xref: /dpdk/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c (revision 02d36ef6a9528e0f4a3403956e66bcea5fadbf8c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include <unistd.h>
6 
7 #include <rte_common.h>
8 #include <rte_log.h>
9 #include <dev_driver.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12 #include <rte_errno.h>
13 #include <rte_pci.h>
14 #include <bus_pci_driver.h>
15 #include <rte_byteorder.h>
16 #ifdef RTE_BBDEV_OFFLOAD_COST
17 #include <rte_cycles.h>
18 #endif
19 
20 #include <rte_bbdev.h>
21 #include <rte_bbdev_pmd.h>
22 
23 #include "fpga_lte_fec.h"
24 
25 #ifdef RTE_LIBRTE_BBDEV_DEBUG
26 RTE_LOG_REGISTER_DEFAULT(fpga_lte_fec_logtype, DEBUG);
27 #else
28 RTE_LOG_REGISTER_DEFAULT(fpga_lte_fec_logtype, NOTICE);
29 #endif
30 
31 /* Helper macro for logging */
32 #define rte_bbdev_log(level, fmt, ...) \
33 	rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \
34 		##__VA_ARGS__)
35 
36 #ifdef RTE_LIBRTE_BBDEV_DEBUG
37 #define rte_bbdev_log_debug(fmt, ...) \
38 		rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \
39 		##__VA_ARGS__)
40 #else
41 #define rte_bbdev_log_debug(fmt, ...)
42 #endif
43 
44 /* FPGA LTE FEC driver names */
45 #define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf
46 #define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf
47 
48 /* FPGA LTE FEC PCI vendor & device IDs */
49 #define FPGA_LTE_FEC_VENDOR_ID (0x1172)
50 #define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052)
51 #define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050)
52 
53 /* Align DMA descriptors to 256 bytes - cache-aligned */
54 #define FPGA_RING_DESC_ENTRY_LENGTH (8)
55 /* Ring size is in 256 bits (32 bytes) units */
56 #define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
57 /* Maximum size of queue */
58 #define FPGA_RING_MAX_SIZE (1024)
59 #define FPGA_FLR_TIMEOUT_UNIT (16.384)
60 
61 #define FPGA_NUM_UL_QUEUES (32)
62 #define FPGA_NUM_DL_QUEUES (32)
63 #define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
64 #define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
65 
66 #define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
67 
68 #define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
69 #define FPGA_TIMEOUT_CHECK_INTERVAL (5)
70 
71 /* FPGA LTE FEC Register mapping on BAR0 */
72 enum {
73 	FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */
74 	FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
75 	FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
76 	FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
77 	FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
78 	FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
79 	FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
80 	FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
81 	FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */
82 	FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */
83 	FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */
84 	FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */
85 	FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */
86 	FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */
87 	FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */
88 	FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */
89 	FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
90 	FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200  /* len: 2048B */
91 };
92 
93 /* FPGA LTE FEC Ring Control Registers */
94 enum {
95 	FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008,
96 	FPGA_LTE_FEC_RING_SIZE = 0x00000010,
97 	FPGA_LTE_FEC_RING_MISC = 0x00000014,
98 	FPGA_LTE_FEC_RING_ENABLE = 0x00000015,
99 	FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
100 	FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018,
101 	FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C
102 };
103 
104 /* FPGA LTE FEC DESCRIPTOR ERROR */
105 enum {
106 	DESC_ERR_NO_ERR = 0x0,
107 	DESC_ERR_K_OUT_OF_RANGE = 0x1,
108 	DESC_ERR_K_NOT_NORMAL = 0x2,
109 	DESC_ERR_KPAI_NOT_NORMAL = 0x3,
110 	DESC_ERR_DESC_OFFSET_ERR = 0x4,
111 	DESC_ERR_DESC_READ_FAIL = 0x8,
112 	DESC_ERR_DESC_READ_TIMEOUT = 0x9,
113 	DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
114 	DESC_ERR_CB_READ_FAIL = 0xC,
115 	DESC_ERR_CB_READ_TIMEOUT = 0xD,
116 	DESC_ERR_CB_READ_TLP_POISONED = 0xE
117 };
118 
119 /* FPGA LTE FEC DMA Encoding Request Descriptor */
120 struct __rte_packed fpga_dma_enc_desc {
121 	uint32_t done:1,
122 		rsrvd0:11,
123 		error:4,
124 		rsrvd1:16;
125 	uint32_t ncb:16,
126 		rsrvd2:14,
127 		rv:2;
128 	uint32_t bypass_rm:1,
129 		irq_en:1,
130 		crc_en:1,
131 		rsrvd3:13,
132 		offset:10,
133 		rsrvd4:6;
134 	uint16_t e;
135 	uint16_t k;
136 	uint32_t out_addr_lw;
137 	uint32_t out_addr_hi;
138 	uint32_t in_addr_lw;
139 	uint32_t in_addr_hi;
140 
141 	union {
142 		struct {
143 			/* Virtual addresses used to retrieve SW context info */
144 			void *op_addr;
145 			/* Stores information about total number of Code Blocks
146 			 * in currently processed Transport Block
147 			 */
148 			uint64_t cbs_in_op;
149 		};
150 
151 		uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
152 					(FPGA_RING_DESC_ENTRY_LENGTH - 1)];
153 	};
154 };
155 
156 /* FPGA LTE FEC DMA Decoding Request Descriptor */
157 struct __rte_packed fpga_dma_dec_desc {
158 	uint32_t done:1,
159 		iter:5,
160 		rsrvd0:2,
161 		crc_pass:1,
162 		rsrvd1:3,
163 		error:4,
164 		crc_type:1,
165 		rsrvd2:7,
166 		max_iter:5,
167 		rsrvd3:3;
168 	uint32_t rsrvd4;
169 	uint32_t bypass_rm:1,
170 		irq_en:1,
171 		drop_crc:1,
172 		rsrvd5:13,
173 		offset:10,
174 		rsrvd6:6;
175 	uint16_t k;
176 	uint16_t in_len;
177 	uint32_t out_addr_lw;
178 	uint32_t out_addr_hi;
179 	uint32_t in_addr_lw;
180 	uint32_t in_addr_hi;
181 
182 	union {
183 		struct {
184 			/* Virtual addresses used to retrieve SW context info */
185 			void *op_addr;
186 			/* Stores information about total number of Code Blocks
187 			 * in currently processed Transport Block
188 			 */
189 			uint8_t cbs_in_op;
190 		};
191 
192 		uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
193 	};
194 };
195 
196 /* FPGA LTE DMA Descriptor */
197 union fpga_dma_desc {
198 	struct fpga_dma_enc_desc enc_req;
199 	struct fpga_dma_dec_desc dec_req;
200 };
201 
202 /* FPGA LTE FEC Ring Control Register */
203 struct __rte_packed fpga_ring_ctrl_reg {
204 	uint64_t ring_base_addr;
205 	uint64_t ring_head_addr;
206 	uint16_t ring_size:11;
207 	uint16_t rsrvd0;
208 	union { /* Miscellaneous register */
209 		uint8_t misc;
210 		uint8_t max_ul_dec:5,
211 			max_ul_dec_en:1,
212 			rsrvd1:2;
213 	};
214 	uint8_t enable;
215 	uint8_t flush_queue_en;
216 	uint8_t rsrvd2;
217 	uint16_t shadow_tail;
218 	uint16_t rsrvd3;
219 	uint16_t head_point;
220 	uint16_t rsrvd4;
221 
222 };
223 
224 /* Private data structure for each FPGA FEC device */
225 struct fpga_lte_fec_device {
226 	/** Base address of MMIO registers (BAR0) */
227 	void *mmio_base;
228 	/** Base address of memory for sw rings */
229 	void *sw_rings;
230 	/** Physical address of sw_rings */
231 	rte_iova_t sw_rings_phys;
232 	/** Number of bytes available for each queue in device. */
233 	uint32_t sw_ring_size;
234 	/** Max number of entries available for each queue in device */
235 	uint32_t sw_ring_max_depth;
236 	/** Base address of response tail pointer buffer */
237 	uint32_t *tail_ptrs;
238 	/** Physical address of tail pointers */
239 	rte_iova_t tail_ptr_phys;
240 	/** Queues flush completion flag */
241 	uint64_t *flush_queue_status;
242 	/* Bitmap capturing which Queues are bound to the PF/VF */
243 	uint64_t q_bound_bit_map;
244 	/* Bitmap capturing which Queues have already been assigned */
245 	uint64_t q_assigned_bit_map;
246 	/** True if this is a PF FPGA FEC device */
247 	bool pf_device;
248 };
249 
250 /* Structure associated with each queue. */
251 struct __rte_cache_aligned fpga_queue {
252 	struct fpga_ring_ctrl_reg ring_ctrl_reg;  /* Ring Control Register */
253 	union fpga_dma_desc *ring_addr;  /* Virtual address of software ring */
254 	uint64_t *ring_head_addr;  /* Virtual address of completion_head */
255 	uint64_t shadow_completion_head; /* Shadow completion head value */
256 	uint16_t head_free_desc;  /* Ring head */
257 	uint16_t tail;  /* Ring tail */
258 	/* Mask used to wrap enqueued descriptors on the sw ring */
259 	uint32_t sw_ring_wrap_mask;
260 	uint32_t irq_enable;  /* Enable ops dequeue interrupts if set to 1 */
261 	uint8_t q_idx;  /* Queue index */
262 	struct fpga_lte_fec_device *d;
263 	/* MMIO register of shadow_tail used to enqueue descriptors */
264 	void *shadow_tail_addr;
265 };
266 
267 /* Write to 16 bit MMIO register address */
268 static inline void
269 mmio_write_16(void *addr, uint16_t value)
270 {
271 	*((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
272 }
273 
274 /* Write to 32 bit MMIO register address */
275 static inline void
276 mmio_write_32(void *addr, uint32_t value)
277 {
278 	*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
279 }
280 
281 /* Write to 64 bit MMIO register address */
282 static inline void
283 mmio_write_64(void *addr, uint64_t value)
284 {
285 	*((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
286 }
287 
288 /* Write a 8 bit register of a FPGA LTE FEC device */
289 static inline void
290 fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
291 {
292 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
293 	*((volatile uint8_t *)(reg_addr)) = payload;
294 }
295 
296 /* Write a 16 bit register of a FPGA LTE FEC device */
297 static inline void
298 fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
299 {
300 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
301 	mmio_write_16(reg_addr, payload);
302 }
303 
304 /* Write a 32 bit register of a FPGA LTE FEC device */
305 static inline void
306 fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
307 {
308 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
309 	mmio_write_32(reg_addr, payload);
310 }
311 
312 /* Write a 64 bit register of a FPGA LTE FEC device */
313 static inline void
314 fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
315 {
316 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
317 	mmio_write_64(reg_addr, payload);
