xref: /dpdk/doc/guides/sample_app_ug/link_status_intr.rst (revision 2a1e2da1bb34c7cc0145fdd8940047ae325277bc)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4Link Status Interrupt Sample Application
5========================================
6
7The Link Status Interrupt sample application is a simple example of packet processing using
8the Data Plane Development Kit (DPDK) that
9demonstrates how network link status changes for a network port can be captured and
10used by a DPDK application.
11
12Overview
13--------
14
15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
16and performs L2 forwarding for each packet that is received on an RX_PORT.
17The following operations are performed:
18
19*   RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
20
21*   The source MAC address is replaced by the TX_PORT MAC address
22
23*   The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
24
25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
26and the behavior of L2 forwarding each time the link status changes.
27
28Compiling the Application
29-------------------------
30
31To compile the sample application see :doc:`compiling`.
32
33The application is located in the ``link_status_interrupt`` sub-directory.
34
35Running the Application
36-----------------------
37
38The application requires a number of command line options:
39
40.. code-block:: console
41
42    ./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]
43
44where,
45
46*   -p PORTMASK: A hexadecimal bitmask of the ports to configure
47
48*   -q NQ: A number of queues (=ports) per lcore (default is 1)
49
50*   -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)
51
52To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore,
53issue the command:
54
55.. code-block:: console
56
57    $ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff
58
59Refer to the *DPDK Getting Started Guide* for general information on running applications
60and the Environment Abstraction Layer (EAL) options.
61
62Explanation
63-----------
64
65The following sections provide some explanation of the code.
66
67Command Line Arguments
68~~~~~~~~~~~~~~~~~~~~~~
69
70The Link Status Interrupt sample application takes specific parameters,
71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_).
72
73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
74See :ref:`l2_fwd_app_cmd_arguments` for more information.
75
76Mbuf Pool Initialization
77~~~~~~~~~~~~~~~~~~~~~~~~
78
79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
80See :ref:`l2_fwd_app_mbuf_init` for more information.
81
82Driver Initialization
83~~~~~~~~~~~~~~~~~~~~~
84
85The main part of the code in the main() function relates to the initialization of the driver.
86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
87*DPDK Programmer's Guide and the DPDK API Reference*.
88
89.. code-block:: c
90
91    if (rte_pci_probe() < 0)
92        rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
93
94    /*
95     * Each logical core is assigned a dedicated TX queue on each port.
96     */
97
98    RTE_ETH_FOREACH_DEV(portid) {
99        /* skip ports that are not enabled */
100
101        if ((lsi_enabled_port_mask & (1 << portid)) == 0)
102            continue;
103
104        /* save the destination port id */
105
106        if (nb_ports_in_mask % 2) {
107            lsi_dst_ports[portid] = portid_last;
108            lsi_dst_ports[portid_last] = portid;
109        }
110        else
111            portid_last = portid;
112
113        nb_ports_in_mask++;
114
115        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
116    }
117
118Observe that:
119
120*   rte_pci_probe()  parses the devices on the PCI bus and initializes recognized devices.
121
122The next step is to configure the RX and TX queues.
123For each port, there is only one RX queue (only one lcore is able to poll a given port).
124The number of TX queues depends on the number of available lcores.
125The rte_eth_dev_configure() function is used to configure the number of queues for a port:
126
127.. code-block:: c
128
129    ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
130    if (ret < 0)
131        rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);
132
133The global configuration is stored in a static structure:
134
135.. code-block:: c
136
137    static const struct rte_eth_conf port_conf = {
138        .rxmode = {
139            .split_hdr_size = 0,
140            .header_split = 0,   /**< Header Split disabled */
141            .hw_ip_checksum = 0, /**< IP checksum offload disabled */
142            .hw_vlan_filter = 0, /**< VLAN filtering disabled */
143            .hw_strip_crc= 0,    /**< CRC stripped by hardware */
144        },
145        .txmode = {},
146        .intr_conf = {
147            .lsc = 1, /**< link status interrupt feature enabled */
148        },
149    };
150
151Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space
152and no user space interrupt event is received.
153The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status.
154Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space
155when a link status change is present and calls the user space callbacks registered by the application.
156The public interface rte_eth_link_get() just reads the link status in a global structure
157that would be updated in the interrupt host thread only.
158
159Interrupt Callback Registration
160~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161
162The application can register one or more callbacks to a specific port and interrupt event.
163An example callback function that has been written as indicated below.
164
165.. code-block:: c
166
167    static void
168    lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param)
169    {
170        struct rte_eth_link link;
171
172        RTE_SET_USED(param);
173
174        printf("\n\nIn registered callback...\n");
175
176        printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");
177
178        rte_eth_link_get_nowait(port_id, &link);
179
180        if (link.link_status) {
181            printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,
182                  (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
183        } else
184            printf("Port %d Link Down\n\n", port_id);
185    }
186
187This function is called when a link status interrupt is present for the right port.
188The port_id indicates which port the interrupt applies to.
189The type parameter identifies the interrupt event type,
190which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future.
191The param parameter is the address of the parameter for the callback.
192This function should be implemented with care since it will be called in the interrupt host thread,
193which is different from the main thread of its caller.
194
195The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:
196
197.. code-block:: c
198
199    rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);
200
201This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function.
202If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.
203
204RX Queue Initialization
205~~~~~~~~~~~~~~~~~~~~~~~
206
207The application uses one lcore to poll one or several ports, depending on the -q option,
208which specifies the number of queues per lcore.
209
210For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
211If there are 16 ports on the target (and if the portmask argument is -p ffff),
212the application will need four lcores to poll all the ports.
