		return -EINVAL;
1855 	}
1856 #endif
1857 
1858 	input = op->turbo_dec.input.data;
1859 	output_head = output = op->turbo_dec.hard_output.data;
1860 	mbuf_total_left = op->turbo_dec.input.length;
1861 	in_offset = op->turbo_dec.input.offset;
1862 	out_offset = op->turbo_dec.hard_output.offset;
1863 
1864 	if (!check_bit(op->turbo_dec.op_flags,
1865 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1866 		crc24_overlap = 24;
1867 
1868 	c = op->turbo_dec.tb_params.c;
1869 	r = op->turbo_dec.tb_params.r;
1870 
1871 	while (mbuf_total_left > 0 && r < c && input != NULL) {
1872 		seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
1873 		k = (r < op->turbo_dec.tb_params.c_neg) ?
1874 				op->turbo_dec.tb_params.k_neg :
1875 				op->turbo_dec.tb_params.k_pos;
1876 		kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1877 
1878 		in_length = kw;
1879 		out_length = (k - crc24_overlap) >> 3;
1880 
1881 		mbuf_append(output_head, output, out_length);
1882 
1883 		if (seg_total_left < in_length) {
1884 			rte_bbdev_log(ERR,
1885 					"Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!");
1886 			return -1;
1887 		}
1888 
1889 		/* Setup DMA Descriptor */
1890 		ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1891 		desc = q->ring_addr + ring_offset;
1892 		ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
1893 				in_length, k, in_offset, out_offset,
1894 				ring_offset, cbs_in_op);
1895 		if (unlikely(ret < 0))
1896 			return ret;
1897 
1898 		/* Update lengths */
1899 		ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data,
1900 				(crc24_overlap >> 3));
1901 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1902 		if (ret < 0) {
1903 			rte_bbdev_log(ERR,
1904 					"The length to remove is greater than the length of the last segment");
1905 			return -EINVAL;
1906 		}
1907 #endif
1908 		op->turbo_dec.hard_output.length += out_length;
1909 		mbuf_total_left -= in_length;
1910 
1911 		/* Update offsets */
1912 		if (seg_total_left == in_length) {
1913 			/* Go to the next mbuf */
1914 			input = input->next;
1915 			output = output->next;
1916 			in_offset = 0;
1917 			out_offset = 0;
1918 		} else {
1919 			in_offset += in_length;
1920 			out_offset += out_length;
1921 		}
1922 
1923 		r++;
1924 		desc_offset++;
1925 		current_enqueued_cbs++;
1926 	}
1927 
1928 	if (mbuf_total_left > 0) {
1929 		rte_bbdev_log(ERR,
1930 				"Some date still left for processing: mbuf_total_left = %u",
1931 				mbuf_total_left);
1932 		return -1;
1933 	}
1934 
1935 	return current_enqueued_cbs;
1936 }
1937 
1938 static uint16_t
1939 fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data,
1940 		struct rte_bbdev_enc_op **ops, uint16_t num)
1941 {
1942 	uint8_t cbs_in_op;
1943 	uint16_t i, total_enqueued_cbs = 0;
1944 	int32_t avail;
1945 	int enqueued_cbs;
1946 	struct fpga_queue *q = q_data->queue_private;
1947 	union fpga_dma_desc *desc;
1948 
1949 	/* Check if queue is not full */
1950 	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
1951 			q->head_free_desc))
1952 		return 0;
1953 
1954 	/* Calculates available space */
1955 	avail = (q->head_free_desc > q->tail) ?