318 }
319 
320 /* Write a ring control register of a FPGA LTE FEC device */
321 static inline void
322 fpga_ring_reg_write(void *mmio_base, uint32_t offset,
323 		struct fpga_ring_ctrl_reg payload)
324 {
325 	fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
326 	fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR,
327 			payload.ring_head_addr);
328 	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE,
329 			payload.ring_size);
330 	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
331 			payload.head_point);
332 	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN,
333 			payload.flush_queue_en);
334 	fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
335 			payload.shadow_tail);
336 	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC,
337 			payload.misc);
338 	fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
339 			payload.enable);
340 }
341 
342 /* Read a register of FPGA LTE FEC device */
343 static uint32_t
344 fpga_reg_read_32(void *mmio_base, uint32_t offset)
345 {
346 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
347 	uint32_t ret = *((volatile uint32_t *)(reg_addr));
348 	return rte_le_to_cpu_32(ret);
349 }
350 
351 #ifdef RTE_LIBRTE_BBDEV_DEBUG
352 /* Read a register of FPGA LTE FEC device */
353 static uint8_t
354 fpga_reg_read_8(void *mmio_base, uint32_t offset)
355 {
356 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
357 	return *((volatile uint8_t *)(reg_addr));
358 }
359 
360 /* Read a register of FPGA LTE FEC device */
361 static uint16_t
362 fpga_reg_read_16(void *mmio_base, uint32_t offset)
363 {
364 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
365 	uint16_t ret = *((volatile uint16_t *)(reg_addr));
366 	return rte_le_to_cpu_16(ret);
367 }
368 
369 /* Read a register of FPGA LTE FEC device */
370 static uint64_t
371 fpga_reg_read_64(void *mmio_base, uint32_t offset)
372 {
373 	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
374 	uint64_t ret = *((volatile uint64_t *)(reg_addr));
375 	return rte_le_to_cpu_64(ret);
376 }
377 
378 /* Read Ring Control Register of FPGA LTE FEC device */
379 static inline void
380 print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
381 {
382 	rte_bbdev_log_debug(
383 		"FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
384 		PRIx32, mmio_base, offset);
385 	rte_bbdev_log_debug(
386 		"RING_BASE_ADDR = 0x%016"PRIx64,
387 		fpga_reg_read_64(mmio_base, offset));
388 	rte_bbdev_log_debug(
389 		"RING_HEAD_ADDR = 0x%016"PRIx64,
390 		fpga_reg_read_64(mmio_base, offset +
391 				FPGA_LTE_FEC_RING_HEAD_ADDR));
392 	rte_bbdev_log_debug(
393 		"RING_SIZE = 0x%04"PRIx16,
394 		fpga_reg_read_16(mmio_base, offset +
395 				FPGA_LTE_FEC_RING_SIZE));
396 	rte_bbdev_log_debug(
397 		"RING_MISC = 0x%02"PRIx8,
398 		fpga_reg_read_8(mmio_base, offset +
399 				FPGA_LTE_FEC_RING_MISC));
400 	rte_bbdev_log_debug(
401 		"RING_ENABLE = 0x%02"PRIx8,
402 		fpga_reg_read_8(mmio_base, offset +
403 				FPGA_LTE_FEC_RING_ENABLE));
404 	rte_bbdev_log_debug(
405 		"RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
406 		fpga_reg_read_8(mmio_base, offset +
407 				FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN));
408 	rte_bbdev_log_debug(
409 		"RING_SHADOW_TAIL = 0x%04"PRIx16,
410 		fpga_reg_read_16(mmio_base, offset +
411 				FPGA_LTE_FEC_RING_SHADOW_TAIL));
412 	rte_bbdev_log_debug(
413 		"RING_HEAD_POINT = 0x%04"PRIx16,
414 		fpga_reg_read_16(mmio_base, offset +
415 				FPGA_LTE_FEC_RING_HEAD_POINT));
416 }
417 
418 /* Read Static Register of FPGA LTE FEC device */
419 static inline void
420 print_static_reg_debug_info(void *mmio_base)
421 {
422 	uint16_t config = fpga_reg_read_16(mmio_base,
423 			FPGA_LTE_FEC_CONFIGURATION);
424 	uint8_t qmap_done = fpga_reg_read_8(mmio_base,
425 			FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE);
426 	uint16_t lb_factor = fpga_reg_read_16(mmio_base,
427 			FPGA_LTE_FEC_LOAD_BALANCE_FACTOR);
428 	uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
429 			FPGA_LTE_FEC_RING_DESC_LEN);
430 	uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
431 			FPGA_LTE_FEC_FLR_TIME_OUT);
432 
433 	rte_bbdev_log_debug("UL.DL Weights = %u.%u",
434 			((uint8_t)config), ((uint8_t)(config >> 8)));
435 	rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
436 			((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
437 	rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
438 			(qmap_done > 0) ? "READY" : "NOT-READY");
439 	rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
440 			ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
441 	rte_bbdev_log_debug("FLR Timeout = %f usec",
442 			(float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
443 }
444 
445 /* Print decode DMA Descriptor of FPGA LTE FEC device */
446 static void
447 print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
448 {
449 	rte_bbdev_log_debug("DMA response desc %p\n"
450 		"\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")"
451 		" | error (%"PRIu32") | crc_type(%"PRIu32")\n"
452 		"\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | "
453 		"irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n"
454 		"\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n"
455 		"\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | "
456 		"out_add (0x%08"PRIx32"%08"PRIx32")",
457 		desc,
458 		(uint32_t)desc->dec_req.done,
459 		(uint32_t)desc->dec_req.iter,
460 		(uint32_t)desc->dec_req.crc_pass,
461 		(uint32_t)desc->dec_req.error,
462 		(uint32_t)desc->dec_req.crc_type,
463 		(uint32_t)desc->dec_req.max_iter,
464 		(uint32_t)desc->dec_req.bypass_rm,
465 		(uint32_t)desc->dec_req.irq_en,
466 		(uint32_t)desc->dec_req.drop_crc,
467 		(uint32_t)desc->dec_req.offset,
468 		(uint32_t)desc->dec_req.k,
469 		(uint16_t)desc->dec_req.in_len,
470 		desc->dec_req.op_addr,
471 		(uint32_t)desc->dec_req.cbs_in_op,
472 		(uint32_t)desc->dec_req.in_addr_hi,
473 		(uint32_t)desc->dec_req.in_addr_lw,
474 		(uint32_t)desc->dec_req.out_addr_hi,
475 		(uint32_t)desc->dec_req.out_addr_lw);
476 }
477 #endif
478 
479 static int
480 fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
481 {
482 	/* Number of queues bound to a PF/VF */
483 	uint32_t hw_q_num = 0;
484 	uint32_t ring_size, payload, address, q_id, offset;
485 	rte_iova_t phys_addr;
486 	struct fpga_ring_ctrl_reg ring_reg;
487 	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
488 
489 	address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
490 	if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
491 		rte_bbdev_log(ERR,
492 				"Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
493 				dev->data->name);
494 		return -EPERM;
495 	}
496 
497 	/* Clear queue registers structure */
498 	memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
499 
500 	/* Scan queue map.
501 	 * If a queue is valid and mapped to a calling PF/VF the read value is
502 	 * replaced with a queue ID and if it's not then
503 	 * FPGA_INVALID_HW_QUEUE_ID is returned.
504 	 */
505 	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
506 		uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
507 				FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
508 
509 		rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
510 				dev->device->name, q_id, hw_q_id);
511 
512 		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
513 			fpga_dev->q_bound_bit_map |= (1ULL << q_id);
514 			/* Clear queue register of found queue */
515 			offset = FPGA_LTE_FEC_RING_CTRL_REGS +
516 				(sizeof(struct fpga_ring_ctrl_reg) * q_id);
517 			fpga_ring_reg_write(fpga_dev->mmio_base,
518 					offset, ring_reg);
519 			++hw_q_num;
520 		}
521 	}
522 	if (hw_q_num == 0) {
523 		rte_bbdev_log(ERR,
524 			"No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
525 		return -ENODEV;
526 	}
527 
528 	if (num_queues > hw_q_num) {
529 		rte_bbdev_log(ERR,
530 			"Not enough queues for device %s! Requested: %u, available: %u",
531 			dev->device->name, num_queues, hw_q_num);
532 		return -EINVAL;
533 	}
534 
535 	ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
536 
537 	/* Enforce 32 byte alignment */
538 	RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
539 
540 	/* Allocate memory for SW descriptor rings */
541 	fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
542 			num_queues * ring_size, RTE_CACHE_LINE_SIZE,
543 			socket_id);
544 	if (fpga_dev->sw_rings == NULL) {
545 		rte_bbdev_log(ERR,
546 				"Failed to allocate memory for %s:%u sw_rings",
547 				dev->device->driver->name, dev->data->dev_id);
548 		return -ENOMEM;
549 	}
550 
551 	fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
552 	fpga_dev->sw_ring_size = ring_size;
553 	fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
554 
555 	/* Allocate memory for ring flush status */
556 	fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
557 			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
558 	if (fpga_dev->flush_queue_status == NULL) {
559 		rte_bbdev_log(ERR,
560 				"Failed to allocate memory for %s:%u flush_queue_status",
561 				dev->device->driver->name, dev->data->dev_id);
562 		return -ENOMEM;
563 	}
564 
565 	/* Set the flush status address registers */
566 	phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
567 
568 	address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW;
569 	payload = (uint32_t)(phys_addr);
570 	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
571 
572 	address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI;
573 	payload = (uint32_t)(phys_addr >> 32);
574 	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
575 
576 	return 0;
577 }
578 
579 static int
580 fpga_dev_close(struct rte_bbdev *dev)
581 {
582 	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
583 
584 	rte_free(fpga_dev->sw_rings);
585 	rte_free(fpga_dev->flush_queue_status);
586 
587 	return 0;
588 }
589 
590 static void
591 fpga_dev_info_get(struct rte_bbdev *dev,
592 		struct rte_bbdev_driver_info *dev_info)
593 {
594 	struct fpga_lte_fec_device *d = dev->data->dev_private;
595 	uint32_t q_id = 0;
596 
597 	/* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set
598 	 * to temporary values as they are required by test application while
599 	 * validation phase.
