1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2014 Intel Corporation. 3 4Link Status Interrupt Sample Application 5======================================== 6 7The Link Status Interrupt sample application is a simple example of packet processing using 8the Data Plane Development Kit (DPDK) that 9demonstrates how network link status changes for a network port can be captured and 10used by a DPDK application. 11 12Overview 13-------- 14 15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port 16and performs L2 forwarding for each packet that is received on an RX_PORT. 17The following operations are performed: 18 19* RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask 20 21* The source MAC address is replaced by the TX_PORT MAC address 22 23* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 24 25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks 26and the behavior of L2 forwarding each time the link status changes. 27 28Compiling the Application 29------------------------- 30 31To compile the sample application see :doc:`compiling`. 32 33The application is located in the ``link_status_interrupt`` sub-directory. 34 35Running the Application 36----------------------- 37 38The application requires a number of command line options: 39 40.. code-block:: console 41 42 ./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD] 43 44where, 45 46* -p PORTMASK: A hexadecimal bitmask of the ports to configure 47 48* -q NQ: A number of queues (=ports) per lcore (default is 1) 49 50* -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default) 51 52To run the application in a linux environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore, 53issue the command: 54 55.. code-block:: console 56 57 $ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff 58 59Refer to the *DPDK Getting Started Guide* for general information on running applications 60and the Environment Abstraction Layer (EAL) options. 61 62Explanation 63----------- 64 65The following sections provide some explanation of the code. 66 67Command Line Arguments 68~~~~~~~~~~~~~~~~~~~~~~ 69 70The Link Status Interrupt sample application takes specific parameters, 71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_). 72 73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. 74See :ref:`l2_fwd_app_cmd_arguments` for more information. 75 76Mbuf Pool Initialization 77~~~~~~~~~~~~~~~~~~~~~~~~ 78 79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. 80See :ref:`l2_fwd_app_mbuf_init` for more information. 81 82Driver Initialization 83~~~~~~~~~~~~~~~~~~~~~ 84 85The main part of the code in the main() function relates to the initialization of the driver. 86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the 87*DPDK Programmer's Guide and the DPDK API Reference*. 88 89.. code-block:: c 90 91 if (rte_pci_probe() < 0) 92 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 93 94 /* 95 * Each logical core is assigned a dedicated TX queue on each port. 96 */ 97 98 RTE_ETH_FOREACH_DEV(portid) { 99 /* skip ports that are not enabled */ 100 101 if ((lsi_enabled_port_mask & (1 << portid)) == 0) 102 continue; 103 104 /* save the destination port id */ 105 106 if (nb_ports_in_mask % 2) { 107 lsi_dst_ports[portid] = portid_last; 108 lsi_dst_ports[portid_last] = portid; 109 } 110 else 111 portid_last = portid; 112 113 nb_ports_in_mask++; 114 115 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 116 } 117 118Observe that: 119 120* rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices. 121 122The next step is to configure the RX and TX queues. 123For each port, there is only one RX queue (only one lcore is able to poll a given port). 124The number of TX queues depends on the number of available lcores. 125The rte_eth_dev_configure() function is used to configure the number of queues for a port: 126 127.. code-block:: c 128 129 ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf); 130 if (ret < 0) 131 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid); 132 133The global configuration is stored in a static structure: 134 135.. code-block:: c 136 137 static const struct rte_eth_conf port_conf = { 138 .rxmode = { 139 .split_hdr_size = 0, 140 }, 141 .txmode = {}, 142 .intr_conf = { 143 .lsc = 1, /**< link status interrupt feature enabled */ 144 }, 145 }; 146 147Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space 148and no user space interrupt event is received. 149The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status. 150Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space 151when a link status change is present and calls the user space callbacks registered by the application. 152The public interface rte_eth_link_get() just reads the link status in a global structure 153that would be updated in the interrupt host thread only. 154 155Interrupt Callback Registration 156~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 157 158The application can register one or more callbacks to a specific port and interrupt event. 159An example callback function that has been written as indicated below. 160 161.. code-block:: c 162 163 static void 164 lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param) 165 { 166 struct rte_eth_link link; 167 168 RTE_SET_USED(param); 169 170 printf("\n\nIn registered callback...\n"); 171 172 printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event"); 173 174 rte_eth_link_get_nowait(port_id, &link); 175 176 if (link.link_status) { 177 printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed, 178 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex")); 179 } else 180 printf("Port %d Link Down\n\n", port_id); 181 } 182 183This function is called when a link status interrupt is present for the right port. 184The port_id indicates which port the interrupt applies to. 185The type parameter identifies the interrupt event type, 186which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future. 187The param parameter is the address of the parameter for the callback. 188This function should be implemented with care since it will be called in the interrupt host thread, 189which is different from the main thread of its caller. 190 191The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port: 192 193.. code-block:: c 194 195 rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL); 196 197This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function. 198If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present. 