xref: /dpdk/doc/guides/sample_app_ug/ptpclient.rst (revision 200bc52e5aa0d72e70464c9cd22b55cf536ed13c)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2015 Intel Corporation.
3
4PTP Client Sample Application
5=============================
6
7The PTP (Precision Time Protocol) client sample application is a simple
8example of using the DPDK IEEE1588 API to communicate with a PTP master clock
9to synchronize the time on the NIC and, optionally, on the Linux system.
10
11Note, PTP is a time syncing protocol and cannot be used within DPDK as a
12time-stamping mechanism. See the following for an explanation of the protocol:
13`Precision Time Protocol
14<https://en.wikipedia.org/wiki/Precision_Time_Protocol>`_.
15
16
17Limitations
18-----------
19
20The PTP sample application is intended as a simple reference implementation of
21a PTP client using the DPDK IEEE1588 API.
22In order to keep the application simple the following assumptions are made:
23
24* The first discovered master is the master for the session.
25* Only L2 PTP packets are supported.
26* Only the PTP v2 protocol is supported.
27* Only the slave clock is implemented.
28
29
30How the Application Works
31-------------------------
32
33.. _figure_ptpclient_highlevel:
34
35.. figure:: img/ptpclient.*
36
37   PTP Synchronization Protocol
38
39The PTP synchronization in the sample application works as follows:
40
41* Master sends *Sync* message - the slave saves it as T2.
42* Master sends *Follow Up* message and sends time of T1.
43* Slave sends *Delay Request* frame to PTP Master and stores T3.
44* Master sends *Delay Response* T4 time which is time of received T3.
45
46The adjustment for slave can be represented as:
47
48   adj = -[(T2-T1)-(T4 - T3)]/2
49
50If the command line parameter ``-T 1`` is used the application also
51synchronizes the PTP PHC clock with the Linux kernel clock.
52
53Compiling the Application
54-------------------------
55
56To compile the sample application see :doc:`compiling`.
57
58The application is located in the ``ptpclient`` sub-directory.
59
60.. note::
61   To compile the application edit the ``config/common_linux`` configuration file to enable IEEE1588
62   and then recompile DPDK:
63
64   .. code-block:: console
65
66      CONFIG_RTE_LIBRTE_IEEE1588=y
67
68Running the Application
69-----------------------
70
71To run the example in a ``linux`` environment:
72
73.. code-block:: console
74
75    ./build/ptpclient -l 1 -n 4 -- -p 0x1 -T 0
76
77Refer to *DPDK Getting Started Guide* for general information on running
78applications and the Environment Abstraction Layer (EAL) options.
79
80* ``-p portmask``: Hexadecimal portmask.
81* ``-T 0``: Update only the PTP slave clock.
82* ``-T 1``: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.
83
84
85Code Explanation
86----------------
87
88The following sections provide an explanation of the main components of the
89code.
90
91All DPDK library functions used in the sample code are prefixed with ``rte_``
92and are explained in detail in the *DPDK API Documentation*.
93
94
95The Main Function
96~~~~~~~~~~~~~~~~~
97
98The ``main()`` function performs the initialization and calls the execution
99threads for each lcore.
100
101The first task is to initialize the Environment Abstraction Layer (EAL).  The
102``argc`` and ``argv`` arguments are provided to the ``rte_eal_init()``
103function. The value returned is the number of parsed arguments:
104
105.. code-block:: c
106
107    int ret = rte_eal_init(argc, argv);
108    if (ret < 0)
109        rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
110
111And than we parse application specific arguments
112
113.. code-block:: c
114
115    argc -= ret;
116    argv += ret;
117
118    ret = ptp_parse_args(argc, argv);
119    if (ret < 0)
120        rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
121
122The ``main()`` also allocates a mempool to hold the mbufs (Message Buffers)
123used by the application:
124
125.. code-block:: c
126
127    mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
128           MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
129
130Mbufs are the packet buffer structure used by DPDK. They are explained in
131detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.
132
133The ``main()`` function also initializes all the ports using the user defined
134``port_init()`` function with portmask provided by user:
135
136.. code-block:: c
137
138    for (portid = 0; portid < nb_ports; portid++)
139        if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
140
141            if (port_init(portid, mbuf_pool) == 0) {
142                ptp_enabled_ports[ptp_enabled_port_nb] = portid;
143                ptp_enabled_port_nb++;
144            } else {
145                rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
146                        portid);
147            }
148        }
149
150
151Once the initialization is complete, the application is ready to launch a
152function on an lcore. In this example ``lcore_main()`` is called on a single
153lcore.
154
155.. code-block:: c
156
157	lcore_main();
158
159The ``lcore_main()`` function is explained below.
160
161
162The Lcores Main
163~~~~~~~~~~~~~~~
164
165As we saw above the ``main()`` function calls an application function on the
166available lcores.
167
168The main work of the application is done within the loop:
169
170.. code-block:: c
171
172        for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
173
174            portid = ptp_enabled_ports[portid];
175            nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
176
177            if (likely(nb_rx == 0))
178                continue;
179
180            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
181                parse_ptp_frames(portid, m);
182
183            rte_pktmbuf_free(m);
184        }
185
186Packets are received one by one on the RX ports and, if required, PTP response
187packets are transmitted on the TX ports.
188
189If the offload flags in the mbuf indicate that the packet is a PTP packet then
190the packet is parsed to determine which type:
191
192.. code-block:: c
193
194            if (m->ol_flags & PKT_RX_IEEE1588_PTP)
195                 parse_ptp_frames(portid, m);
196
197
198All packets are freed explicitly using ``rte_pktmbuf_free()``.
199
200The forwarding loop can be interrupted and the application closed using
201``Ctrl-C``.
202
203
204PTP parsing
205~~~~~~~~~~~
206
207The ``parse_ptp_frames()`` function processes PTP packets, implementing slave
208PTP IEEE1588 L2 functionality.
209
210.. code-block:: c
211
212    void
213    parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {
214        struct ptp_header *ptp_hdr;
215        struct rte_ether_hdr *eth_hdr;
216        uint16_t eth_type;
217
218        eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
219        eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
220
221        if (eth_type == PTP_PROTOCOL) {
222            ptp_data.m = m;
223            ptp_data.portid = portid;
224            ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
225                        + sizeof(struct rte_ether_hdr));
226
227            switch (ptp_hdr->msgtype) {
228            case SYNC:
229                parse_sync(&ptp_data);
230                break;
231            case FOLLOW_UP:
232                parse_fup(&ptp_data);
233                break;
234            case DELAY_RESP:
235                parse_drsp(&ptp_data);
236                print_clock_info(&ptp_data);
237                break;
238            default:
239                break;
240            }
241        }
242    }
243
244There are 3 types of packets on the RX path which we must parse to create a minimal
245implementation of the PTP slave client:
246
247* SYNC packet.
248* FOLLOW UP packet
249* DELAY RESPONSE packet.
250
251When we parse the *FOLLOW UP* packet we also create and send a *DELAY_REQUEST* packet.
252Also when we parse the *DELAY RESPONSE* packet, and all conditions are met we adjust the PTP slave clock.
253