xref: /dpdk/doc/guides/sample_app_ug/ptpclient.rst (revision 5852bf6ae1fae11d01712a6a0d3138a7a1370e2c)
1..  BSD LICENSE
2    Copyright(c) 2015 Intel Corporation. All rights reserved.
3    All rights reserved.
4
5    Redistribution and use in source and binary forms, with or without
6    modification, are permitted provided that the following conditions
7    are met:
8
9    * Redistributions of source code must retain the above copyright
10    notice, this list of conditions and the following disclaimer.
11    * Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in
13    the documentation and/or other materials provided with the
14    distribution.
15    * Neither the name of Intel Corporation nor the names of its
16    contributors may be used to endorse or promote products derived
17    from this software without specific prior written permission.
18
19    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31
32PTP Client Sample Application
33=============================
34
35The PTP (Precision Time Protocol) client sample application is a simple
36example of using the DPDK IEEE1588 API to communicate with a PTP master clock
37to synchronize the time on the NIC and, optionally, on the Linux system.
38
39Note, PTP is a time syncing protocol and cannot be used within DPDK as a
40time-stamping mechanism. See the following for an explanation of the protocol:
41`Precision Time Protocol
42<https://en.wikipedia.org/wiki/Precision_Time_Protocol>`_.
43
44
45Limitations
46-----------
47
48The PTP sample application is intended as a simple reference implementation of
49a PTP client using the DPDK IEEE1588 API.
50In order to keep the application simple the following assumptions are made:
51
52* The first discovered master is the master for the session.
53* Only L2 PTP packets are supported.
54* Only the PTP v2 protocol is supported.
55* Only the slave clock is implemented.
56
57
58How the Application Works
59-------------------------
60
61.. _figure_ptpclient_highlevel:
62
63.. figure:: img/ptpclient.*
64
65   PTP Synchronization Protocol
66
67The PTP synchronization in the sample application works as follows:
68
69* Master sends *Sync* message - the slave saves it as T2.
70* Master sends *Follow Up* message and sends time of T1.
71* Slave sends *Delay Request* frame to PTP Master and stores T3.
72* Master sends *Delay Response* T4 time which is time of received T3.
73
74The adjustment for slave can be represented as:
75
76   adj = -[(T2-T1)-(T4 - T3)]/2
77
78If the command line parameter ``-T 1`` is used the application also
79synchronizes the PTP PHC clock with the Linux kernel clock.
80
81
82Compiling the Application
83-------------------------
84
85To compile the application, export the path to the DPDK source tree and edit
86the ``config/common_linuxapp`` configuration file to enable IEEE1588:
87
88.. code-block:: console
89
90    export RTE_SDK=/path/to/rte_sdk
91
92    # Edit  common_linuxapp and set the following options:
93    CONFIG_RTE_LIBRTE_IEEE1588=y
94
95Set the target, for example:
96
97.. code-block:: console
98
99    export RTE_TARGET=x86_64-native-linuxapp-gcc
100
101See the *DPDK Getting Started* Guide for possible ``RTE_TARGET`` values.
102
103Build the application as follows:
104
105.. code-block:: console
106
107    # Recompile DPDK.
108    make install T=$RTE_TARGET
109
110    # Compile the application.
111    cd ${RTE_SDK}/examples/ptpclient
112    make
113
114
115Running the Application
116-----------------------
117
118To run the example in a ``linuxapp`` environment:
119
120.. code-block:: console
121
122    ./build/ptpclient -l 1 -n 4 -- -p 0x1 -T 0
123
124Refer to *DPDK Getting Started Guide* for general information on running
125applications and the Environment Abstraction Layer (EAL) options.
126
127* ``-p portmask``: Hexadecimal portmask.
128* ``-T 0``: Update only the PTP slave clock.
129* ``-T 1``: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.
130
131
132Code Explanation
133----------------
134
135The following sections provide an explanation of the main components of the
136code.
137
138All DPDK library functions used in the sample code are prefixed with ``rte_``
139and are explained in detail in the *DPDK API Documentation*.
140
141
142The Main Function
143~~~~~~~~~~~~~~~~~
144
145The ``main()`` function performs the initialization and calls the execution
146threads for each lcore.