600 	 */
601 	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
602 		{
603 			.type = RTE_BBDEV_OP_TURBO_DEC,
604 			.cap.turbo_dec = {
605 				.capability_flags =
606 					RTE_BBDEV_TURBO_CRC_TYPE_24B |
607 					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
608 					RTE_BBDEV_TURBO_DEC_INTERRUPTS |
609 					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
610 					RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP,
611 				.max_llr_modulus = INT8_MAX,
612 				.num_buffers_src =
613 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
614 				.num_buffers_hard_out =
615 					RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
616 				.num_buffers_soft_out = 0
617 			}
618 		},
619 		{
620 			.type = RTE_BBDEV_OP_TURBO_ENC,
621 			.cap.turbo_enc = {
622 				.capability_flags =
623 					RTE_BBDEV_TURBO_CRC_24B_ATTACH |
624 					RTE_BBDEV_TURBO_RATE_MATCH |
625 					RTE_BBDEV_TURBO_ENC_INTERRUPTS,
626 				.num_buffers_src =
627 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
628 				.num_buffers_dst =
629 						RTE_BBDEV_TURBO_MAX_CODE_BLOCKS
630 			}
631 		},
632 		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
633 	};
634 
635 	static struct rte_bbdev_queue_conf default_queue_conf;
636 	default_queue_conf.socket = dev->data->socket_id;
637 	default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
638 
639 
640 	dev_info->driver_name = dev->device->driver->name;
641 	dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
642 	dev_info->hardware_accelerated = true;
643 	dev_info->min_alignment = 64;
644 	dev_info->default_queue_conf = default_queue_conf;
645 	dev_info->capabilities = bbdev_capabilities;
646 	dev_info->cpu_flag_reqs = NULL;
647 	dev_info->data_endianness = RTE_LITTLE_ENDIAN;
648 	dev_info->device_status = RTE_BBDEV_DEV_NOT_SUPPORTED;
649 
650 	/* Calculates number of queues assigned to device */
651 	dev_info->max_num_queues = 0;
652 	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
653 		uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
654 				FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
655 		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
656 			dev_info->max_num_queues++;
657 	}
658 	/* Expose number of queue per operation type */
659 	dev_info->num_queues[RTE_BBDEV_OP_NONE] = 0;
660 	dev_info->num_queues[RTE_BBDEV_OP_TURBO_DEC] = dev_info->max_num_queues / 2;
661 	dev_info->num_queues[RTE_BBDEV_OP_TURBO_ENC] = dev_info->max_num_queues / 2;
662 	dev_info->num_queues[RTE_BBDEV_OP_LDPC_DEC] = 0;
663 	dev_info->num_queues[RTE_BBDEV_OP_LDPC_ENC] = 0;
664 	dev_info->queue_priority[RTE_BBDEV_OP_TURBO_DEC] = 1;
665 	dev_info->queue_priority[RTE_BBDEV_OP_TURBO_ENC] = 1;
666 }
667 
668 /**
669  * Find index of queue bound to current PF/VF which is unassigned. Return -1
670  * when there is no available queue
671  */
672 static int
673 fpga_find_free_queue_idx(struct rte_bbdev *dev,
674 		const struct rte_bbdev_queue_conf *conf)
675 {
676 	struct fpga_lte_fec_device *d = dev->data->dev_private;
677 	uint64_t q_idx;
678 	uint8_t i = 0;
679 	uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
680 
681 	if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) {
682 		i = FPGA_NUM_DL_QUEUES;
683 		range = FPGA_TOTAL_NUM_QUEUES;
684 	}
685 
686 	for (; i < range; ++i) {
687 		q_idx = 1ULL << i;
688 		/* Check if index of queue is bound to current PF/VF */
689 		if (d->q_bound_bit_map & q_idx)
690 			/* Check if found queue was not already assigned */
691 			if (!(d->q_assigned_bit_map & q_idx)) {
692 				d->q_assigned_bit_map |= q_idx;
693 				return i;
694 			}
695 	}
696 
697 	rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
698 
699 	return -1;
700 }
701 
702 static int
703 fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
704 		const struct rte_bbdev_queue_conf *conf)
705 {
706 	uint32_t address, ring_offset;
707 	struct fpga_lte_fec_device *d = dev->data->dev_private;
708 	struct fpga_queue *q;
709 	int8_t q_idx;
710 
711 	/* Check if there is a free queue to assign */
712 	q_idx = fpga_find_free_queue_idx(dev, conf);
713 	if (q_idx == -1)
714 		return -1;
715 
716 	/* Allocate the queue data structure. */
717 	q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
718 			RTE_CACHE_LINE_SIZE, conf->socket);
719 	if (q == NULL) {
720 		/* Mark queue as un-assigned */
721 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
722 		rte_bbdev_log(ERR, "Failed to allocate queue memory");
723 		return -ENOMEM;
724 	}
725 
726 	q->d = d;
727 	q->q_idx = q_idx;
728 
729 	/* Set ring_base_addr */
730 	q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
731 	q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
732 			(d->sw_ring_size * queue_id);
733 
734 	/* Allocate memory for Completion Head variable*/
735 	q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
736 			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
737 	if (q->ring_head_addr == NULL) {
738 		/* Mark queue as un-assigned */
739 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
740 		rte_free(q);
741 		rte_bbdev_log(ERR,
742 				"Failed to allocate memory for %s:%u completion_head",
743 				dev->device->driver->name, dev->data->dev_id);
744 		return -ENOMEM;
745 	}
746 	/* Set ring_head_addr */
747 	q->ring_ctrl_reg.ring_head_addr =
748 			rte_malloc_virt2iova(q->ring_head_addr);
749 
750 	/* Clear shadow_completion_head */
751 	q->shadow_completion_head = 0;
752 
753 	/* Set ring_size */
754 	if (conf->queue_size > FPGA_RING_MAX_SIZE) {
755 		/* Mark queue as un-assigned */
756 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
757 		rte_free(q->ring_head_addr);
758 		rte_free(q);
759 		rte_bbdev_log(ERR,
760 				"Size of queue is too big %d (MAX: %d ) for %s:%u",
761 				conf->queue_size, FPGA_RING_MAX_SIZE,
762 				dev->device->driver->name, dev->data->dev_id);
763 		return -EINVAL;
764 	}
765 	q->ring_ctrl_reg.ring_size = conf->queue_size;
766 
767 	/* Set Miscellaneous FPGA register*/
768 	/* Max iteration number for TTI mitigation - todo */
769 	q->ring_ctrl_reg.max_ul_dec = 0;
770 	/* Enable max iteration number for TTI - todo */
771 	q->ring_ctrl_reg.max_ul_dec_en = 0;
772 
773 	/* Enable the ring */
774 	q->ring_ctrl_reg.enable = 1;
775 
776 	/* Set FPGA head_point and tail registers */
777 	q->ring_ctrl_reg.head_point = q->tail = 0;
778 
779 	/* Set FPGA shadow_tail register */
780 	q->ring_ctrl_reg.shadow_tail = q->tail;
781 
782 	/* Calculates the ring offset for found queue */
783 	ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS +
784 			(sizeof(struct fpga_ring_ctrl_reg) * q_idx);
785 
786 	/* Set FPGA Ring Control Registers */
787 	fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
788 
789 	/* Store MMIO register of shadow_tail */
790 	address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL;
791 	q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
792 
793 	q->head_free_desc = q->tail;
794 
795 	/* Set wrap mask */
796 	q->sw_ring_wrap_mask = conf->queue_size - 1;
797 
798 	rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
799 			dev->data->dev_id, queue_id, q->q_idx);
800 
801 	dev->data->queues[queue_id].queue_private = q;
802 
803 	rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
804 			queue_id, q_idx);
805 
806 #ifdef RTE_LIBRTE_BBDEV_DEBUG
807 	/* Read FPGA Ring Control Registers after configuration*/
808 	print_ring_reg_debug_info(d->mmio_base, ring_offset);
809 #endif
810 	return 0;
811 }
812 
813 static int
814 fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
815 {
816 	struct fpga_lte_fec_device *d = dev->data->dev_private;
817 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
818 	struct fpga_ring_ctrl_reg ring_reg;
819 	uint32_t offset;
820 
821 	rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
822 
823 	if (q != NULL) {
824 		memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
825 		offset = FPGA_LTE_FEC_RING_CTRL_REGS +
826 			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
827 		/* Disable queue */
828 		fpga_reg_write_8(d->mmio_base,
829 				offset + FPGA_LTE_FEC_RING_ENABLE, 0x00);
830 		/* Clear queue registers */
831 		fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
832 
833 		/* Mark the Queue as un-assigned */
834 		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
835 		rte_free(q->ring_head_addr);
836 		rte_free(q);
837 		dev->data->queues[queue_id].queue_private = NULL;
838 	}
839 
840 	return 0;
841 }
842 
843 /* Function starts a device queue. */
844 static int
845 fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
846 {
847 	struct fpga_lte_fec_device *d = dev->data->dev_private;
848 #ifdef RTE_LIBRTE_BBDEV_DEBUG
849 	if (d == NULL) {
850 		rte_bbdev_log(ERR, "Invalid device pointer");
851 		return -1;
852 	}
853 #endif
854 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
855 	uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
856 			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
857 	uint8_t enable = 0x01;
858 	uint16_t zero = 0x0000;
859 
860 	/* Clear queue head and tail variables */
861 	q->tail = q->head_free_desc = 0;
862 
863 	/* Clear FPGA head_point and tail registers */
864 	fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
865 			zero);
866 	fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
867 			zero);
868 
869 	/* Enable queue */
870 	fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
871 			enable);
872 
873 	rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
874 	return 0;
875 }
876 
877 /* Function stops a device queue. */
878 static int
879 fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
880 {
881 	struct fpga_lte_fec_device *d = dev->data->dev_private;
882 #ifdef RTE_LIBRTE_BBDEV_DEBUG
883 	if (d == NULL) {
884 		rte_bbdev_log(ERR, "Invalid device pointer");
885 		return -1;
886 	}
887 #endif
888 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
889 	uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
890 			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
891 	uint8_t payload = 0x01;
892 	uint8_t counter = 0;
893 	uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
894 			FPGA_TIMEOUT_CHECK_INTERVAL;
895 
896 	/* Set flush_queue_en bit to trigger queue flushing */
897 	fpga_reg_write_8(d->mmio_base,
898 			offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload);
899 
900 	/** Check if queue flush is completed.
901 	 * FPGA will update the completion flag after queue flushing is
902 	 * completed. If completion flag is not updated within 1ms it is
903 	 * considered as a failure.
904 	 */
905 	while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx) & payload)) {
906 		if (counter > timeout) {
907 			rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
908 					queue_id);
909 			return -1;
910 		}
911 		usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
912 		counter++;
913 	}
914 
915 	/* Disable queue */
916 	payload = 0x00;
917 	fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
918 			payload);
919 
920 	rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
921 	return 0;
922 }
923 
924 static inline uint16_t
925 get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
926 {
927 	uint16_t queue_id;
928 
929 	for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
930 		struct fpga_queue *q = data->queues[queue_id].queue_private;
931 		if (q != NULL && q->q_idx == q_idx)
932 			return queue_id;
933 	}
934 
935 	return -1;
936 }
937 
938 /* Interrupt handler triggered by FPGA dev for handling specific interrupt */
939 static void
940 fpga_dev_interrupt_handler(void *cb_arg)
941 {
942 	struct rte_bbdev *dev = cb_arg;
943 	struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
944 	struct fpga_queue *q;
945 	uint64_t ring_head;
946 	uint64_t q_idx;
947 	uint16_t queue_id;
948 	uint8_t i;
949 
950 	/* Scan queue assigned to this device */
951 	for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
952 		q_idx = 1ULL << i;
953 		if (fpga_dev->q_bound_bit_map & q_idx) {
954 			queue_id = get_queue_id(dev->data, i);
955 			if (queue_id == (uint16_t) -1)
956 				continue;
957 
958 			/* Check if completion head was changed */
959 			q = dev->data->queues[queue_id].queue_private;
960 			ring_head = *q->ring_head_addr;
961 			if (q->shadow_completion_head != ring_head &&
962 				q->irq_enable == 1) {
963 				q->shadow_completion_head = ring_head;
964 				rte_bbdev_pmd_callback_process(
965 						dev,
966 						RTE_BBDEV_EVENT_DEQUEUE,
967 						&queue_id);
968 			}
969 		}
970 	}
971 }
972 
973 static int
974 fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
975 {
976 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
977 
978 	if (!rte_intr_cap_multiple(dev->intr_handle))
979 		return -ENOTSUP;
980 
981 	q->irq_enable = 1;
982 
983 	return 0;
984 }
985 
986 static int
987 fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
988 {
989 	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
990 	q->irq_enable = 0;
991 
992 	return 0;
993 }
994 
995 static int
996 fpga_intr_enable(struct rte_bbdev *dev)
997 {
998 	int ret;
999 	uint8_t i;
1000 
1001 	if (!rte_intr_cap_multiple(dev->intr_handle)) {
1002 		rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
1003 				dev->data->name);
1004 		return -ENOTSUP;
1005 	}
1006 
1007 	/* Create event file descriptors for each of 64 queue. Event fds will be
1008 	 * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
1009 	 * the IRQ number is a direct translation to the queue number.
1010 	 *
1011 	 * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
1012 	 * mapped the first IRQ to already created interrupt event file
1013 	 * descriptor (intr_handle->fd).
