1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2014 Intel Corporation. 3 4Link Status Interrupt Sample Application 5======================================== 6 7The Link Status Interrupt sample application is a simple example of packet processing using 8the Data Plane Development Kit (DPDK) that 9demonstrates how network link status changes for a network port can be captured and 10used by a DPDK application. 11 12Overview 13-------- 14 15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port 16and performs L2 forwarding for each packet that is received on an RX_PORT. 17The following operations are performed: 18 19* RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask 20 21* The source MAC address is replaced by the TX_PORT MAC address 22 23* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 24 25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks 26and the behavior of L2 forwarding each time the link status changes. 27 28Compiling the Application 29------------------------- 30 31To compile the sample application see :doc:`compiling`. 32 33The application is located in the ``link_status_interrupt`` sub-directory. 34 35Running the Application 36----------------------- 37 38The application requires a number of command line options: 39 40.. code-block:: console 41 42 ./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD] 43 44where, 45 46* -p PORTMASK: A hexadecimal bitmask of the ports to configure 47 48* -q NQ: A number of queues (=ports) per lcore (default is 1) 49 50* -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default) 51 52To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore, 53issue the command: 54 55.. code-block:: console 56 57 $ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff 58 59Refer to the *DPDK Getting Started Guide* for general information on running applications 60and the Environment Abstraction Layer (EAL) options. 61 62Explanation 63----------- 64 65The following sections provide some explanation of the code. 66 67Command Line Arguments 68~~~~~~~~~~~~~~~~~~~~~~ 69 70The Link Status Interrupt sample application takes specific parameters, 71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_). 72 73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. 74See :ref:`l2_fwd_app_cmd_arguments` for more information. 75 76Mbuf Pool Initialization 77~~~~~~~~~~~~~~~~~~~~~~~~ 78 79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. 80See :ref:`l2_fwd_app_mbuf_init` for more information. 81 82Driver Initialization 83~~~~~~~~~~~~~~~~~~~~~ 84 85The main part of the code in the main() function relates to the initialization of the driver. 86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the 87*DPDK Programmer's Guide and the DPDK API Reference*. 88 89.. code-block:: c 90 91 if (rte_pci_probe() < 0) 92 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 93 94 /* 95 * Each logical core is assigned a dedicated TX queue on each port. 96 */ 97 98 RTE_ETH_FOREACH_DEV(portid) { 99 /* skip ports that are not enabled */ 100 101 if ((lsi_enabled_port_mask & (1 << portid)) == 0) 102 continue; 103 104 /* save the destination port id */ 105 106 if (nb_ports_in_mask % 2) { 107 lsi_dst_ports[portid] = portid_last; 108 lsi_dst_ports[portid_last] = portid; 109 } 110 else 111 portid_last = portid; 112 113 nb_ports_in_mask++; 114 115 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 116 } 117 118Observe that: 119 120* rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices. 121 122The next step is to configure the RX and TX queues. 123For each port, there is only one RX queue (only one lcore is able to poll a given port). 124The number of TX queues depends on the number of available lcores. 125The rte_eth_dev_configure() function is used to configure the number of queues for a port: 126 127.. code-block:: c 128 129 ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf); 130 if (ret < 0) 131 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid); 132 133The global configuration is stored in a static structure: 134 135.. code-block:: c 136 137 static const struct rte_eth_conf port_conf = { 138 .rxmode = { 139 .split_hdr_size = 0, 140 .header_split = 0, /**< Header Split disabled */ 141 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 142 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 143 .hw_strip_crc= 0, /**< CRC stripped by hardware */ 144 }, 145 .txmode = {}, 146 .intr_conf = { 147 .lsc = 1, /**< link status interrupt feature enabled */ 148 }, 149 }; 150 151Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space 152and no user space interrupt event is received. 153The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status. 154Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space 155when a link status change is present and calls the user space callbacks registered by the application. 156The public interface rte_eth_link_get() just reads the link status in a global structure 157that would be updated in the interrupt host thread only. 158 159Interrupt Callback Registration 160~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 162The application can register one or more callbacks to a specific port and interrupt event. 163An example callback function that has been written as indicated below. 164 165.. code-block:: c 166 167 static void 168 lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param) 169 { 170 struct rte_eth_link link; 171 172 RTE_SET_USED(param); 173 174 printf("\n\nIn registered callback...\n"); 175 176 printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event"); 177 178 rte_eth_link_get_nowait(port_id, &link); 179 180 if (link.link_status) { 181 printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed, 182 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex")); 183 } else 184 printf("Port %d Link Down\n\n", port_id); 185 } 186 187This function is called when a link status interrupt is present for the right port. 188The port_id indicates which port the interrupt applies to. 189The type parameter identifies the interrupt event type, 190which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future. 191The param parameter is the address of the parameter for the callback. 192This function should be implemented with care since it will be called in the interrupt host thread, 193which is different from the main thread of its caller. 194 195The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port: 196 197.. code-block:: c 198 199 rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL); 200 201This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function. 