199 200RX Queue Initialization 201~~~~~~~~~~~~~~~~~~~~~~~ 202 203The application uses one lcore to poll one or several ports, depending on the -q option, 204which specifies the number of queues per lcore. 205 206For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 207If there are 16 ports on the target (and if the portmask argument is -p ffff), 208the application will need four lcores to poll all the ports. 209 210.. code-block:: c 211 212 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool); 213 if (ret < 0) 214 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid); 215 216The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 217 218.. code-block:: c 219 220 struct lcore_queue_conf { 221 unsigned n_rx_port; 222 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id; 223 struct mbuf_table tx_mbufs[LSI_MAX_PORTS]; 224 } rte_cache_aligned; 225 226 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 227 228The n_rx_port and rx_port_list[] fields are used in the main packet processing loop 229(see `Receive, Process and Transmit Packets`_). 230 231The global configuration for the RX queues is stored in a static structure: 232 233.. code-block:: c 234 235 static const struct rte_eth_rxconf rx_conf = { 236 .rx_thresh = { 237 .pthresh = RX_PTHRESH, 238 .hthresh = RX_HTHRESH, 239 .wthresh = RX_WTHRESH, 240 }, 241 }; 242 243TX Queue Initialization 244~~~~~~~~~~~~~~~~~~~~~~~ 245 246Each lcore should be able to transmit on any port. 247For every port, a single TX queue is initialized. 248 249.. code-block:: c 250 251 /* init one TX queue logical core on each port */ 252 253 fflush(stdout); 254 255 ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 256 if (ret < 0) 257 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid); 258 259The global configuration for TX queues is stored in a static structure: 260 261.. code-block:: c 262 263 static const struct rte_eth_txconf tx_conf = { 264 .tx_thresh = { 265 .pthresh = TX_PTHRESH, 266 .hthresh = TX_HTHRESH, 267 .wthresh = TX_WTHRESH, 268 }, 269 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 270 }; 271 272Receive, Process and Transmit Packets 273~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 274 275In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues. 276This is done using the following code: 277 278.. code-block:: c 279 280 /* 281 * Read packet from RX queues 282 */ 283 284 for (i = 0; i < qconf->n_rx_port; i++) { 285 portid = qconf->rx_port_list[i]; 286 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 287 port_statistics[portid].rx += nb_rx; 288 289 for (j = 0; j < nb_rx; j++) { 290 m = pkts_burst[j]; 291 rte_prefetch0(rte_pktmbuf_mtod(m, void *)); 292 lsi_simple_forward(m, portid); 293 } 294 } 295 296Packets are read in a burst of size MAX_PKT_BURST. 297The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 298 299Then, each mbuf in the table is processed by the lsi_simple_forward() function. 300The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses. 301 302.. note:: 303 304 In the following code, the two lines for calculating the output port require some explanation. 305 If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1. 306 If portId is odd, the first line subtracts one and the second line does nothing. 307 Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on. 308 309.. code-block:: c 310 311 static void 312 lsi_simple_forward(struct rte_mbuf *m, unsigned portid) 313 { 314 struct rte_ether_hdr *eth; 315 void *tmp; 316 unsigned dst_port = lsi_dst_ports[portid]; 317 318 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 319 320 /* 02:00:00:00:00:xx */ 321 322 tmp = ð->d_addr.addr_bytes[0]; 323 324 *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40); 325 326 /* src addr */ 327 rte_ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr); 328 329 lsi_send_packet(m, dst_port); 330 } 331 332Then, the packet is sent using the lsi_send_packet(m, dst_port) function. 333For this test application, the processing is exactly the same for all packets arriving on the same RX port. 334Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop 335to send all the received packets on the same TX port using 336the burst-oriented send function, which is more efficient. 337 338However, in real-life applications (such as, L3 routing), 339packet N is not necessarily forwarded on the same port as packet N-1. 340The application is implemented to illustrate that so the same approach can be reused in a more complex application. 341 342The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. 343If the table is full, the whole packets table is transmitted using the lsi_send_burst() function: 344 345.. code-block:: c 346 347 /* Send the packet on an output interface */ 348 349 static int 350 lsi_send_packet(struct rte_mbuf *m, uint16_t port) 351 { 352 unsigned lcore_id, len; 353 struct lcore_queue_conf *qconf; 354 355 lcore_id = rte_lcore_id(); 356 qconf = &lcore_queue_conf[lcore_id]; 357 len = qconf->tx_mbufs[port].len; 358 qconf->tx_mbufs[port].m_table[len] = m; 359 len++; 360 361 /* enough pkts to be sent */ 362 363 if (unlikely(len == MAX_PKT_BURST)) { 364 lsi_send_burst(qconf, MAX_PKT_BURST, port); 365 len = 0; 366 } 367 qconf->tx_mbufs[port].len = len; 368 369 return 0; 370 } 371 372To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop. 373This technique introduces some latency when there are not many packets to send. 374However, it improves performance: 375 376.. code-block:: c 377 378 cur_tsc = rte_rdtsc(); 379 380 /* 381 * TX burst queue drain 382 */ 383 384 diff_tsc = cur_tsc - prev_tsc; 385 386 if (unlikely(diff_tsc > drain_tsc)) { 387 /* this could be optimized (use queueid instead of * portid), but it is not called so often */ 388 389 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 390 if (qconf->tx_mbufs[portid].len == 0) 391 continue; 392 393 lsi_send_burst(&lcore_queue_conf[lcore_id], 394 qconf->tx_mbufs[portid].len, (uint8_t) portid); 395 qconf->tx_mbufs[portid].len = 0; 396 } 397 398 /* if timer is enabled */ 399 400 if (timer_period > 0) { 401 /* advance the timer */ 402 403 timer_tsc += diff_tsc; 404 405 /* if timer has reached its timeout */ 406 407 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 408 /* do this only on master core */ 409 410 if (lcore_id == rte_get_master_lcore()) { 411 print_stats(); 412 413 /* reset the timer */ 414 timer_tsc = 0; 415 } 416 } 417 } 418 prev_tsc = cur_tsc; 419 } 420