1014 	 */
1015 	if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
1016 		rte_bbdev_log(ERR, "Failed to create fds for %u queues",
1017 				dev->data->num_queues);
1018 		return -1;
1019 	}
1020 
1021 	/* TODO Each event file descriptor is overwritten by interrupt event
1022 	 * file descriptor. That descriptor is added to epoll observed list.
1023 	 * It ensures that callback function assigned to that descriptor will
1024 	 * invoked when any FPGA queue issues interrupt.
1025 	 */
1026 	for (i = 0; i < FPGA_NUM_INTR_VEC; ++i) {
1027 		if (rte_intr_efds_index_set(dev->intr_handle, i,
1028 				rte_intr_fd_get(dev->intr_handle)))
1029 			return -rte_errno;
1030 	}
1031 
1032 	if (rte_intr_vec_list_alloc(dev->intr_handle, "intr_vec",
1033 			dev->data->num_queues)) {
1034 		rte_bbdev_log(ERR, "Failed to allocate %u vectors",
1035 				dev->data->num_queues);
1036 		return -ENOMEM;
1037 	}
1038 
1039 	ret = rte_intr_enable(dev->intr_handle);
1040 	if (ret < 0) {
1041 		rte_bbdev_log(ERR,
1042 				"Couldn't enable interrupts for device: %s",
1043 				dev->data->name);
1044 		return ret;
1045 	}
1046 
1047 	ret = rte_intr_callback_register(dev->intr_handle,
1048 			fpga_dev_interrupt_handler, dev);
1049 	if (ret < 0) {
1050 		rte_bbdev_log(ERR,
1051 				"Couldn't register interrupt callback for device: %s",
1052 				dev->data->name);
1053 		return ret;
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 static const struct rte_bbdev_ops fpga_ops = {
1060 	.setup_queues = fpga_setup_queues,
1061 	.intr_enable = fpga_intr_enable,
1062 	.close = fpga_dev_close,
1063 	.info_get = fpga_dev_info_get,
1064 	.queue_setup = fpga_queue_setup,
1065 	.queue_stop = fpga_queue_stop,
1066 	.queue_start = fpga_queue_start,
1067 	.queue_release = fpga_queue_release,
1068 	.queue_intr_enable = fpga_queue_intr_enable,
1069 	.queue_intr_disable = fpga_queue_intr_disable
1070 };
1071 
1072 static inline void
1073 fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
1074 		struct rte_bbdev_stats *queue_stats)
1075 {
1076 #ifdef RTE_BBDEV_OFFLOAD_COST
1077 	uint64_t start_time = 0;
1078 	queue_stats->acc_offload_cycles = 0;
1079 #else
1080 	RTE_SET_USED(queue_stats);
1081 #endif
1082 
1083 	/* Update tail and shadow_tail register */
1084 	q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
1085 
1086 	rte_wmb();
1087 
1088 #ifdef RTE_BBDEV_OFFLOAD_COST
1089 	/* Start time measurement for enqueue function offload. */
1090 	start_time = rte_rdtsc_precise();
1091 #endif
1092 	mmio_write_16(q->shadow_tail_addr, q->tail);
1093 
1094 #ifdef RTE_BBDEV_OFFLOAD_COST
1095 	rte_wmb();
1096 	queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1097 #endif
1098 }
1099 
1100 /* Calculates number of CBs in processed encoder TB based on 'r' and input
1101  * length.
1102  */
1103 static inline uint8_t
1104 get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
1105 {
1106 	uint8_t c, c_neg, r, crc24_bits = 0;
1107 	uint16_t k, k_neg, k_pos;
1108 	uint8_t cbs_in_op = 0;
1109 	int32_t length;
1110 
1111 	length = turbo_enc->input.length;
1112 	r = turbo_enc->tb_params.r;
1113 	c = turbo_enc->tb_params.c;
1114 	c_neg = turbo_enc->tb_params.c_neg;
1115 	k_neg = turbo_enc->tb_params.k_neg;
1116 	k_pos = turbo_enc->tb_params.k_pos;
1117 	crc24_bits = 24;
1118 	while (length > 0 && r < c) {
1119 		k = (r < c_neg) ? k_neg : k_pos;
1120 		length -= (k - crc24_bits) >> 3;
1121 		r++;
1122 		cbs_in_op++;
1123 	}
1124 
1125 	return cbs_in_op;
1126 }
1127 
1128 /* Calculates number of CBs in processed decoder TB based on 'r' and input
1129  * length.
1130  */
1131 static inline uint16_t
1132 get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
1133 {
1134 	uint8_t c, c_neg, r = 0;
1135 	uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0;
1136 	int32_t length;
1137 
1138 	length = turbo_dec->input.length;
1139 	r = turbo_dec->tb_params.r;
1140 	c = turbo_dec->tb_params.c;
1141 	c_neg = turbo_dec->tb_params.c_neg;
1142 	k_neg = turbo_dec->tb_params.k_neg;
1143 	k_pos = turbo_dec->tb_params.k_pos;
1144 	while (length > 0 && r < c) {
1145 		k = (r < c_neg) ? k_neg : k_pos;
1146 		kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1147 		length -= kw;
1148 		r++;
1149 		cbs_in_op++;
1150 	}
1151 
1152 	return cbs_in_op;
1153 }
1154 
1155 /* Read flag value 0/1/ from bitmap */
1156 static inline bool
1157 check_bit(uint32_t bitmap, uint32_t bitmask)
1158 {
1159 	return bitmap & bitmask;
1160 }
1161 
1162 /* Print an error if a descriptor error has occurred.
1163  *  Return 0 on success, 1 on failure
1164  */
1165 static inline int
1166 check_desc_error(uint32_t error_code) {
1167 	switch (error_code) {
1168 	case DESC_ERR_NO_ERR:
1169 		return 0;
1170 	case DESC_ERR_K_OUT_OF_RANGE:
1171 		rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)");
1172 		break;
1173 	case DESC_ERR_K_NOT_NORMAL:
1174 		rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range");
1175 		break;
1176 	case DESC_ERR_KPAI_NOT_NORMAL:
1177 		rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only");
1178 		break;
1179 	case DESC_ERR_DESC_OFFSET_ERR:
1180 		rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA");
1181 		break;
1182 	case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR):
1183 		rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error");
1184 		break;
1185 	case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
1186 		rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error");
1187 		break;
1188 	case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
1189 		rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error");
1190 		break;
1191 	case DESC_ERR_DESC_READ_FAIL:
1192 		rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
1193 		break;
1194 	case DESC_ERR_DESC_READ_TIMEOUT:
1195 		rte_bbdev_log(ERR, "Descriptor read time-out");
1196 		break;
1197 	case DESC_ERR_DESC_READ_TLP_POISONED:
1198 		rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
1199 		break;
1200 	case DESC_ERR_CB_READ_FAIL:
1201 		rte_bbdev_log(ERR, "Unsuccessful completion for code block");
1202 		break;
1203 	case DESC_ERR_CB_READ_TIMEOUT:
1204 		rte_bbdev_log(ERR, "Code block read time-out");
1205 		break;
1206 	case DESC_ERR_CB_READ_TLP_POISONED:
1207 		rte_bbdev_log(ERR, "Code block read TLP poisoned");
1208 		break;
1209 	default:
1210 		rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
1211 				error_code);
1212 		break;
1213 	}
1214 	return 1;
1215 }
1216 
1217 /**
1218  * Set DMA descriptor for encode operation (1 Code Block)
1219  *
1220  * @param op
1221  *   Pointer to a single encode operation.
1222  * @param desc
1223  *   Pointer to DMA descriptor.
1224  * @param input
1225  *   Pointer to pointer to input data which will be decoded.
1226  * @param k
1227  *   K value (length of input in bits).
1228  * @param e
1229  *   E value (length of output in bits).
1230  * @param ncb
1231  *   Ncb value (size of the soft buffer).
1232  * @param out_length
1233  *   Length of output buffer
1234  * @param in_offset
1235  *   Input offset in rte_mbuf structure. It is used for calculating the point
1236  *   where data is starting.
1237  * @param out_offset
1238  *   Output offset in rte_mbuf structure. It is used for calculating the point
1239  *   where hard output data will be stored.
1240  * @param cbs_in_op
1241  *   Number of CBs contained in one operation.
1242  */
1243 static inline int
1244 fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
1245 		struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
1246 		struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb,
1247 		uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
1248 		uint8_t cbs_in_op)
1249 
1250 {
1251 	/* reset */
1252 	desc->done = 0;
1253 	desc->crc_en = check_bit(op->turbo_enc.op_flags,
1254 		RTE_BBDEV_TURBO_CRC_24B_ATTACH);
1255 	desc->bypass_rm = !check_bit(op->turbo_enc.op_flags,
1256 		RTE_BBDEV_TURBO_RATE_MATCH);
1257 	desc->k = k;
1258 	desc->e = e;
1259 	desc->ncb = ncb;
1260 	desc->rv = op->turbo_enc.rv_index;
1261 	desc->offset = desc_offset;
1262 	/* Set inbound data buffer address */
1263 	desc->in_addr_hi = (uint32_t)(
1264 			rte_pktmbuf_iova_offset(input, in_offset) >> 32);
1265 	desc->in_addr_lw = (uint32_t)(
1266 			rte_pktmbuf_iova_offset(input, in_offset));
1267 
1268 	desc->out_addr_hi = (uint32_t)(
1269 			rte_pktmbuf_iova_offset(output, out_offset) >> 32);
1270 	desc->out_addr_lw = (uint32_t)(
1271 			rte_pktmbuf_iova_offset(output, out_offset));
1272 
1273 	/* Save software context needed for dequeue */
1274 	desc->op_addr = op;
1275 
1276 	/* Set total number of CBs in an op */
1277 	desc->cbs_in_op = cbs_in_op;
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * Set DMA descriptor for encode operation (1 Code Block)
1284  *
1285  * @param op
1286  *   Pointer to a single encode operation.
1287  * @param desc
1288  *   Pointer to DMA descriptor.
1289  * @param input
1290  *   Pointer to pointer to input data which will be decoded.
1291  * @param in_length
1292  *   Length of an input.
1293  * @param k
1294  *   K value (length of an output in bits).
1295  * @param in_offset
1296  *   Input offset in rte_mbuf structure. It is used for calculating the point
1297  *   where data is starting.
1298  * @param out_offset
1299  *   Output offset in rte_mbuf structure. It is used for calculating the point
1300  *   where hard output data will be stored.
1301  * @param cbs_in_op
1302  *   Number of CBs contained in one operation.