1956 		q->head_free_desc - q->tail - 1 :
1957 		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
1958 
1959 	for (i = 0; i < num; ++i) {
1960 		if (ops[i]->turbo_enc.code_block_mode == 0) {
1961 			cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc);
1962 			/* Check if there is available space for further
1963 			 * processing
1964 			 */
1965 			if (unlikely(avail - cbs_in_op < 0))
1966 				break;
1967 			avail -= cbs_in_op;
1968 			enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i],
1969 					total_enqueued_cbs, cbs_in_op);
1970 		} else {
1971 			/* Check if there is available space for further
1972 			 * processing
1973 			 */
1974 			if (unlikely(avail - 1 < 0))
1975 				break;
1976 			avail -= 1;
1977 			enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i],
1978 					total_enqueued_cbs);
1979 		}
1980 
1981 		if (enqueued_cbs < 0)
1982 			break;
1983 
1984 		total_enqueued_cbs += enqueued_cbs;
1985 
1986 		rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
1987 				total_enqueued_cbs, num,
1988 				q->head_free_desc, q->tail);
1989 	}
1990 
1991 	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
1992 	 * only when all previous CBs were already processed.
1993 	 */
1994 	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
1995 			& q->sw_ring_wrap_mask);
1996 	desc->enc_req.irq_en = q->irq_enable;
1997 
1998 	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
1999 
2000 	/* Update stats */
2001 	q_data->queue_stats.enqueued_count += i;
2002 	q_data->queue_stats.enqueue_err_count += num - i;
2003 
2004 	return i;
2005 }
2006 
2007 static uint16_t
2008 fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data,
2009 		struct rte_bbdev_dec_op **ops, uint16_t num)
2010 {
2011 	uint8_t cbs_in_op;
2012 	uint16_t i, total_enqueued_cbs = 0;
2013 	int32_t avail;
2014 	int enqueued_cbs;
2015 	struct fpga_queue *q = q_data->queue_private;
2016 	union fpga_dma_desc *desc;
2017 
2018 	/* Check if queue is not full */
2019 	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
2020 			q->head_free_desc))
2021 		return 0;
2022 
2023 	/* Calculates available space */
2024 	avail = (q->head_free_desc > q->tail) ?
2025 		q->head_free_desc - q->tail - 1 :
2026 		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
2027 
2028 	for (i = 0; i < num; ++i) {
2029 		if (ops[i]->turbo_dec.code_block_mode == 0) {
2030 			cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec);
2031 			/* Check if there is available space for further
2032 			 * processing
2033 			 */
2034 			if (unlikely(avail - cbs_in_op < 0))
2035 				break;
2036 			avail -= cbs_in_op;
2037 			enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i],
2038 					total_enqueued_cbs, cbs_in_op);
2039 		} else {
2040 			/* Check if there is available space for further
2041 			 * processing
2042 			 */
2043 			if (unlikely(avail - 1 < 0))
2044 				break;
2045 			avail -= 1;
2046 			enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i],
2047 					total_enqueued_cbs);
2048 		}
2049 
2050 		if (enqueued_cbs < 0)
2051 			break;
2052 
2053 		total_enqueued_cbs += enqueued_cbs;
2054 
2055 		rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
2056 				total_enqueued_cbs, num,
2057 				q->head_free_desc, q->tail);
2058 	}
2059 
2060 	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
2061 	 * only when all previous CBs were already processed.
