xref: /dpdk/doc/guides/sample_app_ug/link_status_intr.rst (revision c39d1e082a4b426e915074ce30eb6f410ee2654a)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4Link Status Interrupt Sample Application
5========================================
6
7The Link Status Interrupt sample application is a simple example of packet processing using
8the Data Plane Development Kit (DPDK) that
9demonstrates how network link status changes for a network port can be captured and
10used by a DPDK application.
11
12Overview
13--------
14
15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
16and performs L2 forwarding for each packet that is received on an RX_PORT.
17The following operations are performed:
18
19*   RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
20
21*   The source MAC address is replaced by the TX_PORT MAC address
22
23*   The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
24
25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
26and the behavior of L2 forwarding each time the link status changes.
27
28Compiling the Application
29-------------------------
30
31To compile the sample application see :doc:`compiling`.
32
33The application is located in the ``link_status_interrupt`` sub-directory.
34
35Running the Application
36-----------------------
37
38The application requires a number of command line options:
39
40.. code-block:: console
41
42    ./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]
43
44where,
45
46*   -p PORTMASK: A hexadecimal bitmask of the ports to configure
47
48*   -q NQ: A number of queues (=ports) per lcore (default is 1)
49
50*   -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)
51
52To run the application in a linux environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore,
53issue the command:
54
55.. code-block:: console
56
57    $ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff
58
59Refer to the *DPDK Getting Started Guide* for general information on running applications
60and the Environment Abstraction Layer (EAL) options.
61
62Explanation
63-----------
64
65The following sections provide some explanation of the code.
66
67Command Line Arguments
68~~~~~~~~~~~~~~~~~~~~~~
69
70The Link Status Interrupt sample application takes specific parameters,
71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_).
72
73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
74See :ref:`l2_fwd_app_cmd_arguments` for more information.
75
76Mbuf Pool Initialization
77~~~~~~~~~~~~~~~~~~~~~~~~
78
79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
80See :ref:`l2_fwd_app_mbuf_init` for more information.
81
82Driver Initialization
83~~~~~~~~~~~~~~~~~~~~~
84
85The main part of the code in the main() function relates to the initialization of the driver.
86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
87*DPDK Programmer's Guide and the DPDK API Reference*.
88
89.. code-block:: c
90
91    if (rte_pci_probe() < 0)
92        rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
93
94    /*
95     * Each logical core is assigned a dedicated TX queue on each port.
96     */
97
98    RTE_ETH_FOREACH_DEV(portid) {
99        /* skip ports that are not enabled */
100
101        if ((lsi_enabled_port_mask & (1 << portid)) == 0)
102            continue;
103
104        /* save the destination port id */
105
106        if (nb_ports_in_mask % 2) {
107            lsi_dst_ports[portid] = portid_last;
108            lsi_dst_ports[portid_last] = portid;
109        }
110        else
111            portid_last = portid;
112
113        nb_ports_in_mask++;
114
115        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
116    }
117
118Observe that:
119
120*   rte_pci_probe()  parses the devices on the PCI bus and initializes recognized devices.
121
122The next step is to configure the RX and TX queues.
123For each port, there is only one RX queue (only one lcore is able to poll a given port).
124The number of TX queues depends on the number of available lcores.
125The rte_eth_dev_configure() function is used to configure the number of queues for a port:
126
127.. code-block:: c
128
129    ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
130    if (ret < 0)
131        rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);
132
133The global configuration is stored in a static structure:
134
135.. code-block:: c
136
137    static const struct rte_eth_conf port_conf = {
138        .rxmode = {
139            .split_hdr_size = 0,
140        },
141        .txmode = {},
142        .intr_conf = {
143            .lsc = 1, /**< link status interrupt feature enabled */
144        },
145    };
146
147Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space
148and no user space interrupt event is received.
149The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status.
150Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space
151when a link status change is present and calls the user space callbacks registered by the application.
152The public interface rte_eth_link_get() just reads the link status in a global structure
153that would be updated in the interrupt host thread only.
154
155Interrupt Callback Registration
156~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
157
158The application can register one or more callbacks to a specific port and interrupt event.
159An example callback function that has been written as indicated below.
160
161.. code-block:: c
162
163    static void
164    lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param)
165    {
166        struct rte_eth_link link;
167        int ret;
168
169        RTE_SET_USED(param);
170
171        printf("\n\nIn registered callback...\n");
172
173        printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");
174
175        ret = rte_eth_link_get_nowait(port_id, &link);
176        if (ret < 0) {
177            printf("Failed to get port %d link status: %s\n\n",
178                   port_id, rte_strerror(-ret));
179        } else if (link.link_status) {
180            printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,
181                  (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
182        } else
183            printf("Port %d Link Down\n\n", port_id);
184    }
185
186This function is called when a link status interrupt is present for the right port.
187The port_id indicates which port the interrupt applies to.
188The type parameter identifies the interrupt event type,
189which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future.
190The param parameter is the address of the parameter for the callback.
191This function should be implemented with care since it will be called in the interrupt host thread,
192which is different from the main thread of its caller.
193
194The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:
195
196.. code-block:: c
197
198    rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);
199
200This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function.
201If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.
202
203RX Queue Initialization
204~~~~~~~~~~~~~~~~~~~~~~~
205
206The application uses one lcore to poll one or several ports, depending on the -q option,
207which specifies the number of queues per lcore.
208
209For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
210If there are 16 ports on the target (and if the portmask argument is -p ffff),
211the application will need four lcores to poll all the ports.