1303  */
1304 static inline int
1305 fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
1306 		struct fpga_dma_dec_desc *desc, struct rte_mbuf *input,
1307 		struct rte_mbuf *output, uint16_t in_length, uint16_t k,
1308 		uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
1309 		uint8_t cbs_in_op)
1310 {
1311 	/* reset */
1312 	desc->done = 0;
1313 	/* Set inbound data buffer address */
1314 	desc->in_addr_hi = (uint32_t)(
1315 			rte_pktmbuf_iova_offset(input, in_offset) >> 32);
1316 	desc->in_addr_lw = (uint32_t)(
1317 			rte_pktmbuf_iova_offset(input, in_offset));
1318 	desc->in_len = in_length;
1319 	desc->k = k;
1320 	desc->crc_type = !check_bit(op->turbo_dec.op_flags,
1321 			RTE_BBDEV_TURBO_CRC_TYPE_24B);
1322 	if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1323 		&& !check_bit(op->turbo_dec.op_flags,
1324 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1325 		desc->drop_crc = 1;
1326 	desc->max_iter = op->turbo_dec.iter_max * 2;
1327 	desc->offset = desc_offset;
1328 	desc->out_addr_hi = (uint32_t)(
1329 			rte_pktmbuf_iova_offset(output, out_offset) >> 32);
1330 	desc->out_addr_lw = (uint32_t)(
1331 			rte_pktmbuf_iova_offset(output, out_offset));
1332 
1333 	/* Save software context needed for dequeue */
1334 	desc->op_addr = op;
1335 
1336 	/* Set total number of CBs in an op */
1337 	desc->cbs_in_op = cbs_in_op;
1338 
1339 	return 0;
1340 }
1341 
1342 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1343 /* Validates turbo encoder parameters */
1344 static int
1345 validate_enc_op(struct rte_bbdev_enc_op *op)
1346 {
1347 	struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
1348 	struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
1349 	struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
1350 	uint16_t kw, kw_neg, kw_pos;
1351 
1352 	if (turbo_enc->input.length >
1353 			RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1354 		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1355 				turbo_enc->input.length,
1356 				RTE_BBDEV_TURBO_MAX_TB_SIZE);
1357 		op->status = 1 << RTE_BBDEV_DATA_ERROR;
1358 		return -1;
1359 	}
1360 
1361 	if (op->mempool == NULL) {
1362 		rte_bbdev_log(ERR, "Invalid mempool pointer");
1363 		return -1;
1364 	}
1365 	if (turbo_enc->input.data == NULL) {
1366 		rte_bbdev_log(ERR, "Invalid input pointer");
1367 		return -1;
1368 	}
1369 	if (turbo_enc->output.data == NULL) {
1370 		rte_bbdev_log(ERR, "Invalid output pointer");
1371 		return -1;
1372 	}
1373 	if (turbo_enc->rv_index > 3) {
1374 		rte_bbdev_log(ERR,
1375 				"rv_index (%u) is out of range 0 <= value <= 3",
1376 				turbo_enc->rv_index);
1377 		return -1;
1378 	}
1379 	if (turbo_enc->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
1380 			turbo_enc->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
1381 		rte_bbdev_log(ERR,
1382 				"code_block_mode (%u) is out of range 0 <= value <= 1",
1383 				turbo_enc->code_block_mode);
1384 		return -1;
1385 	}
1386 
1387 	if (turbo_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1388 		tb = &turbo_enc->tb_params;
1389 		if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
1390 				|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1391 				&& tb->c_neg > 0) {
1392 			rte_bbdev_log(ERR,
1393 					"k_neg (%u) is out of range %u <= value <= %u",
1394 					tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1395 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1396 			return -1;
1397 		}
1398 		if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
1399 				|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1400 			rte_bbdev_log(ERR,
1401 					"k_pos (%u) is out of range %u <= value <= %u",
1402 					tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1403 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1404 			return -1;
1405 		}
1406 		if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
1407 			rte_bbdev_log(ERR,
1408 					"c_neg (%u) is out of range 0 <= value <= %u",
1409 					tb->c_neg,
1410 					RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
1411 		if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
1412 			rte_bbdev_log(ERR,
1413 					"c (%u) is out of range 1 <= value <= %u",
1414 					tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
1415 			return -1;
1416 		}
1417 		if (tb->cab > tb->c) {
1418 			rte_bbdev_log(ERR,
1419 					"cab (%u) is greater than c (%u)",
1420 					tb->cab, tb->c);
1421 			return -1;
1422 		}
1423 		if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
1424 				&& tb->r < tb->cab) {
1425 			rte_bbdev_log(ERR,
1426 					"ea (%u) is less than %u or it is not even",
1427 					tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1428 			return -1;
1429 		}
1430 		if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
1431 				&& tb->c > tb->cab) {
1432 			rte_bbdev_log(ERR,
1433 					"eb (%u) is less than %u or it is not even",
1434 					tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1435 			return -1;
1436 		}
1437 
1438 		kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
1439 					RTE_BBDEV_TURBO_C_SUBBLOCK);
1440 		if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
1441 			rte_bbdev_log(ERR,
1442 					"ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
1443 					tb->ncb_neg, tb->k_neg, kw_neg);
1444 			return -1;
1445 		}
1446 
1447 		kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
1448 					RTE_BBDEV_TURBO_C_SUBBLOCK);
1449 		if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
1450 			rte_bbdev_log(ERR,
1451 					"ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
1452 					tb->ncb_pos, tb->k_pos, kw_pos);
1453 			return -1;
1454 		}
1455 		if (tb->r > (tb->c - 1)) {
1456 			rte_bbdev_log(ERR,
1457 					"r (%u) is greater than c - 1 (%u)",
1458 					tb->r, tb->c - 1);
1459 			return -1;
1460 		}
1461 	} else {
1462 		cb = &turbo_enc->cb_params;
1463 		if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
1464 				|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1465 			rte_bbdev_log(ERR,
1466 					"k (%u) is out of range %u <= value <= %u",
1467 					cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1468 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1469 			return -1;
1470 		}
1471 
1472 		if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
1473 			rte_bbdev_log(ERR,
1474 					"e (%u) is less than %u or it is not even",
1475 					cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1476 			return -1;
1477 		}
1478 
1479 		kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1480 		if (cb->ncb < cb->k || cb->ncb > kw) {
1481 			rte_bbdev_log(ERR,
1482 					"ncb (%u) is out of range (%u) k <= value <= (%u) kw",
1483 					cb->ncb, cb->k, kw);
1484 			return -1;
1485 		}
1486 	}
1487 
1488 	return 0;
1489 }
1490 #endif
1491 
1492 static inline char *
1493 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
1494 {
1495 	if (unlikely(len > rte_pktmbuf_tailroom(m)))
1496 		return NULL;
1497 
1498 	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
1499 	m->data_len = (uint16_t)(m->data_len + len);
1500 	m_head->pkt_len  = (m_head->pkt_len + len);
1501 	return tail;
1502 }
1503 
1504 static inline int
1505 enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
1506 		uint16_t desc_offset)
1507 {
1508 	union fpga_dma_desc *desc;
1509 	struct rte_mbuf *input;
1510 	struct rte_mbuf *output;
1511 	int ret;
1512 	uint16_t k, e, ncb, ring_offset;
1513 	uint32_t total_left, in_length, out_length, in_offset, out_offset;
1514 
1515 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1516 	/* Validate op structure */
1517 	if (validate_enc_op(op) == -1) {
1518 		rte_bbdev_log(ERR, "Turbo encoder validation failed");
1519 		return -EINVAL;
1520 	}
1521 #endif
1522 
1523 	input = op->turbo_enc.input.data;
1524 	output = op->turbo_enc.output.data;
1525 	in_offset = op->turbo_enc.input.offset;
1526 	out_offset = op->turbo_enc.output.offset;
1527 	total_left = op->turbo_enc.input.length;
1528 	k = op->turbo_enc.cb_params.k;
1529 	e = op->turbo_enc.cb_params.e;
1530 	ncb = op->turbo_enc.cb_params.ncb;
1531 
1532 	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1533 		in_length = ((k - 24) >> 3);
1534 	else
1535 		in_length = k >> 3;
1536 
1537 	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
1538 		out_length = (e + 7) >> 3;
1539 	else
1540 		out_length = (k >> 3) * 3 + 2;
1541 
1542 	mbuf_append(output, output, out_length);
1543 
1544 	/* Offset into the ring */
1545 	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1546 	/* Setup DMA Descriptor */
1547 	desc = q->ring_addr + ring_offset;
1548 
1549 	ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e,
1550 			ncb, in_offset, out_offset, ring_offset, 1);
1551 	if (unlikely(ret < 0))
1552 		return ret;
1553 
1554 	/* Update lengths */
1555 	total_left -= in_length;
1556 	op->turbo_enc.output.length += out_length;
1557 
1558 	if (total_left > 0) {
1559 		rte_bbdev_log(ERR,
1560 			"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1561 				total_left, in_length);
1562 		return -1;
1563 	}
1564 
1565 	return 1;
1566 }
1567 
1568 static inline int
1569 enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
1570 		uint16_t desc_offset, uint8_t cbs_in_op)
1571 {
1572 	union fpga_dma_desc *desc;
1573 	struct rte_mbuf *input, *output_head, *output;
1574 	int ret;
1575 	uint8_t r, c, crc24_bits = 0;
1576 	uint16_t k, e, ncb, ring_offset;
1577 	uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset;
1578 	uint32_t seg_total_left;
1579 	uint16_t current_enqueued_cbs = 0;
1580 
1581 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1582 	/* Validate op structure */
1583 	if (validate_enc_op(op) == -1) {
1584 		rte_bbdev_log(ERR, "Turbo encoder validation failed");
1585 		return -EINVAL;
1586 	}
1587 #endif
1588 
1589 	input = op->turbo_enc.input.data;
1590 	output_head = output = op->turbo_enc.output.data;
1591 	in_offset = op->turbo_enc.input.offset;
1592 	out_offset = op->turbo_enc.output.offset;
1593 	mbuf_total_left = op->turbo_enc.input.length;
1594 
1595 	c = op->turbo_enc.tb_params.c;
1596 	r = op->turbo_enc.tb_params.r;
1597 
1598 	if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1599 		crc24_bits = 24;
1600 
1601 	while (mbuf_total_left > 0 && r < c && input != NULL) {
1602 		seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
1603 
1604 		e = (r < op->turbo_enc.tb_params.cab) ?
1605 				op->turbo_enc.tb_params.ea :
1606 				op->turbo_enc.tb_params.eb;
1607 		k = (r < op->turbo_enc.tb_params.c_neg) ?
1608 				op->turbo_enc.tb_params.k_neg :
1609 				op->turbo_enc.tb_params.k_pos;
1610 		ncb = (r < op->turbo_enc.tb_params.c_neg) ?