2062 	 */
2063 	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
2064 			& q->sw_ring_wrap_mask);
2065 	desc->dec_req.irq_en = q->irq_enable;
2066 
2067 	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
2068 
2069 	/* Update stats */
2070 	q_data->queue_stats.enqueued_count += i;
2071 	q_data->queue_stats.enqueue_err_count += num - i;
2072 
2073 	return i;
2074 }
2075 
2076 static inline int
2077 dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
2078 		uint16_t desc_offset)
2079 {
2080 	union fpga_dma_desc *desc;
2081 	int desc_error = 0;
2082 
2083 	/* Set current desc */
2084 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2085 			& q->sw_ring_wrap_mask);
2086 
2087 	/*check if done */
2088 	if (desc->enc_req.done == 0)
2089 		return -1;
2090 
2091 	/* make sure the response is read atomically */
2092 	rte_smp_rmb();
2093 
2094 	rte_bbdev_log_debug("DMA response desc %p", desc);
2095 
2096 	*op = desc->enc_req.op_addr;
2097 	/* Check the decriptor error field, return 1 on error */
2098 	desc_error = check_desc_error(desc->enc_req.error);
2099 	(*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
2100 
2101 	return 1;
2102 }
2103 
2104 static inline int
2105 dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
2106 		uint16_t desc_offset)
2107 {
2108 	union fpga_dma_desc *desc;
2109 	uint8_t cbs_in_op, cb_idx;
2110 	int desc_error = 0;
2111 	int status = 0;
2112 
2113 	/* Set descriptor */
2114 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2115 			& q->sw_ring_wrap_mask);
2116 
2117 	/* Verify if done bit is set */
2118 	if (desc->enc_req.done == 0)
2119 		return -1;
2120 
2121 	/* Make sure the response is read atomically */
2122 	rte_smp_rmb();
2123 
2124 	/* Verify if done bit in all CBs is set */
2125 	cbs_in_op = desc->enc_req.cbs_in_op;
2126 	for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
2127 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2128 				cb_idx) & q->sw_ring_wrap_mask);
2129 		if (desc->enc_req.done == 0)
2130 			return -1;
2131 	}
2132 
2133 	/* Make sure the response is read atomically */
2134 	rte_smp_rmb();
2135 
2136 	for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
2137 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2138 				cb_idx) & q->sw_ring_wrap_mask);
2139 		/* Check the decriptor error field, return 1 on error */
2140 		desc_error = check_desc_error(desc->enc_req.error);
2141 		status |=  desc_error << RTE_BBDEV_DATA_ERROR;
2142 		rte_bbdev_log_debug("DMA response desc %p", desc);
2143 	}
2144 
2145 	*op = desc->enc_req.op_addr;
2146 	(*op)->status = status;
2147 	return cbs_in_op;
2148 }
2149 
2150 static inline int
2151 dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
2152 		uint16_t desc_offset)
2153 {
2154 	union fpga_dma_desc *desc;
2155 	int desc_error = 0;
2156 	/* Set descriptor */
2157 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2158 			& q->sw_ring_wrap_mask);
2159 
2160 	/* Verify done bit is set */
2161 	if (desc->dec_req.done == 0)
2162 		return -1;
2163 
2164 	/* make sure the response is read atomically */
2165 	rte_smp_rmb();
2166 
2167 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2168 	print_dma_dec_desc_debug_info(desc);
2169 
2170 #endif
2171 
2172 	*op = desc->dec_req.op_addr;
2173 	/* FPGA reports in half-iterations, from 0 to 31. get ceiling */
2174 	(*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1;
2175 	/* crc_pass = 0 when decoder fails */
2176 	(*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
2177 	/* Check the decriptor error field, return 1 on error */
2178 	desc_error = check_desc_error(desc->enc_req.error);
2179 	(*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
2180 	return 1;
2181 }
2182 
2183 static inline int
2184 dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
2185 		uint16_t desc_offset)
2186 {
2187 	union fpga_dma_desc *desc;
2188 	uint8_t cbs_in_op, cb_idx, iter_count = 0;
2189 	int status = 0;
2190 	int  desc_error = 0;
2191 	/* Set descriptor */
2192 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2193 			& q->sw_ring_wrap_mask);
2194 
2195 	/* Verify if done bit is set */
2196 	if (desc->dec_req.done == 0)
2197 		return -1;
2198 
2199 	/* Make sure the response is read atomically */
2200 	rte_smp_rmb();
2201 
2202 	/* Verify if done bit in all CBs is set */
2203 	cbs_in_op = desc->dec_req.cbs_in_op;
2204 	for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
