1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2014 Intel Corporation. 3 4Link Status Interrupt Sample Application 5======================================== 6 7The Link Status Interrupt sample application is a simple example of packet processing using 8the Data Plane Development Kit (DPDK) that 9demonstrates how network link status changes for a network port can be captured and 10used by a DPDK application. 11 12Overview 13-------- 14 15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port 16and performs L2 forwarding for each packet that is received on an RX_PORT. 17The following operations are performed: 18 19* RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask 20 21* The source MAC address is replaced by the TX_PORT MAC address 22 23* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 24 25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks 26and the behavior of L2 forwarding each time the link status changes. 27 28Compiling the Application 29------------------------- 30 31To compile the sample application see :doc:`compiling`. 32 33The application is located in the ``link_status_interrupt`` sub-directory. 34 35Running the Application 36----------------------- 37 38The application requires a number of command line options: 39 40.. code-block:: console 41 42 ./<build_dir>/examples/dpdk-link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD] 43 44where, 45 46* -p PORTMASK: A hexadecimal bitmask of the ports to configure 47 48* -q NQ: A number of queues (=ports) per lcore (default is 1) 49 50* -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default) 51 52To run the application in a linux environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore, 53issue the command: 54 55.. code-block:: console 56 57 $ ./<build_dir>/examples/dpdk-link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff 58 59Refer to the *DPDK Getting Started Guide* for general information on running applications 60and the Environment Abstraction Layer (EAL) options. 61 62Explanation 63----------- 64 65The following sections provide some explanation of the code. 66 67Command Line Arguments 68~~~~~~~~~~~~~~~~~~~~~~ 69 70The Link Status Interrupt sample application takes specific parameters, 71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_). 72 73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. 74See :ref:`l2_fwd_app_cmd_arguments` for more information. 75 76Mbuf Pool Initialization 77~~~~~~~~~~~~~~~~~~~~~~~~ 78 79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. 80See :ref:`l2_fwd_app_mbuf_init` for more information. 81 82Driver Initialization 83~~~~~~~~~~~~~~~~~~~~~ 84 85The main part of the code in the main() function relates to the initialization of the driver. 86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the 87*DPDK Programmer's Guide and the DPDK API Reference*. 88 89.. code-block:: c 90 91 /* 92 * Each logical core is assigned a dedicated TX queue on each port. 93 */ 94 95 RTE_ETH_FOREACH_DEV(portid) { 96 /* skip ports that are not enabled */ 97 98 if ((lsi_enabled_port_mask & (1 << portid)) == 0) 99 continue; 100 101 /* save the destination port id */ 102 103 if (nb_ports_in_mask % 2) { 104 lsi_dst_ports[portid] = portid_last; 105 lsi_dst_ports[portid_last] = portid; 106 } 107 else 108 portid_last = portid; 109 110 nb_ports_in_mask++; 111 112 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 113 } 114 115The next step is to configure the RX and TX queues. 116For each port, there is only one RX queue (only one lcore is able to poll a given port). 117The number of TX queues depends on the number of available lcores. 118The rte_eth_dev_configure() function is used to configure the number of queues for a port: 119 120.. code-block:: c 121 122 ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf); 123 if (ret < 0) 124 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid); 125 126The global configuration is stored in a static structure: 127 128.. code-block:: c 129 130 static const struct rte_eth_conf port_conf = { 131 .rxmode = { 132 .split_hdr_size = 0, 133 }, 134 .txmode = {}, 135 .intr_conf = { 136 .lsc = 1, /**< link status interrupt feature enabled */ 137 }, 138 }; 139 140Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space 141and no user space interrupt event is received. 142The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status. 143Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space 144when a link status change is present and calls the user space callbacks registered by the application. 145The public interface rte_eth_link_get() just reads the link status in a global structure 146that would be updated in the interrupt host thread only. 147 148Interrupt Callback Registration 149~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 150 151The application can register one or more callbacks to a specific port and interrupt event. 152An example callback function that has been written as indicated below. 153 154.. code-block:: c 155 156 static void 157 lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param) 158 { 159 struct rte_eth_link link; 160 int ret; 161 char link_status[RTE_ETH_LINK_MAX_STR_LEN]; 162 163 RTE_SET_USED(param); 164 165 printf("\n\nIn registered callback...\n"); 166 167 printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event"); 168 169 ret = rte_eth_link_get_nowait(port_id, &link); 170 if (ret < 0) { 171 printf("Failed to get port %d link status: %s\n\n", 172 port_id, rte_strerror(-ret)); 173 } else { 174 rte_eth_link_to_str(link_status, sizeof(link_status), &link); 175 printf("Port %d %s\n", port_id, link_status); 176 } 177 } 178 179This function is called when a link status interrupt is present for the right port. 180The port_id indicates which port the interrupt applies to. 181The type parameter identifies the interrupt event type, 182which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future. 183The param parameter is the address of the parameter for the callback. 184This function should be implemented with care since it will be called in the interrupt host thread, 185which is different from the main thread of its caller. 186 187The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port: 188 189.. code-block:: c 190 191 rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL); 192 193This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function. 194If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present. 