1611 				op->turbo_enc.tb_params.ncb_neg :
1612 				op->turbo_enc.tb_params.ncb_pos;
1613 
1614 		in_length = ((k - crc24_bits) >> 3);
1615 
1616 		if (check_bit(op->turbo_enc.op_flags,
1617 			RTE_BBDEV_TURBO_RATE_MATCH))
1618 			out_length = (e + 7) >> 3;
1619 		else
1620 			out_length = (k >> 3) * 3 + 2;
1621 
1622 		mbuf_append(output_head, output, out_length);
1623 
1624 		/* Setup DMA Descriptor */
1625 		ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1626 		desc = q->ring_addr + ring_offset;
1627 		ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output,
1628 				k, e, ncb, in_offset, out_offset, ring_offset,
1629 				cbs_in_op);
1630 		if (unlikely(ret < 0))
1631 			return ret;
1632 
1633 		rte_bbdev_log_debug("DMA request desc %p", desc);
1634 
1635 		/* Update lengths */
1636 		op->turbo_enc.output.length += out_length;
1637 		mbuf_total_left -= in_length;
1638 
1639 		/* Update offsets */
1640 		if (seg_total_left == in_length) {
1641 			/* Go to the next mbuf */
1642 			input = input->next;
1643 			output = output->next;
1644 			in_offset = 0;
1645 			out_offset = 0;
1646 		} else {
1647 			in_offset += in_length;
1648 			out_offset += out_length;
1649 		}
1650 
1651 		r++;
1652 		desc_offset++;
1653 		current_enqueued_cbs++;
1654 	}
1655 
1656 	if (mbuf_total_left > 0) {
1657 		rte_bbdev_log(ERR,
1658 				"Some date still left for processing: mbuf_total_left = %u",
1659 				mbuf_total_left);
1660 		return -1;
1661 	}
1662 
1663 	return current_enqueued_cbs;
1664 }
1665 
1666 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1667 /* Validates turbo decoder parameters */
1668 static int
1669 validate_dec_op(struct rte_bbdev_dec_op *op)
1670 {
1671 	struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
1672 	struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
1673 	struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
1674 
1675 	if (op->mempool == NULL) {
1676 		rte_bbdev_log(ERR, "Invalid mempool pointer");
1677 		return -1;
1678 	}
1679 	if (turbo_dec->input.data == NULL) {
1680 		rte_bbdev_log(ERR, "Invalid input pointer");
1681 		return -1;
1682 	}
1683 	if (turbo_dec->hard_output.data == NULL) {
1684 		rte_bbdev_log(ERR, "Invalid hard_output pointer");
1685 		return -1;
1686 	}
1687 	if (turbo_dec->rv_index > 3) {
1688 		rte_bbdev_log(ERR,
1689 				"rv_index (%u) is out of range 0 <= value <= 3",
1690 				turbo_dec->rv_index);
1691 		return -1;
1692 	}
1693 	if (turbo_dec->iter_min < 1) {
1694 		rte_bbdev_log(ERR,
1695 				"iter_min (%u) is less than 1",
1696 				turbo_dec->iter_min);
1697 		return -1;
1698 	}
1699 	if (turbo_dec->iter_max <= 2) {
1700 		rte_bbdev_log(ERR,
1701 				"iter_max (%u) is less than or equal to 2",
1702 				turbo_dec->iter_max);
1703 		return -1;
1704 	}
1705 	if (turbo_dec->iter_min > turbo_dec->iter_max) {
1706 		rte_bbdev_log(ERR,
1707 				"iter_min (%u) is greater than iter_max (%u)",
1708 				turbo_dec->iter_min, turbo_dec->iter_max);
1709 		return -1;
1710 	}
1711 	if (turbo_dec->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
1712 			turbo_dec->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
1713 		rte_bbdev_log(ERR,
1714 				"code_block_mode (%u) is out of range 0 <= value <= 1",
1715 				turbo_dec->code_block_mode);
1716 		return -1;
1717 	}
1718 
1719 	if (turbo_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1720 
1721 		if ((turbo_dec->op_flags &
1722 			RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) &&
1723 			!(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) {
1724 			rte_bbdev_log(ERR,
1725 				"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B");
1726 			return -1;
1727 		}
1728 
1729 		tb = &turbo_dec->tb_params;
1730 		if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
1731 				|| tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1732 				&& tb->c_neg > 0) {
1733 			rte_bbdev_log(ERR,
1734 					"k_neg (%u) is out of range %u <= value <= %u",
1735 					tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1736 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1737 			return -1;
1738 		}
1739 		if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
1740 				|| tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1741 				&& tb->c > tb->c_neg) {
1742 			rte_bbdev_log(ERR,
1743 					"k_pos (%u) is out of range %u <= value <= %u",
1744 					tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1745 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1746 			return -1;
1747 		}
1748 		if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
1749 			rte_bbdev_log(ERR,
1750 					"c_neg (%u) is out of range 0 <= value <= %u",
1751 					tb->c_neg,
1752 					RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
1753 		if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
1754 			rte_bbdev_log(ERR,
1755 					"c (%u) is out of range 1 <= value <= %u",
1756 					tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
1757 			return -1;
1758 		}
1759 		if (tb->cab > tb->c) {
1760 			rte_bbdev_log(ERR,
1761 					"cab (%u) is greater than c (%u)",
1762 					tb->cab, tb->c);
1763 			return -1;
1764 		}
1765 	} else {
1766 
1767 		if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) {
1768 			rte_bbdev_log(ERR,
1769 					"RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode");
1770 			return -1;
1771 		}
1772 
1773 		cb = &turbo_dec->cb_params;
1774 		if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
1775 				|| cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1776 			rte_bbdev_log(ERR,
1777 					"k (%u) is out of range %u <= value <= %u",
1778 					cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1779 					RTE_BBDEV_TURBO_MAX_CB_SIZE);
1780 			return -1;
1781 		}
1782 	}
1783 
1784 	return 0;
1785 }
1786 #endif
1787 
1788 static inline int
1789 enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
1790 		uint16_t desc_offset)
1791 {
1792 	union fpga_dma_desc *desc;
1793 	struct rte_mbuf *input;
1794 	struct rte_mbuf *output;
1795 	int ret;
1796 	uint16_t k, kw, ring_offset;
1797 	uint32_t total_left, in_length, out_length, in_offset, out_offset;
1798 
1799 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1800 	/* Validate op structure */
1801 	if (validate_dec_op(op) == -1) {
1802 		rte_bbdev_log(ERR, "Turbo decoder validation failed");
1803 		return -EINVAL;
1804 	}
1805 #endif
1806 
1807 	input = op->turbo_dec.input.data;
1808 	output = op->turbo_dec.hard_output.data;
1809 	total_left = op->turbo_dec.input.length;
1810 	in_offset = op->turbo_dec.input.offset;
1811 	out_offset = op->turbo_dec.hard_output.offset;
1812 
1813 	k = op->turbo_dec.cb_params.k;
1814 	kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1815 	in_length = kw;
1816 	out_length = k >> 3;
1817 
1818 	mbuf_append(output, output, out_length);
1819 
1820 	/* Setup DMA Descriptor */
1821 	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1822 	desc = q->ring_addr + ring_offset;
1823 	ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
1824 			in_length, k, in_offset, out_offset, ring_offset, 1);
1825 	if (unlikely(ret < 0))
1826 		return ret;
1827 
1828 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1829 	print_dma_dec_desc_debug_info(desc);
1830 #endif
1831 
1832 	/* Update lengths */
1833 	total_left -= in_length;
1834 	op->turbo_dec.hard_output.length += out_length;
1835 
1836 	if (total_left > 0) {
1837 		rte_bbdev_log(ERR,
1838 				"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1839 				total_left, in_length);
1840 		return -1;
1841 	}
1842 
1843 	return 1;
1844 }
1845 
1846 
1847 static inline int
1848 enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
1849 		uint16_t desc_offset, uint8_t cbs_in_op)
1850 {
1851 	union fpga_dma_desc *desc;
1852 	struct rte_mbuf *input, *output_head, *output;
1853 	int ret;
1854 	uint8_t r, c;
1855 	uint16_t k, kw, in_length, out_length, ring_offset;
1856 	uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset;
1857 	uint16_t current_enqueued_cbs = 0;
1858 	uint16_t crc24_overlap = 0;
1859 
1860 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1861 	/* Validate op structure */
1862 	if (validate_dec_op(op) == -1) {
1863 		rte_bbdev_log(ERR, "Turbo decoder validation failed");
1864 		return -EINVAL;
1865 	}
1866 #endif
1867 
1868 	input = op->turbo_dec.input.data;
1869 	output_head = output = op->turbo_dec.hard_output.data;
1870 	mbuf_total_left = op->turbo_dec.input.length;
1871 	in_offset = op->turbo_dec.input.offset;
1872 	out_offset = op->turbo_dec.hard_output.offset;
1873 
1874 	if (!check_bit(op->turbo_dec.op_flags,
1875 		RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1876 		crc24_overlap = 24;
1877 
1878 	c = op->turbo_dec.tb_params.c;
1879 	r = op->turbo_dec.tb_params.r;
1880 
1881 	while (mbuf_total_left > 0 && r < c && input != NULL) {
1882 		seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
1883 		k = (r < op->turbo_dec.tb_params.c_neg) ?
1884 				op->turbo_dec.tb_params.k_neg :
1885 				op->turbo_dec.tb_params.k_pos;
1886 		kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1887 
1888 		in_length = kw;
1889 		out_length = (k - crc24_overlap) >> 3;
1890 
1891 		mbuf_append(output_head, output, out_length);
1892 
1893 		if (seg_total_left < in_length) {
1894 			rte_bbdev_log(ERR,
1895 					"Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!");
1896 			return -1;
1897 		}
1898 
1899 		/* Setup DMA Descriptor */
1900 		ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1901 		desc = q->ring_addr + ring_offset;
1902 		ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
1903 				in_length, k, in_offset, out_offset,
1904 				ring_offset, cbs_in_op);
1905 		if (unlikely(ret < 0))
1906 			return ret;
1907 
1908 		/* Update lengths */
1909 		ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data,
1910 				(crc24_overlap >> 3));
1911 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1912 		if (ret < 0) {
1913 			rte_bbdev_log(ERR,
1914 					"The length to remove is greater than the length of the last segment");
1915 			return -EINVAL;
1916 		}
1917 #endif
1918 		op->turbo_dec.hard_output.length += out_length;
1919 		mbuf_total_left -= in_length;
1920 
1921 		/* Update offsets */
1922 		if (seg_total_left == in_length) {
1923 			/* Go to the next mbuf */
1924 			input = input->next;
1925 			output = output->next;
1926 			in_offset = 0;
1927 			out_offset = 0;
1928 		} else {
1929 			in_offset += in_length;
1930 			out_offset += out_length;
1931 		}
1932 
1933 		r++;
1934 		desc_offset++;
1935 		current_enqueued_cbs++;
1936 	}
1937 
1938 	if (mbuf_total_left > 0) {
1939 		rte_bbdev_log(ERR,
1940 				"Some date still left for processing: mbuf_total_left = %u",
1941 				mbuf_total_left);
1942 		return -1;
1943 	}
1944 
1945 	return current_enqueued_cbs;
1946 }
1947 
1948 static uint16_t
1949 fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data,
1950 		struct rte_bbdev_enc_op **ops, uint16_t num)
1951 {
1952 	uint8_t cbs_in_op;
1953 	uint16_t i, total_enqueued_cbs = 0;
1954 	int32_t avail;
1955 	int enqueued_cbs;
1956 	struct fpga_queue *q = q_data->queue_private;
1957 	union fpga_dma_desc *desc;
1958 
1959 	/* Check if queue is not full */
1960 	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
1961 			q->head_free_desc))
1962 		return 0;
1963 
1964 	/* Calculates available space */
1965 	avail = (q->head_free_desc > q->tail) ?
1966 		q->head_free_desc - q->tail - 1 :
1967 		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
1968 
1969 	for (i = 0; i < num; ++i) {
1970 		if (ops[i]->turbo_enc.code_block_mode ==
1971 				RTE_BBDEV_TRANSPORT_BLOCK) {
1972 			cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc);
1973 			/* Check if there is available space for further
1974 			 * processing
1975 			 */
1976 			if (unlikely(avail - cbs_in_op < 0))
1977 				break;
1978 			avail -= cbs_in_op;
1979 			enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i],
1980 					total_enqueued_cbs, cbs_in_op);
1981 		} else {
1982 			/* Check if there is available space for further
1983 			 * processing
1984 			 */
1985 			if (unlikely(avail - 1 < 0))
1986 				break;
1987 			avail -= 1;
1988 			enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i],
1989 					total_enqueued_cbs);
1990 		}
1991 
1992 		if (enqueued_cbs < 0)
1993 			break;
1994 
1995 		total_enqueued_cbs += enqueued_cbs;
1996 
1997 		rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
1998 				total_enqueued_cbs, num,
1999 				q->head_free_desc, q->tail);
2000 	}
2001 
2002 	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
2003 	 * only when all previous CBs were already processed.
