xref: /dpdk/doc/guides/sample_app_ug/link_status_intr.rst (revision bc8e32473cc3978d763a1387eaa8244bcf75e77d)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4Link Status Interrupt Sample Application
5========================================
6
7The Link Status Interrupt sample application is a simple example of packet processing using
8the Data Plane Development Kit (DPDK) that
9demonstrates how network link status changes for a network port can be captured and
10used by a DPDK application.
11
12Overview
13--------
14
15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
16and performs L2 forwarding for each packet that is received on an RX_PORT.
17The following operations are performed:
18
19*   RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
20
21*   The source MAC address is replaced by the TX_PORT MAC address
22
23*   The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
24
25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
26and the behavior of L2 forwarding each time the link status changes.
27
28Compiling the Application
29-------------------------
30
31To compile the sample application see :doc:`compiling`.
32
33The application is located in the ``link_status_interrupt`` sub-directory.
34
35Running the Application
36-----------------------
37
38The application requires a number of command line options:
39
40.. code-block:: console
41
42    ./<build_dir>/examples/dpdk-link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]
43
44where,
45
46*   -p PORTMASK: A hexadecimal bitmask of the ports to configure
47
48*   -q NQ: A number of queues (=ports) per lcore (default is 1)
49
50*   -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)
51
52To run the application in a linux environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore,
53issue the command:
54
55.. code-block:: console
56
57    $ ./<build_dir>/examples/dpdk-link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff
58
59Refer to the *DPDK Getting Started Guide* for general information on running applications
60and the Environment Abstraction Layer (EAL) options.
61
62Explanation
63-----------
64
65The following sections provide some explanation of the code.
66
67Command Line Arguments
68~~~~~~~~~~~~~~~~~~~~~~
69
70The Link Status Interrupt sample application takes specific parameters,
71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_).
72
73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
74See :ref:`l2_fwd_app_cmd_arguments` for more information.
75
76Mbuf Pool Initialization
77~~~~~~~~~~~~~~~~~~~~~~~~
78
79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
80See :ref:`l2_fwd_app_mbuf_init` for more information.
81
82Driver Initialization
83~~~~~~~~~~~~~~~~~~~~~
84
85The main part of the code in the main() function relates to the initialization of the driver.
86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
87*DPDK Programmer's Guide and the DPDK API Reference*.
88
89.. code-block:: c
90
91    /*
92     * Each logical core is assigned a dedicated TX queue on each port.
93     */
94
95    RTE_ETH_FOREACH_DEV(portid) {
96        /* skip ports that are not enabled */
97
98        if ((lsi_enabled_port_mask & (1 << portid)) == 0)
99            continue;
100
101        /* save the destination port id */
102
103        if (nb_ports_in_mask % 2) {
104            lsi_dst_ports[portid] = portid_last;
105            lsi_dst_ports[portid_last] = portid;
106        }
107        else
108            portid_last = portid;
109
110        nb_ports_in_mask++;
111
112        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
113    }
114
115The next step is to configure the RX and TX queues.
116For each port, there is only one RX queue (only one lcore is able to poll a given port).
117The number of TX queues depends on the number of available lcores.
118The rte_eth_dev_configure() function is used to configure the number of queues for a port:
119
120.. code-block:: c
121
122    ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
123    if (ret < 0)
124        rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);
125
126The global configuration is stored in a static structure:
127
128.. code-block:: c
129
130    static const struct rte_eth_conf port_conf = {
131        .rxmode = {
132            .split_hdr_size = 0,
133        },
134        .txmode = {},
135        .intr_conf = {
136            .lsc = 1, /**< link status interrupt feature enabled */
137        },
138    };
139
140Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space
141and no user space interrupt event is received.
142The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status.
143Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space
144when a link status change is present and calls the user space callbacks registered by the application.
145The public interface rte_eth_link_get() just reads the link status in a global structure
146that would be updated in the interrupt host thread only.
147
148Interrupt Callback Registration
149~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
150
151The application can register one or more callbacks to a specific port and interrupt event.
152An example callback function that has been written as indicated below.
153
154.. code-block:: c
155
156    static void
157    lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param)
158    {
159        struct rte_eth_link link;
160        int ret;
161        char link_status[RTE_ETH_LINK_MAX_STR_LEN];
162
163        RTE_SET_USED(param);
164
165        printf("\n\nIn registered callback...\n");
166
167        printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");
168
169        ret = rte_eth_link_get_nowait(port_id, &link);
170        if (ret < 0) {
171            printf("Failed to get port %d link status: %s\n\n",
172                   port_id, rte_strerror(-ret));
173        } else {
174            rte_eth_link_to_str(link_status, sizeof(link_status), &link);
175            printf("Port %d %s\n", port_id, link_status);
176        }
177    }
178
179This function is called when a link status interrupt is present for the right port.
180The port_id indicates which port the interrupt applies to.
181The type parameter identifies the interrupt event type,
182which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future.
183The param parameter is the address of the parameter for the callback.
184This function should be implemented with care since it will be called in the interrupt host thread,
185which is different from the main thread of its caller.
186
187The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:
188
189.. code-block:: c
190
191    rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);
192
193This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function.
194If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.
195
196RX Queue Initialization
197~~~~~~~~~~~~~~~~~~~~~~~
198
199The application uses one lcore to poll one or several ports, depending on the -q option,
200which specifies the number of queues per lcore.
201
202For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
203If there are 16 ports on the target (and if the portmask argument is -p ffff),
204the application will need four lcores to poll all the ports.
