xref: /dpdk/doc/guides/sample_app_ug/rxtx_callbacks.rst (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2015 Intel Corporation.
3
4RX/TX Callbacks Sample Application
5==================================
6
7The RX/TX Callbacks sample application is a packet forwarding application that
8demonstrates the use of user defined callbacks on received and transmitted
9packets. The application performs a simple latency check, using callbacks, to
10determine the time packets spend within the application.
11
12In the sample application a user defined callback is applied to all received
13packets to add a timestamp. A separate callback is applied to all packets
14prior to transmission to calculate the elapsed time, in CPU cycles.
15
16If hardware timestamping is supported by the NIC, the sample application will
17also display the average latency since the packet was timestamped in hardware,
18on top of the latency since the packet was received and processed by the RX
19callback.
20
21Compiling the Application
22-------------------------
23
24To compile the sample application see :doc:`compiling`.
25
26The application is located in the ``rxtx_callbacks`` sub-directory.
27
28
29Running the Application
30-----------------------
31
32To run the example in a ``linux`` environment:
33
34.. code-block:: console
35
36    ./<build_dir>/examples/dpdk-rxtx_callbacks -l 1 -n 4 -- [-t]
37
38Use -t to enable hardware timestamping. If not supported by the NIC, an error
39will be displayed.
40
41Refer to *DPDK Getting Started Guide* for general information on running
42applications and the Environment Abstraction Layer (EAL) options.
43
44
45
46Explanation
47-----------
48
49The ``rxtx_callbacks`` application is mainly a simple forwarding application
50based on the :doc:`skeleton`. See that section of the documentation for more
51details of the forwarding part of the application.
52
53The sections below explain the additional RX/TX callback code.
54
55
56The Main Function
57~~~~~~~~~~~~~~~~~
58
59The ``main()`` function performs the application initialization and calls the
60execution threads for each lcore. This function is effectively identical to
61the ``main()`` function explained in :doc:`skeleton`.
62
63The ``lcore_main()`` function is also identical.
64
65The main difference is in the user defined ``port_init()`` function where the
66callbacks are added. This is explained in the next section:
67
68
69The Port Initialization  Function
70~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
71
72The main functional part of the port initialization is shown below with
73comments:
74
75.. code-block:: c
76
77    static inline int
78    port_init(uint16_t port, struct rte_mempool *mbuf_pool)
79    {
80        struct rte_eth_conf port_conf = port_conf_default;
81        const uint16_t rx_rings = 1, tx_rings = 1;
82        struct rte_ether_addr addr;
83        int retval;
84        uint16_t q;
85
86        /* Configure the Ethernet device. */
87        retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
88        if (retval != 0)
89            return retval;
90
91        /* Allocate and set up 1 RX queue per Ethernet port. */
92        for (q = 0; q < rx_rings; q++) {
93            retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
94                    rte_eth_dev_socket_id(port), NULL, mbuf_pool);
95            if (retval < 0)
96                return retval;
97        }
98
99        /* Allocate and set up 1 TX queue per Ethernet port. */
100        for (q = 0; q < tx_rings; q++) {
101            retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
102                    rte_eth_dev_socket_id(port), NULL);
103            if (retval < 0)
104                return retval;
105        }
106
107        /* Start the Ethernet port. */
108        retval = rte_eth_dev_start(port);
109        if (retval < 0)
110            return retval;
111
112        /* Enable RX in promiscuous mode for the Ethernet device. */
113        retval = rte_eth_promiscuous_enable(port);
114        if (retval != 0)
115            return retval;
116
117        /* Add the callbacks for RX and TX.*/
118        rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
119        rte_eth_add_tx_callback(port, 0, calc_latency, NULL);
120
121        return 0;
122    }
123
124
125The RX and TX callbacks are added to the ports/queues as function pointers:
126
127.. code-block:: c
128
129        rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
130        rte_eth_add_tx_callback(port, 0, calc_latency,   NULL);
131
132More than one callback can be added and additional information can be passed
133to callback function pointers as a ``void*``. In the examples above ``NULL``
134is used.
135
136The ``add_timestamps()`` and ``calc_latency()`` functions are explained below.
137
138
139The add_timestamps() Callback
140~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
141
142The ``add_timestamps()`` callback is added to the RX port and is applied to
143all packets received:
144
145.. code-block:: c
146
147    static uint16_t
148    add_timestamps(uint16_t port __rte_unused, uint16_t qidx __rte_unused,
149            struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
150    {
151        unsigned i;
152        uint64_t now = rte_rdtsc();
153
154        for (i = 0; i < nb_pkts; i++)
155            *tsc_field(pkts[i]) = now;
156
157        return nb_pkts;
158    }
159
160The DPDK function ``rte_rdtsc()`` is used to add a cycle count timestamp to
161each packet (see the *cycles* section of the *DPDK API Documentation* for
162details).
163
164
165The calc_latency() Callback
166~~~~~~~~~~~~~~~~~~~~~~~~~~~
167
168The ``calc_latency()`` callback is added to the TX port and is applied to all
169packets prior to transmission:
170
171.. code-block:: c
172
173    static uint16_t
174    calc_latency(uint16_t port __rte_unused, uint16_t qidx __rte_unused,
175            struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
176    {
177        uint64_t cycles = 0;
178        uint64_t now = rte_rdtsc();
179        unsigned i;
180
181        for (i = 0; i < nb_pkts; i++)
182            cycles += now - *tsc_field(pkts[i]);
183
184        latency_numbers.total_cycles += cycles;
185        latency_numbers.total_pkts   += nb_pkts;
186
187        if (latency_numbers.total_pkts > (100 * 1000 * 1000ULL)) {
188            printf("Latency = %"PRIu64" cycles\n",
189                    latency_numbers.total_cycles / latency_numbers.total_pkts);
190
191            latency_numbers.total_cycles = latency_numbers.total_pkts = 0;
192        }
193
194        return nb_pkts;
195    }
196
197The ``calc_latency()`` function accumulates the total number of packets and
198the total number of cycles used. Once more than 100 million packets have been
199transmitted the average cycle count per packet is printed out and the counters
200are reset.
201