xref: /dpdk/doc/guides/sample_app_ug/ptpclient.rst (revision 68a03efeed657e6e05f281479b33b51102797e15)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2015 Intel Corporation.
3
4PTP Client Sample Application
5=============================
6
7The PTP (Precision Time Protocol) client sample application is a simple
8example of using the DPDK IEEE1588 API to communicate with a PTP master clock
9to synchronize the time on the NIC and, optionally, on the Linux system.
10
11Note, PTP is a time syncing protocol and cannot be used within DPDK as a
12time-stamping mechanism. See the following for an explanation of the protocol:
13`Precision Time Protocol
14<https://en.wikipedia.org/wiki/Precision_Time_Protocol>`_.
15
16
17Limitations
18-----------
19
20The PTP sample application is intended as a simple reference implementation of
21a PTP client using the DPDK IEEE1588 API.
22In order to keep the application simple the following assumptions are made:
23
24* The first discovered master is the main for the session.
25* Only L2 PTP packets are supported.
26* Only the PTP v2 protocol is supported.
27* Only the slave clock is implemented.
28
29
30How the Application Works
31-------------------------
32
33.. _figure_ptpclient_highlevel:
34
35.. figure:: img/ptpclient.*
36
37   PTP Synchronization Protocol
38
39The PTP synchronization in the sample application works as follows:
40
41* Master sends *Sync* message - the slave saves it as T2.
42* Master sends *Follow Up* message and sends time of T1.
43* Slave sends *Delay Request* frame to PTP Master and stores T3.
44* Master sends *Delay Response* T4 time which is time of received T3.
45
46The adjustment for slave can be represented as:
47
48   adj = -[(T2-T1)-(T4 - T3)]/2
49
50If the command line parameter ``-T 1`` is used the application also
51synchronizes the PTP PHC clock with the Linux kernel clock.
52
53Compiling the Application
54-------------------------
55
56To compile the sample application see :doc:`compiling`.
57
58The application is located in the ``ptpclient`` sub-directory.
59
60
61Running the Application
62-----------------------
63
64To run the example in a ``linux`` environment:
65
66.. code-block:: console
67
68    ./<build_dir>/examples/dpdk-ptpclient -l 1 -n 4 -- -p 0x1 -T 0
69
70Refer to *DPDK Getting Started Guide* for general information on running
71applications and the Environment Abstraction Layer (EAL) options.
72
73* ``-p portmask``: Hexadecimal portmask.
74* ``-T 0``: Update only the PTP slave clock.
75* ``-T 1``: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.
76
77
78Code Explanation
79----------------
80
81The following sections provide an explanation of the main components of the
82code.
83
84All DPDK library functions used in the sample code are prefixed with ``rte_``
85and are explained in detail in the *DPDK API Documentation*.
86
87
88The Main Function
89~~~~~~~~~~~~~~~~~
90
91The ``main()`` function performs the initialization and calls the execution
92threads for each lcore.
93
94The first task is to initialize the Environment Abstraction Layer (EAL).  The
95``argc`` and ``argv`` arguments are provided to the ``rte_eal_init()``
96function. The value returned is the number of parsed arguments:
97
98.. code-block:: c
99
100    int ret = rte_eal_init(argc, argv);
101    if (ret < 0)
102        rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
103
104And than we parse application specific arguments
105
106.. code-block:: c
107
108    argc -= ret;
109    argv += ret;
110
111    ret = ptp_parse_args(argc, argv);
112    if (ret < 0)
113        rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
114
115The ``main()`` also allocates a mempool to hold the mbufs (Message Buffers)
116used by the application:
117
118.. code-block:: c
119
120    mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
121           MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
122
123Mbufs are the packet buffer structure used by DPDK. They are explained in
124detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.
125
126The ``main()`` function also initializes all the ports using the user defined
127``port_init()`` function with portmask provided by user:
128
129.. code-block:: c
130
131    for (portid = 0; portid < nb_ports; portid++)
132        if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
133
134            if (port_init(portid, mbuf_pool) == 0) {
135                ptp_enabled_ports[ptp_enabled_port_nb] = portid;
136                ptp_enabled_port_nb++;
137            } else {
138                rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
139                        portid);
140            }
141        }
142
143
144Once the initialization is complete, the application is ready to launch a
145function on an lcore. In this example ``lcore_main()`` is called on a single
146lcore.
147
148.. code-block:: c
149
150	lcore_main();
151
152The ``lcore_main()`` function is explained below.
153
154
155The Lcores Main
156~~~~~~~~~~~~~~~
157
158As we saw above the ``main()`` function calls an application function on the
159available lcores.
160
161The main work of the application is done within the loop:
162
163.. code-block:: c
164
165        for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
166
167            portid = ptp_enabled_ports[portid];
168            nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
169
170            if (likely(nb_rx == 0))
171                continue;
172
173            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
174                parse_ptp_frames(portid, m);
175
176            rte_pktmbuf_free(m);
177        }
178
179Packets are received one by one on the RX ports and, if required, PTP response
180packets are transmitted on the TX ports.
181
182If the offload flags in the mbuf indicate that the packet is a PTP packet then
183the packet is parsed to determine which type:
184
185.. code-block:: c
186
187            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
188                 parse_ptp_frames(portid, m);
189
190
191All packets are freed explicitly using ``rte_pktmbuf_free()``.
192
193The forwarding loop can be interrupted and the application closed using
194``Ctrl-C``.
195
196
197PTP parsing
198~~~~~~~~~~~
199
200The ``parse_ptp_frames()`` function processes PTP packets, implementing slave
201PTP IEEE1588 L2 functionality.
202
203.. code-block:: c
204
205    void
206    parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
207        struct ptp_header *ptp_hdr;
208        struct rte_ether_hdr *eth_hdr;
209        uint16_t eth_type;
210
211        eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
212        eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
213
214        if (eth_type == PTP_PROTOCOL) {
215            ptp_data.m = m;
216            ptp_data.portid = portid;
217            ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
218                        + sizeof(struct rte_ether_hdr));
219
220            switch (ptp_hdr->msgtype) {
221            case SYNC:
222                parse_sync(&ptp_data);
223                break;
224            case FOLLOW_UP:
225                parse_fup(&ptp_data);
226                break;
227            case DELAY_RESP:
228                parse_drsp(&ptp_data);
229                print_clock_info(&ptp_data);
230                break;
231            default:
232                break;
233            }
234        }
235    }
236
237There are 3 types of packets on the RX path which we must parse to create a minimal
238implementation of the PTP slave client:
239
240* SYNC packet.
241* FOLLOW UP packet
242* DELAY RESPONSE packet.
243
244When we parse the *FOLLOW UP* packet we also create and send a *DELAY_REQUEST* packet.
245Also when we parse the *DELAY RESPONSE* packet, and all conditions are met we adjust the PTP slave clock.
246