205
206.. code-block:: c
207
208    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
209    if (ret < 0)
210        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);
211
212The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
213
214.. code-block:: c
215
216    struct lcore_queue_conf {
217        unsigned n_rx_port;
218        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
219        struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
220    } rte_cache_aligned;
221
222    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
223
224The n_rx_port and rx_port_list[] fields are used in the main packet processing loop
225(see `Receive, Process and Transmit Packets`_).
226
227The global configuration for the RX queues is stored in a static structure:
228
229.. code-block:: c
230
231    static const struct rte_eth_rxconf rx_conf = {
232        .rx_thresh = {
233            .pthresh = RX_PTHRESH,
234            .hthresh = RX_HTHRESH,
235            .wthresh = RX_WTHRESH,
236        },
237    };
238
239TX Queue Initialization
240~~~~~~~~~~~~~~~~~~~~~~~
241
242Each lcore should be able to transmit on any port.
243For every port, a single TX queue is initialized.
244
245.. code-block:: c
246
247    /* init one TX queue logical core on each port */
248
249    fflush(stdout);
250
251    ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
252    if (ret < 0)
253        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);
254
255The global configuration for TX queues is stored in a static structure:
256
257.. code-block:: c
258
259    static const struct rte_eth_txconf tx_conf = {
260        .tx_thresh = {
261            .pthresh = TX_PTHRESH,
262            .hthresh = TX_HTHRESH,
263            .wthresh = TX_WTHRESH,
264        },
265        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
266    };
267
268Receive, Process and Transmit Packets
269~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
270
271In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
272This is done using the following code:
273
274.. code-block:: c
275
276    /*
277     *   Read packet from RX queues
278     */
279
280    for (i = 0; i < qconf->n_rx_port; i++) {
281        portid = qconf->rx_port_list[i];
282        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
283        port_statistics[portid].rx += nb_rx;
284
285        for (j = 0; j < nb_rx; j++) {
286            m = pkts_burst[j];
287            rte_prefetch0(rte_pktmbuf_mtod(m, void *));
288            lsi_simple_forward(m, portid);
289        }
290    }
291
292Packets are read in a burst of size MAX_PKT_BURST.
293The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
294
295Then, each mbuf in the table is processed by the lsi_simple_forward() function.
296The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.
297
298.. note::
299
300    In the following code, the two lines for calculating the output port require some explanation.
301    If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1.
302    If portId is odd, the first line subtracts one and the second line does nothing.
303    Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.
304
305.. code-block:: c
306
307    static void
308    lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
309    {
310        struct rte_ether_hdr *eth;
311        void *tmp;
312        unsigned dst_port = lsi_dst_ports[portid];
313
314        eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
315
316        /* 02:00:00:00:00:xx */
317
318        tmp = &eth->d_addr.addr_bytes[0];
319
320        *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);
321
322        /* src addr */
323        rte_ether_addr_copy(&lsi_ports_eth_addr[dst_port], &eth->s_addr);
324
325        lsi_send_packet(m, dst_port);
326    }
327
328Then, the packet is sent using the lsi_send_packet(m, dst_port) function.
329For this test application, the processing is exactly the same for all packets arriving on the same RX port.
330Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop
331to send all the received packets on the same TX port using
332the burst-oriented send function, which is more efficient.
333
334However, in real-life applications (such as, L3 routing),
335packet N is not necessarily forwarded on the same port as packet N-1.
336The application is implemented to illustrate that so the same approach can be reused in a more complex application.
337
338The lsi_send_packet() function stores the packet in a per-lcore and per-txport table.
339If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:
340
341.. code-block:: c
342
343    /* Send the packet on an output interface */
344
345    static int
346    lsi_send_packet(struct rte_mbuf *m, uint16_t port)
347    {
348        unsigned lcore_id, len;
349        struct lcore_queue_conf *qconf;
350
351        lcore_id = rte_lcore_id();
352        qconf = &lcore_queue_conf[lcore_id];
353        len = qconf->tx_mbufs[port].len;
354        qconf->tx_mbufs[port].m_table[len] = m;
355        len++;
356
357        /* enough pkts to be sent */
358
359        if (unlikely(len == MAX_PKT_BURST)) {
360            lsi_send_burst(qconf, MAX_PKT_BURST, port);
361            len = 0;
362        }
363        qconf->tx_mbufs[port].len = len;
364
365        return 0;
366    }
367
368To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop.
369This technique introduces some latency when there are not many packets to send.
370However, it improves performance:
371
372.. code-block:: c
373
374    cur_tsc = rte_rdtsc();
375
376    /*
377     *    TX burst queue drain
378     */
379
380    diff_tsc = cur_tsc - prev_tsc;
381
382    if (unlikely(diff_tsc > drain_tsc)) {
383        /* this could be optimized (use queueid instead of * portid), but it is not called so often */
384
385        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
386            if (qconf->tx_mbufs[portid].len == 0)
387                continue;
388
389            lsi_send_burst(&lcore_queue_conf[lcore_id],
390            qconf->tx_mbufs[portid].len, (uint8_t) portid);
391            qconf->tx_mbufs[portid].len = 0;
392        }
393
394        /* if timer is enabled */
395
396        if (timer_period > 0) {
397            /* advance the timer */
398
399            timer_tsc += diff_tsc;
400
401            /* if timer has reached its timeout */
402
403            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
404                /* do this only on main core */
405                if (lcore_id == rte_get_main_lcore()) {
406                    print_stats();
407
408                    /* reset the timer */
409                    timer_tsc = 0;
410                }
411            }
412        }
413        prev_tsc = cur_tsc;
414   }
415