213
214.. code-block:: c
215
216    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
217    if (ret < 0)
218        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);
219
220The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
221
222.. code-block:: c
223
224    struct lcore_queue_conf {
225        unsigned n_rx_port;
226        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
227        struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
228    } rte_cache_aligned;
229
230    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
231
232The n_rx_port and rx_port_list[] fields are used in the main packet processing loop
233(see `Receive, Process and Transmit Packets`_).
234
235The global configuration for the RX queues is stored in a static structure:
236
237.. code-block:: c
238
239    static const struct rte_eth_rxconf rx_conf = {
240        .rx_thresh = {
241            .pthresh = RX_PTHRESH,
242            .hthresh = RX_HTHRESH,
243            .wthresh = RX_WTHRESH,
244        },
245    };
246
247TX Queue Initialization
248~~~~~~~~~~~~~~~~~~~~~~~
249
250Each lcore should be able to transmit on any port.
251For every port, a single TX queue is initialized.
252
253.. code-block:: c
254
255    /* init one TX queue logical core on each port */
256
257    fflush(stdout);
258
259    ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
260    if (ret < 0)
261        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);
262
263The global configuration for TX queues is stored in a static structure:
264
265.. code-block:: c
266
267    static const struct rte_eth_txconf tx_conf = {
268        .tx_thresh = {
269            .pthresh = TX_PTHRESH,
270            .hthresh = TX_HTHRESH,
271            .wthresh = TX_WTHRESH,
272        },
273        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
274    };
275
276Receive, Process and Transmit Packets
277~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
278
279In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
280This is done using the following code:
281
282.. code-block:: c
283
284    /*
285     *   Read packet from RX queues
286     */
287
288    for (i = 0; i < qconf->n_rx_port; i++) {
289        portid = qconf->rx_port_list[i];
290        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
291        port_statistics[portid].rx += nb_rx;
292
293        for (j = 0; j < nb_rx; j++) {
294            m = pkts_burst[j];
295            rte_prefetch0(rte_pktmbuf_mtod(m, void *));
296            lsi_simple_forward(m, portid);
297        }
298    }
299
300Packets are read in a burst of size MAX_PKT_BURST.
301The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
302
303Then, each mbuf in the table is processed by the lsi_simple_forward() function.
304The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.
305
306.. note::
307
308    In the following code, the two lines for calculating the output port require some explanation.
309    If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1.
310    If portId is odd, the first line subtracts one and the second line does nothing.
311    Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.
312
313.. code-block:: c
314
315    static void
316    lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
317    {
318        struct ether_hdr *eth;
319        void *tmp;
320        unsigned dst_port = lsi_dst_ports[portid];
321
322        eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
323
324        /* 02:00:00:00:00:xx */
325
326        tmp = &eth->d_addr.addr_bytes[0];
327
328        *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);
329
330        /* src addr */
331        ether_addr_copy(&lsi_ports_eth_addr[dst_port], &eth->s_addr);
332
333        lsi_send_packet(m, dst_port);
334    }
335
336Then, the packet is sent using the lsi_send_packet(m, dst_port) function.
337For this test application, the processing is exactly the same for all packets arriving on the same RX port.
338Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop
339to send all the received packets on the same TX port using
340the burst-oriented send function, which is more efficient.
341
342However, in real-life applications (such as, L3 routing),
343packet N is not necessarily forwarded on the same port as packet N-1.
344The application is implemented to illustrate that so the same approach can be reused in a more complex application.
345
346The lsi_send_packet() function stores the packet in a per-lcore and per-txport table.
347If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:
348
349.. code-block:: c
350
351    /* Send the packet on an output interface */
352
353    static int
354    lsi_send_packet(struct rte_mbuf *m, uint16_t port)
355    {
356        unsigned lcore_id, len;
357        struct lcore_queue_conf *qconf;
358
359        lcore_id = rte_lcore_id();
360        qconf = &lcore_queue_conf[lcore_id];
361        len = qconf->tx_mbufs[port].len;
362        qconf->tx_mbufs[port].m_table[len] = m;
363        len++;
364
365        /* enough pkts to be sent */
366
367        if (unlikely(len == MAX_PKT_BURST)) {
368            lsi_send_burst(qconf, MAX_PKT_BURST, port);
369            len = 0;
370        }
371        qconf->tx_mbufs[port].len = len;
372
373        return 0;
374    }
375
376To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop.
377This technique introduces some latency when there are not many packets to send.
378However, it improves performance:
379
380.. code-block:: c
381
382    cur_tsc = rte_rdtsc();
383
384    /*
385     *    TX burst queue drain
386     */
387
388    diff_tsc = cur_tsc - prev_tsc;
389
390    if (unlikely(diff_tsc > drain_tsc)) {
391        /* this could be optimized (use queueid instead of * portid), but it is not called so often */
392
393        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
394            if (qconf->tx_mbufs[portid].len == 0)
395                continue;
396
397            lsi_send_burst(&lcore_queue_conf[lcore_id],
398            qconf->tx_mbufs[portid].len, (uint8_t) portid);
399            qconf->tx_mbufs[portid].len = 0;
400        }
401
402        /* if timer is enabled */
403
404        if (timer_period > 0) {
405            /* advance the timer */
406
407            timer_tsc += diff_tsc;
408
409            /* if timer has reached its timeout */
410
411            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
412                /* do this only on master core */
413
414                if (lcore_id == rte_get_master_lcore()) {
415                    print_stats();
416
417                    /* reset the timer */
418                    timer_tsc = 0;
419                }
420            }
421        }
422        prev_tsc = cur_tsc;
423   }
424