212
213.. code-block:: c
214
215    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
216    if (ret < 0)
217        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);
218
219The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
220
221.. code-block:: c
222
223    struct lcore_queue_conf {
224        unsigned n_rx_port;
225        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
226        struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
227    } rte_cache_aligned;
228
229    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
230
231The n_rx_port and rx_port_list[] fields are used in the main packet processing loop
232(see `Receive, Process and Transmit Packets`_).
233
234The global configuration for the RX queues is stored in a static structure:
235
236.. code-block:: c
237
238    static const struct rte_eth_rxconf rx_conf = {
239        .rx_thresh = {
240            .pthresh = RX_PTHRESH,
241            .hthresh = RX_HTHRESH,
242            .wthresh = RX_WTHRESH,
243        },
244    };
245
246TX Queue Initialization
247~~~~~~~~~~~~~~~~~~~~~~~
248
249Each lcore should be able to transmit on any port.
250For every port, a single TX queue is initialized.
251
252.. code-block:: c
253
254    /* init one TX queue logical core on each port */
255
256    fflush(stdout);
257
258    ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
259    if (ret < 0)
260        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);
261
262The global configuration for TX queues is stored in a static structure:
263
264.. code-block:: c
265
266    static const struct rte_eth_txconf tx_conf = {
267        .tx_thresh = {
268            .pthresh = TX_PTHRESH,
269            .hthresh = TX_HTHRESH,
270            .wthresh = TX_WTHRESH,
271        },
272        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
273    };
274
275Receive, Process and Transmit Packets
276~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
277
278In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
279This is done using the following code:
280
281.. code-block:: c
282
283    /*
284     *   Read packet from RX queues
285     */
286
287    for (i = 0; i < qconf->n_rx_port; i++) {
288        portid = qconf->rx_port_list[i];
289        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
290        port_statistics[portid].rx += nb_rx;
291
292        for (j = 0; j < nb_rx; j++) {
293            m = pkts_burst[j];
294            rte_prefetch0(rte_pktmbuf_mtod(m, void *));
295            lsi_simple_forward(m, portid);
296        }
297    }
298
299Packets are read in a burst of size MAX_PKT_BURST.
300The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
301
302Then, each mbuf in the table is processed by the lsi_simple_forward() function.
303The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.
304
305.. note::
306
307    In the following code, the two lines for calculating the output port require some explanation.
308    If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1.
309    If portId is odd, the first line subtracts one and the second line does nothing.
310    Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.
311
312.. code-block:: c
313
314    static void
315    lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
316    {
317        struct rte_ether_hdr *eth;
318        void *tmp;
319        unsigned dst_port = lsi_dst_ports[portid];
320
321        eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
322
323        /* 02:00:00:00:00:xx */
324
325        tmp = &eth->d_addr.addr_bytes[0];
326
327        *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);
328
329        /* src addr */
330        rte_ether_addr_copy(&lsi_ports_eth_addr[dst_port], &eth->s_addr);
331
332        lsi_send_packet(m, dst_port);
333    }
334
335Then, the packet is sent using the lsi_send_packet(m, dst_port) function.
336For this test application, the processing is exactly the same for all packets arriving on the same RX port.
337Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop
338to send all the received packets on the same TX port using
339the burst-oriented send function, which is more efficient.
340
341However, in real-life applications (such as, L3 routing),
342packet N is not necessarily forwarded on the same port as packet N-1.
343The application is implemented to illustrate that so the same approach can be reused in a more complex application.
344
345The lsi_send_packet() function stores the packet in a per-lcore and per-txport table.
346If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:
347
348.. code-block:: c
349
350    /* Send the packet on an output interface */
351
352    static int
353    lsi_send_packet(struct rte_mbuf *m, uint16_t port)
354    {
355        unsigned lcore_id, len;
356        struct lcore_queue_conf *qconf;
357
358        lcore_id = rte_lcore_id();
359        qconf = &lcore_queue_conf[lcore_id];
360        len = qconf->tx_mbufs[port].len;
361        qconf->tx_mbufs[port].m_table[len] = m;
362        len++;
363
364        /* enough pkts to be sent */
365
366        if (unlikely(len == MAX_PKT_BURST)) {
367            lsi_send_burst(qconf, MAX_PKT_BURST, port);
368            len = 0;
369        }
370        qconf->tx_mbufs[port].len = len;
371
372        return 0;
373    }
374
375To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop.
376This technique introduces some latency when there are not many packets to send.
377However, it improves performance:
378
379.. code-block:: c
380
381    cur_tsc = rte_rdtsc();
382
383    /*
384     *    TX burst queue drain
385     */
386
387    diff_tsc = cur_tsc - prev_tsc;
388
389    if (unlikely(diff_tsc > drain_tsc)) {
390        /* this could be optimized (use queueid instead of * portid), but it is not called so often */
391
392        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
393            if (qconf->tx_mbufs[portid].len == 0)
394                continue;
395
396            lsi_send_burst(&lcore_queue_conf[lcore_id],
397            qconf->tx_mbufs[portid].len, (uint8_t) portid);
398            qconf->tx_mbufs[portid].len = 0;
399        }
400
401        /* if timer is enabled */
402
403        if (timer_period > 0) {
404            /* advance the timer */
405
406            timer_tsc += diff_tsc;
407
408            /* if timer has reached its timeout */
409
410            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
411                /* do this only on master core */
412
413                if (lcore_id == rte_get_master_lcore()) {
414                    print_stats();
415
416                    /* reset the timer */
417                    timer_tsc = 0;
418                }
419            }
420        }
421        prev_tsc = cur_tsc;
422   }
423