2205 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2206 				cb_idx) & q->sw_ring_wrap_mask);
2207 		if (desc->dec_req.done == 0)
2208 			return -1;
2209 	}
2210 
2211 	/* Make sure the response is read atomically */
2212 	rte_smp_rmb();
2213 
2214 	for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
2215 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2216 				cb_idx) & q->sw_ring_wrap_mask);
2217 		/* get max iter_count for all CBs in op */
2218 		iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter);
2219 		/* crc_pass = 0 when decoder fails, one fails all */
2220 		status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
2221 		/* Check the decriptor error field, return 1 on error */
2222 		desc_error = check_desc_error(desc->enc_req.error);
2223 		status |= desc_error << RTE_BBDEV_DATA_ERROR;
2224 		rte_bbdev_log_debug("DMA response desc %p", desc);
2225 	}
2226 
2227 	*op = desc->dec_req.op_addr;
2228 
2229 	/* FPGA reports in half-iterations, get ceiling */
2230 	(*op)->turbo_dec.iter_count = (iter_count + 2) >> 1;
2231 	(*op)->status = status;
2232 	return cbs_in_op;
2233 }
2234 
2235 static uint16_t
2236 fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data,
2237 		struct rte_bbdev_enc_op **ops, uint16_t num)
2238 {
2239 	struct fpga_queue *q = q_data->queue_private;
2240 	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
2241 	uint16_t i;
2242 	uint16_t dequeued_cbs = 0;
2243 	struct rte_bbdev_enc_op *op;
2244 	int ret;
2245 
2246 	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
2247 		op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
2248 			& q->sw_ring_wrap_mask))->enc_req.op_addr;
2249 		if (op->turbo_enc.code_block_mode == 0)
2250 			ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs);
2251 		else
2252 			ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs);
2253 
2254 		if (ret < 0)
2255 			break;
2256 
2257 		dequeued_cbs += ret;
2258 
2259 		rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
2260 				dequeued_cbs, num, q->head_free_desc, q->tail);
2261 	}
2262 
2263 	/* Update head */
2264 	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
2265 			q->sw_ring_wrap_mask;
2266 
2267 	/* Update stats */
2268 	q_data->queue_stats.dequeued_count += i;
2269 
2270 	return i;
2271 }
2272 
2273 static uint16_t
2274 fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data,
2275 		struct rte_bbdev_dec_op **ops, uint16_t num)
2276 {
2277 	struct fpga_queue *q = q_data->queue_private;
2278 	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
2279 	uint16_t i;
2280 	uint16_t dequeued_cbs = 0;
2281 	struct rte_bbdev_dec_op *op;
2282 	int ret;
2283 
2284 	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
2285 		op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
2286 			& q->sw_ring_wrap_mask))->dec_req.op_addr;
2287 		if (op->turbo_dec.code_block_mode == 0)
2288 			ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs);
2289 		else
2290 			ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs);
2291 
2292 		if (ret < 0)
2293 			break;
2294 
2295 		dequeued_cbs += ret;
2296 
2297 		rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
2298 				dequeued_cbs, num, q->head_free_desc, q->tail);
2299 	}
2300 
2301 	/* Update head */
2302 	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
2303 			q->sw_ring_wrap_mask;
2304 
2305 	/* Update stats */
2306 	q_data->queue_stats.dequeued_count += i;
2307 
2308 	return i;
2309 }
2310 
2311 /* Initialization Function */
2312 static void
2313 fpga_lte_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
2314 {
2315 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
2316 
2317 	dev->dev_ops = &fpga_ops;
2318 	dev->enqueue_enc_ops = fpga_enqueue_enc;
2319 	dev->enqueue_dec_ops = fpga_enqueue_dec;
2320 	dev->dequeue_enc_ops = fpga_dequeue_enc;
2321 	dev->dequeue_dec_ops = fpga_dequeue_dec;
2322 
2323 	((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device =
2324 			!strcmp(drv->driver.name,
2325 					RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME));
2326 	((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base =
2327 			pci_dev->mem_resource[0].addr;
2328 
2329 	rte_bbdev_log_debug(
2330 			"Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
2331 			dev->device->driver->name, dev->data->name,
2332 			(void *)pci_dev->mem_resource[0].addr,
2333 			pci_dev->mem_resource[0].phys_addr);
2334 }
2335 
2336 static int
2337 fpga_lte_fec_probe(struct rte_pci_driver *pci_drv,