195 196RX Queue Initialization 197~~~~~~~~~~~~~~~~~~~~~~~ 198 199The application uses one lcore to poll one or several ports, depending on the -q option, 200which specifies the number of queues per lcore. 201 202For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 203If there are 16 ports on the target (and if the portmask argument is -p ffff), 204the application will need four lcores to poll all the ports. 205 206.. code-block:: c 207 208 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool); 209 if (ret < 0) 210 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid); 211 212The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 213 214.. code-block:: c 215 216 struct lcore_queue_conf { 217 unsigned n_rx_port; 218 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id; 219 struct mbuf_table tx_mbufs[LSI_MAX_PORTS]; 220 } rte_cache_aligned; 221 222 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 223 224The n_rx_port and rx_port_list[] fields are used in the main packet processing loop 225(see `Receive, Process and Transmit Packets`_). 226 227The global configuration for the RX queues is stored in a static structure: 228 229.. code-block:: c 230 231 static const struct rte_eth_rxconf rx_conf = { 232 .rx_thresh = { 233 .pthresh = RX_PTHRESH, 234 .hthresh = RX_HTHRESH, 235 .wthresh = RX_WTHRESH, 236 }, 237 }; 238 239TX Queue Initialization 240~~~~~~~~~~~~~~~~~~~~~~~ 241 242Each lcore should be able to transmit on any port. 243For every port, a single TX queue is initialized. 244 245.. code-block:: c 246 247 /* init one TX queue logical core on each port */ 248 249 fflush(stdout); 250 251 ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 252 if (ret < 0) 253 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid); 254 255The global configuration for TX queues is stored in a static structure: 256 257.. code-block:: c 258 259 static const struct rte_eth_txconf tx_conf = { 260 .tx_thresh = { 261 .pthresh = TX_PTHRESH, 262 .hthresh = TX_HTHRESH, 263 .wthresh = TX_WTHRESH, 264 }, 265 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 266 }; 267 268Receive, Process and Transmit Packets 269~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 270 271In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues. 272This is done using the following code: 273 274.. code-block:: c 275 276 /* 277 * Read packet from RX queues 278 */ 279 280 for (i = 0; i < qconf->n_rx_port; i++) { 281 portid = qconf->rx_port_list[i]; 282 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 283 port_statistics[portid].rx += nb_rx; 284 285 for (j = 0; j < nb_rx; j++) { 286 m = pkts_burst[j]; 287 rte_prefetch0(rte_pktmbuf_mtod(m, void *)); 288 lsi_simple_forward(m, portid); 289 } 290 } 291 292Packets are read in a burst of size MAX_PKT_BURST. 293The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 294 295Then, each mbuf in the table is processed by the lsi_simple_forward() function. 296The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses. 297 298.. note:: 299 300 In the following code, the two lines for calculating the output port require some explanation. 301 If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1. 302 If portId is odd, the first line subtracts one and the second line does nothing. 303 Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on. 304 305.. code-block:: c 306 307 static void 308 lsi_simple_forward(struct rte_mbuf *m, unsigned portid) 309 { 310 struct rte_ether_hdr *eth; 311 void *tmp; 312 unsigned dst_port = lsi_dst_ports[portid]; 313 314 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 315 316 /* 02:00:00:00:00:xx */ 317 318 tmp = ð->d_addr.addr_bytes[0]; 319 320 *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40); 321 322 /* src addr */ 323 rte_ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr); 324 325 lsi_send_packet(m, dst_port); 326 } 327 328Then, the packet is sent using the lsi_send_packet(m, dst_port) function. 329For this test application, the processing is exactly the same for all packets arriving on the same RX port. 330Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop 331to send all the received packets on the same TX port using 332the burst-oriented send function, which is more efficient. 333 334However, in real-life applications (such as, L3 routing), 335packet N is not necessarily forwarded on the same port as packet N-1. 336The application is implemented to illustrate that so the same approach can be reused in a more complex application. 337 338The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. 339If the table is full, the whole packets table is transmitted using the lsi_send_burst() function: 340 341.. code-block:: c 342 343 /* Send the packet on an output interface */ 344 345 static int 346 lsi_send_packet(struct rte_mbuf *m, uint16_t port) 347 { 348 unsigned lcore_id, len; 349 struct lcore_queue_conf *qconf; 350 351 lcore_id = rte_lcore_id(); 352 qconf = &lcore_queue_conf[lcore_id]; 353 len = qconf->tx_mbufs[port].len; 354 qconf->tx_mbufs[port].m_table[len] = m; 355 len++; 356 357 /* enough pkts to be sent */ 358 359 if (unlikely(len == MAX_PKT_BURST)) { 360 lsi_send_burst(qconf, MAX_PKT_BURST, port); 361 len = 0; 362 } 363 qconf->tx_mbufs[port].len = len; 364 365 return 0; 366 } 367 368To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop. 369This technique introduces some latency when there are not many packets to send. 370However, it improves performance: 371 372.. code-block:: c 373 374 cur_tsc = rte_rdtsc(); 375 376 /* 377 * TX burst queue drain 378 */ 379 380 diff_tsc = cur_tsc - prev_tsc; 381 382 if (unlikely(diff_tsc > drain_tsc)) { 383 /* this could be optimized (use queueid instead of * portid), but it is not called so often */ 384 385 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 386 if (qconf->tx_mbufs[portid].len == 0) 387 continue; 388 389 lsi_send_burst(&lcore_queue_conf[lcore_id], 390 qconf->tx_mbufs[portid].len, (uint8_t) portid); 391 qconf->tx_mbufs[portid].len = 0; 392 } 393 394 /* if timer is enabled */ 395 396 if (timer_period > 0) { 397 /* advance the timer */ 398 399 timer_tsc += diff_tsc; 400 401 /* if timer has reached its timeout */ 402 403 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 404 /* do this only on main core */ 405 if (lcore_id == rte_get_main_lcore()) { 406 print_stats(); 407 408 /* reset the timer */ 409 timer_tsc = 0; 410 } 411 } 412 } 413 prev_tsc = cur_tsc; 414 } 415