xref: /dpdk/doc/guides/sample_app_ug/ptpclient.rst (revision 945acb4a0d644d194f1823084a234f9c286dcf8c)
1..  BSD LICENSE
2    Copyright(c) 2015 Intel Corporation. All rights reserved.
3    All rights reserved.
4
5    Redistribution and use in source and binary forms, with or without
6    modification, are permitted provided that the following conditions
7    are met:
8
9    * Redistributions of source code must retain the above copyright
10    notice, this list of conditions and the following disclaimer.
11    * Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in
13    the documentation and/or other materials provided with the
14    distribution.
15    * Neither the name of Intel Corporation nor the names of its
16    contributors may be used to endorse or promote products derived
17    from this software without specific prior written permission.
18
19    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31
32PTP Client Sample Application
33=============================
34
35The PTP (Precision Time Protocol) client sample application is a simple
36example of using the DPDK IEEE1588 API to communicate with a PTP master clock
37to synchronize the time on the NIC and, optionally, on the Linux system.
38
39Note, PTP is a time syncing protocol and cannot be used within DPDK as a
40time-stamping mechanism. See the following for an explanation of the protocol:
41`Precision Time Protocol
42<https://en.wikipedia.org/wiki/Precision_Time_Protocol>`_.
43
44
45Limitations
46-----------
47
48The PTP sample application is intended as a simple reference implementation of
49a PTP client using the DPDK IEEE1588 API.
50In order to keep the application simple the following assumptions are made:
51
52* The first discovered master is the master for the session.
53* Only L2 PTP packets are supported.
54* Only the PTP v2 protocol is supported.
55* Only the slave clock is implemented.
56
57
58How the Application Works
59-------------------------
60
61.. _figure_ptpclient_highlevel:
62
63.. figure:: img/ptpclient.*
64
65   PTP Synchronization Protocol
66
67The PTP synchronization in the sample application works as follows:
68
69* Master sends *Sync* message - the slave saves it as T2.
70* Master sends *Follow Up* message and sends time of T1.
71* Slave sends *Delay Request* frame to PTP Master and stores T3.
72* Master sends *Delay Response* T4 time which is time of received T3.
73
74The adjustment for slave can be represented as:
75
76   adj = -[(T2-T1)-(T4 - T3)]/2
77
78If the command line parameter ``-T 1`` is used the application also
79synchronizes the PTP PHC clock with the Linux kernel clock.
80
81Compiling the Application
82-------------------------
83
84To compile the sample application see :doc:`compiling`.
85
86The application is located in the ``ptpclient`` sub-directory.
87
88.. note::
89   To compile the application edit the ``config/common_linuxapp`` configuration file to enable IEEE1588
90   and then recompile DPDK:
91
92   .. code-block:: console
93
94      CONFIG_RTE_LIBRTE_IEEE1588=y
95
96Running the Application
97-----------------------
98
99To run the example in a ``linuxapp`` environment:
100
101.. code-block:: console
102
103    ./build/ptpclient -l 1 -n 4 -- -p 0x1 -T 0
104
105Refer to *DPDK Getting Started Guide* for general information on running
106applications and the Environment Abstraction Layer (EAL) options.
107
108* ``-p portmask``: Hexadecimal portmask.
109* ``-T 0``: Update only the PTP slave clock.
110* ``-T 1``: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.
111
112
113Code Explanation
114----------------
115
116The following sections provide an explanation of the main components of the
117code.
118
119All DPDK library functions used in the sample code are prefixed with ``rte_``
120and are explained in detail in the *DPDK API Documentation*.
121
122
123The Main Function
124~~~~~~~~~~~~~~~~~
125
126The ``main()`` function performs the initialization and calls the execution
127threads for each lcore.
128
129The first task is to initialize the Environment Abstraction Layer (EAL).  The
130``argc`` and ``argv`` arguments are provided to the ``rte_eal_init()``
131function. The value returned is the number of parsed arguments:
132
133.. code-block:: c
134
135    int ret = rte_eal_init(argc, argv);
136    if (ret < 0)
137        rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
138
139And than we parse application specific arguments
140
141.. code-block:: c
142
143    argc -= ret;
144    argv += ret;
145
146    ret = ptp_parse_args(argc, argv);
147    if (ret < 0)
148        rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
149
150The ``main()`` also allocates a mempool to hold the mbufs (Message Buffers)
151used by the application:
152
153.. code-block:: c
154
155    mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
156           MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
157
158Mbufs are the packet buffer structure used by DPDK. They are explained in
159detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.
160
161The ``main()`` function also initializes all the ports using the user defined
162``port_init()`` function with portmask provided by user:
163
164.. code-block:: c
165
166    for (portid = 0; portid < nb_ports; portid++)
167        if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
168
169            if (port_init(portid, mbuf_pool) == 0) {
170                ptp_enabled_ports[ptp_enabled_port_nb] = portid;
171                ptp_enabled_port_nb++;
172            } else {
173                rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
174                        portid);
175            }
176        }
177
178
179Once the initialization is complete, the application is ready to launch a
180function on an lcore. In this example ``lcore_main()`` is called on a single
181lcore.
182
183.. code-block:: c
184
185	lcore_main();
186
187The ``lcore_main()`` function is explained below.
188
189
190The Lcores Main
191~~~~~~~~~~~~~~~
192
193As we saw above the ``main()`` function calls an application function on the
194available lcores.
195
196The main work of the application is done within the loop:
197
198.. code-block:: c
199
200        for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
201
202            portid = ptp_enabled_ports[portid];
203            nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
204
205            if (likely(nb_rx == 0))
206                continue;
207
208            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
209                parse_ptp_frames(portid, m);
210
211            rte_pktmbuf_free(m);
212        }
213
214Packets are received one by one on the RX ports and, if required, PTP response
215packets are transmitted on the TX ports.
216
217If the offload flags in the mbuf indicate that the packet is a PTP packet then
218the packet is parsed to determine which type:
219
220.. code-block:: c
221
222            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
223                 parse_ptp_frames(portid, m);
224
225
226All packets are freed explicitly using ``rte_pktmbuf_free()``.
227
228The forwarding loop can be interrupted and the application closed using
229``Ctrl-C``.
230
231
232PTP parsing
233~~~~~~~~~~~
234
235The ``parse_ptp_frames()`` function processes PTP packets, implementing slave
236PTP IEEE1588 L2 functionality.
237
238.. code-block:: c
239
240    void
241    parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
242        struct ptp_header *ptp_hdr;
243        struct ether_hdr *eth_hdr;
244        uint16_t eth_type;
245
246        eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
247        eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
248
249        if (eth_type == PTP_PROTOCOL) {
250            ptp_data.m = m;
251            ptp_data.portid = portid;
252            ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
253                        + sizeof(struct ether_hdr));
254
255            switch (ptp_hdr->msgtype) {
256            case SYNC:
257                parse_sync(&ptp_data);
258                break;
259            case FOLLOW_UP:
260                parse_fup(&ptp_data);
261                break;
262            case DELAY_RESP:
263                parse_drsp(&ptp_data);
264                print_clock_info(&ptp_data);
265                break;
266            default:
267                break;
268            }
269        }
270    }
271
272There are 3 types of packets on the RX path which we must parse to create a minimal
273implementation of the PTP slave client:
274
275* SYNC packet.
276* FOLLOW UP packet
277* DELAY RESPONSE packet.
278
279When we parse the *FOLLOW UP* packet we also create and send a *DELAY_REQUEST* packet.
280Also when we parse the *DELAY RESPONSE* packet, and all conditions are met we adjust the PTP slave clock.
281