2338 	struct rte_pci_device *pci_dev)
2339 {
2340 	struct rte_bbdev *bbdev = NULL;
2341 	char dev_name[RTE_BBDEV_NAME_MAX_LEN];
2342 
2343 	if (pci_dev == NULL) {
2344 		rte_bbdev_log(ERR, "NULL PCI device");
2345 		return -EINVAL;
2346 	}
2347 
2348 	rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
2349 
2350 	/* Allocate memory to be used privately by drivers */
2351 	bbdev = rte_bbdev_allocate(pci_dev->device.name);
2352 	if (bbdev == NULL)
2353 		return -ENODEV;
2354 
2355 	/* allocate device private memory */
2356 	bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
2357 			sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE,
2358 			pci_dev->device.numa_node);
2359 
2360 	if (bbdev->data->dev_private == NULL) {
2361 		rte_bbdev_log(CRIT,
2362 				"Allocate of %zu bytes for device \"%s\" failed",
2363 				sizeof(struct fpga_lte_fec_device), dev_name);
2364 				rte_bbdev_release(bbdev);
2365 			return -ENOMEM;
2366 	}
2367 
2368 	/* Fill HW specific part of device structure */
2369 	bbdev->device = &pci_dev->device;
2370 	bbdev->intr_handle = &pci_dev->intr_handle;
2371 	bbdev->data->socket_id = pci_dev->device.numa_node;
2372 
2373 	/* Invoke FEC FPGA device initialization function */
2374 	fpga_lte_fec_init(bbdev, pci_drv);
2375 
2376 	rte_bbdev_log_debug("bbdev id = %u [%s]",
2377 			bbdev->data->dev_id, dev_name);
2378 
2379 	struct fpga_lte_fec_device *d = bbdev->data->dev_private;
2380 	uint32_t version_id = fpga_reg_read_32(d->mmio_base,
2381 			FPGA_LTE_FEC_VERSION_ID);
2382 	rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
2383 		((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
2384 
2385 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2386 	if (!strcmp(bbdev->device->driver->name,
2387 			RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)))
2388 		print_static_reg_debug_info(d->mmio_base);
2389 #endif
2390 	return 0;
2391 }
2392 
2393 static int
2394 fpga_lte_fec_remove(struct rte_pci_device *pci_dev)
2395 {
2396 	struct rte_bbdev *bbdev;
2397 	int ret;
2398 	uint8_t dev_id;
2399 
2400 	if (pci_dev == NULL)
2401 		return -EINVAL;
2402 
2403 	/* Find device */
2404 	bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
2405 	if (bbdev == NULL) {
2406 		rte_bbdev_log(CRIT,
2407 				"Couldn't find HW dev \"%s\" to uninitialise it",
2408 				pci_dev->device.name);
2409 		return -ENODEV;
2410 	}
2411 	dev_id = bbdev->data->dev_id;
2412 
2413 	/* free device private memory before close */
2414 	rte_free(bbdev->data->dev_private);
2415 
2416 	/* Close device */
2417 	ret = rte_bbdev_close(dev_id);
2418 	if (ret < 0)
2419 		rte_bbdev_log(ERR,
2420 				"Device %i failed to close during uninit: %i",
2421 				dev_id, ret);
2422 
2423 	/* release bbdev from library */
2424 	ret = rte_bbdev_release(bbdev);
2425 	if (ret)
2426 		rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
2427 				ret);
2428 
2429 	rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
2430 
2431 	return 0;
2432 }
2433 
2434 static inline void
2435 set_default_fpga_conf(struct fpga_lte_fec_conf *def_conf)
2436 {
2437 	/* clear default configuration before initialization */
2438 	memset(def_conf, 0, sizeof(struct fpga_lte_fec_conf));
2439 	/* Set pf mode to true */
2440 	def_conf->pf_mode_en = true;
2441 
2442 	/* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
2443 	def_conf->ul_bandwidth = 3;
2444 	def_conf->dl_bandwidth = 3;
2445 
2446 	/* Set Load Balance Factor to 64 */
2447 	def_conf->dl_load_balance = 64;
2448 	def_conf->ul_load_balance = 64;
2449 }
2450 
2451 /* Initial configuration of FPGA LTE FEC device */
2452 int
2453 fpga_lte_fec_configure(const char *dev_name,
2454 		const struct fpga_lte_fec_conf *conf)
2455 {
2456 	uint32_t payload_32, address;
2457 	uint16_t payload_16;
2458 	uint8_t payload_8;
2459 	uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
2460 	struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
2461 	struct fpga_lte_fec_conf def_conf;
2462 
2463 	if (bbdev == NULL) {
2464 		rte_bbdev_log(ERR,
2465 				"Invalid dev_name (%s), or device is not yet initialised",
2466 				dev_name);
2467 		return -ENODEV;
2468 	}
2469 
2470 	struct fpga_lte_fec_device *d = bbdev->data->dev_private;
2471 
2472 	if (conf == NULL) {
2473 		rte_bbdev_log(ERR,
2474 				"FPGA Configuration was not provided. Default configuration will be loaded.");
2475 		set_default_fpga_conf(&def_conf);
2476 		conf = &def_conf;
2477 	}
2478 
2479 	/*
2480 	 * Configure UL:DL ratio.