202If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present. 203 204RX Queue Initialization 205~~~~~~~~~~~~~~~~~~~~~~~ 206 207The application uses one lcore to poll one or several ports, depending on the -q option, 208which specifies the number of queues per lcore. 209 210For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 211If there are 16 ports on the target (and if the portmask argument is -p ffff), 212the application will need four lcores to poll all the ports. 213 214.. code-block:: c 215 216 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool); 217 if (ret < 0) 218 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid); 219 220The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 221 222.. code-block:: c 223 224 struct lcore_queue_conf { 225 unsigned n_rx_port; 226 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id; 227 struct mbuf_table tx_mbufs[LSI_MAX_PORTS]; 228 } rte_cache_aligned; 229 230 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 231 232The n_rx_port and rx_port_list[] fields are used in the main packet processing loop 233(see `Receive, Process and Transmit Packets`_). 234 235The global configuration for the RX queues is stored in a static structure: 236 237.. code-block:: c 238 239 static const struct rte_eth_rxconf rx_conf = { 240 .rx_thresh = { 241 .pthresh = RX_PTHRESH, 242 .hthresh = RX_HTHRESH, 243 .wthresh = RX_WTHRESH, 244 }, 245 }; 246 247TX Queue Initialization 248~~~~~~~~~~~~~~~~~~~~~~~ 249 250Each lcore should be able to transmit on any port. 251For every port, a single TX queue is initialized. 252 253.. code-block:: c 254 255 /* init one TX queue logical core on each port */ 256 257 fflush(stdout); 258 259 ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 260 if (ret < 0) 261 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid); 262 263The global configuration for TX queues is stored in a static structure: 264 265.. code-block:: c 266 267 static const struct rte_eth_txconf tx_conf = { 268 .tx_thresh = { 269 .pthresh = TX_PTHRESH, 270 .hthresh = TX_HTHRESH, 271 .wthresh = TX_WTHRESH, 272 }, 273 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 274 }; 275 276Receive, Process and Transmit Packets 277~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 278 279In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues. 280This is done using the following code: 281 282.. code-block:: c 283 284 /* 285 * Read packet from RX queues 286 */ 287 288 for (i = 0; i < qconf->n_rx_port; i++) { 289 portid = qconf->rx_port_list[i]; 290 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 291 port_statistics[portid].rx += nb_rx; 292 293 for (j = 0; j < nb_rx; j++) { 294 m = pkts_burst[j]; 295 rte_prefetch0(rte_pktmbuf_mtod(m, void *)); 296 lsi_simple_forward(m, portid); 297 } 298 } 299 300Packets are read in a burst of size MAX_PKT_BURST. 301The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 302 303Then, each mbuf in the table is processed by the lsi_simple_forward() function. 304The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses. 305 306.. note:: 307 308 In the following code, the two lines for calculating the output port require some explanation. 309 If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1. 310 If portId is odd, the first line subtracts one and the second line does nothing. 311 Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on. 312 313.. code-block:: c 314 315 static void 316 lsi_simple_forward(struct rte_mbuf *m, unsigned portid) 317 { 318 struct ether_hdr *eth; 319 void *tmp; 320 unsigned dst_port = lsi_dst_ports[portid]; 321 322 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 323 324 /* 02:00:00:00:00:xx */ 325 326 tmp = ð->d_addr.addr_bytes[0]; 327 328 *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40); 329 330 /* src addr */ 331 ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr); 332 333 lsi_send_packet(m, dst_port); 334 } 335 336Then, the packet is sent using the lsi_send_packet(m, dst_port) function. 337For this test application, the processing is exactly the same for all packets arriving on the same RX port. 338Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop 339to send all the received packets on the same TX port using 340the burst-oriented send function, which is more efficient. 341 342However, in real-life applications (such as, L3 routing), 343packet N is not necessarily forwarded on the same port as packet N-1. 344The application is implemented to illustrate that so the same approach can be reused in a more complex application. 345 346The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. 347If the table is full, the whole packets table is transmitted using the lsi_send_burst() function: 348 349.. code-block:: c 350 351 /* Send the packet on an output interface */ 352 353 static int 354 lsi_send_packet(struct rte_mbuf *m, uint16_t port) 355 { 356 unsigned lcore_id, len; 357 struct lcore_queue_conf *qconf; 358 359 lcore_id = rte_lcore_id(); 360 qconf = &lcore_queue_conf[lcore_id]; 361 len = qconf->tx_mbufs[port].len; 362 qconf->tx_mbufs[port].m_table[len] = m; 363 len++; 364 365 /* enough pkts to be sent */ 366 367 if (unlikely(len == MAX_PKT_BURST)) { 368 lsi_send_burst(qconf, MAX_PKT_BURST, port); 369 len = 0; 370 } 371 qconf->tx_mbufs[port].len = len; 372 373 return 0; 374 } 375 376To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop. 377This technique introduces some latency when there are not many packets to send. 378However, it improves performance: 379 380.. code-block:: c 381 382 cur_tsc = rte_rdtsc(); 383 384 /* 385 * TX burst queue drain 386 */ 387 388 diff_tsc = cur_tsc - prev_tsc; 389 390 if (unlikely(diff_tsc > drain_tsc)) { 391 /* this could be optimized (use queueid instead of * portid), but it is not called so often */ 392 393 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 394 if (qconf->tx_mbufs[portid].len == 0) 395 continue; 396 397 lsi_send_burst(&lcore_queue_conf[lcore_id], 398 qconf->tx_mbufs[portid].len, (uint8_t) portid); 399 qconf->tx_mbufs[portid].len = 0; 400 } 401 402 /* if timer is enabled */ 403 404 if (timer_period > 0) { 405 /* advance the timer */ 406 407 timer_tsc += diff_tsc; 408 409 /* if timer has reached its timeout */ 410 411 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 412 /* do this only on master core */ 413 414 if (lcore_id == rte_get_master_lcore()) { 415 print_stats(); 416 417 /* reset the timer */ 418 timer_tsc = 0; 419 } 420 } 421 } 422 prev_tsc = cur_tsc; 423 } 424