2004 	 */
2005 	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
2006 			& q->sw_ring_wrap_mask);
2007 	desc->enc_req.irq_en = q->irq_enable;
2008 
2009 	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
2010 
2011 	/* Update stats */
2012 	q_data->queue_stats.enqueued_count += i;
2013 	q_data->queue_stats.enqueue_err_count += num - i;
2014 
2015 	return i;
2016 }
2017 
2018 static uint16_t
2019 fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data,
2020 		struct rte_bbdev_dec_op **ops, uint16_t num)
2021 {
2022 	uint8_t cbs_in_op;
2023 	uint16_t i, total_enqueued_cbs = 0;
2024 	int32_t avail;
2025 	int enqueued_cbs;
2026 	struct fpga_queue *q = q_data->queue_private;
2027 	union fpga_dma_desc *desc;
2028 
2029 	/* Check if queue is not full */
2030 	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
2031 			q->head_free_desc))
2032 		return 0;
2033 
2034 	/* Calculates available space */
2035 	avail = (q->head_free_desc > q->tail) ?
2036 		q->head_free_desc - q->tail - 1 :
2037 		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
2038 
2039 	for (i = 0; i < num; ++i) {
2040 		if (ops[i]->turbo_dec.code_block_mode ==
2041 				RTE_BBDEV_TRANSPORT_BLOCK) {
2042 			cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec);
2043 			/* Check if there is available space for further
2044 			 * processing
2045 			 */
2046 			if (unlikely(avail - cbs_in_op < 0))
2047 				break;
2048 			avail -= cbs_in_op;
2049 			enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i],
2050 					total_enqueued_cbs, cbs_in_op);
2051 		} else {
2052 			/* Check if there is available space for further
2053 			 * processing
2054 			 */
2055 			if (unlikely(avail - 1 < 0))
2056 				break;
2057 			avail -= 1;
2058 			enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i],
2059 					total_enqueued_cbs);
2060 		}
2061 
2062 		if (enqueued_cbs < 0)
2063 			break;
2064 
2065 		total_enqueued_cbs += enqueued_cbs;
2066 
2067 		rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
2068 				total_enqueued_cbs, num,
2069 				q->head_free_desc, q->tail);
2070 	}
2071 
2072 	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
2073 	 * only when all previous CBs were already processed.
2074 	 */
2075 	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
2076 			& q->sw_ring_wrap_mask);
2077 	desc->dec_req.irq_en = q->irq_enable;
2078 
2079 	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
2080 
2081 	/* Update stats */
2082 	q_data->queue_stats.enqueued_count += i;
2083 	q_data->queue_stats.enqueue_err_count += num - i;
2084 
2085 	return i;
2086 }
2087 
2088 static inline int
2089 dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
2090 		uint16_t desc_offset)
2091 {
2092 	union fpga_dma_desc *desc;
2093 	int desc_error = 0;
2094 
2095 	/* Set current desc */
2096 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2097 			& q->sw_ring_wrap_mask);
2098 
2099 	/*check if done */
2100 	if (desc->enc_req.done == 0)
2101 		return -1;
2102 
2103 	/* make sure the response is read atomically */
2104 	rte_smp_rmb();
2105 
2106 	rte_bbdev_log_debug("DMA response desc %p", desc);
2107 
2108 	*op = desc->enc_req.op_addr;
2109 	/* Check the descriptor error field, return 1 on error */
2110 	desc_error = check_desc_error(desc->enc_req.error);
2111 	(*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
2112 
2113 	return 1;
2114 }
2115 
2116 static inline int
2117 dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
2118 		uint16_t desc_offset)
2119 {
2120 	union fpga_dma_desc *desc;
2121 	uint8_t cbs_in_op, cb_idx;
2122 	int desc_error = 0;
2123 	int status = 0;
2124 
2125 	/* Set descriptor */
2126 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2127 			& q->sw_ring_wrap_mask);
2128 
2129 	/* Verify if done bit is set */
2130 	if (desc->enc_req.done == 0)
2131 		return -1;
2132 
2133 	/* Make sure the response is read atomically */
2134 	rte_smp_rmb();
2135 
2136 	/* Verify if done bit in all CBs is set */
2137 	cbs_in_op = desc->enc_req.cbs_in_op;
2138 	for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
2139 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2140 				cb_idx) & q->sw_ring_wrap_mask);
2141 		if (desc->enc_req.done == 0)
2142 			return -1;
2143 	}
2144 
2145 	/* Make sure the response is read atomically */
2146 	rte_smp_rmb();
2147 
2148 	for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
2149 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2150 				cb_idx) & q->sw_ring_wrap_mask);
2151 		/* Check the descriptor error field, return 1 on error */
2152 		desc_error = check_desc_error(desc->enc_req.error);
2153 		status |=  desc_error << RTE_BBDEV_DATA_ERROR;
2154 		rte_bbdev_log_debug("DMA response desc %p", desc);
2155 	}
2156 
2157 	*op = desc->enc_req.op_addr;
2158 	(*op)->status = status;
2159 	return cbs_in_op;
2160 }
2161 
2162 static inline int
2163 dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
2164 		uint16_t desc_offset)
2165 {
2166 	union fpga_dma_desc *desc;
2167 	int desc_error = 0;
2168 	/* Set descriptor */
2169 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2170 			& q->sw_ring_wrap_mask);
2171 
2172 	/* Verify done bit is set */
2173 	if (desc->dec_req.done == 0)
2174 		return -1;
2175 
2176 	/* make sure the response is read atomically */
2177 	rte_smp_rmb();
2178 
2179 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2180 	print_dma_dec_desc_debug_info(desc);
2181 
2182 #endif
2183 
2184 	*op = desc->dec_req.op_addr;
2185 	/* FPGA reports in half-iterations, from 0 to 31. get ceiling */
2186 	(*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1;
2187 	/* crc_pass = 0 when decoder fails */
2188 	(*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
2189 	/* Check the descriptor error field, return 1 on error */
2190 	desc_error = check_desc_error(desc->enc_req.error);
2191 	(*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
2192 	return 1;
2193 }
2194 
2195 static inline int
2196 dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
2197 		uint16_t desc_offset)
2198 {
2199 	union fpga_dma_desc *desc;
2200 	uint8_t cbs_in_op, cb_idx, iter_count = 0;
2201 	int status = 0;
2202 	int  desc_error = 0;
2203 	/* Set descriptor */
2204 	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2205 			& q->sw_ring_wrap_mask);
2206 
2207 	/* Verify if done bit is set */
2208 	if (desc->dec_req.done == 0)
2209 		return -1;
2210 
2211 	/* Make sure the response is read atomically */
2212 	rte_smp_rmb();
2213 
2214 	/* Verify if done bit in all CBs is set */
2215 	cbs_in_op = desc->dec_req.cbs_in_op;
2216 	for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
2217 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2218 				cb_idx) & q->sw_ring_wrap_mask);
2219 		if (desc->dec_req.done == 0)
2220 			return -1;
2221 	}
2222 
2223 	/* Make sure the response is read atomically */
2224 	rte_smp_rmb();
2225 
2226 	for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
2227 		desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2228 				cb_idx) & q->sw_ring_wrap_mask);
2229 		/* get max iter_count for all CBs in op */
2230 		iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter);
2231 		/* crc_pass = 0 when decoder fails, one fails all */
2232 		status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
2233 		/* Check the descriptor error field, return 1 on error */
2234 		desc_error = check_desc_error(desc->enc_req.error);
2235 		status |= desc_error << RTE_BBDEV_DATA_ERROR;
2236 		rte_bbdev_log_debug("DMA response desc %p", desc);
2237 	}
2238 
2239 	*op = desc->dec_req.op_addr;
2240 
2241 	/* FPGA reports in half-iterations, get ceiling */
2242 	(*op)->turbo_dec.iter_count = (iter_count + 2) >> 1;
2243 	(*op)->status = status;
2244 	return cbs_in_op;
2245 }
2246 
2247 static uint16_t
2248 fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data,
2249 		struct rte_bbdev_enc_op **ops, uint16_t num)
2250 {
2251 	struct fpga_queue *q = q_data->queue_private;
2252 	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
2253 	uint16_t i;
2254 	uint16_t dequeued_cbs = 0;
2255 	struct rte_bbdev_enc_op *op;
2256 	int ret;
2257 
2258 	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
2259 		op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
2260 			& q->sw_ring_wrap_mask))->enc_req.op_addr;
2261 		if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
2262 			ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs);
2263 		else
2264 			ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs);
2265 
2266 		if (ret < 0)
2267 			break;
2268 
2269 		dequeued_cbs += ret;
2270 
2271 		rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
2272 				dequeued_cbs, num, q->head_free_desc, q->tail);
2273 	}
2274 
2275 	/* Update head */
2276 	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
2277 			q->sw_ring_wrap_mask;
2278 
2279 	/* Update stats */
2280 	q_data->queue_stats.dequeued_count += i;
2281 
2282 	return i;
2283 }
2284 
2285 static uint16_t
2286 fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data,
2287 		struct rte_bbdev_dec_op **ops, uint16_t num)
2288 {
2289 	struct fpga_queue *q = q_data->queue_private;
2290 	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
2291 	uint16_t i;
2292 	uint16_t dequeued_cbs = 0;
2293 	struct rte_bbdev_dec_op *op;
2294 	int ret;
2295 
2296 	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
2297 		op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
2298 			& q->sw_ring_wrap_mask))->dec_req.op_addr;
2299 		if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
2300 			ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs);
2301 		else
2302 			ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs);
2303 
2304 		if (ret < 0)
2305 			break;
2306 
2307 		dequeued_cbs += ret;
2308 
2309 		rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
2310 				dequeued_cbs, num, q->head_free_desc, q->tail);
2311 	}
2312 
2313 	/* Update head */
2314 	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
2315 			q->sw_ring_wrap_mask;
2316 
2317 	/* Update stats */
2318 	q_data->queue_stats.dequeued_count += i;
2319 
2320 	return i;
2321 }
2322 
2323 /* Initialization Function */
2324 static void
2325 fpga_lte_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
2326 {
2327 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
2328 
2329 	dev->dev_ops = &fpga_ops;
2330 	dev->enqueue_enc_ops = fpga_enqueue_enc;
2331 	dev->enqueue_dec_ops = fpga_enqueue_dec;
2332 	dev->dequeue_enc_ops = fpga_dequeue_enc;
2333 	dev->dequeue_dec_ops = fpga_dequeue_dec;
2334 
2335 	((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device =
2336 			!strcmp(drv->driver.name,
2337 					RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME));
2338 	((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base =
2339 			pci_dev->mem_resource[0].addr;
2340 
2341 	rte_bbdev_log_debug(
2342 			"Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
2343 			drv->driver.name, dev->data->name,
2344 			(void *)pci_dev->mem_resource[0].addr,
2345 			pci_dev->mem_resource[0].phys_addr);
2346 }
2347 
2348 static int
2349 fpga_lte_fec_probe(struct rte_pci_driver *pci_drv,
2350 	struct rte_pci_device *pci_dev)
2351 {
2352 	struct rte_bbdev *bbdev = NULL;
2353 	char dev_name[RTE_BBDEV_NAME_MAX_LEN];
2354 
2355 	if (pci_dev == NULL) {
2356 		rte_bbdev_log(ERR, "NULL PCI device");
2357 		return -EINVAL;
2358 	}
2359 