2481 	 * [7:0]: UL weight
2482 	 * [15:8]: DL weight
2483 	 */
2484 	payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
2485 	address = FPGA_LTE_FEC_CONFIGURATION;
2486 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2487 
2488 	/* Clear all queues registers */
2489 	payload_32 = FPGA_INVALID_HW_QUEUE_ID;
2490 	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
2491 		address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
2492 		fpga_reg_write_32(d->mmio_base, address, payload_32);
2493 	}
2494 
2495 	/*
2496 	 * If PF mode is enabled allocate all queues for PF only.
2497 	 *
2498 	 * For VF mode each VF can have different number of UL and DL queues.
2499 	 * Total number of queues to configure cannot exceed FPGA
2500 	 * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
2501 	 * Queues mapping is done according to configuration:
2502 	 *
2503 	 * UL queues:
2504 	 * |                Q_ID              | VF_ID |
2505 	 * |                 0                |   0   |
2506 	 * |                ...               |   0   |
2507 	 * | conf->vf_dl_queues_number[0] - 1 |   0   |
2508 	 * | conf->vf_dl_queues_number[0]     |   1   |
2509 	 * |                ...               |   1   |
2510 	 * | conf->vf_dl_queues_number[1] - 1 |   1   |
2511 	 * |                ...               |  ...  |
2512 	 * | conf->vf_dl_queues_number[7] - 1 |   7   |
2513 	 *
2514 	 * DL queues:
2515 	 * |                Q_ID              | VF_ID |
2516 	 * |                 32               |   0   |
2517 	 * |                ...               |   0   |
2518 	 * | conf->vf_ul_queues_number[0] - 1 |   0   |
2519 	 * | conf->vf_ul_queues_number[0]     |   1   |
2520 	 * |                ...               |   1   |
2521 	 * | conf->vf_ul_queues_number[1] - 1 |   1   |
2522 	 * |                ...               |  ...  |
2523 	 * | conf->vf_ul_queues_number[7] - 1 |   7   |
2524 	 *
2525 	 * Example of configuration:
2526 	 * conf->vf_ul_queues_number[0] = 4;  -> 4 UL queues for VF0
2527 	 * conf->vf_dl_queues_number[0] = 4;  -> 4 DL queues for VF0
2528 	 * conf->vf_ul_queues_number[1] = 2;  -> 2 UL queues for VF1
2529 	 * conf->vf_dl_queues_number[1] = 2;  -> 2 DL queues for VF1
2530 	 *
2531 	 * UL:
2532 	 * | Q_ID | VF_ID |
2533 	 * |   0  |   0   |
2534 	 * |   1  |   0   |
2535 	 * |   2  |   0   |
2536 	 * |   3  |   0   |
2537 	 * |   4  |   1   |
2538 	 * |   5  |   1   |
2539 	 *
2540 	 * DL:
2541 	 * | Q_ID | VF_ID |
2542 	 * |  32  |   0   |
2543 	 * |  33  |   0   |
2544 	 * |  34  |   0   |
2545 	 * |  35  |   0   |
2546 	 * |  36  |   1   |
2547 	 * |  37  |   1   |
2548 	 */
2549 	if (conf->pf_mode_en) {
2550 		payload_32 = 0x1;
2551 		for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
2552 			address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
2553 			fpga_reg_write_32(d->mmio_base, address, payload_32);
2554 		}
2555 	} else {
2556 		/* Calculate total number of UL and DL queues to configure */
2557 		total_ul_q_id = total_dl_q_id = 0;
2558 		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2559 			total_ul_q_id += conf->vf_ul_queues_number[vf_id];
2560 			total_dl_q_id += conf->vf_dl_queues_number[vf_id];
2561 		}
2562 		total_q_id = total_dl_q_id + total_ul_q_id;
2563 		/*
2564 		 * Check if total number of queues to configure does not exceed
2565 		 * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
2566 		 */
2567 		if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
2568 			(total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
2569 			(total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