147
148The first task is to initialize the Environment Abstraction Layer (EAL).  The
149``argc`` and ``argv`` arguments are provided to the ``rte_eal_init()``
150function. The value returned is the number of parsed arguments:
151
152.. code-block:: c
153
154    int ret = rte_eal_init(argc, argv);
155    if (ret < 0)
156        rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
157
158And than we parse application specific arguments
159
160.. code-block:: c
161
162    argc -= ret;
163    argv += ret;
164
165    ret = ptp_parse_args(argc, argv);
166    if (ret < 0)
167        rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
168
169The ``main()`` also allocates a mempool to hold the mbufs (Message Buffers)
170used by the application:
171
172.. code-block:: c
173
174    mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
175           MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
176
177Mbufs are the packet buffer structure used by DPDK. They are explained in
178detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.
179
180The ``main()`` function also initializes all the ports using the user defined
181``port_init()`` function with portmask provided by user:
182
183.. code-block:: c
184
185    for (portid = 0; portid < nb_ports; portid++)
186        if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
187
188            if (port_init(portid, mbuf_pool) == 0) {
189                ptp_enabled_ports[ptp_enabled_port_nb] = portid;
190                ptp_enabled_port_nb++;
191            } else {
192                rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
193                        portid);
194            }
195        }
196
197
198Once the initialization is complete, the application is ready to launch a
199function on an lcore. In this example ``lcore_main()`` is called on a single
200lcore.
201
202.. code-block:: c
203
204	lcore_main();
205
206The ``lcore_main()`` function is explained below.
207
208
209The Lcores Main
210~~~~~~~~~~~~~~~
211
212As we saw above the ``main()`` function calls an application function on the
213available lcores.
214
215The main work of the application is done within the loop:
216
217.. code-block:: c
218
219        for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
220
221            portid = ptp_enabled_ports[portid];
222            nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
223
224            if (likely(nb_rx == 0))
225                continue;
226
227            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
228                parse_ptp_frames(portid, m);
229
230            rte_pktmbuf_free(m);
231        }
232
233Packets are received one by one on the RX ports and, if required, PTP response
234packets are transmitted on the TX ports.
235
236If the offload flags in the mbuf indicate that the packet is a PTP packet then
237the packet is parsed to determine which type:
238
239.. code-block:: c
240
241            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
242                 parse_ptp_frames(portid, m);
243
244
245All packets are freed explicitly using ``rte_pktmbuf_free()``.
246
247The forwarding loop can be interrupted and the application closed using
248``Ctrl-C``.
249
250
251PTP parsing
252~~~~~~~~~~~
253
254The ``parse_ptp_frames()`` function processes PTP packets, implementing slave
255PTP IEEE1588 L2 functionality.
256
257.. code-block:: c
258
259    void
260    parse_ptp_frames(uint8_t portid, struct rte_mbuf *m) {
261        struct ptp_header *ptp_hdr;
262        struct ether_hdr *eth_hdr;
263        uint16_t eth_type;
264
265        eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
266        eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
267
268        if (eth_type == PTP_PROTOCOL) {
269            ptp_data.m = m;
270            ptp_data.portid = portid;
271            ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
272                        + sizeof(struct ether_hdr));
273
274            switch (ptp_hdr->msgtype) {
275            case SYNC:
276                parse_sync(&ptp_data);
277                break;
278            case FOLLOW_UP:
279                parse_fup(&ptp_data);
280                break;
281            case DELAY_RESP:
282                parse_drsp(&ptp_data);
283                print_clock_info(&ptp_data);
284                break;
285            default:
286                break;
287            }
288        }
289    }
290
291There are 3 types of packets on the RX path which we must parse to create a minimal
292implementation of the PTP slave client:
293
294* SYNC packet.
295* FOLLOW UP packet
296* DELAY RESPONSE packet.
297
298When we parse the *FOLLOW UP* packet we also create and send a *DELAY_REQUEST* packet.
299Also when we parse the *DELAY RESPONSE* packet, and all conditions are met we adjust the PTP slave clock.
300