2360 	rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
2361 
2362 	/* Allocate memory to be used privately by drivers */
2363 	bbdev = rte_bbdev_allocate(pci_dev->device.name);
2364 	if (bbdev == NULL)
2365 		return -ENODEV;
2366 
2367 	/* allocate device private memory */
2368 	bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
2369 			sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE,
2370 			pci_dev->device.numa_node);
2371 
2372 	if (bbdev->data->dev_private == NULL) {
2373 		rte_bbdev_log(CRIT,
2374 				"Allocate of %zu bytes for device \"%s\" failed",
2375 				sizeof(struct fpga_lte_fec_device), dev_name);
2376 				rte_bbdev_release(bbdev);
2377 			return -ENOMEM;
2378 	}
2379 
2380 	/* Fill HW specific part of device structure */
2381 	bbdev->device = &pci_dev->device;
2382 	bbdev->intr_handle = pci_dev->intr_handle;
2383 	bbdev->data->socket_id = pci_dev->device.numa_node;
2384 
2385 	/* Invoke FEC FPGA device initialization function */
2386 	fpga_lte_fec_init(bbdev, pci_drv);
2387 
2388 	rte_bbdev_log_debug("bbdev id = %u [%s]",
2389 			bbdev->data->dev_id, dev_name);
2390 
2391 	struct fpga_lte_fec_device *d = bbdev->data->dev_private;
2392 	uint32_t version_id = fpga_reg_read_32(d->mmio_base,
2393 			FPGA_LTE_FEC_VERSION_ID);
2394 	rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
2395 		((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
2396 
2397 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2398 	if (!strcmp(pci_drv->driver.name,
2399 			RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)))
2400 		print_static_reg_debug_info(d->mmio_base);
2401 #endif
2402 	return 0;
2403 }
2404 
2405 static int
2406 fpga_lte_fec_remove(struct rte_pci_device *pci_dev)
2407 {
2408 	struct rte_bbdev *bbdev;
2409 	int ret;
2410 	uint8_t dev_id;
2411 
2412 	if (pci_dev == NULL)
2413 		return -EINVAL;
2414 
2415 	/* Find device */
2416 	bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
2417 	if (bbdev == NULL) {
2418 		rte_bbdev_log(CRIT,
2419 				"Couldn't find HW dev \"%s\" to uninitialise it",
2420 				pci_dev->device.name);
2421 		return -ENODEV;
2422 	}
2423 	dev_id = bbdev->data->dev_id;
2424 
2425 	/* free device private memory before close */
2426 	rte_free(bbdev->data->dev_private);
2427 
2428 	/* Close device */
2429 	ret = rte_bbdev_close(dev_id);
2430 	if (ret < 0)
2431 		rte_bbdev_log(ERR,
2432 				"Device %i failed to close during uninit: %i",
2433 				dev_id, ret);
2434 
2435 	/* release bbdev from library */
2436 	ret = rte_bbdev_release(bbdev);
2437 	if (ret)
2438 		rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
2439 				ret);
2440 
2441 	rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
2442 
2443 	return 0;
2444 }
2445 
2446 static inline void
2447 set_default_fpga_conf(struct rte_fpga_lte_fec_conf *def_conf)
2448 {
2449 	/* clear default configuration before initialization */
2450 	memset(def_conf, 0, sizeof(struct rte_fpga_lte_fec_conf));
2451 	/* Set pf mode to true */
2452 	def_conf->pf_mode_en = true;
2453 
2454 	/* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
2455 	def_conf->ul_bandwidth = 3;
2456 	def_conf->dl_bandwidth = 3;
2457 
2458 	/* Set Load Balance Factor to 64 */
2459 	def_conf->dl_load_balance = 64;
2460 	def_conf->ul_load_balance = 64;
2461 }
2462 
2463 /* Initial configuration of FPGA LTE FEC device */
2464 int
2465 rte_fpga_lte_fec_configure(const char *dev_name,
2466 		const struct rte_fpga_lte_fec_conf *conf)
2467 {
2468 	uint32_t payload_32, address;
2469 	uint16_t payload_16;
2470 	uint8_t payload_8;
2471 	uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
2472 	struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
2473 	struct rte_fpga_lte_fec_conf def_conf;
2474 
2475 	if (bbdev == NULL) {
2476 		rte_bbdev_log(ERR,
2477 				"Invalid dev_name (%s), or device is not yet initialised",
2478 				dev_name);
2479 		return -ENODEV;
2480 	}
2481 
2482 	struct fpga_lte_fec_device *d = bbdev->data->dev_private;
2483 
2484 	if (conf == NULL) {
2485 		rte_bbdev_log(ERR,
2486 				"FPGA Configuration was not provided. Default configuration will be loaded.");
2487 		set_default_fpga_conf(&def_conf);
2488 		conf = &def_conf;
2489 	}
2490 
2491 	/*
2492 	 * Configure UL:DL ratio.
2493 	 * [7:0]: UL weight
2494 	 * [15:8]: DL weight
2495 	 */
2496 	payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
2497 	address = FPGA_LTE_FEC_CONFIGURATION;
2498 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2499 
2500 	/* Clear all queues registers */
2501 	payload_32 = FPGA_INVALID_HW_QUEUE_ID;
2502 	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
2503 		address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
2504 		fpga_reg_write_32(d->mmio_base, address, payload_32);
2505 	}
2506 
2507 	/*
2508 	 * If PF mode is enabled allocate all queues for PF only.
2509 	 *
2510 	 * For VF mode each VF can have different number of UL and DL queues.
2511 	 * Total number of queues to configure cannot exceed FPGA
2512 	 * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
2513 	 * Queues mapping is done according to configuration:
2514 	 *
2515 	 * UL queues:
2516 	 * |                Q_ID              | VF_ID |
2517 	 * |                 0                |   0   |
2518 	 * |                ...               |   0   |
2519 	 * | conf->vf_dl_queues_number[0] - 1 |   0   |
2520 	 * | conf->vf_dl_queues_number[0]     |   1   |
2521 	 * |                ...               |   1   |
2522 	 * | conf->vf_dl_queues_number[1] - 1 |   1   |
2523 	 * |                ...               |  ...  |
2524 	 * | conf->vf_dl_queues_number[7] - 1 |   7   |
2525 	 *
2526 	 * DL queues:
2527 	 * |                Q_ID              | VF_ID |
2528 	 * |                 32               |   0   |
2529 	 * |                ...               |   0   |
2530 	 * | conf->vf_ul_queues_number[0] - 1 |   0   |
2531 	 * | conf->vf_ul_queues_number[0]     |   1   |
2532 	 * |                ...               |   1   |
2533 	 * | conf->vf_ul_queues_number[1] - 1 |   1   |
2534 	 * |                ...               |  ...  |
2535 	 * | conf->vf_ul_queues_number[7] - 1 |   7   |
2536 	 *
2537 	 * Example of configuration:
2538 	 * conf->vf_ul_queues_number[0] = 4;  -> 4 UL queues for VF0
2539 	 * conf->vf_dl_queues_number[0] = 4;  -> 4 DL queues for VF0
2540 	 * conf->vf_ul_queues_number[1] = 2;  -> 2 UL queues for VF1
2541 	 * conf->vf_dl_queues_number[1] = 2;  -> 2 DL queues for VF1
2542 	 *
2543 	 * UL:
2544 	 * | Q_ID | VF_ID |
2545 	 * |   0  |   0   |
2546 	 * |   1  |   0   |
2547 	 * |   2  |   0   |
2548 	 * |   3  |   0   |
2549 	 * |   4  |   1   |
2550 	 * |   5  |   1   |
2551 	 *
2552 	 * DL:
2553 	 * | Q_ID | VF_ID |
2554 	 * |  32  |   0   |
2555 	 * |  33  |   0   |
2556 	 * |  34  |   0   |
2557 	 * |  35  |   0   |
2558 	 * |  36  |   1   |
2559 	 * |  37  |   1   |
2560 	 */
2561 	if (conf->pf_mode_en) {
2562 		payload_32 = 0x1;
2563 		for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
2564 			address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
2565 			fpga_reg_write_32(d->mmio_base, address, payload_32);
2566 		}
2567 	} else {
2568 		/* Calculate total number of UL and DL queues to configure */
2569 		total_ul_q_id = total_dl_q_id = 0;
2570 		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2571 			total_ul_q_id += conf->vf_ul_queues_number[vf_id];
2572 			total_dl_q_id += conf->vf_dl_queues_number[vf_id];
2573 		}
2574 		total_q_id = total_dl_q_id + total_ul_q_id;
2575 		/*
2576 		 * Check if total number of queues to configure does not exceed
2577 		 * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
2578 		 */
2579 		if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
2580 			(total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
2581 			(total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
2582 			rte_bbdev_log(ERR,
2583 					"FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
2584 					total_ul_q_id, total_dl_q_id,
2585 					FPGA_TOTAL_NUM_QUEUES);
2586 			return -EINVAL;
2587 		}
2588 		total_ul_q_id = 0;
2589 		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2590 			for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
2591 					++q_id, ++total_ul_q_id) {
2592 				address = (total_ul_q_id << 2) +
2593 						FPGA_LTE_FEC_QUEUE_MAP;
2594 				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
2595 				fpga_reg_write_32(d->mmio_base, address,
2596 						payload_32);
2597 			}
2598 		}
2599 		total_dl_q_id = 0;
2600 		for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2601 			for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
2602 					++q_id, ++total_dl_q_id) {
2603 				address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
2604 						<< 2) + FPGA_LTE_FEC_QUEUE_MAP;
2605 				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
2606 				fpga_reg_write_32(d->mmio_base, address,
2607 						payload_32);
2608 			}
2609 		}
2610 	}
2611 
2612 	/* Setting Load Balance Factor */
2613 	payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
2614 	address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR;
2615 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2616 
2617 	/* Setting length of ring descriptor entry */
2618 	payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
2619 	address = FPGA_LTE_FEC_RING_DESC_LEN;
2620 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2621 
2622 	/* Setting FLR timeout value */
2623 	payload_16 = conf->flr_time_out;
2624 	address = FPGA_LTE_FEC_FLR_TIME_OUT;
2625 	fpga_reg_write_16(d->mmio_base, address, payload_16);
2626 
2627 	/* Queue PF/VF mapping table is ready */
2628 	payload_8 = 0x1;
2629 	address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
2630 	fpga_reg_write_8(d->mmio_base, address, payload_8);
2631 
2632 	rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s",
2633 			dev_name);
2634 
2635 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2636 	print_static_reg_debug_info(d->mmio_base);
2637 #endif
2638 	return 0;
2639 }
2640 
2641 /* FPGA LTE FEC PCI PF address map */
2642 static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = {
2643 	{
2644 		RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
2645 				FPGA_LTE_FEC_PF_DEVICE_ID)
2646 	},
2647 	{.device_id = 0},
2648 };
2649 
2650 static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = {
2651 	.probe = fpga_lte_fec_probe,
2652 	.remove = fpga_lte_fec_remove,
2653 	.id_table = pci_id_fpga_lte_fec_pf_map,
2654 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
2655 };
2656 
2657 /* FPGA LTE FEC PCI VF address map */
2658 static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = {
2659 	{
2660 		RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
2661 				FPGA_LTE_FEC_VF_DEVICE_ID)
2662 	},
2663 	{.device_id = 0},
2664 };
2665 
2666 static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = {
2667 	.probe = fpga_lte_fec_probe,
2668 	.remove = fpga_lte_fec_remove,
2669 	.id_table = pci_id_fpga_lte_fec_vf_map,
2670 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
2671 };
2672 
2673 
2674 RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver);
2675 RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME,
2676 		pci_id_fpga_lte_fec_pf_map);
2677 RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver);
2678 RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME,
2679 		pci_id_fpga_lte_fec_vf_map);
2680