2570 			rte_bbdev_log(ERR,
2571 					"FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
2572 					total_ul_q_id, total_dl_q_id,
2573 					FPGA_TOTAL_NUM_QUEUES);
2574 			return -EINVAL;
2575 		}
2576 		total_ul_q_id = 0;
2577 		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2578 			for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
2579 					++q_id, ++total_ul_q_id) {
2580 				address = (total_ul_q_id << 2) +
2581 						FPGA_LTE_FEC_QUEUE_MAP;
2582 				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
2583 				fpga_reg_write_32(d->mmio_base, address,
2584 						payload_32);
2585 			}
2586 		}
2587 		total_dl_q_id = 0;
2588 		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2589 			for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
2590 					++q_id, ++total_dl_q_id) {
2591 				address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
2592 						<< 2) + FPGA_LTE_FEC_QUEUE_MAP;
2593 				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
2594 				fpga_reg_write_32(d->mmio_base, address,
2595 						payload_32);
2596 			}
2597 		}
2598 	}
2599 
2600 	/* Setting Load Balance Factor */
2601 	payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
2602 	address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR;
2603 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2604 
2605 	/* Setting length of ring descriptor entry */
2606 	payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
2607 	address = FPGA_LTE_FEC_RING_DESC_LEN;
2608 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2609 
2610 	/* Setting FLR timeout value */
2611 	payload_16 = conf->flr_time_out;
2612 	address = FPGA_LTE_FEC_FLR_TIME_OUT;
2613 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2614 
2615 	/* Queue PF/VF mapping table is ready */
2616 	payload_8 = 0x1;
2617 	address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
2618 	fpga_reg_write_8(d->mmio_base, address, payload_8);
2619 
2620 	rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s",
2621 			dev_name);
2622 
2623 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2624 	print_static_reg_debug_info(d->mmio_base);
2625 #endif
2626 	return 0;
2627 }
2628 
2629 /* FPGA LTE FEC PCI PF address map */
2630 static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = {
2631 	{
2632 		RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
2633 				FPGA_LTE_FEC_PF_DEVICE_ID)
2634 	},
2635 	{.device_id = 0},
2636 };
2637 
2638 static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = {
2639 	.probe = fpga_lte_fec_probe,
2640 	.remove = fpga_lte_fec_remove,
2641 	.id_table = pci_id_fpga_lte_fec_pf_map,
2642 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
2643 };
2644 
2645 /* FPGA LTE FEC PCI VF address map */
2646 static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = {
2647 	{
2648 		RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
2649 				FPGA_LTE_FEC_VF_DEVICE_ID)
2650 	},
2651 	{.device_id = 0},
2652 };
2653 
2654 static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = {
2655 	.probe = fpga_lte_fec_probe,
2656 	.remove = fpga_lte_fec_remove,
2657 	.id_table = pci_id_fpga_lte_fec_vf_map,
2658 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
2659 };
2660 
2661 
2662 RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver);
2663 RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME,
2664 		pci_id_fpga_lte_fec_pf_map);
2665 RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver);
2666 RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME,
2667 		pci_id_fpga_lte_fec_vf_map);
2668